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Passivity and Maximum Quality Factor Assessment
in Lossy 2-port Transfer Functions

Matteo Oldoni1, Fabien Seyfert2, Steven Caicedo Mejillones1,3, Stefano Moscato1 and Giuseppe Macchiarella3

Abstract—Lossy transfer functions are appealing in the de-
sign of filters and electric networks, as they can be exactly
implemented by physical passive components. However, lossy
techniques relax most of the constraints governing the design
and thus offer many degrees of freedom but with unclear effects
on realizability. This work describes first an analytical method
to check whether a given 2-port matrix transfer function is
passive. Moreover, for comparison purposes, a technique to assess
the maximum allowed predistortion is proposed, related to the
highest required quality factor.

Index Terms—Lossy network, predistortion, quality factor,
passivity, microwave filters.

I. INTRODUCTION

In the theory of electric networks, relevant research has been
and currently is dedicated to lossless transfer functions. How-
ever, within the field of RF and microwave filters, losslessness
is not a correct assumption as physical passive components are
in fact strictly lossy.

As a matter of fact, the lossless approach remains a handy
tool in everyday work [1], and often the designer chooses this
robust and consolidated method by introducing losses only in
the last steps and minimizing their impact by optimization.

Substantially different routes are instead the ”lossy” tech-
niques, dedicated to transfer functions exactly implementable
by passive components [2]–[5] which suit disparate techno-
logical possibilities, e.g. [6]–[9]. In this area, most of the
properties supporting the designer [10] (transmission zeros in
paraconjugate pairs if not on the imaginary axis, guaranteed
minimum McMillan degree...) do not hold any more and open
up several degrees of freedom; their adjustment dramatically
affects implementability, but this often becomes clear only at
the end of the synthesis, thus demanding more iterations.

This paper proposes in section II an analytical technique to
verify if a given 2× 2 rational scattering function is passive.

After facing this issue, another need arises: how to compare
the synthesizability of lossy functions? The practical answer
proposed by this work is to evaluate the maximum required
quality factor for synthesis. Section IV describes an analytical
method relying on the solution of two bivariate polynomials.
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II. PASSIVITY REQUIREMENTS

A 2-port reciprocal system is described in the complex
domain s = σ + jω by the symmetrical scattering matrix
S(s). As often the case, the involved functions are moreover
rational, i.e. each is a ratio of polynomials in s and share the
denominator D(s) which holds the N poles of the system as
its roots and which is assumed monic (i.e. with unitary leading
coefficient) without loss of generality:

S(s) =

[
S11(s) S21(s)
S21(s) S22(s)

]
=

 N11(s) N21(s)
N21(s) N22(s)


D(s) (1)

All the involved polynomials are considered to be known, i.e.
computed according to the requirements.

A common further assumption is that the network can be im-
plemented with N resonators, thus not requiring redundancy.
This implies that the transfer function has minimum McMillan
degree, which means that there exist a polynomial P (s):

N11(s)N22(s)− (N21(s))
2
= D(s)P (s). (2)

The minimum McMillan degree property can be checked
by computing the complex roots of the left-hand member
and verifying that all the poles are among them. If so, the
P (s) polynomial can be computed as taking all the other (not
of D(s)) roots of the left-hand member and with a leading
coefficient equal to that of the left-hand member.

The involved polynomials are classically with real co-
efficients in the s variable, guaranteeing that no constant
reactances are needed. However, most synthesis techniques are
applied in a lowpass domain where constant reactances are al-
lowed, as they approximately translate to physical components
in bandpass/bandstop domains. As a consequence, we consider
complex polynomial coefficients to be likewise allowed, as
they do not affect passive realizability in such cases.

For a passive reciprocal transfer function, two simultaneous
conditions on the scattering matrix must be verified, [11]:

1) Each element of S(s) is analytic in Re (s) > 0, thus all
the poles lie strictly in the left half-plane (Hurwitz);

2) A(s) = I − S∗(s)S(s) = I − S(−s)S(s) is positive
semi-definite for every s = jω where ω ∈ R, implying
that the two eigenvalues of A(jω) are always both posi-
tive for whatever real value of ω. The complex conjugate
of a complex x is denoted as x; the ∗ operator is here the
classical paraconjugate of complex rational functions,
that is S∗(s) = (S(−s))t = S(−s). Practically, here
the ∗ operation amounts to conjugate the polynomial
coefficients of the matrix rational function and to change
the variable s in −s.
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Condition 1 is immediate to check, hence not studied further.
Condition 2 instead requires to evaluate A(jω) over the

whole ω axis and check the eigenvalues at each step: this
represents a cumbersome task whose outcome depends on the
choice of finite sampled values of ω. To avoid such brute-
force attempts, the following section III develops a novel
formulation which requires only three root computations.

III. PASSIVITY ASSESSMENT

Several approaches can be devised to verify the positive
semi-definiteness of A(s) by exploiting algebraic properties
and the inner structure of S(s). For any of these, first the
matrix A(s) = I − S∗(s)S(s) must be developed:

(3)A(s) =

[
1− N11N

∗
11+N21N

∗
21

DD∗ −N
∗
11N21+N

∗
21N22

DD∗

−N
∗
21N11+N

∗
22N21

DD∗ 1− N22N
∗
22+N21N

∗
21

DD∗

]

=

 DD∗ −N11N
∗
11 −N21N

∗
21 −N∗11N21 +N∗21N22

−N∗21N11 −N∗22N21 DD∗ −N22N
∗
22 −N21N

∗
21


DD∗

For s = jω, A(s) is Hermitian and its positive definiteness
on the whole imaginary axis is equivalent to the system
passivity, provided condition 1) is met.

A. Sylvester’s criterion

For a Hermitian matrix like A(jω) to be positive semi-
definite, the Sylvester’s criterion gives a set of conditions
equivalent to the unpractical inspection of eigenvalues in ω:

A1,1(jω) ≥ 0 A2,2(jω) ≥ 0 Det (A(jω)) ≥ 0

The first two conditions are equivalent to:

Ci(s) = DD∗ −NiiN∗ii −N21N
∗
21 ≥ 0 for i ∈ {1, 2} (4)

By moving into the Fourier domain s = jω, the expression
becomes a real polynomial in ω: if any of the two conditions
has a real root ω with odd multiplicity, then A(jω) is not
always positive semi-definite and S is not a passive network.

For the third condition we make use of the formula
(5)Det (I +B) = 1 + Tr(B) + Det (B)

which holds for any matrix B of size 2×2 and where Det and
Tr denote respectively determinant and trace of their matrix
arguments. This yields:

(6)
Det (A(s)) = 1− Tr(S∗S) + Det (S∗S)

=
DD∗ −N11N

∗
11 −N22N

∗
22 − 2N21N

∗
21 + PP ∗

DD∗

where Det (S∗S) has been computed using (2). Therefore,

C3(s) = DD∗ −N11N
∗
11 −N22N

∗
22 − 2N21N

∗
21 + PP ∗ ≥ 0. (7)

Checking the passivity of a 2×2 transfer function with poles
in the left-hand plane thus amounts to assess the non-negativity
of three real valued polynomials, Ci(s), on the imaginary axis.

Proposition 3.1: Let q(ω) be a real polynomial of degree
2N . Denote by qk, k = 0 . . . n the coefficient of q(ω) in ωk.
The polynomial q is non-negative on the real line if and only if
q0 ≥ 0 and q2N ≥ 0 and either one of the following condition
holds:
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Fig. 1. Lossy scattering parameters obtained by scaling by 3dB a Cauer
(elliptic) 4th degree function (blue and red traces) and predistorted version
with σ = −0.25 (green and orange traces). The predistorted version is the
one considered for the example of section III-B

1) Any positive real root of q is of even multiplicity.
2) If ωi > 0 are the positive real roots of q′, the derivative

of q, then q(ωi) ≥ 0 holds for all i.
The two criteria necessitate, when applied to the passivity
testing of our system of McMillan degree N , the computation
of roots of polynomials of degree 2N and 2N − 1.

Criterion 1) can be moreover tested using a purely algebraic
procedure, that is without recurring to a numerical root solving
procedure and by using Sturm sequences. To do so what is first
needed is a square free decomposition of the polynomial q,
that is the determination of the square free factors qi such that
q =

∏n
i=1(qk)

i. Here all the qk are coprime and have simple
roots; these factors can be obtained via greatest common
divisor calculations. For example q1 = q/gcd(q, q′) and all
other factors can be obtained in a similar fashion. Once the
factors qk have been obtained, criterion 1) amounts to test for
the presence of positive zeros in the qks for every odd values
of k. This can be done by first removing, if any, the possible
roots of qk at zero, and then computing the sign changes in
the Sturm signed reminder sequences [12] at 0 and +∞.

The burden of the proposed procedures is lower than sam-
pling the ω axis and they are thus more robust and convenient.

B. Numerical Example

An example is given for a 4-th degree transfer function with
negative real parts of poles and N22(s) = −N11(s):

Roots {N11(s)} = {0.2547± j5.9220; 0.2547± j2.7191} ;
Roots {N21(s)} = {0.2547± j21.5363; 0.2547± j9.8883} ;
Roots {D(s)} = {−0.7698± j6.8332;−3.8187± j3.7327} ;
Roots {P (s)} = {1.2793± j6.8332; 4.3281± j3.7327} ;
N11(s) = 0.7076s4−0.7210s3+30.3223s2−15.3545s+185.421;

N21(s) = 0.022387s4−0.02281s3+12.5811s2−6.4066s+1016.1;

D(s) = s4 + 9.1769s3 + 87.558s2 + 405.03s+ 1348.3;

P (s) =−0.5012s4 +5.6207s3− 51.6931s2 +251.556s− 791.215.

The magnitude response of this scattering transfer function
is shown in fig. 1 with the ”predistorted” label (its meaning
will be clearer in a successive example), and no non-passivity
areas are evident from it. However, the evaluation of Ci(jω)
highlights two small regions where eq. (4)< 0 and two larger
ones where eq. (7)< 0: the network is in fact not passive.
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Fig. 2. The evaluation of C1(jω) and C2(jω) of eq. (4) and of C3(jω) of
eq. (7) of a non-passive transfer function, observed by C3(jω) being negative
at some real values of ω.

To verify the proposed method, the ω roots of eqs. (4)
and (7) (all with positive leading coefficients and constant
term) can be respectively computed as:

{4 cplx roots;±6.9389;±6.7069}
{4 cplx roots;±7.5540;±6.0998}

The computed real roots correspond to the sign changes in
fig. 2 and, as there exist at least one real ω root (there are four
for each Ci here), the proposed method successfully detects
this transfer function as not passive.

As alternative confirmation, the real roots of the derivative
of C3(jω) are {±6.9849; 0}, and the values of C3(jω) at these
points are

{
−6.25 · 104; 3.1 · 105

}
, which contain negative

values hence making the network not passive. Similarly, the
Sturm’s theorem detects 4 distinct real roots to each condition.

IV. FINDING REQUIRED Q

After having established in a binary way whether a given
transfer function is passive or not, the related problem is to
quantify its passivity, for comparing different functions. The
classical tool here proposed to this end is predistortion, which
creates a function Ŝ(s) by shifting the complex plane:

Ŝσ(s) = S(s+ σ), with real σ (8)

A negative predistortion σ < 0 creates Ŝσ with all its poles
and zeros shifted toward the right of the s-plane. If S(s) is
passive, Ŝ(s)σ has poles closer to the imaginary axis, hence
sharper peaks in the magnitude response of fig. 1. By making
σ more and more negative, Ŝ(jω)σ will become no longer
passive; the method of section III can be used for this check.

The maximum predistortion violating passivity (σ0), i.e.
making the distorted function lossless at a real frequency, is
computable for any transfer function and enables comparisons.

The practical usefulness of this proposed measure of pas-
sivity is that −σ0 is inversely related to the maximum quality
factor required by a circuit implementation. This relation, in
common experience, holds generally although arbitrary lossy
synthesis techniques often involve approximations, optimiza-
tions or no guarantees that components are all real; the relation
is instead clearer when performing synthesis by even-odd
mode decomposition [3] (requiring S11 = S22), in which
the synthesis is reduced to two subnetworks with prescribed
input reflection functions: at each step, a frequency where the

Fig. 3. Locus of points (σ, ω) solving C3,σ(jω) = 0 of the lossy function
in fig. 1. Two curves are shown (others appear symmetrically for ω < 0 due
to the symmetry of the example) as obtained by drawing the 0-height contour
of eq. (7) via numerical evaluation on the complex plane. Their apexes are
denoted as σ3,1 and σ3,2. Another value of σ = −0.25, used in fig. 1 is
also depicted along with the two corresponding ω intersections

network is lossless is needed (as the one obtained by applying
σ0 ) to then extract and remove one lossless resonator, i.e. by
section extraction. Further predistortion σn = σn−1+δn can be
cumulated after each step and the network is so synthesized by
lossless resonators. It is then converted to implement the orig-
inal non-distorted lossy response by applying the opposite σn
to all frequency-dependent components, i.e. resonators, which
therefore become lossy with a quality factor Qn ∝ − 1

σn
, in

general non-uniform across the whole network. The maximum
required quality factor hence is given by the least negative
value, which is σ0.

The following sections outline an analytical approach to
determine σ0 which relies on bivariate polynomials.

A. Passivity as predistortion

The rationale for this approach is that the predistorted
polynomials defining Ŝσ(s), when evaluated along the imag-
inary axis jω, actually represent the values of the original
polynomials along a shifted axis. As assessment of passivity
must take place in the predistorted domain, the predistorted
polynomials (N̂11(s), N̂21(s), N̂22(s), D̂(s) and P̂ (s)) must
first be paraconjugated and evaluated along jω. For instance:

N̂∗11(jω) = N̂11(−jω) = N11(−jω + σ). (9)

Passivity conditions built on the predistorted functions require
that, for a given σ, D̂(s) be Hurwitz and neither of eqs. (4)
and (7) recomputed on the σ-predistorted polynomials and
denoted as Ci,σ have any odd-multiplicity imaginary root jω.

Considering only one of the 3 conditions, the locus of points
σ + jω where Ci,σ(jω) = 0 is represented by curves (0-level
contours) in the complex plane, as in fig. 3. These curves will
lie entirely in a half-space σ < σi,j , each curve j with its own
σi,j . Considering only one of such curves, with an excessive
predistortion σ < σi,j the curve will cross σ at least twice (say
at ωi,j,1 or 2(σ)): thus one of the eigenvalues of the matrix A
changes sign at ωi,j,1,2(σ), hence being negative in an ω range
and representing a non-passive predistorted function.

For the numerical example considered, the value of σ =
−0.25, used to predistort the response in fig. 1, intersects the
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0-level contour at ω3,1,1(−0.25) = 6.08 and ω3,1,2(−0.25) =
6.75. Therefore, that amount of predistortion is excessive, as it
causes violation of passivity by the distorted transfer function.

When σ > σi is chosen, instead, the curve does not intersect
σ, and thus both eigenvalues are strictly positive, as in a
passive predistorted function. When several curves are present,
σ > σi = maxj σi,j guarantees that condition i is fulfilled and
σi is the allowed predistortion. From this pictorial view, the
determination of σi can be turned into an algebraic problem.

This approach must be applied to all conditions Ci,σ(jω)
and the maximum σ0 = maxσi among the three constitutes
the allowed predistortion σ0 of the transfer function (possibly
limited by the poles remaining in the left half-plane).

B. Bivariate polynomials approach

Notably, the Ci,σ(jω) do not coincide with either a mere
predistortion applied to the polynomials eqs. (4) and (7) or
their evaluation along s = σ + jω. The resulting expressions
are in fact no longer polynomials in a single complex variable:
conditions Ci,σ(jω) are made by terms in the form f̂(s)f̂∗(s)
evaluated along jω with f̂(s) any of the σ-predistorted poly-
nomials. The non-paraconjugated terms f̂(s) evaluated in jω
are still polynomials in s = σ + jω:

(10)f̂(s)
∣∣∣
jω

= f(s+ σ)|jω =
∑

fk(s+ σ)k

∣∣∣∣∣
jω

=
∑

fk(σ + jω)k

However, the paraconjugated terms f̂∗(s) when evaluated
in jω are instead polynomials in σ − jω = s:

f̂∗(s)
∣∣∣
jω

= f(−s+ σ)
∣∣∣
jω

=
∑

fk(−s+ σ)k

∣∣∣∣∣
jω

=
∑

fk(σ − jω)k

Although the Ci,σ are not polynomials in a single com-
plex variable but actually involve both s and s (from terms
paraconjugated and not), each of these can be converted into
real bivariate polynomials. For a general polynomial f(s), a
function f(σ, ω) can be defined on real parameters, σ and ω:

f(s) =
∑
fks

k = f(σ + jω) = f(σ, ω) =
∑
gn,mσ

nωm (11)

where f(σ, ω) is a bivariate polynomial. The conversion from
univariate complex to bivariate real is merely the binomial
expansion of the variable in f(s):

f(s) =
∑
fk(σ + jω)k =

∑
fk
∑
n

(
k
n

)
jk−nσnωk−n = g(σ, ω) (12)

Similarly, for its paraconjugate part (as given in eq. (9)),
f∗(s) will involve the conjugated coefficients and the odd-
power terms of ω will receive a further sign change.

Therefore, once the equivalent bivariate forms for D(s),
D∗(s), N11(s), N∗11(s), N21(s), N∗21(s), N22(s), N∗22(s),
P (s), P ∗(s) have been computed, the required products and
sums create three large bivariate polynomials Ci(σ, ω).

To determine the allowed predistortion of condition i, one
can state that it lies within the roots of Ci(σ, ω), i.e. it is
onto the curves in the complex plane as in fig. 3, which are
however rather complicated to compute. More specifically, in
fact, the interest is in determining the apexes of those curves
and selecting the right-most one. Thus a further algebraic
condition is introduced: the partial derivative of the bivariate

polynomial with respect to ω in the desired solution must be
0, which specifies that the relevant points are only those where
the curves are tangent to the σ axis.

A system of two bivariates is hence built for each Ci:

{Ci(σ, ω) = 0} ∩ {∂Ci(σ, ω)/∂ω = 0} , i ∈ {1, 2, 3} . (13)

This system has a 0-size solution, i.e. a finite number of points,
determinable by algebraic techniques or dedicated solvers.

Concerning the former, for the two large bivariate polyno-
mials to have a common root, their resultant must be 0. Hence
values of σi,j can be obtained by computing the real roots of
the determinant of the Sylvester’s matrix:

R(σ) = Resω {Ci(σ, ω); ∂Ci(σ, ω)/∂ω} (14)

Although R(σ) can be of high degree even for low-order
functions, efficient algorithms dedicated to real roots are avail-
able. To this end, the polysol2 tool, part of the TensorLab
package [13], computes the resultant and solves a general-
ized eigenvalue problem, whose results are then selectively
discarded and the rest improved by local optimization.

Of the obtained finite solutions σi,j (the corresponding ωi,j
are discarded), the one with the largest σ must be taken as
allowed predistortion for condition i: σi = maxσi,j .

The maximum of those is the least predistortion which
makes the network lossless, hence its inverse is the largest
required quality factor: the more negative the allowed predis-
tortion is, the ”more lossy” the transfer function is, the poorer
resonators are needed for its synthesis.

C. Numerical Example

The numerical example is the lossy set of polynomials
obtained by scaling by 3 dB a 4th-degree elliptic response
with 15 dB return loss in the ±2π passband and more than
30 dB attenuation beyond ±3π:

N11(s) = −N22(s) = (0.9995s4 + 42.4423s2 + 259.1558)/
√
2

N21(s) = (0.03166s4 + 17.7801s2 + 1435.8135)/
√
2;

D(s) = s4 + 10.1959s3 + 94.9604s2 + 451.491s+ 1457.34;

P (s) = −s4 + 10.1959s3 − 94.9604s2 + 451.491s− 1457.34.

(side note: these polynomials, predistorted excessively with
σ = −0.25, give those of the example of section III-B, which
are detected to be non-passive).

Their bivariate version is computed; for instance:

D(σ, ω) = ω4 − 4jσω3 − 10.196jω3 − 6σ2ω2 − 30.588σω2 − 94.960ω2

+ 4.000jσ3ω + 30.588jσ2ω + 189.921jσω + 451.491jω

+ σ4 + 10.196σ3 + 94.960σ2 + 451.491σ + 1457.34

and the bivariate form of the D̂∗(s) is found by conjugating
all coefficients of D(s), then applying bivariate expansion and
further changing sign of the coefficients of odd-powers of ω:

D̂(σ, ω) = ω4 +4jσω3 +10.196jω3 − 6σ2ω2 − 30.588σω2 − 94.960ω2

− 4jσ3ω − 30.588jσ2ω − 189.921jσω − 451.491jω

+ σ4 + 10.196σ3 + 94.96σ2 + 451.491σ + 1457.34

By multiplying the bivariate forms of non-paraconjugated and
paraconjugated polynomials according to eqs. (4) and (7), the
bivariate polynomials Ci(σ, ω) are finally obtained.
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Fig. 4. Synthesized lumped-element circuit for the lossy response of fig. 1 and
section IV-C. Solid lines represent admittance inverters with the prescribed
admittance inversion constant (J); solid circles represent unitary resonators
with the prescribed quality factor Q. Hollow circles denote non-resonant
nodes with shunt susceptance B. Barred circles are lossy non-resonant nodes
with shunt admittance G+ jB. Triangles denote external ports with unitary
reference impedance.

The polysol2 tool yields, applied to this lossy scattering
parameters set, for condition C1 of eq. (4) and its derivative
in eq. (13) (the same for C2):

(15)σ1,1 = −0.2520 with ω1,1 = ±6.82
σ1,2 = −28.9658 with ω1,2 = 0

whereas, for C3 of eq. (7) and its derivative in eq. (13):

(16)

σ3,1 = −0.1698 with ω3,1 = ±6.8305
σ3,2 = −0.6723 with ω3,2 = ±3.6777
σ3,3 = −0.7286 with ω3,3 = ±4.8611
σ3,4 = −1.1304 with ω3,4 = 0
σ3,5 = −1.4572 with ω3,5 = ±2.3139
σ3,6 = −2.8467 with ω3,6 = ±10.7140
σ3,7 = −29.122 with ω3,7 = ±1.9

The maximum values for each condition are σ1 = σ2 =
−0.252 and σ3 = −0.1698, hence the maximum allowed
predistortion is σ0 = −0.1698, as also confirmed by fig. 3.
A synthesis of the corresponding lumped-element circuit with
passband edge at ±1 Hz is carried out by means of the even-
odd decomposition technique in [3]. After removing a unitary
admittance inverter on port 2, the circuit shown in fig. 4 is
obtained, whose response exactly corresponds to the ”lossy”
one in fig. 1. The quality factor of the involved resonators at
the passband edge is found to be 37 and 9.3. As expected, the
maximum quality factor involved satisfies 37 = 2π·1 Hz

σ0
.

V. CONCLUSION

This work addresses two closely-related issues arising when
dealing with non-lossless transfer functions. One is the de-
termination of whether a given 2-port scattering matrix is
passive, whose proposed solution is based on a simple root-
finding operation over 3 independent polynomials, which is
much more effective than inspecting the sampled responses;
alternative root-counting algorithms are also proposed to the
same purpose and a numerical example proves the approaches.

The other is the identification of the maximum allowed
predistortion for passivity comparisons, which is also directly
related to the required quality factor for resonators. The solu-
tion to this problem is provided as an analytic procedure with
bivariate polynomials, also validated by numerical examples.

These tools can prove to be effective for the synthesis
of transfer functions with practical lossy components, where
many degrees of freedom with unclear effects must be handled.
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