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1. INTRODUCTION

Watermark decoders are in essence stochastic processes.
There are at least three sources of randomness: the unknown
original content (for blind decoders), the unknown hidden
message, and the unknown attack the watermarked content
has undergone. The output of the decoder is thus a random
variable and this leads to a very disturbing fact: there will
be errors in some decoded messages. This also holds for
watermark detectors which have to take the decision whether
the content under scrutiny has been watermarked or not.

1.1. Watermarking reliability

In order to be used in an application, a watermarking
technique must be reliable. We introduce here the concept
of reliability as the guarantee that not only these inherent
errors very rarely happen, but also that their frequency or
their probability is assessed to be below a given level. Here
are two application scenarii where a wrong estimation of the
probability of error could lead to a disaster.

1.1.1. Copy protection

Assume commercial contents are encrypted and water-
marked and that future consumer electronics storage devices

have a watermark detector. These devices refuse to record a
watermarked content. The probability of false alarm is the
probability that the detector considers an original piece of
content (which has not been watermarked) as protected. The
movie that a user shot during his holidays could be rejected
by his storage device. This absolutely nonuser-friendly
behavior really scares consumer electronics manufacturers.
In the past, the Copy Protection Working Group of the
DVD forum evaluated that at most one false alarm should
happen in 400 hours of video [1]. As the detection rate was
one decision per ten seconds, this implies a probability of
false alarm in the order of 10−5. An accurate experimental
assessment of such a low probability of false alarm would
demand to feed a real-time watermarking detector with non-
watermarked content during 40 000 hours, that is, more than
4 years! Proposals in response of the CPTWG’s call were, at
that time, never able to guarantee this level of reliability.

1.1.2. Fingerprinting

In this application, users’ identifiers are embedded in
purchased content. When content is found in an illegal place
(e.g., a P2P network), the right holders decode the hidden
message, find a serial number, and thus they can trace the
traitor, that is, the customer who has illegally broadcasted his
copy. However, the task is not that simple because dishonest
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users might collude. For security reason, anticollusion codes
have to be employed. Yet, these solutions (also called weak
traceability codes [2]) have a nonzero probability of error
(defined as the probability of accusing an innocent). This
probability should be, of course, extremely low, but it is also
a very sensitive parameter; anticollusion codes get longer (in
terms of the number of bits to be hidden in content) as the
probability of error decreases. Fingerprint designers have to
strike a tradeoff, which is hard to conceive when only a rough
estimation of the probability of error is known. The major
issue for fingerprinting algorithms is the fact that embedding
large sequences implies also assessing reliability on a huge
amount of data which may be practically unachievable
without using rare event analysis.

1.2. Prior works

Estimation of probabilities of false alarm or bit and message
error rate have been a concern of watermark designers since
the beginning. A first choice is to derive the formula of this
probability. However, this is often impossible or with the
restricting assumption that the real data fit the statistic model
used in the derivation. The decoder’s decision is often based
on a value of score, which writes as a sum of many and
more or less independent random extracted features. This
explains the abusive resort to the central limit theorem to
establish the probability that this score reaches a given value;
the score is supposed to be Gaussian distributed and the
probability is expressed with the erf function [3, 4]. However,
even if the conditions are sometimes fulfilled to apply the
CLT, the convergence rate to the Gaussian law is very crucial
and depends on the third moment of the extracted features
(in the most simple case) as stated by the Berry-Esséen
bound [5]. Roughly speaking, a small probability of error
amounts to integrate the tail of the cdf of the score, where
the CLT approximation by a Gaussian law is very bad. A
better way is to calculate upper bounds (Chernoff ’s bound,
union bound, and nearest neighbor bound). The issue is
then about the tightness of the bound, which is usually good
only over a precise range of parameter values. Numerical
approximations of the probability formula also exist like the
Beaulieu method [6] or the DFT method [7] used when the
score is the summation of i.i.d. random variables. However,
they need the true pdf or the characteristic function of these
variables.

When these approaches are not possible, then the last
choice is the experimental estimation. However, we have
seen in watermarking articles [3, 4, 8, 9] that experimental
estimation were only based on the Monte Carlo (MC)
method, which is very inefficient for a low probability of
error. This naive approach consists in running n experiments
and to count the number of times k that the decoder failed.
Then, the probability of error p is estimated by the frequency
that error happened on this set of experiments: p̂ = k/n. Let
Xi denote the result of the ith experiment. Xi equals 1 if there
is a decoding error, 0 else. Xi is then a Bernoulli random
variable, and K =

∑n
i=1 Xi is a binomial r.v.: K∼B(n, p),

whose expectation is E[K] = np and variance Var[K] =
np(1 − p). The estimator p̂ is unbiased (E[ p̂] = p) and

its variance, Var[ p̂] = p(1 − p)/n, asymptotically goes to
zero. However, one needs at least around p−1 experiments
to make it work, and even worse, its relative standard

deviation is given by
√

Var[ p̂]/E[ p̂] ≈ 1/
√
pn. Hence, for a

decent accuracy of the estimator reflected here by its relative
standard deviation, n must be taken as several times bigger
than p−1. This method is thus inadequate for estimating
a probability below 10−6 because it then needs millions of
experiments.

As far as we know, almost nothing concerning exper-
imental estimation of low probability of errors has been
done by the watermarking community although there exist
better methods than the simple MC simulations [10]. They
have been successfully applied, for instance, to estimate
frequencies of packet losses in digital communications [11].
We guess that, sadly, the watermarking community is more
image processing oriented, so that people usually ignore
these recent tools. Yet, the application of these methods to
watermarking is not trivial, because they assume a proper
statistical model which may not be suitable for watermark-
ing. There is a need for very general or self-adaptive methods
resorting to the fewest as possible assumptions.

This article proposes a new experimental method esti-
mating low probabilities of error for watermarking appli-
cations. It is a strong adaptation of a complex method
whose good properties have been theoretically proven in
[12]. Section 2 presents as simply as possible this adaptation,
and Section 3 experimentally validates the approach for
a very simple scenario of watermarking detection (a.k.a.
zero-bit watermarking). Section 4 applies the method to
a more difficult watermarking problem: the experimental
measurement of error exponents under attacks, the reliability
of Tardos code in the fingerprinting application.

2. OUR ALGORITHM

Before explaining the method, let us first describe zero-
bit watermarking within a few lines. A watermark detector
receives two types of contents: original contents and water-
marked (possibly attacked) contents. It decides the type of
the piece of content under scrutiny based on the observation
of L features extracted from the content, whose values are
stacked in a vector x. Then, it calculates the likelihood that
this vector is watermarked thanks to a score function d(·) :
R

L �→ R. It decides that the content is watermarked if d(x) is
above a given threshold τ. The probability of false alarm pfa is
the probability that d(x) > τ whereas the piece of content has
not been watermarked. The probability of false negative pfn

is the probability that d(x) < τ when the content is indeed
watermarked. The reliability of the watermarking technique
is assessed if pfa is below a small level. From a geometrical
point of view, let us define the acceptance region A ⊂ RL as
the set of vectors x such that d(x) > τ.

For the sake of simplicity, we explain the proposed
method when applied on zero-bit watermarking. The key
idea of our experimental method is to gradually encourage
the occurrences of the rare event (here a false alarm) by
generating a sequence of events which are rarer and rarer. In
terms of probability, we factorize the very small probability



Frédéric Cérou et al. 3

to be estimated in a product of bigger probabilities and thus
easier to estimate. Our estimator can be written as p̂fa =∏N

i=1 p̂i.

2.1. Key idea

To factorize a probability into a product of bigger probabili-
ties, we use the following trick: let AN = A be the rare event,
and AN−1 a related event such that when AN occurs, AN−1

has also occurred. However, when AN−1 occurs, it does not
imply that AN is true. Hence, AN−1 is less rare an event than
AN . This justifies the first equality in the following equation,
the second one being just the Bayes rule:

Prob
[
AN

]
= Prob

[
AN ,AN−1

]

= Prob
[
AN | AN−1

]
·Prob

[
AN−1

]
.

(1)

Repeating the process, we finally obtain:

pfa = Prob
[
AN

]
= Prob

[
AN | AN−1

]
Prob

[
AN−1 | AN−2

]

· · ·Prob
[
A2 | A1

]
Prob

[
A1

]
,

(2)

provided that {A j}Nj=1
is a sequence of nested events.

Knowing that estimation of a probability is easier when its
value is bigger, we have succeeded in decomposing a hard
problem into N much easier problems.

This decomposition is very general, but the construction
of this sequence of nested events is usually not a simple task.
An exception is when the rare event AN admits a geometrical
interpretation: AN occurs when x ∈ AN . A sequence of
nested events translates then in a sequence of subsets A1 ⊂
· · · ⊂ AN−1 ⊂ AN . The task is even simpler in zero-bit
watermarking because an indicator function of these events
can be as follows: x ∈ A j if d(x) > τ j . Nested events are
created for a sequence of increasing thresholds: τ1 < τ2 <
· · · < τN = τ.

2.2. Generation of vectors

The first step of our algorithm estimates p1 = Prob[A1]. In
practice, N is large enough so that this probability is not
lower than 0.1. Then, a classical MC estimator is efficient.
However, the variance of the estimator p̂1 has a strong impact
on the variance of p̂fa. Therefore, the number of trials n1 is
several times bigger than p−1

1 , while being far less than p−1
fa ,

the order of magnitude of the number of trials needed for a
direct MC estimator of the probability of false alarm.

For this first step, we must generate n1 vectors x. Either
we have a good statistical model, that is, the pdf pX of these
extracted features accurately captures the reality. Then, it
is not difficult to generate synthetic data, that is, pseudo-
random vectors that follow the statistical behavior of the
extracted features. Or, we feed the watermarking detector
with n1 natural images. We count the number k1 of vectors
whose score is higher than τ1.

As a byproduct, this first step leads not only to an
estimator but also to a generator of the event A1. It is not very

efficient, as it produces vectors x∼pX and then select those
vectors belonging to the set A1. Hence, approximately only
p1n1 occurrences of the event A1 are produced.

2.3. Replication of vectors

The issue of the second step is the estimation of the
probability p2 = Prob[A2 | A1]. We set the threshold τ2

just above τ1, so that this probability is large (typically not
lower than 0.1). Once again, an MC estimator is p̂2 = k2/n2,
where k2 is the number of vectors x of the set A1 which also
belong to A2. We need to generate n2 vectors x distributed
according to pX and in the set A1. We could the first step of
the algorithm to generate these vectors, but it is not efficient
enough as such.

We then resort to a so-called replication process, which
almost multiplies by a factor ρ the size of a collection of
vectors in a particular region of the space. For each vector
of this collection, we make ρ copies of it, and then we slightly
modify the copies in a random manner. This modification
process must leave the distribution of the data invariant: if its
inputs are distributed according to pX, its outputs follow the
same distribution. A modified copy is likely to belong to the
set if the modification is light. However, we check whether
this is really the case, and go back to the original vector if
not. The replication process is thus a modification (line 15
in Algorithm 1) followed by a filter (line 16). It leaves the
distribution of the vector invariant.

Since we have run the first step, we have k1 vectors in
A1. We choose a replication factor ρ1 ≈ p̂1 more or less
conserving the same amount of vectors because the second
probability to be estimated has the same order of magnitude
than the first one and n1 was enough for that purpose. We
calculate the score of the ρ1k1 modified copies. We conserve
the copies whose score is bigger than τ1, and replace the other
ones by their original vector. This makes the n2 = ρ1k1 input
vectors of the MC estimator. Again, these two first steps lead
to an estimator p̂2 of p2, but also to a mean to generate
occurrences of the event A2.

The core of the algorithm is thus the following one. A
selection process kills the vectors (named particles in statis-
tics) whose score is lower than an intermediate threshold
τi, these are branched on selected particles. A replication
process proposes randomly modified particles and filters the
ones that are still above the intermediate threshold. Selection
and replication steps are iterated to estimate the remaining
probabilities p̂3, . . . , p̂N .

2.4. Adaptive threshold

The difficulty is now to give the appropriate values to the

thresholds {τi}N−1
1 , and also to the sizes of the sets {ni}N1 . The

probabilities to be estimated must not be very weak in order
to maintain reasonable set sizes. Moreover, it can be shown
that the variance of p̂fa is minimized when the probabilities

{pi}Ni are equal. However, to set the correct value of the
thresholds, we would need the map τ = F−1(p) which we
do not have . Otherwise, we would already know what the
value of pfa = F(τ) is.
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Require: subroutines GENERATE, HIGHER SCORE& MODIFY

1: for i = 1 to n do
2: xi ← GENERATE(pX); dxi ← d(xi);
3: end for
4: N ← 1;
5: τN ← HIGHER SCORE(dx, k); τ′ ← τN ;
6: while τ′ < τ and N < Nmax do
7: t ← 1;
8: for i = 1 to n do
9: if dxi ≥ τ′ then
10: yt ← xi; dyt = dxi; t ← t + 1;
11: end if
12: end for
13: for i = 1 to k do
14: for j = 1 to n/k do
15: z ← MODIFY(yi);
16: if d(z) > τ′ then
17: x(i−1)n/k+ j ← z; dx(i−1)n/k+ j ← d(z);
18: else
19: x(i−1)n/k+ j ← yi; dx(i−1)n/k+ j ← dyi;
20: end if
21: end for
22: end for
23: N ← N + 1
24: τN ← HIGHER SCORE(dx, k); τ′ ← τN ;
25: end while
26: k′ ← 0;
27: for i = 1 to n do
28: if dxi > τ then
29: k′ ← k′ + 1;
30: end if
31: end for
32: return p̂fa = k′kN−1/nN ;

Algorithm 1: Estimation of the probability that d(x) > τ, when x∼pX.

The idea is to set the thresholds adaptively. The number
of vectors is constant in all the experimental rounds: ni =
n for all i ∈ {1 · · ·N}. The threshold τi has the value
such that ki = k. k and n are thus the parameters of the
algorithm. The estimated probabilities are all equal to p̂i =
p = k/n for all i ∈ {1 · · ·N −1}. It means that the selection
process sorts the scores in a decreasing order, and adaptively
sets τi as the value of the kth higher score. Vectors whose
score are below this threshold are removed from the stack,
and replaced by copies of vectors above. This means that the
size of the stack is constant and that the replication factors
{ρi} are all equal to n/k (k divides n). All the vectors in
the stack are independently modified. The modification of a
vector is accepted if its new score is still above the threshold.

The last step is reached when τi > τ. Then, we set N = i,
τN = τ, and kN is the number of scores above τ, so that, for
this last iteration, p̂N = kN /n. At the end, the probability of
false alarm is estimated by

p̂fa =
kN
n

pN−1. (3)

We stress the fact that, formally, N , kN , and {τi}N1 are indeed
random variables and their estimations in the algorithm

should be denoted by N̂ , k̂N̂ , and {τ̂i}Ni=1. For the sake
of clarity, we did not use different notations from the
deterministic case of the preceding section. The number of
iterations is expected to be as follows:

E[N] =
⌊

log p−1
fa

log p−1

⌋
+ 1. (4)

The total number of detector trials is nN , which has a
logarithmic scale with respect to p−1

fa , whereas a classical MC
estimator would need at least p−1

fa trials.
The method is given in pseudocode in Algorithm 1.

Note that the thresholds {τi} are stored in memory. This
is not useful when estimating pfa, but this gives a nice
byproduct for ROC curves: the map p = f (τ) is estimated

through the following points: {(p j , τ j)}N−1

j=1
. From [12], the

method inherits the asymptotic properties of consistency and
normality. With equations

p̂fa
a.s.−−−−→

n→+∞
pfa,

√
n
(
p̂fa − pfa

) L−−−−→
n→+∞

N
(
0, σ2

)
,

(5)
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Require: subroutine GENERATE RAND PERM

π = GENERATE RAND PERM (k);
for i = 1 to n do

Index(i) = π(mod(i, k) + 1);
end for
return vector Index;

Algorithm 2: SELECT: Random selection of n objects among a set
of size k.

with

σ2 � p2
fa

(
(N − 1)

1− p

p
+

1− pN
pN

)
. (6)

We can also show that, in the asymptotic regime, the bias
decreases inversely proportional with n:

E

[
p̂fa − pfa

pfa

]
= 1

n

N(1− p)

p
+ o
(
n−1
)
, (7)

which means that E[( p̂fa − pfa)/pfa] � αn−1, where α is
always a positive number. A remarkable fact is that the
bias is positive, so that estimations tend to overestimate the
probability of rare event. In concrete situations, the rare
event often corresponds to a catastrophic scenario to be
prevented, and overestimating is then a nice property.

2.5. Some improvements

This subsection proposes some improvements of Algo-
rithm 1 . If n is huge, the subroutine HIGHER SCORE must
be carefully implemented. In general, an efficient way is to
use the quick-sort algorithm whose complexity is on average
O(n logn). If n = 2k, a median algorithm is recommended
because its complexity is on average O(n).

The most restrictive part is that, so far in Algorithm 1, k

must divide n; the k selected vectors {yi}k1 are each replicated
n/k times (line 14). To take over this restriction, we create a
subroutine SELECT which randomly picks up n vectors from

the set {yi}k1. Each yi is thus replicated a random number
of times, whose expectation is n/k. Algorithm 2 shows an
implementation, where each vector is at least selected once,
and where it is selected a constant number of times if k
divides n.

3. APPLICATION TO ZERO-BIT WATERMARKING

This part first applies the method to a well-known water-
marking detector for which there exist bounds and a
numerical method to derive the probability of false alarm.
This allows to benchmark the method and to fine-tune its
parameters.

We have selected the absolute value of the normalized
correlation [13] as the score function, so that x is deemed
watermarked if

d(x) =
∣∣xTu

∣∣
‖x‖ > τ, (8)

where u is a secret vector whose norm equals one. A
geometrical interpretation shows that the acceptance region

is a two-sheet hypercone whose axis is given by u and whose
angle is θ = cos−1(τ) (with 0 < θ < π/2). Hence, for
an isotropic distribution whose probability density function
only depends on the norm of x, the probability of false alarm
is the proportion of the solid angle of the hypercone com-
pared to the solid angle of the full space pfa = IL(θ)/IL(π/2),

with IL(θ) =
∫ θ

0sinL−2(u)du (L ≥ 2). The authors of
[9] derived a simple program numerically calculating the
probability of false alarm based on iterative integration by
part. Yet, when implemented in MATLAB or standard C,
this program fails calculating very weak probabilities, due to
computer precision limit. For this reason, they proposed an
upper and lower bound, respectively, based on a Gaussian
and a Fisher Z-statistic approximations:

2 erfc

(
1

2
log

1 + τ

1− τ

√
L− 2

)
≤ pfa ≤ 2 erfc

(
τ
√
L
)
. (9)

Indeed, a much better way is to resort to the Fisher-
Snedecor F-distribution. If x belongs to the acceptance
region, then the angle 〈x, u〉 is smaller than θ or bigger than
π−θ. Instead of a cosine, we translate this in term of tangent:
tan2(〈x, u〉) < tan2θ, with tan2(〈x, u〉) = ‖(I−P)x‖2/‖Px‖2.
Here, P is the projector matrix: Px = (xTu)u, and I the
L× L identity matrix. We suppose that x is a white Gaussian
noise, as an example of isotropic distribution: pX = N (0, IL).
Therefore, its projections on complementary subspaces Px
and (I − P)x are independent and Gaussian distributed.
This implies that ‖Px‖2 and ‖(I − P)x‖2 are chi-square
with one and L − 1 degrees of freedom, respectively, and
that the random variable F = ‖(I − P)x‖2/(L − 1)‖Px‖2

has a Fisher-Snedecor F-distribution. Consequently, pfa =
Prob[F < (L − 1)−1tan2θ]. This is by definition the
cumulative distribution function whose expression relies on
incomplete beta function. After simplifications, we have

pfa = I

(
1− τ2;

L− 1

2
,

1

2

)
, (10)

with I(x; a, b) the regularized incomplete beta function.
MATLAB or Mathematica provides far more accurate
approximations than those proposed in [9].

The random vector x being a white Gaussian noise, the

replication process modifies x into z = (x+µn)/
√

1 + µ2, with

n∼N (0, IL). Hence, z is still a white Gaussian noise with unit
variance. This defines the GENERATE and MODIFY processes
in Algorithm 1.

3.1. Experimental investigation number 1:
strength of the replication

The main shortcoming of our algorithm is that the parameter
µ needs a manual fine-tuning. The algorithm as described
above works fine for the problem studied in this section
when µ = 0.2. This value sets the strength of the replication
process, which can be expressed as the expected square
distance between the modified vector z and its initial value x.
Here, this square distance is equal to 2L(1−(1 + µ2)

−1/2
). The

strength of the replication fixes the dynamic of the system.
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Figure 1: Filtering rate for 10 estimator runs with µ = 0.7, and 10
estimator runs with µ = 0.01.

There is a tradeoff to be found between two undesirable
effects. The goal of this subsection is to experimentally show
and explain these two effects and to find a trick to circumvent
this manual fine-tuning shortcoming. The others parameters
are set as follows: L = 20, τ = 0.95, and n = 6400. This gives
pfa= 4.704∗10−11. We have found that µ = 0.2 is a correct
value because the algorithm behaves as expected. However, a
greater or a lower value have negative impacts as we will see.

As the estimator goes, the set Ai is smaller and smaller,
and the modification process is more and more likely to
move vectors out of this set when the strength is too big.
Let us define the filtering rate of the replication process
as the number of times a modification is refused divided
by n. Figure 1 shows this filtering rate along the iteration
number. Typically, a factor µ greater than 0.5 (red curves)
yields a filtering rate of 100% for the last iterations. This
implies that the particules and their scores are not renewed
any longer. Thus, threshold τ j saturates and the algorithm
does not converge. It stops thanks to the constraint on the
maximum number of iterations Nmax = 100. We seize the
opportunity of this case study where the true map p = F(τ)
is known to plot the relative error along the ROC curve
(p j − F(τ j))/F(τ j) in Figure 2. Red curves were simulated
for a strong replication strength: µ = 0.7. We observe that,
when the filtering rate is too high, the relative error has a
peak followed by an exponential decay towards−1. The peak
is explained by the fact that the vectors and their scores are
no longer renewed, so that the thresholds quickly converge
towards the supremum of these scores. Once the thresholds
saturate to this supremum, F(τ j) became fixed, and the
relative error has an exponential decay due to the term p j .
When this latter becomes negligible compared to F(τ j), the
relative error tends to −1.

The impact of a small µ is not noticeable in the filtering
rate which is far below the saturation phenomenon (see
Figure 1). Yet, Figure 2 shows very strong relative errors
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Figure 2: Relative errors for the same estimator runs as used in
Figure 1.
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Figure 3: Typical evolution of the intermediate thresholds when
µ is too small. Intermediate thresholds are taken from the same
estimator runs as used in Figure 1 with µ = 0.01.

(blue curves) in the first iterations. Factor µ is so weak that
replicated particules are almost located at the same place as
the previous ones. This prevents us from exploring the space
due to a low dynamic and from moving the vectors towards
the acceptance region. Hence, the scores of the replicated
particules are almost the same scores than the previous
ones. This is almost as if µ = 0, that is, classical Monte
Carlo. The behavior of the relative error is then strongly
dependent on the initialization process which yields the first
set of particules. The selection process keeps a thinner and

thinner portion (k/n) j of this initial cloud of particules and
the intermediate threshold converges to the maximum of
the initial scores. Once this is achieved, the intermediate
thresholds saturate to this maximum value, and we again
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Figure 4: Statistics measured for 1000 estimation runs with k/n =
1/2.

observe an exponential decay toward −1 (Figure 2—blue
curves). To check our explanations, we plotted the values
of the intermediate thresholds in Figure 3. For the iteration
number giving a maximum of relative error in Figure 2,
we plot a circle centered on the maximum score of the
initial particles. This illustrates the dependence between
this maximum initial score and the saturated intermediate
threshold.

The best tradeoff can be stated in the following terms:
find the maximum value of µ such that the filtering rate is
below a given level. We modify Algorithm 1 as follows: µ is set
to one at the beginning. For each iteration, we measure the
filtering rate. If this latter is bigger than the level, we reduce
the value of µ and repeat the iteration until the filtering rate is
below the level. The value of µ is thus now found adaptively.
However, the number of detection trials is no longer fixed.
Experimentally, we decrease µ by a factor 1.1 anytime the
filtering rate is above 0.7.

3.2. Experimental investigation # 2: p = k/n

Parameter p strikes a tradeoff between the speed and the
accuracy of the estimator. Equation (4) tells us that the lower
p is, the faster is the estimation of pfa. However, (6) and (7)
show that the relative variance and the bias are decreasing
functions of p.

The experimental set up is the following: L = 20,
τ = 0.95, µ = 0.2, and pfa= 4.704∗10−11. We try two

values for p: 3/4 and 1/2. We run 1000 estimations { p̂(i)
fa }

to measure the relative bias as (Mean({ p̂(i)
fa }) − pfa)/pfa, the

relative standard deviation Std({ p̂(i)
fa })/pfa, and the relative

maximum deviation (Max({ p̂(i)
fa }) − pfa)/pfa. Figures 4 and

5 plots these values against the number of particles n.
Observe first the excellence of the estimator. n = 12 800

particles (last point on curves) represent around 1000 000
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Figure 5: Statistics measured for 1000 estimation runs with k/n =
3/4.

Table 1: Anderson-Darling test on 1000 estimation runs for p =
1/2 and p = 3/4. The hypothesis of Gaussian distribution is
accepted when the score is lower than 0.752 with a significance level
of 0.05.

n 200 400 800 1600 3200 6400 12 800

p = 1/2 32.40 12.46 5.35 4.42 2.87 1.82 0.38

p = 3/4 23.53 9.16 2.96 1.76 1.46 0.50 0.53

detection trials for p = 3/4 or around 430 000 for p =
1/2. Any estimation yielded a result between 4.0∗10−11

and 5.7∗10−11 with p = 3/4, or between 3.6∗10−11 and
6.0∗10−11 with p = 1/2. The relative standard deviation
represents less than 10%. A classical MC estimator would
need more than 2·1012 detection trials to achieve such a
precision.

Surprisingly enough, the measured variance and bias
follow the laws (6) and (7) known for the asymptotic regime
even for a low number of particles. The bias is not measured
with enough precision with only 1000 trials for n = 12 800
because its order of magnitude is 0.001 times the value of pfa.
Yet, the asymptotic regime is only achieved if the estimations
are Gaussian distributed. An Anderson-Darling test [14]
reveals that this is the case only for the biggest values of n.
This happens quicker for p closer to one according to the

scores of Table 1: estimations { p̂(i)
fa } are deemed Gaussian

distributed when n equals 6400 for p = 3/4 whereas this
hypothesis is clearly rejected for p = 1/2.

Our conclusions of this experiment are the following.
There are two typical use cases of our algorithm. If the user
looks for the order of magnitude of the probability to be
estimated, then the choice p = 1/2 with around n = 2000
particules gives a fast estimation (around 68 000 detection
trials). This is especially true since the variance (6) and the
bias (7) are not drastically bigger than the ones for p = 3/4.
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If the issue is to assess an estimation with a given accuracy
and confidence range, then the estimator must be in the
asymptotic regime where the pdf of the estimation error is
known. This experiment shows that a ratio 3/4 (i.e., closer to
one) is advised. Each estimation lasts longer but, in the end,
this is the quickest way to achieve the asymptotic regime.

This experimental work also stresses what we still ignore;
the standard deviation and the bias are in practice bigger
than the theoretical expressions. This is normal as these latter
are theoretical lower bounds. However, we ignore the scaling
factor. Other experiments showed that it does not depend on
L. We suppose however that there is a strong relationship
with the detection score function. This prevents us from
establishing confidence ranges supported with the Gaussian
distribution in the asymptotic regime. This strategy implies
a heavy experimental work, where a hundred of estimations
are needed in order to first confirm the asymptotic regime,
and second, to estimate the standard deviation. Then, the
probability of false alarm is lower than Mean({ p̂(i)

fa }) +

2∗Std({ p̂(i)
fa }) with a confidence of 97.7%.

A faster way to yield a confidence interval is to observe
the number of iterations of several independent estimations.
For p = 1/2 and n ≥ 800, more than two thirds of the esti-
mations end at N = 34 iterations (see Figure 6), which gives

a confidence interval of [pN , pN+1] = [2.91, 5.82]∗10−11. For
p = 3/4 and n ≥ 1600, more than two thirds of the estima-
tions end at N = 82 iterations (see Figure 7), which gives

a confidence interval of [pN , pN+1] = [4.26, 5.69]∗10−11.
Once again, a bigger p provides more accurate results but at
the cost of slower estimations.

3.3. Error exponents for zero-rate
watermarking scheme

A watermarking scheme is deemed as sound if its probability
of false alarm and its probability of false negative decrease
exponentially with the dimension L of the signals under
an embedding power constraint. Within this class, the
comparison of two watermarking schemes can be based
on their exponential decreasing rates, that is, their error
exponents defined as follows:

Efa(τ) = − lim
L→+∞

1

L
log pfa,

Efn(τ) = − lim
L→+∞

1

L
log pfn.

(11)

There are very few watermarking schemes where error
exponents have closed form expressions [13]; for instance,
the additive spread spectrum with a single nappe hypercone
detection region, the improved sign embedder with a dual
nappe hypercone detection region. Furthermore, these theo-
retical expressions do not foresee a noisy channel (i.e., attack)
to calculate Efn(τ). In practice, it is extremely hard to estimate
these error exponents because huge values of L should imply
very very low probabilities of errors if the watermarking
scheme is good. This is no more a problem with our
algorithm, and we simply estimate the error exponents by
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Êfa(τ) = − log p̂fa/L and Êfn(τ) = − log p̂fn/L with a given
big enough L.

For the false negative, the rare event is that a watermarked
(and possibly attacked) vector has a score below a small
threshold. At each step, the estimator sets τ j as the kth
highest scores. Hence, the intermediate thresholds are indeed
decreasing. We can also study the impact of an attack on Efn
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as soon as the attack vector n has a statistical model with the
two following properties:

(i) we are able to generate vectors distributed as pN,

(ii) there exists a modification process with a controllable
strength that lets this distribution invariant.

Then, a particle is now a couple of vectors {x, n}, and its
score is the detection function applied to the attacked and
watermarked vector: d(z) = d(w(x) + n), where w(·) :
R

L �→ R
L is the watermark embedding function. The

replication process changes both vectors of the particle, each
one with its law invariant modification process. Another
technical detail is that our algorithm is run only once,
storing the intermediate thresholds in order to estimate the

mapping {Êfn(τ j), τ j}. The same holds for the false alarm

error exponents {Êfa(τ′j), τ j′}. An interpolation finally gives

{Êfa(τ j), Êfn(τ j)}.
The experimental setup is the following: L = 4000,

host vectors are Gaussian distributed with variance σX =
1. The embedding power equals Pe = 0.1. We test three
watermarking schemes: additive spread spectrum scheme
with d(x) = xTu/‖x‖, “improved” sign embedder with
d(x) = |xTu|/‖x‖ as detailed in [13], and the JANIS scheme
with order 2 [8]. For the first two schemes, the relationship
between Efa(τ) and the threshold τ is perfectly known [13].
However, there is no expression for Efn(τ) under an attack
(here a Gaussian white noise with variance σ2

N = 0.1). For the
JANIS scheme, we have to estimate both Efa(τ) and Efn(τ).
Figure 8 shows the results.

From an experimental point of view, the measurements
are good with only a small inaccuracy. We blame two

shortcomings. L is not big enough and the ratio L−1 log pfa

(idem with the false negative exponent) does not reflect the
rate of the exponential decay. A better way would be to
estimate log(pfa) for several values of L and to estimate the
exponent with a linear regression. Second, these plots were
obtained very rapidly with our algorithm working with only
a n = 3200 vectors stack, and k = n/2. Therefore, the
accuracy of the estimation of pfa itself is not at best, but, we
are indeed interested in showing that error exponents can
be measured very rapidly; the experimental curves for the
additive and improved watermarking scheme have the right
shape (in particular for the improved scheme, Efn goes to
infinity when Efa goes to zero). In the same way, the range
of the measurements is limited by the maximum number of
iterations allowed, which is here set to 200.

From a watermarking point of view, it is quite difficult to
announce which scheme performs better. All of them share
the same detection complexity. The improved scheme has
the advantage of an infinite Efn when there is no attack.
JANIS performances curve seems to be better only at high
Efa. Yet, performances of course collapse with the presence of
an attack, but JANIS seems to be more robust of the three
compared schemes.

4. APPLICATION TO PROBABILISTIC
FINGERPRINTING CODE

Fingerprinting is the application where a content server gives
personal copies of the same content to n different buyers. c
of them are dishonest users, called colluders, who mix their
copies to yield a pirated content. A binary fingerprinting
code is a set of N different m bit sequences {xi}i∈[N]. Each
sequence identifying a user has to be hidden in the personal
copy with a watermarking technique. When a pirated copy
is found, the server retrieves an m bit sequence and accuses
some users or nobody. There are two kinds of errors: accusing
an innocent (i.e., a false alarm), and accusing none of
the colluders (i.e., a false negative). The designers of the
fingerprinting code must assess the minimum length of
the code so that the probabilities of error are below some
significance levels: pfa < ǫ1 and pfn < ǫ2. One of the
best fingerprinting codes is a probabilistic code proposed
by Tardos [15], where m = O(c2 log(1/ǫ1)). Before Tardos’
work, the existence of such a short code was only theoretically
proven. Tardos is the first to exhibit a construction which
is, moreover, surprisingly simple. The main point of interest
for us is that the accusation is based on the calculus of
scores and their comparison to a threshold. Consequently,
this fingerprinting code is very well suited with respect to our
algorithm.

4.1. New accusation strategy

In Tardos probabilistic fingerprinting code, the accusation is
focused; the detection decides whether a given user is guilty
or not. It calculates his score from the code sequence of the
user and the sequence recovered in the pirated copy. The user
is deemed guilty when his score is higher than a threshold.
The size of the collusion c, the probabilities ǫ1 and ǫ2 are the
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inputs of the code. The outputs are the code length m and the
value of the threshold T .

We think that this approach is not adapted in practice.
We believe that the length of the code sequence to be
embedded in content is not tunable but fixed by the payload
of the watermarking technique and the length of the content.
It is clear that the longer the sequence is, the better the
accusation process works. But, in practice, there is certainly
a wide range in the length of the sequences to be embedded
due to a wide diversity of contents. In the same way, it might
be complicated to derive the right value of the threshold for
different sequence lengths. We propose a different approach.
Once we have recovered the sequence y in the pirated copy,
we calculate all the scores of the users to which the content
has been delivered and accuse the most likely guilty users,
that is, the ones with the highest scores. In the sequel,
consider that user j is accused because j = arg maxi∈[N]Si.
There is no longer need of a threshold. However, we cannot
guaranty a probability ǫ1. To be fair, the output of our
accusation process is the index j of the most likely guilty user
associated with the probability of making an error, that is, the
probability that an innocent gets a score bigger or equal to S j
knowing the pirate sequence y: Prob(SCORE(x, y) > S j|y).

We use our algorithm to estimate this probability where
x is distributed as a code sequence. Particules in this frame-
work are now binary sequences of length m. The GENERATE
and the SCORE functions are given by the construction of the
code and its accusation method [15]. One very important
fact is that the symbols in a code sequence are statistically
independent and distributed according to their own law. The
MODIFY function is thus very simple: we randomly select a
fraction µ of them (parameter µ sets the replication strength),
and regenerate them according to their own law. These
nondeterministic changes leave the distribution of the code
sequence invariant.

4.2. Code length

We now come back to the original Tardos focused accusation
process. Typical papers about Tardos code [16–18] aim to
find the tightest lower bound of the length, that is, to find the
lower constant A so that m > Ac2 log(1/ǫ1) implies that the
constraints on the probabilities of error are fulfilled. In the
original Tardos’ paper, ǫ2 is set to ǫc/41 , and A = 100 for his
asymmetric code. In our experiments, we use the symmetric
version of Tardos code as proposed by Škorić et al. [17] where
A = 50 thanks to the symmetry. The goal of this subsection
is to experimentally find this constant A, which is a priori
challenging because ǫ1 is very low.

The experiment is twofold. First, we need to estimate
the plot mapping ǫ1 and the threshold T , for different
couples (c,m). We generate c code sequences of length m.
The collusion strategy is to randomly pick up the symbols
of pirated copy y among the c colluders’ sequences. Then,
we estimate the curve T = F−1(Prob(SCORE(x, y) > T|y))
with our algorithm. Indeed, the target threshold is fixed
to a very high value so that the algorithm stops after Nmax

iterations. The obtained mapping is indeed Nmax couples

(T j , (k/n) j). However, this holds for a special occurrence of y.

Therefore, we need to integrate this conditional probability
by integrating it over K different sequences {yi}i∈[K].
Each time, c code sequences are drawn independently and
uniformly to forge a pirated sequence. The jth threshold is
averaged over the K estimates.

The second part of the experiment measures the false
negative probability ǫ2. A particle is now a set of c Tardos
sequences {x1, . . . , xc} plus an allocation sequence a which
dictates the way to produce y from the c sequences:
y(k) = xa(k)(k) for all k ∈ [m]. The indices stored in a
are independent and identically distributed over [c]. The
MODIFY function is twofold. It independently modifies the
c Tardos sequences as described above, and it modifies the
allocation sequence by randomly selecting a fraction µ of
indices and draw them against the uniform law over [c].

The SCORE function is more complicated. From a parti-
cle, it generates the pirated sequence y thanks to its allocation
sequences, and calculates the c accusation sums. The score of
the particle is then their mean or their maximum. Tardos and
his followers based their analysis on the mean of the scores of
the colluders because this leads to tractable equations. The
rationale is that if the mean is above the threshold, then
there is at least one colluder whose score is higher than the
threshold. However, the probability that the mean is below
the threshold T is a very rough estimate of the probability
of false negative ǫ2. We choose to follow Tardos’ choice of
the mean to appreciate the refinement about the constant
A given by our experimental investigation compared to the
constants found by Tardos and his followers via Chernoff

bounds. However, we can also set the score of a particle as the
maximum of the c accusation sums in order to really estimate
ǫ2 as the probability that none of the c colluders gets caught.

The rest of the second part works like the first part.
We are interested by estimating the mapping T =
F−1(Prob(maxi∈[c]SCORE(xi, y) < T)) (max or mean) using
our algorithm. The experiment is run K times, and the
intermediate thresholds are averaged for a better precision.
Then, we plot in the same figure (see Figure 9) the false
positive mapping and the false negative mapping, except
that for this latter one, the probability is taken to the power
4/c to provide a fair comparison to previous evaluations of
constant A where ǫ2 was set to ǫc/41 . The intersection of the
two mappings at a point (T0(m, c), ǫ0(m, c)) implies that it
is possible to find a threshold such that ǫ1 = ǫ0(m, c) and

ǫ2 = ǫ0(m, c)c/4. This value indeed reflects the best we can
do given m and c. We cannot achieve a lower significance
level while preserving the relationship ǫ2 = ǫ

c/4
1 because it

does not exist any threshold fulfilling this constrain at a lower
significance level than ǫ0(m, c). The only way to get lower
significance levels is to increase the code length for a given
collusion size.

Several experimentations have been carried on with m ∈
{100, 150, 200, 300, 400, 600} and c ∈ {2, 3, 4} to obtain
different values of ǫ0(m, c). The final plot draws m against

the function c2 log ǫ0(m, c)−1, see Figure 10. Some comments
are in order. The curves are surprisingly straight so that
the length of the code is really asymptotically equal to
Ac2 log ǫ−1

1 . The constraints on the significance levels are
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fulfilled if A ≥ 8.0 (resp., A ≥ 7.6), when we based our
estimation of the false negative on the mean (resp., max-
imum) of the colluders score. The code we used being
symmetric, Tardos equivalent was A = 50 and Škorić et
al. found A = 2π2 ≈ 19.7 with a Chernoff bound, or
A = π2 ≈ 9.9 with a Gaussian distribution approximation
of the accusation sums. The differences between evaluations
based on mean or maximum are bigger when the size of

collusion increases, which is not a surprise. The mean based
evaluations are overestimating the power of the colluders.
For a given threshold T , it is much more difficult to forge a
pirated copy such that the maximum of the accusation sums
is below T , than to forge a pirated copy such that the mean
of the accusation is below T . This has two consequences. The
coefficient A is lower when its estimation is based on the
maximum. In the nonasymptotical regime, the code length is
estimated by m = Ac2 log ǫ−1

1 +B. The offset B is lower when
working with the maximum. For instance, estimations based
on maximum give codes shorter of around 100 symbols for
c = 3. This is quite substantial in practice.

5. CONCLUSION

We have presented an algorithm estimating probabilities of
rare events. It works for a kind of rare events defined via
a scalar score being above a threshold. The algorithm is
far more powerful than the classical Monte Carlo estimator
because it provides much more accurate estimations while
needing much less runs of the rare event detector (or less
calculus of score function). Several runs of this estimator
allow to rapidly give small confidence intervals.

This algorithm is very well suited for watermarking issues
because errors (false positive or false negative) belong to
this kind of rare event. Hence, this algorithm has been
shown very useful to evaluate probability of false or error
exponent in zero-bit watermarking, probability of accusing
an innocent user and probability of missing a colluder in a
fingerprinting scenario. This helps setting a fingerprinting
code length to ensure that these probabilities are below a
significance level. This is also very useful to propose a global
accusation process which outputs the most likely dishonest
user while estimating the probability that this user is indeed
innocent.
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