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Abstract

Background: Optimization of an RNA-Sequencing (RNA-Seq) pipeline is critical to maximize power and accuracy to
identify genetic variants, including SNPs, which may serve as genetic markers to select for feed efficiency, leading to
economic benefits for beef production. This study used RNA-Seq data (GEO Accession ID: PRIEB7696 and PRJEB15314)
from muscle and liver tissue, respectively, from 12 Nellore beef steers selected from 585 steers with residual feed intake
measures (RFl; n =6 low-RFI, n =6 high-RFl). Three RNA-Seq pipelines were compared including multi-sample calling from
i) non-merged samples; i) merged samples by RFI group, i) merged samples by RFl and tissue group. The RNA-Seq reads
were aligned against the UMD3.1 bovine reference genome (release 94) assembly using STAR aligner. Variants were called
using BCFtools and variant effect prediction (VeP) and functional annotation (ToppGene) analyses were performed.

Results: On average, total reads detected for Approach i) non-merged samples for liver and muscle, were 18,362,086.3
and 35,645,898.7, respectively. For Approach ii), merging samples by RFI group, total reads detected for each merged
group was 162,030,705, and for Approach iii), merging samples by RFl group and tissues, was 324,061,410, revealing the
highest read depth for Approach iii). Additionally, Approach iii) merging samples by RFl group and tissues, revealed the
highest read depth per variant coverage (572.59 + 3993.11) and encompassed the majority of localized positional genes
detected by each approach. This suggests Approach iii) had optimized detection power, read depth, and accuracy of SNP
calling, therefore increasing confidence of variant detection and reducing false positive detection. Approach iii) was then
used to detect unique SNPs fixed within low- (12,145) and high-RFI (14,663) groups. Functional annotation of
SNPs revealed positional candidate genes, for each RFI group (2886 for low-RFI, 3075 for high-RFl), which
were significantly (P < 0.05) associated with immune and metabolic pathways.
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Conclusion: The most optimized RNA-Seq pipeline allowed for more accurate identification of SNPs,
associated positional candidate genes, and significantly associated metabolic pathways in muscle and liver
tissues, providing insight on the underlying genetic architecture of feed efficiency in beef cattle.

Keywords: Feed efficiency, Bovine, RNA-Seq, Single nucleotide polymorphisms (SNPs), Transcriptomics

Background

High-throughput RNA-Sequencing (RNA-Seq) technology
is widely used to detect and quantify expressed transcripts,
novel transcript discovery and analyze differential gene
expression and alternative splicing in a biological sample
[1-3]. In addition to these applications, RNA-Seq can
detect functional genetic variants such as single nucleotide
polymorphisms (SNPs), which are restricted to the
expressed portion of the genome and represent a large
amount of genetic variation in the genome [4, 5]. SNP
based genetic markers are useful due to their high abun-
dance in the cattle genome [6, 7].

RNA-Seq experiments in livestock studies have identi-
fied significant SNPs in candidate genes associated with
metabolic pathways that may play a role in the regula-
tion of production traits [4, 8—12]. This has resulted in
an improved understanding of the genetic architecture
and a reduction in genome complexity of important
traits such as feed efficiency, health, fertility, and meat
quality traits in beef cattle [4, 8, 13—15]. More specifically,
the study of genetic variants that may serve as markers to
select for feed efficiency or residual feed intake (RFI) may
help lead to the genetic improvement of feed efficiency
and result in economic and environmental benefits for
beef production, as feed costs represent approximately
70% of livestock production expenses [16].

Although SNP identification for genetic markers has
served as a powerful tool in genomics, the ability to bet-
ter understand the relationship between genotype and
phenotype relies on the accuracy of analysis to detect
genomic variation. Studies have previously compared
methods for genotype calling software such as GATK,
Samtools, SNPiR, CLC Bio Genomics Workbench using
RNA-Seq data [4, 17-22], as well as variant calling using
whole genome sequence data [23, 24]. Additionally,
Brouard et al. [25] demonstrated the improved sensitiv-
ity of joint genotype calling using GATK compared to
individual calling; however, studies have not compared
merging approaches of RNA-Seq data across multiple
samples per group and tissues.

Therefore, the evaluation of RNA-Seq pipelines to
identify variants across different phenotypic or genotypic
groups that include samples from multiple tissues has
not been evaluated and strategies for the use and merging
of RNA-Seq data from multiple samples and tissues for
optimized power and accuracy remain limited. Optimized

RNA-Seq analysis approaches can be applied for SNP dis-
covery to detect SNPs that may serve as functional genetic
markers and be used in selection strategies to improve
economically relevant traits in livestock.

The aim of this study was to compare three RNA-
Seq sample merging pipelines for SNP identification
to determine the most optimized and accurate pipe-
line based on study experimental design. The ap-
proach considered as the most optimized and
accurate approach for SNP detection using RNA-Seq
data was then used to identify functional SNPs associ-
ated with feed efficiency in Nellore beef cattle to im-
prove the understanding of the biology and metabolic
pathways underlying genetic markers that may influ-
ence the function and regulation of feed efficiency in
beef cattle. The objectives of this study were to 1)
compare three RNA-Seq pipelines using samples from
two divergent groups for feed efficiency (i.e., low- and
high-RFI) and two tissues (i.e., liver and muscle) in-
cluding multi-sample calling from: i) non-merged
samples, ii) merged samples for low-RFI and merged
samples for high-RFI for each tissue (merged by RFI
group), iii) merged samples for low- and high-RFI for
both tissues (merged by RFI and tissue group), 2)
determine the pipeline with maximized accuracy and
power for SNP detection and apply it to identify
unique SNPs, and associated functional information,
fixed within high or low feed efficient Nellore beef
steers.

Results and discussion

In this study, three RNA-Seq pipeline approaches and
their variant calling results were compared. The most
optimized approach was then applied to perform a more
accurate SNP detection for genetic markers associated
with feed efficiency in beef cattle. The number of total
reads, total uniquely mapped reads, and percentage of
uniquely mapped reads is reported in (Additional file 1).
Overall, the number of uniquely mapped reads (number
of reads that individually mapped to one location) iden-
tified in muscle tissue (205,269,868) were observed to be
greater than that detected in liver tissue (87,466,593)
(Additional file 1). This may have resulted in a lower
number of total SNPs detected in liver compared to
muscle in both the non-merged and merged samples ap-
proaches (Table 1).
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Table 1 Summary of total SNPs detected using bcftools for each approach scenario used for comparisons

Approach scenario description n Total SNPs before filtering

Total SNPs after filtering  Percentage of SNPs passing all filters (%)

Approach i) non-merged samples

Liver tissue 6 626,460
Muscle tissue 6 940,143
Liver and Muscle tissue 12 1,205,664

Approach ii) merged samples by RFI group

Liver tissue 6 521,588
Muscle tissue 6 770,685
Liver and Muscle tissue 12 1,005,696
Approach iii) merged samples by RFl and tissue group
Liver and Muscle tissue 12 1,048,370

258,120 41.20
396,705 42.20
511,092 42.39
197,309 37.82
296,169 3843
388,322 3861
416,216 39.70

i) non-merged samples; ii) merged samples by group for low-RFI and merged samples for high-RFI for each tissue, iii) merged samples by group and tissue for

low- and high-RFI for both tissues
n = total number of samples

Table 2 displays all merging and non-merging ap-
proaches and the total SNPs identified before and
after applying quality filters. On average, the per-
centage of SNPs that passed all quality filters for all
approaches was 40.05 + 1.88%. The high percentage
of overlapping SNPs between low- and high-RFI
groups was on average 77.54% (Table 2). Therefore,
the majority of SNPs are shared between both

extreme RFI groups, allowing for a reduced number
of SNPs (less than 30%) that may be more important
in the regulation of feed efficiency. A higher number
of total SNPs were identified in the non-merging
method compared to all other merging approaches.
This may be due to an increase in detection of rare
variants (i.e., variants detected in a small subset of
the animals) (Table 1).

Table 2 Results of approach comparisons showing total SNP identified unique within approach and shared between both

approaches

Approach comparisons

Approach i) v.s. Approach ii)

Liver Non-merged v.s. Liver Merged by RFl group

Non-merged Shared
Total number of SNPs 61,158 196,962
Percentage of SNPs 23.66 76.20

Approach i) v.s. Approach ii)

Muscle Non-merged v.s. Muscle Merged by RFI group

Non-merged Shared
Total number of SNPs 101,047 295,658
Percentage of SNPs 2544 7443

Approach i) v.s. Approach iii)

Liver and Muscle Non-merged v.s. Liver and Muscle Merged by RFI group and Tissues

Non-merged Shared
Total number of SNPs 120,301 390,791
Percentage of SNPs 2242 7284

Approach ii) v.s. Approach iii)

Liver and Muscle Merged by RFI group v.s. Liver and Muscle Merged by RFI group and Tissues

Merged by RFI Shared
Total number of SNPs 14,699 373,623
Percentage of SNPs 341 86.70

Merged by RFI Total
347 258467
0.13

Merged by RFI Total
511 397,216
0.13

Merged by tissues Total
25,425 536,517
4.74

Merged by tissues Total
42,593 430,915
9.88

i) non-merged samples; ii) merged samples by group for low-RFI and merged samples for high-RFI for each tissue, iii) merged samples by group and tissue for

low- and high-RFI for both tissues
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Comparison of RNA-Seq merging approaches for more
accurate SNP detection

Currently, much of the variant calling studies have been
performed using whole genome sequence data [23, 24].
Use of whole genome data allows for the identification
of variants in an individual or group of individuals,
allowing for detection of potential causal variants in the
whole genome that may be associated with a trait of
interest. In addition, when using genome sequence data,
more non-coding variants can be identified as they are
more present in the genome compared to coding vari-
ants [26]. In contrast, evaluation of the transcriptome
using RNA-Seq allows for detection of variants within
coding regions which may provide functional informa-
tion regarding a trait of interest [4]. Additionally, RNA-
Seq allows for the measure of differentially expressed
genes between extreme phenotypic groups or treat-
ments, however, relevancy of RNA-Seq data and expres-
sion profiles is dependent on the tissue, time-point, and
condition analyzed [27]. With proper experimental de-
sign, the study of expression profiles and detection of
genetic variants using RNA-Seq can provide a better un-
derstanding of the impact of genetic variants in tissues
at specific time-points and conditions. Additionally, with
a sufficient sample size, identification of expression QTL
(eQTL) is possible, in order to evaluate the impact of
genetic variants on the expression levels of genes associ-
ated with complex traits [9, 28-31]. With appropriate
experimental design and optimized RNA-Seq pipelines,
RNA-Seq can provide important information underlying
the functional genetic mechanisms underlying a trait,
such as genetic variants, key regulatory genes, and bio-
logical pathways. This study performed several analyses
to compare RNA-Seq pipeline approaches in aim to
optimize variant calling using RNA-Seq technology for
the investigation of the underlying genetics of livestock
traits.

To compare the overlap of the SNPs detected by the
various approaches, we determined the total number
and percentage of SNPs identified as shared or unique
across the approaches being compared (Table 2). When
observing the first comparison in Table 2, results re-
vealed that when comparing Approach i) (non-merged)
and Approach ii) (merged by RFI group) for liver, the
majority of SNPs were shared (76.20%) between both ap-
proaches. A considerable number of SNPs detected by
the Approach i) (23.66%) that were unique to this ap-
proach and were not detected by Approach ii), while
very few SNPs (0.13%) were found to be uniquely de-
tected by Approach ii). Similar results were found in the
second comparison of Table 2 which performed the
same comparison in muscle tissue. In the third compari-
son of Table 2, where Approach i) is compared with Ap-
proach iii) (merged by RFI and tissue groups), similar
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results were found. In this comparison, the majority of
SNPs found shared (72.84%), 22.42% SNPs found unique
to Approach i), and 4.74% SNPs found unique to Ap-
proach ii). The last comparison in Table 2 compared
Approach ii) and Approach iii), where a greater overlap
of SNPs was detected (86.70%), with 3.41% of SNPs
found unique to Approach ii) and 9.89% of SNPs found
unique to Approach iii).

The SNPs that are uniquely detected by Approach i)
may represent SNPs that are present in a small subset of
animals and hence are not representative of a specific
RFI group. For SNPs with a low non-reference allele fre-
quency, merging reads from multiple samples could lead
to dilution of reads supporting the variant and conse-
quently be called as homozygous for reference [32]. Al-
ternatively, the Phred quality score of a SNP may be
inflated when detected in a large number of samples and
lead to some SNPs being uniquely detected by Approach
i) (non-merged), which could have been removed by the
quality filters in the merging methods suggesting pos-
sible false positives [33]. Alternatively, the detection of
SNPs that are unique to the merging methods (Ap-
proach i) and Approach iii)) suggests that merging sam-
ples and tissues improves SNP detection and Phred
quality scores due to the increased read depth and there-
fore reducing potential false positives.

Comparison of RNA-Seq merging approaches based on
whole transcriptome coverage, IGV visualization, and

read depth coverage per variant

To determine the most optimized approach with highest
read depth, the total reads mapped across the whole
transcriptome for each approach were compared (Add-
itional file 2). The analysis resulted in the total number
of mapped reads on the reference for each individual
sample in Approach i) (non-merged) and for merged
map reads of samples in Approach ii) (merged by RFI
group) and Approach iii) (merged by RFI and tissue
group) (Additional file 2). On average, the total reads for
Approach i) individual liver samples and individual
muscle samples were 18,362,086.3 and 35,645,898.7, re-
spectively. For Approach ii), the average total number of
reads for each merged group of samples was 162,030,
705, and for Approach iii) was 324,061,410. Approach
iii) revealed the highest read depth and coverage across
the whole transcriptome, suggesting that this approach
may have higher read depth to filter out false positives
and more accurately detect SNPs.

Average read depth coverage per variant was also de-
termined. The descriptive statistics of the average read
depth coverage per variant for each approach is shown
in Table 3. For Approach i), read depth coverage per
variant was 279.19 + 2442.20 and 455.65 + 3619.21, for
liver and muscle respectively. For Approach ii), merged
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Table 3 Summary statistics for read coverage distribution per variant across approaches
Approach Minimum Median Maximum Mean + SD 1st Quartile 3rd Quartile
Approach i)

Liver 2 41 199,156 279.19 + 244220 12 124

Muscle 2 55 199,974 45565 £ 3619.21 13 218
Approach ii)

Liver 2 41 199,156 281.89 + 2457.76 12 125

Muscle 2 56 199,974 461.60 £ 3650.29 13 221
Approach iii) 2 62 209,060 57259 + 3993.11 13 280

Approach i) non-merged samples; Approach ii) merged samples by group for low-RFI and merged samples for high-RFI for each tissue, Approach iii) merged

samples by group and tissue for low- and high-RFI for both tissues
SD Standard Deviation

by RFI group, revealed an average read depth coverage
per variant of 281.89 + 2457.76 and 461.60 + 3650.29,
respectively. It is likely that muscle tissue displayed a
higher read depth coverage per variant compared to
liver, in both Approach i) and Approach ii), due to the
higher number of reads for muscle tissue seen in (Add-
itional file 1). For Approach iii) (merged by RFI and tis-
sue group), an average read depth coverage per variant
of 572.59 + 3993.11 was observed.

The read depth coverage distribution, for the detected
variants, for each approach is shown in Fig. 1. Approach
iii) revealed the highest read depth per variant coverage,
and the corresponding box plot showing the largest
range between the 1st and 3rd quartile compared to the
other approaches, indicates the high coverage for the de-
tected variants. Furthermore, the plot also suggests that
all the other approaches have a larger density of variants
in the low coverage area; this is observed by the width of
the box plot in each approach.

The increasing read depth and coverage across each ap-
proach can be visualized in Fig. 2 and (Additional file 4).
As more samples are merged in Approach ii) and Ap-
proach iii), there is an increase in read depth, with Ap-
proach iii) displaying the greatest read depth. Similarly,
when observing read depth coverage in [Additional file 4],
read depth coverage increases as more samples are
merged. Figure 2 displays the detection of a variant (chr:
position; 23:28471278) in the low-RFI group using Ap-
proach iii) due to the increased read depth of 10, which is
not detected in Approach i) or Approach ii) due to the
lower read depth of 10. It is important to note that when
increasing read depth by merging samples, the increase in
read depth is not accumulative to the exact reads per .bam
file. This is because after merging samples, read depth in-
creases, but filtering processes for quality influences which
reads are kept for variant calling based on the sequence
quality (which is expected to increase when merging sam-
ples). This is the reason that we do not observe an exact

200

A1ddd

approach i) - Liver  approach i) - Muscle approachn L\ver approach ii) - Muscle

Fig. 1 Violin plot of read coverage distribution of the variants detected in each approach. The plot is truncated after the 3rd quartile of the

approach iii)

original read coverage distribution from each sample in order to improve the visualization due to the large number of observations distributed

over a wide range. DP: Read depth per variant position for the corresponding approach. Approach i) non-merged samples; Approach ii) merged
samples by group for low-RFI and merged samples for high-RFI for each tissue, Approach iii) merged samples by group and tissue for low- and

high-RFI for both tissues.
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Fig. 2 Visualization of the detection of an example variant (23: 28471278) using Approach iii), which is not detected by Approach i) or Approach
ii), and corresponding read mapping. a Read mapping at example detected variant using Approach iii) Merged by RFI and tissue group; b Read
mapping at example detected variant using Approach i) non-merged, and Approach ii) Merged by RFI group. Approach iii) Muscle and Liver:
muscle and liver samples merged for low RFI .bam file. Approach ii) Muscle: merged muscle samples for low-RFI .bam file Approach ii) Liver:
merged liver samples for low-RFI .bam file. Approach i) Muscle — non-merged individual muscle sample bam file (sample accession number:
ERS1342445). Approach i) Liver — non-merged individual liver sample .bam file (sample accession number: ERS579394). Approach descriptions: i)
non-merged samples; ii) merged samples for low-RFI and merged samples for high-RFI for each tissue; iii) merged samples for low- and high-RFl
for both tissues. Legend: Top numerical row (bp) = base pair position along transcriptome; bottom coloured row (bp letter) = UMD3.1 bovine
reference genome (release 94) sequence. Coloured letters: Grey space = nucleotide base matches the reference base, Green = nucleotide base A,
Red = nucleotide base T, Blue = nucleotide base C, Orange = nucleotide base G. Sequence region: Exon. Yellow arrow: Example variant at
23:28471278 detected by Approach iii) and not detected by Approach i) or Approach ii). Total read count coverage at variant site: Approach iii) =
10 (alternative allele =G (10), reference allele = C (0)); Approach ii) Muscle = 3 (alternative allele = G (3), reference allele = C (0)); Approach ii)
Liver =2 (alternative allele =G (2), reference allele = C (0)); Approach i) Muscle =1 (alternative allele =G (1), reference allele = C (0)); Approach i)
Liver =0 (alternative allele = G (0), reference allele = C (0))
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sum of reads from .bam files in Approach iii) (Fig. 2. a)
and b)).

This further supports the results from the whole tran-
scriptome analysis, suggesting the increased read depth
coverage across the whole transcriptome (Additional
file 2), as well as the increased read depth coverage per
variant (Table 3, Fig. 1), which is increased as we merge
more samples across each approach. These results show
that Approach iii) (merged by RFI and tissue group)
has the highest read depth coverage across the whole
transcriptome as well as the highest read depth cover-
age per variant, indicating the improved variant calling
due to increased read depth.

Comparison of quality of detected variants by each approach
As displayed in (Additional file 3), Cohen’s d values for
Welch test illustrate the comparison of effect sizes of
variant quality (QUAL) (defined as the Phred-scaled
probability that a reference/alternative polymorphism
exists at that site, based on the sequencing data), per de-
tected variant between approaches. The Cohen’s d test
suggests a large effect is >0.50 (Cohen, 1998), but may
vary across disciplines.

When observing the Cohen’s d values (Additional file 3),
the lowest values are observed when comparing the differ-
ent tissues within the same approach (i.e., Approach i) a)
non-merged (liver) and b) non-merged (muscle) = 0.035;
Approach ii) a) merged by RFI group (liver) and b) merged
by RFI group (muscle) = 0.020). This result is reasonable as
it is expected that the coverage of reads of two tissues from
individual samples would be similar (with variation in the
genes/mRNA reads being expressed by each tissue), and
therefore lead to similar variant calling quality. Similarly,
the effect value when comparing the coverage of Approach
ii) a) merged by RFI group (liver) and b) merged by RFI
group (muscle) was also low (0.020), supporting this hy-
pothesis (Additional file 3).

Low values of 0.015 and 0.034 were also observed
when comparing Approach ii) a) merged by RFI group
(liver) with Approach iii) merged by RFI and tissue, and
Approach ii) b) merged by RFI group (muscle) with
Approach iii) merged by RFI and tissue, respectively
(Additional file 3). This may suggest that when merging
by RFI group (Approach ii), the quality of detected vari-
ants may be similar to the quality of detected variants
when merging by RFI group and tissue (Approach iii).
This may be due to the higher coverage seen in Ap-
proach iii), illustrated in Fig. 1. This is further supported
by the Cohen’s d value when comparing Approach ii)
and Approach iii) (0.151), which is much lower than the
comparison between Approach i) v.s. Approach ii)
(0.554), and Approach i) v.s. Approach iii) (0.457), which
are expected to have much larger difference in coverage
(read depth) due to the merging of samples (Additional
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file 3), leading to improved variant calling quality. This
is supported by the reported total reads mapped across
transcriptome [Additional file 2] and reported coverage
in Fig. 1, where total reads mapped and coverage are
much higher in merged approaches (Approach ii) and
iii)) compared to Approach i) (non-merged). The results
reported show the differences in variant calling quality
that further support Approach iii) which has demon-
strated the highest coverage (Fig. 1) and read depth
(Additional file 2).

Additional validation was performed to provide fur-
ther evidence suggesting the most optimal approach
by evaluating the proportion of variants detected by
Approach i) and ii) against Approach iii), based on al-
ternative allele frequency of the variants among the
samples, which is illustrated in Fig. 3. A variant with
low alternative allele frequency among samples means
that the genotype of all samples at that detected vari-
ant site presents a low number of reads supporting
this allele (non-reference/alternative alleles). This may
suggest the variant was detected in a low number of
animals (or small subset of animals), which are com-
mon in non-merged samples (Approach i)). Each
comparison plot in Fig. 3 illustrates that the increase
in samples with the alternative allele frequency (in-
crease in samples with the detected variant/alternative
allele), results in an increase or likelihood that they
will be detected by both Approach i) or ii) and Ap-
proach iii). This indicates that variants with higher
frequency of the alternative allele are more likely to
be detected by both methods, and variants with low
frequency of the alternative allele as less likely to be
detected by both methods (Fig. 3). Therefore, variants
with low frequency alternative allele may be non-
representative of the population or considered as false
positives when the objective is to detect candidate
variants associated with a trait over a whole popula-
tion or extreme phenotypic group.

It is also observed in each comparison (Fig. 3), that
the detection of variants with alternative allele fre-
quency reach a threshold of approximately 70% and
begin to plateau; this may serve as the threshold in
which regardless of adding additional samples, the al-
ternative allele is detected by both approaches. Fur-
thermore, it is important to highlight that when
observing the plots illustrating detection of alleles
based on alternative allele frequency between the
merged sample approaches (Approach ii) merged by
RFI group and Approach iii) merged by RFI and tis-
sue group) (Fig. 3. d), e), and f))., the smallest per-
centage of shared variants is 70%, suggesting that
several false positive variants are detected in the non-
merged approach (Approach 1i)).
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Comparison of RNA-Seq merging approaches based on
annotated SNPs, and annotated genes fixed within RFI
groups

The list of SNPs fixed within low- or high-RFI groups
and filtered for Moderate, Modifier, and High functional
impact were compared across each approach (Fig. 3a).
The most optimized approach for detecting SNPs that
best represented the feed efficiency trait was determined
by comparing the SNP detection results from each ap-
proach. From this, SNPs fixed within low- or high-RFI
groups, filtered for moderate, modifier, or high func-
tional impact, were compared across each approach
(Fig. 4a), and the associated genes harboring these SNPs
were also compared across approaches (Fig. 4b). The
total amount of SNPs after filtering, detected by each

approach were 23,228, 22,957, and 27,429 for Approach
i), ii), and iii), respectively (Fig. 4a). A large overlap of
SNPs (14,807) between Approach ii) and iii) was ob-
served which is likely due to the merging of samples in
these approaches. The total amount of genes unique to
low- and high-RFI groups identified for each approach
were 4568, 4804, and 3938 for Approach i), ii), and iii),
respectively. A higher average of SNPs detected per gene
was observed for Approach iii) (1.832 SNPs/gene; SD =
1.564), compared to Approach i) (1.775 SNPs/gene; SD =
1.499) and Approach ii) (1.773 SNPs/gene; SD = 1.537),
as Approach iii) had the highest SNPs per annotated
genes ratio (Fig. 5). This may suggest that Approach iii)
reveals more SNPs are influencing fewer genes in regu-
lating feed efficiency.
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As shown in the Venn Diagram in Fig. 4b, the majority
of genes (1975) from each approach were identified as
shared across all three approaches. Additionally, 1296,
715, and 486 genes were identified as unique to Ap-
proach i), ii), and iii), respectively. The number of genes
shared between Approach i) and ii) was 967, and be-
tween ii) and iii) was 1147, and between i) and iii) was
330. When considering the total genes identified in each
approach, Approach iii) shares the most genes among
both Approach i) and ii) (50%), and 8.37% with Ap-
proach i), and 29.13% with Approach ii). The genes
shared among all three approaches were of most import-
ance and interest, as they were the genes most represen-
tative of the trait, and Approach iii) had the most genes
located in this mutual group. Additionally, Approach iii)
had the lowest percent of genes unique to its own group

Nellore beef steers
n=12
Liver Muscle
n=12 n=12

Extreme Low-RFI High-RFI Low-RFI High-RFI
phenotype group: n=6 n=6 n=6 n=6

Tissue:

Fig. 5 Population, tissue sample, and feed efficiency group structure
using RNA-Seq data from two studies*. RFI = residual feed intake;
n=sample size. Initial population sizes were n= 20 (liver) and n =20
(muscle); however, 4 individuals were removed from each high-RFI
group due to non-matching animal IDs. Additionally, 4 individuals
were randomly removed from each low-RFI group to maintain a
consistent sample size of n=6 for each RFI group. *GEO Accession
ID: PRJEB7696 and PRJEB15314 for liver and muscle tissue

data, respectively

(12.3%). This may suggest that Approach iii) is most rep-
resentative of the unique genes associated with feed effi-
ciency, and was able to identify more positional
candidate genes (486) that are likely to play a role in
regulating feed efficiency, while potentially excluding
false positive SNPs that may have been annotated for
untrue genes identified by the other approaches. Not-
ably, Approach ii) and iii) had more shared variants
(86.70%) compared to the other approach comparisons
in Table 2, and Approach ii) and iii) also have the most
shared annotated genes (Fig. 4b). Similarly, Approach i)
and iii) had the least shared variants (Table 2) and the
least shared annotated genes (Fig. 4b). This suggests that
the comparison of unique and shared SNPs across ap-
proaches in Table 2 is representative or may be corre-
lated with the annotated genes (for low- and high-RFI)
compared between approaches in Fig. 4b.

Unique SNPs fixed within low- or high-RFI groups and

their associated candidate genes and metabolic pathways
Total number of unique or shared SNPs identified across
low- and high-RFI groups using Approach iii) are shown
in (Additional file 5). The VCEF files including the identi-
fied variants fixed within low- or high-RFI groups using
the most optimized approach is available in (Add-
itional file 6) and (Additional file 7), respectively. These
VCEF files are publicly available on the European Vari-
ation Archive platform under the Project PRJEB37881 in
the file ERZ1307564 (HIGH_FE_1) for variants unique
to low-RFI group and in the file ERZ1307563 (LOW_
FE_2) for variants unique to the high-RFI group. In total,
415,624 SNPs were detected, with 13,145 SNPs unique
in low-RFI, and 14,663 SNPs unique in high-RFL. In
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addition, 387,816 SNPs were identified as shared across
both low- and high-RFI groups. The unique SNPs were
filtered for variant impact information including only
Moderate, Modifier, or High impact. With variant im-
pact ‘High’, defined as the variant resulting in high or
disruptive impact in the protein that would lead to pro-
tein truncation, loss of function, or tissue nonsense, me-
diated delay; ‘Moderate’, meaning a non-disruptive
variant that may change protein effectiveness; or ‘Modi-
fier’, meaning variant affecting non-coding genes, where
predictions are difficult or the impact is unknown [34].
Further investigation of the genes associated with the
SNPs that may impact protein function were selected as
they are likely to have a functional impact on metabolic
pathways that play a role in regulating feed efficiency.
The VeP results including the variants identified
uniquely within low- or high-RFI groups, using Ap-
proach iii) is reported in [Additional file 8], which in-
cludes variant positional, functional consequence, and
associated gene information. In total, 2886 and 3075
genes, in which SNPs were located within, were identi-
fied for the low- and high-RFI groups, respectively. Re-
sults showed that 111 and 3 biological pathways were
significantly enriched for the low- and high-RFI group
genes, respectively. The gene subgroups associated with
the significantly enriched biological pathways for low-
and high-RFI groups is reported in (Additional file 9).
The three most significant pathways associated with
each RFI group are displayed in Table 4. Low-RFI ani-
mals display a genetic architecture with fewer genes af-
fecting more biological pathways, compared to high-RFI
animals, explaining the large number of significantly
enriched biological pathways (111) for low-RFI group,
compared to the high-RFI group (3). Additionally, when
observing the total unique and shared SNPs detected by
each approach (Fig. 4a), and the genes in which they are
located in (Fig. 4b), it is observed that many variants
may be influencing the same genes, and consequently
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biological pathways, simultaneously, as there is a larger
SNP/annotated gene ratio. Alternatively, it is possible
the subset of genes associated with the significantly
enriched biological pathways are more specific or func-
tionally relevant to each other for the high-RFI group,
which had only 3 significantly enriched biological path-
ways. Additionally, it is known that feed efficiency which
is known for intense selective pressure in beef cattle, has
shown signatures of selection differentiation among mul-
tiple breeds and populations [35]. Over time, the inten-
sive selection for feed efficiency may have influenced the
shift in genomic regions and how they influence the
metabolic regulation in a more or less feed efficient ani-
mal. Therefore, alternatively, from strong selective pres-
sure on feed efficiency, it is possible the cumulative
number of variants being selected, are increasing in fre-
quency. This may lead to more variants affecting the
trait in the population, which may explain the larger
number of variants in the low-RFI group, which are in-
fluencing more biological pathways. In addition, al-
though feed efficiency is a polygenic trait, core genes
may still be influencing the regulation of affecting feed
efficiency. Therefore, directional selection feed efficiency
would increase the allelic frequency of variants of pos-
sible core genes.

When using RNA-Seq technology to detect genetic
variants [4], the variants are expected to be detected
from mRNA reads, which are not necessarily differen-
tially expressed or highly expressed in a specific tissue.
The following positional candidate variants, and genes
they are located within, are discussed in a means that
the positional variants are unique or fixed within RFI
groups and are located within or near the discussed
genes that could be of interest to better understand feed
efficiency, but not necessary in terms of the expression
of the genes.

The three significant pathways associated with low-RFI
(more feed efficient) cattle, included immune response,

Table 4 Biological pathways significantly associated with genes in which SNPs from Low- and High-RFI were localized

Pathway Name p-value FDR' Genes associated with SNPs detected Function
Low-RFI"
Members of the BCR® signaling 168x10°° 512x107° 20 Immune
Oxytocin signaling 1.70x107° 187x107° 42 Reproduction and Metabolism
EPHA2® forward signaling 272x107° 187x 1072 10 Growth and Metabolism
High-RF
Members of the BCR signaling 121%x107 152x107° 19 Immune
B cell activation 1313%x10°7° 152% 1072 22 Immune
Regulation of RAC1¢ activity 148%107° 152% 1072 17 Metabolism

" FDR False Discovery Rate

i Top 3 pathways out of 111 significantly associated pathways
@ BCR B Cell Receptor

P EPHA2 Ephrin type-A receptor 2

€ RACT Ras-related C3 botulinum toxin substrate 1
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fertility, and metabolism pathways, including the BCR
signaling pathway, oxytocin signaling pathway, and
EPHA?2 forward pathway (Table 4). The BCR signaling
pathway is associated with immune response and fertil-
ity; Olivieri et al. [36] previously identified candidate
genes related to feed efficient Nellore beef cattle which
were associated with immune system function, including
NLRPI14 gene which was present in the low feed efficient
group in this study, and CACNG?7 which was present in
high feed efficient group in this study. The regulation of
NLRPI14 has also been suggested to be associated with
excessive accumulation of undifferentiated spermato-
gonia germ cells in cattle, implying its role in reproduct-
ive function [37]. It may be possible that these genes
which were overlapping with variants unique to low-
and high-RFI steers are being expressed. The CACNG7
gene is associated with oxytocin signaling; this may
explain the oxytocin enriched pathway in the current
study which was associated with more feed efficient cat-
tle, supporting a link between metabolic processes with
feed efficiency. Oxytocin is a neuropeptide which has also
been found to regulate brown adipocyte production, which
functions for metabolic maintenance of temperature regula-
tion (thermogenesis) and gluconeogenesis [38].

The EPHA?2 forward signaling was also associated with
more feed efficient cattle in this study. The EPHA2 is a
gene known to be targeted by miR-26b, a microRNA
(miRNA) in pituitary tissues of Zanbian cattle, and this
miRNA is known to regulate cell proliferation, differenti-
ation, apoptosis, and development [39]. In addition,
EPHA?2 receptor is a key modulator for a wide variety of
cellular functions, such as embryonic development,
tissue boundary formation, central nervous system func-
tion, bone remodeling, vascular organization [40], sug-
gesting its role in metabolic maintenance and regulation.
This may be relevant in the regulation of feed efficiency
due to the strong correlation between feed efficiency
and efficiency of metabolic energy use to meet physio-
logical demands.

The three significant pathways associated with high-
RFI (less feed efficient) cattle, also included BCR signal-
ing pathway (Table 4), which may suggest similar vari-
ants are present in both low- and high-RFI groups, but
are acting in different ways to regulate feed efficiency in
cattle. This is supported by the discovery in the study
where many SNPs were detected in both low- and high-
RFI groups with the same position but with different al-
leles. Another significantly associated pathway to less
feed efficient cattle was B cell activation which is add-
itionally related to immune response. It has been found
that B cell activation pathway was enriched for differen-
tially expressed genes in pigs selected for RFI [41]. This
may suggest the influence of feed efficiency on immune
pathways and function in livestock. Regulation of RACI
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was another significantly associated pathways with less
feed efficient cattle, which is known to have a role in
glucose transport and skeletal muscle [42], and could be
associated with the regulation of gluconeogenesis, along
with oxytocin as discussed previously.

Overall, the most significant pathways associated with
the extreme feed efficiency groups were both related to
metabolic, reproductive, and immune functions (Table 4).
Notably, both feed efficiency groups found similar signifi-
cant pathways. From the analysis, similar SNP were found
with different alleles in both low- and high-RFI, suggesting
that the same SNPs with different alleles are present in an-
imals in both high and low feed efficiency groups, influen-
cing genes differently, to make an animal more or less
feed efficient.

Further studies using orthogonal strategies such as
Sanger sequencing, target sequencing, and whole gen-
ome sequencing as truth sets could serve as further
evidence to confirm the optimized approaches (by valid-
ating variant calling sensitivity and specificity for vari-
ants), as well as the functional positional variants
associated with a specific trait.

Conclusions

In conclusion, this study demonstrates the different
results obtained in SNP detection from using differ-
ent sample merging pipelines for RNA-Seq analysis.
We suggest that the present optimized pipeline for
SNP detection when analyzing multiple samples and
tissues in divergent traits or phenotypic groups is to
merge multiple sample and tissue data by group to
increase aligned reads at each variant site which in-
creases whole transcriptome read depth coverage, as
well as read depth coverage per variant, and variant
calling quality, leading to improved accuracy and
power of SNP detection and reduction of false posi-
tive detection. This pipeline can be used to identify
SNPs associated with extreme phenotypes of interest,
which can be annotated to identify genes that may
be important in the regulation of the trait. Overall,
this work presents an optimized RNA-Seq pipeline
to discover SNPs in coding regions to improve the
detection of potential trait-associated variations using
RNA-Seq data. Additionally, from using the pro-
posed optimized RNA-Seq pipeline, this study suc-
cessfully identified functional candidate SNPs within
genes involved in major biological pathways associ-
ated with high and low feed efficient Nellore beef
cattle. This suggests the relationship between im-
mune, reproductive, and metabolic function with
feed efficiency in beef cattle, and confirming the suc-
cessful use of the most optimized RNA-Seq pipeline
described in this study.
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Methods
RNA-Seq dataset
The datasets used in this study consist of RNA-Seq data
obtained from liver and muscle tissue samples from Nel-
lore beef steers deposited in the NCBI - Gene Expression
Omnibus (GEO) public repository with PRJEB7696 and
PRJEB15314 GEO accession numbers for both liver and
muscle, respectively. Detailed animal management and
sampling information was previously described by
Tizioto et al. [43] and by Tizioto et al. [44]. Briefly, 20
Nellore feedlot beef steers (# =10 low-RFI and # =10
high-RFI) at 21 months of age were used, which were se-
lected from 585 steers that were calculated for feed effi-
ciency through Best Linear Unbiased Prediction (BLUP)
estimates for RFI [43, 44]. Tissue samples were collected
from the longissimus thoracic muscle [44] and liver [43].
RNA was extracted using Trizol method (Invitrogen®),
and mRNA sample preparation was performed using
TruSeq RNA Sample Preparation Kit® (illumina, San
Diego, CA). Cluster generation and sequencing was per-
formed on the Illumina HiSeq 2000° which generated
paired end-reads of 2 x 100 bp. The previous studies per-
formed identification and annotation of differentially
expressed genes between feed efficiency groups [43, 44].
Comparison of animals from each study revealed four
high-RFI individuals in the muscle group which did not
match the high-RFI individuals in the liver group. This may
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be due to RFI re-ranking of animals, as liver tissue was sam-
pled from only 83 of the 585 beef steers. Therefore, the four
non-matching animals from the high-RFI muscle group
(ERS1342436, ERS1342439, ERS1342440, ERS1342443)
were removed from the study, and four corresponding indi-
viduals (ERS579404, ERS579406, ERS579407, ERS579411)
from the high-RFI liver group were also removed. To
maintain the same sample size across RFI groups, four
animals were randomly selected to be removed from
the low-RFI group for muscle (ERS1342447, ERS1342448,
ERS1342450, ERS1342453) and liver (ERS579395,
ERS579396, ERS579398, ERS579301). Therefore, this
study used RNA-Seq data from 12 Nellore beef steers di-
vergent for feed efficiency (n =6 low-RFI and n =6 high-
RFI) from both muscle and liver tissue (Fig. 5). The sam-
ple size of 6 animals per extreme phenotypic group is suf-
ficient and in the optimal range for RNA-Seq studies as
described by Soneson and Delorenzi [45].

RNA-Seq analysis workflow

Identification of SNPs was performed using the work-
flow shown in Fig. 6, and the complete RNA-Seq pipe-
line script can be seen in [Additional file 10]. Fastq files
were downloaded using the SRA toolkit command fastq-
dump with the option --split-files to download the data
from each sample into two files, one for each of the
paired ends. Quality of sequence reads were verified

~N

6 samples 6 samples 6 samples 6 samples

o

Download raw RNA-Se . S i
q N Quality control 5 Trimming 5 Alignment
data GEO NCBI . . Assembly UMD3.1 release 94
(FastQC) (Trimmomatic)
(Fastqc-dump) (STAR)
Merge sample groups for Approach iii:
:gCAhI\:FPT?_Ch Approach i: Approach ii: Merged by RFI and
001): Non-merged samples Merged by RFI group tissue group
Liver Muscle Liver Muscle Muscle and Liver
=12 (n=12) (n=12) (=12 (n=24)
r 1 r ! ) r ! ) r A \ ——
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Fig. 6 Workflow diagram to compare SNP calling approaches, identify functional SNP, and predict corresponding variant effects. ' Samples were
merged based on three different approaches: i) Non-merged samples, meaning BAM files were not merged and each file was called individually
using a multi-sample VCF file containing 6 GT (1 for each animal) for each group; i) Merged samples for low-RFI and merged samples for high-
RFI for each tissue, meaning BAM files of same group and tissue were merged. Using one VCF file for each RFI group per tissue, containing 1 GT;
iii) Merged samples for low- and high-RFI for both tissues, meaning BAM files of same group were merged for tissues. Using one VCF file for each
RFI group for both tissues, containing 1 GT. RFl =residual feed intake; GT = genotype; SNP = single nucleotide polymorphism; VCF = variant
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using FastQC (version 0.11.8 [46];) to identify sequen-
cing read artifacts including sites with low quality Phred
scores, duplicated reads, uncalled bases (N sequences),
and potential contamination [47, 48]. Next, reads were
trimmed to remove Illumina adapters and low quality
bases at the start and end of reads (sites removed if
Phred score<30) using Trimmomatic (Version 0.38
[49];). Additionally, reads with an average quality score
below 20 within a sliding window of 5 nucleotides, and
with length less than 75 bp were removed. Quality of se-
quence reads were re-evaluated post-trimming using
FastQC [46]. The resulting trimmed reads from each
sample were individually aligned to the bovine reference
genome (Bos Taurus Assembly UMD3.1. release 94),
using STAR (version 2.7.0 [50];). with the following fil-
tering options: --outFilterMismatchNmax 999, allowing
a maximum of 999 mismatches per pair, —-outFilterMis-
matchNoverReadLmax 0.04, allowing alignment to be
output only if its ratio of mismatches to read length is
less than 0.04, and --outFilterMultimapNmax 1, which
allowed a max of 1 alignment per read (if exceeded, the
read is considered unmapped). Use of the updated ARS-
UCD 2.1 bovine assembly [51] may reveal more efficient
and accurate assembly due to improved sequence quality
and annotation [52]. However, assembly improvements
are more likely to improve annotation of the exons of
positional and functional candidate genes, as opposed to
genetic variants such as SNPs and INDELs. It is ex-
pected that use of an updated assembly would lead to
similar results. Following alignment, ReadGroups (RG)
were then added to each sample and PCR duplicates
were marked and removed using PICARD tools (Version
2.18.25;  http://broadinstitute.github.io/picard/). ~The
RGs allowed for differentiation of samples by assigning
the origin of the read (low- or high-RFI group) and as-
signment of SNPs to a specific genotype.

RNA-Seq read merging approaches

A diagram outlining the strategy used for merging BAM
files is shown in (Additional file 11). Three different
RNA-Seq read merging approaches were compared in-
cluding: i) non-merged samples, ii) merged samples by
group for low-RFI and for high-RFI for each tissue, and
iii) merged samples by group and tissue for low- and
high-RFI for both tissues (liver and muscle). Each ap-
proach required the merging of aligned reads prior to
variant calling (Fig. 6). BAM files were merged using
SAMtools option ‘samtools merge’ (Version 1.4 [53];),
which merged multiple BAM files and produced a single
output file per strategy, leading to a total of six new
BAM files containing merged aligned reads from: low-
RFI muscle samples, low-RFI liver samples, high-RFI
muscle samples, high-RFI liver samples, low-RFI muscle
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and liver samples, and high-RFI muscle and liver sam-
ples [Additional file 11].

Variant calling and filtering

Variant calling was performed for each read merging
method to identify SNPs using the ‘mpileup’ and ‘call’
commands from BCFtools (Version 1.9-77-gd0cf724+
[54];). This involved conversion of BAM files into gen-
omic positions and variant calling, producing a BCF
(Binary Variant Call Format) file containing variant in-
formation including genomic position, alternative allele
detected, quality of SNP call, and other information
(Danacek et al., 2011). The multi-sample calling (or joint
calling) method, previously shown to enhance the sensi-
tivity of SNP detection and accuracy of genotype calling
over calling each sample independently in datasets with
low sequencing depth, was employed for all read mer-
ging approaches [19, 25].

The comparisons of approaches performed with VCF
files of varying genotypes (GT) is summarized in [Add-
itional file 11]. For Approach i), BAM files (aligned
reads) from the different animals and tissues were not
merged and files for each tissue type were called for vari-
ants individually using multi-sample calling, resulting in
one multi-sample VCF file for each tissue type, each
containing 12 genotypes (1 GT for each animal). For Ap-
proach ii), BAM files of animals in the same RFI group
were merged for each tissue and files for each tissue type
were called for variants using multi-sample calling,
resulting in one VCF file for each tissue, each containing
2 genotypes (1 GT per RFI group). For Approach iii),
BAM files of animals in the same RFI group were
merged for both tissues prior to multi-sample calling,
resulting one VCF file that contained 2 genotypes (1 GT
per RFI group). Variant filtering was performed using
VCFtools to remove variants with a minimum read
depth below 10 and a minimum of 2 supporting reads
for the alternative allele as well as to filter SNPs within
3bp surrounding a gap as described by Canovas et al.
[4]. BCFtools filter was used to remove variants with
quality values below 30 (based on Phred scaled scores
for the assertion made in the alternative allele), filter
SNPs within 5bp of an INDEL, and filter any alternative
allele with a lower frequency of 20% in the population.
All analyses described regarding the RNA-Seq pipeline
[Additional file 10] was performed using shell processor
with 6 cores, 1600 mgH processing capacity, and total
RAM memory of approximately 100 GB.

Whole Transcriptome coverage, read depth coverage per

variant, and IGV visualization analysis

The Whole Transcriptome Coverage Analysis tool of
CLC Genomics Workbench 12.0.2 (https://www.qiagen-
bioinformatics.com/) was used to determine the total
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number of unfiltered reads across the whole transcrip-
tome or each individual sample in Approach i) and for
merged sample by groups and tissues in Approach ii)
and iii). This tool is used to identify regions in read
mappings with unexpectedly low or high coverage, how-
ever, the summary of results of this analysis presents the
‘Total Mapped Reads’ across the whole transcriptome
for each approach, counting both reads of a paired end
sequence, while ignoring ‘non-specific matches’, or
‘broken pairs’ (CLC Genomics Workbench 12.0.2,
https://www.qiagenbioinformatics.com/).

To further evaluate the read coverage across the ap-
proaches, the read coverage (DP) per variant distribution
for each approach was calculated. The read depth per
variant for each approach was plotted (Fig. 1) and corre-
sponding summary statistics were reported (Table 3).
The statistical summary of the read depth per variant
coverage includes the minimum, maximum, median,
read depth at the 1st and 3rd quartile, and standard de-
viation of the read depth coverage per variant for each
approach (Table 3).

Integrative Genomics Viewer (IGV; https://software.
broadinstitute.org/software/igv/) was used to visualize
the read mapping and coverage (depth of the reads dis-
played at each locus) between each approach. As an ex-
ample, the IGV visualizations illustrates the read
mapping (Fig. 2), and coverage [Additional file 4], at a
randomly selected variant which was detected exclu-
sively in Approach iii) (chr:position; 23:28471278) in the
low-RFI group. The IGV visualizations include the .bam
file of Approach iii), Approach ii) liver, Approach ii)
muscle, and one example sample each from Approach i)
muscle and Approach i) liver. This allowed for an illus-
trated example of how read depth (Fig. 2) and coverage
(Additional file 4) increases as we merge more samples
across each approach.

Comparison of approach variant quality and coverage
analysis
Further evaluation of the suggested most optimized ap-
proach (Approach iii); merged samples by RFI and tissue
group) was performed by calculating the Cohen’s d value
for Welch test (Cohen 1988), which compared the effect
sizes of the quality (QUAL) in VCEF files of detected vari-
ants in each approach. Quality (QUAL) value in VCF
files represent the Phred-scaled probability that a refer-
ence/alternative polymorphism exists at the variant site,
based on the sequencing data. Cohen’s d value was cal-
culated using the Isr package in R assuming non equal
variances between groups (R Version 3.6.0 [55];). All
Cohen’s d values for each approach comparison are re-
ported in (Additional file 3).

Additionally, the stats and plot-vcfstats options from
beftools software [54] were used to evaluate the
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proportion of detected variants based on alternative al-
lele frequency between Approach i) a) non-merged
(liver) and b) non-merged (muscle) and Approach ii) a)
merged by RFI group (liver) and b) merged by RFI group
(muscle), against Approach iii) merged samples by RFI
and tissue group (Fig. 3). Plots were developed based on
custom R script (R Version 3.6.0 [55];).

Identification and gene annotation of unique SNPs fixed
within low- or high-RFI groups for each approach

Unique SNPs fixed within low- or high-RFI groups were
identified using the VCF files containing filtered SNPs as
previously described for each approach. These SNPs
were filtered for moderate or high functional impact
using Variant Effect Predictor (VeP) [34]. Variants with
functional consequence within High, Moderate, or
Modifier categories were selected for further analysis. In
addition, in order to identify positional candidate genes,
the genes localized with these SNPs were also deter-
mined using custom R scripts (R Version 3.6.0 [55];).
and the VennDiagram R package [13, 47].

Approach iii) was then used to identify unique SNPs
fixed within low- or high-RFI groups using the VCF files
containing filtered SNPs as previously described (Fig. 6).
The VCEF files containing the uniquely detected variants
within low- or high-RFI groups using Approach iii) is re-
ported in (Additional file 6( and (Additional file 7) re-
spectively. In addition, the VCF files are publicly
available on the European Variation Archive platform
under the Project PRJEB37881 in the file ERZ1307564
(HIGH_FE_1) for variants unique to low-RFI group and
in the file ERZ1307563 (LOW_FE_2) for variants unique
to the high-RFI group. The 2 VCF files were then com-
pared (1 low-RFI and 1 high-RFI VCF) with 1 GT each
(representative of multiple samples). SnpSift (Version 4.0
[56];) filtering command was used to remove all variants
present in one RFI group but missing in the other RFI
group. The VCF file was then split using VCFtools vcf-
subset to create one VCF file with only low-RFI variants
and one VCF file with only high-RFI variants, which
were then compared using the BCFtools isec command
to determine the intersection of the files and create three
files: SNPs exclusive to low-RFI VCF file, SNPs exclusive
to high-RFI VCF file, and SNPs shared between both
low- and high-RFI groups VCF file. Positional candidate
genes in which these variants were localized were se-
lected to determine associated metabolic pathways.
Functional annotation was performed using ToppGene
[57] to determine metabolic pathways significantly asso-
ciated with the gene lists. Briefly, the annotated genes of
the detected SNPs fixed within the low- or high-RFI
group using Approach iii) were input as a low-RFI gene
list and high-RFI gene list using “ToppFun’ function for
gene list functional enrichment analysis. This function
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uses hypergeometric distribution with Bonferroni cor-
rection and displays statistically significant results
(FDR < 0.05) for multiple annotation categories based on
the gene list input. This study focused on the annotation
category ‘Biological Pathways’.
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