
HAL Id: hal-03263417
https://hal.inria.fr/hal-03263417

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADER scheme for incompressible Navier-Stokes
equations on Overset grids with a compact transmission

condition
Michel Bergmann, Michele Giuliano Carlino, Angelo Iollo, Haysam Telib

To cite this version:
Michel Bergmann, Michele Giuliano Carlino, Angelo Iollo, Haysam Telib. ADER scheme for incom-
pressible Navier-Stokes equations on Overset grids with a compact transmission condition. [Research
Report] RR-9414, Inria & Labri, Univ. Bordeaux; Optimad. 2021, pp.32. �hal-03263417�

https://hal.inria.fr/hal-03263417
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

14
--

FR
+E

N
G

RESEARCH
REPORT
N° 9414
June 16, 2021

Project-Team MEMPHIS

ADER scheme for
incompressible
Navier-Stokes equations
on overset grids with a
compact transmission
condition
Michel Bergmann, Michele Giuliano Carlino, Angelo Iollo, Haysam
Telib





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

ADER scheme for incompressible
Navier-Stokes equations on overset grids with

a compact transmission condition

Michel Bergmann∗†, Michele Giuliano Carlino∗†‡, Angelo
Iollo∗†, Haysam Telib§

Project-Team MEMPHIS

Research Report n° 9414 — June 16, 2021 — 32 pages

Abstract: A space-time Finite Volume method is devised to simulate incompressible viscous
flows in an evolving domain. Inspired by the ADER method, the Navier-Stokes equations are
discretized onto a space-time overset grid which is able to take into account both the shape of
a possibly moving object and the evolution of the domain. A compact transmission condition is
employed in order to mutually exchange information from one mesh to the other. The resulting
method is second order accurate in space and time for both velocity and pressure. The accuracy
and efficiency of the method are tested through reference simulations.

Key-words: Chimera mesh; Overset grid; ADER; Finite Volume; incompressible Navier-Stokes;
compact transmission condition

Email: michel.bergmann@inria.fr, michele-giuliano.carlino@inria.fr, angelo.iollo@inria.fr, haysam.telib@optimad.it

∗ INRIA Bordeaux Sud-Ouest, MEMPHIS team, 200 avenue de la vielle tour, 33405 Talance, France
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Schéma ADER pour les équations incompressibles de
Navier-Stokes sur des maillages overset avec une condition de

transmission compacte

Résumé : Une méthode des volumes finis spatio-temporels est conçue pour simuler des écoulements
visqueux incompressibles dans un domaine évolutif. Inspirée de la méthode ADER, les équations de Navier-
Stokes sont discrétisées sur un maillage spatio-temporel overset qui est capable de prendre en compte à la fois
la forme d’un objet éventuellement en mouvement et l’évolution du domaine. Une condition de transmission
compacte est employée afin d’échanger mutuellement des informations d’un maillage à l’autre. La méthode
résultante est d’une précision de second ordre dans l’espace et dans le temps pour la vitesse et la pression.
La précision et l’efficacité de la méthode sont testées sur des cas test pris de la littérature.

Mots-clés : Maillage Chimera; Maillage overset; ADER; Volumes Finis; Navier-Stokes incompressible;
condition de transmission compacte



ADER for incompressible Navier-Stokes on overset grids 3

Contents

1 Introduction 3

2 The overset grid 4
2.1 Automatic definition of the stencil and transmission condition . . . . . . . . . . . . . . . . . . 5

3 The governing equations 6

4 The numerical method 7
4.1 The predictor solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.1 Local space-time Galerkin predictor and foreground mesh motion . . . . . . . . . . . . 8
4.1.2 The space-time finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 The pressure equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 The geometric reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Truncation error and stencil at fringe cells . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 The face-center discrete operators on overset grids . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Dynamics of the overlapping zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Numerical results 18
5.1 Order of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 The lid driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 The cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 Steady cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Impulsively started cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.3 Impulsively started then stopped cylinders . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Sedimentation of a cylinder 23

7 Conclusions 29

1 Introduction

The simulation of flows in complex unsteady geometries such as fluid-structure interaction, freely moving
objects or moving boundaries induced by the flow itself requires specific numerical modelling. It is possible
to distinguish three main classes of methods for these flow phenomena: the Arbitrary Lagrangian-Eulerian
(ALE) methods, interface methods and Chimera meshes approaches. The ALE methods [1, 2] are accurate
and allow a sophisticate grid displacement and mesh adaptation after a proper reformulation of the govern-
ing equations. However, when the grid deformation is affected by an excessive stretch, a computationally
expansive remeshing may be necessary. Consequently, further numerical errors deriving from the interpola-
tion of data from the old grid to the new mesh need to be managed. In interface methods, such as Ghost
boundary methods [3], immersed boundary methods [4] and penalization methods [5], the physical domain
is discretized through a simple mesh, usually structured and Cartesian, not changing in time [6, 7]. For this
reason, the mesh does not necessary fit the moving boundary and a special care has to be taken to attain
a sufficient degree of accuracy at the physical boundaries. Moreover, because of the simplicity of the mesh
and its unique aspect ratio, the presence of thin boundary layers could significantly affect the computational
advantages of these methods. Hybrid techniques employing immersed boundary methods with anistropic
mesh adaptations can be employed for circumventing this problem [8].

Our investigations focus on Chimera grids [9, 10, 11, 12]. They consist of multiple overlapping mesh
blocks that together define an overset grid. Usually, one has a background mesh that includes one or more
foreground mesh patches that are fitted to the physical domain boundaries. This mesh generation strategy
considerably simplifies the task of mesh adaptation in the case of boundary layers, changing geometry for
an unsteady problem and for unsteady multiply connected domains. Once the multiple mesh patches are
generated, they are collated in order to obtain an appropriate overlapping zone between the neighboring
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4 Bergmann, Carlino, Iollo & Telib

blocks [11]. In the overlapping zones, the exchange of solution information from one grid to another is
performed. A compact transmission condition is generally sought in order to limit communications between
the grids. However, when a minimal number of cells are locally employed for transferring information among
the computational blocks, the order of the scheme can be degraded.

Generally, the numerical solution on Chimera grids is obtained in two steps. In a first step one computes
the solution in the background mesh and in a second step in the foreground mesh by strongly imposing at
the boundaries of the latter mesh the solution found in the previous step. For example, in [13, 14, 15], fringe
(namely donor) cells of a block in proximity of the overlapping zone provide the information to the fringe
(i.e., receptor) cells of another block by polynomial interpolation. This oneway approach from the back-
ground to the foreground mesh through donor/receptor cells was originally proposed in [16]. Another way
of making the different blocks communicate is to use proper Domain Decomposition (DD) methods (e.g.,
Schwartz, Dirichlet/Neumann or Dirichlet/Robin methods). In particular, each mesh block is considered
as a decomposition of the domain and the overlapping zones are the interfaces for coupling the different
blocks. Accordingly to these approaches, typically iterative discrete methods are employed. For this two
way communication, the reader is referred to [17] for further details.

In this paper, we propose a space-time Finite Volume (FV) scheme on Chimera grids. Our objective
is to combine some aspects of an ALE approach, notably its flexibility with respect to grid displacement
and deformation, to the multi-block discretization strategy of overset grids. In particular, special care is de-
voted to grid overlapping zones in order to devise a compact and accurate discertization stencil to exchange
information between different mesh patches. The numerical solution of the incompressible Navier-Stokes
equations follows a classical fractional method [18, 19] with a second-order accuracy in space and time.
The Arbitrary high order DERivatives (ADER) method provides an ideal setting for the resolution of the
nonlinear unsteady convection-diffusion equation with a moving grid. In [20, 21, 22, 23], the authors present
a method to recover an accurate solution for hyperbolic differential problems with an arbitrary order of ac-
curacy on a single mesh block. The numerical scheme treats the temporal variable indistinctly with respect
to the spatial variables by defining the solution on a space-time slab. This discretization approach, therefore,
allows us to re-consider the problem of Chimera grids transmission conditions. Instead of time-dependent
spatial transmission conditions between relatively moving grid blocks, we define interpolation polynomials
on arbitrarily intersecting space-time cells at the block boundaries. In the ADER scheme a local space-time
weak solution of the problem from the generic time t to t+ ∆t is computed in every single space-time cell.
This solution is defined as the predictor. The prediction step is local and hence embarrassingly parallel,
because the solution is calculated independently of the information of the neighbouring cells. Then, in the
subsequent stage of correction, the computation of a space-time numerical flux between neighboring cells pro-
vides the appropriate stabilization of the integration scheme. We extend this method for the incompressible
Navier-Stokes equations on overset grids, in the spirit of our previous work [24].

For the resolution of the Poisson equation in the projection step, we propose a hybrid FV method. On
internal cells, a classical reconstruction of the gradient through the diamond formula [25, 26] is employed.
On fringe cells, inspired by [27], the reconstruction of the gradient is performed by interpolating the data
through an appropriate local minimization taking into account the geometry of the stencil. Special care is
devoted to the definition of a fully conservative scheme in the limit of a no-shift overlapping configuration,
namely when the background and foreground meshes coincide in the overlapping region.

2 The overset grid

An overset grid or Chimera mesh is a set of mesh blocks covering the computational domain. Each block
may overlap other block(s) in some particular sub-region(s) said overlapping zone(s). Once the multiple
mesh patches are generated, they are collated in order to have an appropriate topology [11]. In the sequel,
the method is explained by considering a two block overset grid (i.e., the background and the foreground
meshes). Figure 1 shows an overset grid composed by one background mesh (in black) surrounding one
foreground mesh (in blue). In many situations, the foreground mesh can move and deform. The overlapping
zone is necessary for the communication and data transfer from one mesh to the other.
The computational cell of any block mesh is quadrilateral in this work.

Inria
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Ω

Ωfg

Γs

Figure 1: Sketch of the mesh configuration. The computational (i.e. fluid) domain contains the solid body
whose boundary is Γs. The foreground mesh (in blue) defines the foreground subdomain Ωfg whose boundary
is the union of an external (dashed line) and internal (continuous line) boundary. Consequently, the internal
foreground boundary coincides with the solid body boundary.

2.1 Automatic definition of the stencil and transmission condition

Let Tk = {Ωki }Nk
i=1 be the partition composed of Nk cells referring to the k-th block mesh. In order to simplify

the notation, in the following we will omit the superscript k to the cell Ωki by writing Ωi. Let Si the stencil
centered over the cell Ωi. Thus, stencil Si is the set collecting the indexes of neighboring cells to Ωi. By
abuse of language, sometimes we will refer to the physical set Ωi ∪

⋃
j∈Si Ωj as the stencil.

It is possible to distinguish two classes of cells with respect to their proximity to the overlapping interface.
The definition of the stencil depends on the class it belongs to.
If cell Ωi is not at the boundary of the overlapping zone (Figure 2a), the stencil Si is composed of all the
cells Ωj sharing at least one vertex with Ωi. Thus, if Ωi belongs to the partition T1, all cells Ωj , with j ∈ Si,
also belong to T1.
If the cell Ωi of partition Tk is at the boundary of the interface, it is no longer possible to use the criterion
of the cells sharing at least a vertex. In fact, there will be at least one edge eil not shared by any other cell
of the same partition (see right edge of cell Ω16 in Figure 2b). For these cells, we systematically identify
other cells of partition Tj (j 6= k) belonging to the stencil. Let the extremes of the edge be indicated as v1

and v2 and its middle point with v3, respectively. Point c? is the center of mass of generic cell Ω?. For our
numerical tests, Algorithm 1 is adopted through the two steps:

1. look for the nodes of cells of the other partition Tj minimizing the Euclidean distance with respect to
points vµ, µ = 1, 2, 3, (line 5, see Figure 3a);

2. compute the symmetric points ṽµ of center cki with respect to points vµ for µ = 1, 2, 3 (line 6), then look
for the cells of partition Tj whose centers minimize the Euclidean distance with the three symmetric
points (line 7, see Figure 3b).

For the edges shared by other cells in the same partition, the cells of the stencil will be those ones sharing
at least one vertex (as cells of indexes 13, 14, 17, 19 and 20 in Figure 2b).
The routine presented in this section will be run whenever the foreground mesh configuration as well as the
hole change.
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6 Bergmann, Carlino, Iollo & Telib

Algorithm 1 Compute stencil for cells at the boundary of the overlapping zone.

Require: Ωki , e
k
il, Tj ,Ski ; . j 6= k, i.e. Tj is the other partition with respect to Tk

1: Initialize v1 and v2 as the two vertexes of edge ekil;
2: v3 ← (v1 + v2)/2; . Middle point of edge ekil
3: Zj ← ∅; . Temporary set of indexes of partition Tj
4: for µ = 1, 2, 3 do
5: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖vµ − cjn‖ ≤ ‖vµ − cjm‖ ∀m = 1, . . . , Nj};
6: ṽ ← 2vµ − cki ; . Symmetric point of cell-center cki of Ωki with respect to vµ
7: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖ṽ − cjn‖ ≤ ‖ṽ − cjm‖ ∀m = 1, . . . , Nj};
8: Ski ← Ski ∪ Zj ;
9: return Ski

1 2 3 4 5

6 7 8 9 10

11
12 13 14 15

16 17 18 19
20

21
22 23 24 25

(a) A stencil of cells in the same parti-
tion. Continuous line for the stencil S13 =
{7, 8, 9, 12, 14, 17, 18, 19}.

1

4

7

13 14

16 17

19
20

(b) A stencil of cells not belonging to the same
partition. Continuous line for the stencil S16 =
{1, 4, 7, 13, 14, 17, 19, 20}.

Figure 2: Two possible stencils: on the right the stencil is in the same partition; on the left the stencil is
composed of cells not belonging to the same partition.

3 The governing equations

Let Ω(t) ⊂ R2 be the computational domain, eventually evolving in time t ∈ [0, T ], with T positive real. We
aim in studying the two-dimensional incompressible flow in the space-time domain Ω(t)× (0, T ) governed by
the system

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∆u in Ω(t)× (0, T ), (1a)

∇ · u = 0 in Ω(t)× (0, T ), (1b)

u(x, 0) = u0(x) in Ω(0)× {0}, (1c)

and completed with boundary conditions over ∂Ω(t)× (0, T ). In system (1), the unknowns are the velocity
u and the pressure p of the fluid of density ρ and dynamic viscosity µ. The initial condition is given by (1c)
through the initial velocity u0. Sometimes, it is more convenient to study the nondimensionalized system of
(1); in this case, through the incompressibility condition (1b), equations (1a) become

∂u

∂t
+∇ · (uuT ) = −∇p+

1

Re
∆u in Ω(t)× (0, T ), (2)

where Re = ρu∞L/µ is the Reynolds number, with u∞ the characteristic velocity of the fluid and L the
characteristic length of either the physical domain or the obstacle, if it is present.
The domain Ω(t) is discretized with an overset mesh whose background and foreground partitions are Tbg and
Tfg, respectively. For the sake of simplicity we consider only one foreground mesh even though it is possible

Inria



ADER for incompressible Navier-Stokes on overset grids 7

4
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13 14

16 17

19
20

◦
•
v2

•v3
•v1

◦

◦

T1

T2

(a) First step: by identifying the vertexes v1 and v2

and the middle point v3 of the edge on the boundary
cell Ω16 (blue full dots), look for the nodes of cells
in the partition T1 (black empty dots) minimizing
the Euclidean distance with respect to those points.

1

4

7

13 14

16 17

19
20

◦
•
v2

•v3
•v1

•ṽ2 ◦

•ṽ3 ◦

•ṽ1
◦

T1

T2

(b) Second step: by identifying the symmetric
points ṽµ, µ = 1, 2, 3, (red full dots) of the node
of the cell Ω16 (blue empty dot) with respect to
the vertexes and the middle point of the non-shared
edge, look for the nodes of cells in the partition T1
minimizing the Euclidean distance to those points.

Figure 3: The two steps for the research of cells in the partition T1 for the cell Ω16 ∈ T2.

to extend the method by employing several foreground meshes. The cells of the foreground partition define
a subset Ωfg of the physical domain. The foreground mesh of coordinates X are allowed to move and deform
accordingly to the motion equation

dX

dt
= V in (0, T ), (3)

which is a Cauchy problem of initial condition X|t=0 = X0(x). In problem (3) the force term is the mesh
velocity V (x, t;u, p), eventually dependent on the fluid velocity and pressure (in that case systems (1) and
(3) are coupled). The motion equation (3) can be imposed regardless of the physics described by system (1).
However, when studying fluid-structure interaction phenomena, the foreground mesh is employed in order to
easily take into account the generic shape of the solid body. Consequently, the computational domain Ω(t)
defines the fluid domain and part of the boundary of the foreground subdomain Ωfg discretizes the boundary
Γs of the solid, i.e., Γs ⊂ ∂Ωfg (see Figure 1). Along the boundary Γs the interaction between the fluid and
the solid takes place and it mathematically reads

u = uB on Γs(t)× (0, T ), (4)

where uB is the velocity of the solid body. Thus, the mesh velocity V has to coincide with the velocity uB
of the body on the boundary Γs of the solid:

V
∣∣
Γs
≡ uB . (5)

Consequently, the dynamics of motion and deformation of the foreground mesh in (3) is led by condition (5).

4 The numerical method

The Navier-Stokes equations (1) are discretized using a Finite Volume (FV) scheme with the collocated cell-
centered variables (u, p). Let the whole time interval (0, T ) be subdivided into N sub-intervals (tn, tn+1),
n = 1, . . . , N − 1, of length ∆t. For a given variable φ(x, t), we indicate its evaluation at discrete time tn

with φn. A fractional step method is used to evaluate the solution in time. In order to improve the pressure
smoothness and avoid some odd-even oscillation phenomena, the face-centered velocity

U = (u)fc (6)

RR n° 9414



8 Bergmann, Carlino, Iollo & Telib

is introduced as presented by Mittal et al. [28]. The symbol (·)fc is a discrete operator computing the
face-centered value of the cell-centered input and it will be explained at the end of this section.
Based on the predictor-projection-correction non incremental Chorin-Temam scheme [18, 19], the first step
(predictor step) evaluates an intermediate velocity u∗ obtained by the resolution of an unsteady convection-
diffusion equation {

∂u∗

∂t +∇ ·
(
u∗(Un)T

)
− 1

Re∆u∗ = 0 in Ω(t)× (tn, tn+1)

u∗ = un in Ωn × {tn} , (7)

which will be numerically solved as explained in the next subsection.
The intermediate velocity u∗ solving problem (7) is not divergence free. Thus the predicted field u∗ is
projected onto a divergence free space through the pressure. As a matter of fact, by computing the divergence
of equation

un+1 − u∗
∆t

= −∇pn+1 in Ω(t)× (tn, tn+1) (8)

and applying the divergence condition (1b) on the velocity fluid un+1, we obtain the Poisson equation for
the pressure

∆ψn+1 = −∇ · u∗ in Ωn+1, (9)

with ψ = ∆t p, by defining the projection step. Problem (9) refers to the cell-centered velocity field and
pressure. Thus, by employing the face-centered intermediate velocity U∗ = (u∗)fc, problem (9) turns into

∆ψn+1 = −∇ ·U∗ in Ωn+1, (10)

which is numerically solved as explained in Section 4.2.
The velocity fields un+1 and Un+1 at the cell-centers and face-centers, respectively, are finally corrected
through equation (8) as

un+1 = u∗ −∇ψn+1, (11a)

Un+1 = U∗ − (∇ψn+1)fc, (11b)

which conclude the numerical routine within the time sub-interval from tn to tn+1.

4.1 The predictor solution

In this subsection the numerical scheme for the predictor equation (7) solved by the intermediate velocity u∗

is presented. The method consists in a FV predictor-corrector scheme stabilised with a Local Lax-Friederichs
approach. It was originally presented in our previous work [24] for a generic advection-diffusion (eventually
nonlinear) problem where the computational domain is discretized by employing overset grids. It is inspired
by the ADER (Arbitrary high-order DERivatives) method [20, 21, 22, 23] and was reformulated for both the
presence of the diffusion and the management of the dynamics for the Chimera mesh.

4.1.1 Local space-time Galerkin predictor and foreground mesh motion

The first step of the method for the unsteady convective-diffusive equation (7) consists in the research of a
weak solution in any cell of the mesh. Let Cni = Ωi(t)× (tn, tn+1) be the physical space-time cell whose lower
and upper bases represent the evolution of the i-th cell Ωi(t) from time tn to tn+1. Problem (7) is rewritten
with respect to a space-time reference system identified by the independent variables ξ ≡ (ξ, η, τ) in the unit
cube Ĉ = (0, 1)3. As originally proposed in [29], it is discretized through a nodal formulation of space-time
nodes given by a tensor product of three Gauss-Legendre quadrature points along space and time directions.
This choice defines an L2(Ĉ)-orthogonal Lagrange basis used for the approximation of the Galerkin solution.

Consequently, over a space-time cell there are 27 Gauss-Legendre nodes ξ̂m and 27 Lagrange polynomials
θl : Ĉ → R such that

θl(ξ̂m) = δlm and

ˆ
Ĉ
θlθm dξ = δlm, l,m = 1, . . . , 27,

Inria
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t

Figure 4: Sketch of the mapMi from the reference space-time cell Ĉ to the physical space-time cell Cni . The
boundary ∂Cni of the physical space-time cell is defined by the spatial cells Ωni (lower base) and Ωn+1

i (upper
base) and by the space-time boundaries Γnij , j = 1, . . . , 4, linking any edge of Ωni to any edge of Ωn+1

i .

where δlm is the Kronecher symbol.
The component-wise problem to be solved is: find qk : Cni → R, k = 1, 2, such that{

∂tqk +∇ · F (qk,∇qk) = 0 in Cni
qk = Πiu

n
k on Ωni

, (12)

where F (qk,∇qk) = qqk−∇qk/Re is the convective-diffusive term. Problem (12) is problem (7) restricted to
the physical space time-cell Cni and redefined as a boundary value problem. Let Eni be the union of all cells
belonging to the stencil Sni centered on cell Ωni identified by the cell-center xni (i.e., Eni = Ωni ∪

⋃
j∈Sn

i
Ωnj ).

Function Πiφ is the polynomial interpolation of a given function φ ∈ C2(Eni ), whose knowledge is only
available to the cell-centers, by employing the quadratic basis of the polynomial space function

P2(Eni ) = span
{

1, x− xni , y − yni , (x− xni )(y − yni ),
1

2
(x− xni )2,

1

2
(y − yni )2

}
.

We remark that at this stage the face-centered velocity field U is not required as originally indicated in
problem (7).

In order to refer problem (12) to the reference domain Ĉ, we use a map Mi : Ĉ → Cni

Mi :


x = x(ξ, η, τ)

y = y(ξ, η, τ)

t = tn + ∆t τ

, (13)

such that any space-time point x ≡ (x, y, t) in the physical space-time cell Cni is a function x = x(ξ), with

ξ ∈ Ĉ (see Figure 4). Time t is considered as linear function of τ of slope ∆t. From map (13), the Jacobian
matrix J reads

J =
dx

dξ
=

xξ xη xτ
yξ yη yτ
0 0 ∆t

 , (14)

whose inverse is

J−1 =
dξ

dx
=

ξx ξy ξt
ηx ηy ηt
0 0 1/∆t

 . (15)

Moreover, let J−1
s be the restriction to the spatial coordinates of the inverse of the Jacobian matrix (15):

J−1
s =

[
ξx ξy
ηx ηy

]
. (16)
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Through (16), the problem in the reference domain reads1

∂τqk + ∆tF [(∇̂qk) + ∆t J−Ts ∇̂ ·F ](qk, ∇̂qk) = 0 in Ĉ, (17)

with

F [(∇̂qk) =

[
ξt
ηt

]
· ∇̂qk; F ](qk, ∇̂qk) = F (qk, J

−T
s ∇̂qk) =

[
F ]ξ
F ]η

]
; ∇̂ =

[
∂ξ
∂η

]
.

The hat differential operators refer to the reference space variables ξ and η in the reference space-time cell Ĉ.
By abuse of notation and for the sake of simplicity, the solutions qk involved in both equations (12) and (17)
are defined with the same symbol even though they take inputs in the physical space-time cell Cni and in the

reference space-time cell Ĉ, respectively. In order to weaken the problem (17), we introduce the following
functional space

Θ =
{
v ∈ H1(Ĉ) : [0, 1] 3 τ 7→ v(ξ, η, τ) = Vτ (ξ, η) ∈ L2((0, 1)2)

}
as subspace of Sobolev space H1(Ĉ) of functions that associate a L2((0, 1)2)-integrable function for any fixed
reference time τ . Moreover, we use the following notation for any function f and g in Θ:

〈f, g〉 =

ˆ
Ĉ
fg dξ; [f, g]τ =

ˆ 1

0

ˆ 1

0

f(ξ, η, τ)g(ξ, η, τ) dξdη.

Finally, for our purposes, it is identified Θ as a test functional space and a trial functional space Qk is defined
as

Qk =

{
v ∈ Θ : v(ξ, η, 0) = Πiu

n
k (x(ξ, η, 0), y(ξ, η, 0), tn) ∧ J−1

[
∇̂v
∂τv

]
∈ L2(Ĉ;R3)

}
, (18)

where [J−1
s ]lm, with l,m = 1, 2, represents the (lm)-component of the spatial inverse Jacobian matrix (16).

By multiplying left and right side of (17) by a generic test function θ in Θ and by integrating over the
reference space-time cell Ĉ, the weak problem reads: find qk ∈ Qk such that

[θ, qk]1 − 〈∂τθ, qk〉+ ∆t 〈θ,F [(∇̂qk)〉+ ∆t 〈θ, J−Ts ∇̂ ·F ](qk, ∇̂qk)〉 = [θ,Πiu
n
k ]0 ∀θ ∈ Θ. (19)

For the above equation, for the solution qk and the reference convective-diffusive terms F [ and F ] a La-
grangian polynomial expansion is performed by employing the already presented Lagrange basis, thus, by
adopting the Einstein notation, qk = θlq̂k,l and F? = θlF?l , with ? = [, ] and l = 1, . . . , 27, where q̂k,l = qk(ξ̂l)
and F?l = F?|ξ̂l . Considering as test function the m-th Lagrangian polynomial θm and by using the La-

grangian expansion, we rewrite the equation (19) as

([θm, θl]1 − 〈∂τθm, θl〉)q̂k,l + ∆t〈θm, θl〉F̂ [l + ∆t〈θm, (ξx∂ξ + ηx∂η)θl〉F ]ξ,l
+ ∆t〈θm, (ξy∂ξ + ηy∂η)θl〉F ]η,l = [θm,Πiu

n
k ]0,

(20)

for any m = 1, . . . , 27. In the left hand side of (20), the arising matrices have a sparse pattern due to the
L2-orthogonality of the Lagrangian basis (e.g. the mass matrix by 〈θm, θl〉 is diagonal). Matrices involving
the derivatives of the map Mi, i.e. 〈θm, (ξx∂ξ + ηx∂η)θl〉 and 〈θm, (ξy∂ξ + ηy∂η)θl〉, cannot be explicitly
computed before finding the map itself. On the contrary, the components which do not involve the map,
namely ([θm, θl]1 − 〈∂τθm, θl〉) and 〈θm, θl〉, can be pre-computed once for all before solving problem (20).
The above equation (20) is nonlinear due to the convective-diffusive terms F [ and F ] which depend on the
solution qk. For this reason a fixed point problem is solved: let r be the index of the fixed point iteration,
therefore we solve qr+1

k

([θm, θl]1 − 〈∂τθm, θl〉)q̂r+1
k,l + ∆t〈θm, θl〉F̂ [,rl + ∆t〈θm, (ξx∂ξ + ηx∂η)θl〉F ],rξ,l

+ ∆t〈θm, (ξy∂ξ + ηy∂η)θl〉F ],rη,l = [θm,Πiu
n
k ]0,

(21)

1Because of the transformation, it holds

∂tqk =
∂τ qk

∆t
+ F[(∇̂qk); and ∇ = J−T

s ∇̂.

Inria



ADER for incompressible Navier-Stokes on overset grids 11

for any m = 1, . . . , 27, where terms of fixed point index r are computed by using the previous solution qrh.

In our numerical tests, the fixed point iteration stops when the L2(Ĉ)-norm of residual of equation (21) is
less than a fixed tolerance.

In equation (17) the local map Mi : Ĉ → Cni has been involved for the computation of the local weak
predictor solution. The local map is recovered through the movement of the foreground mesh led by the
motion equation (3). Otherwise, namely in the background mesh, it is known a priori. The motion equation
(3) is solved through an isoparametric approach by locally referring it to the same reference system as
done for the local equation (12). This means that the spatial coordinates X are considered as function of
the reference coordinates, i.e. X(ξ), with ξ ∈ Ĉ. Finally, the solution of the referred motion equation is
approximated via a Lagrangian expansion by employing the same Lagrangian basis {θm}27

m=1 built on the
tensor combination of three Gauss-Legendre nodes in (0, 1) along any direction as previously introduced:

Xh = θlX̂ l, with X̂ l = X(ξ̂l). Thus, from time tn to tn+1, the motion equation (3) is locally re-written as

dX

dt
= V in Cni , (22)

and closed by strongly imposing that the solution Xn at current time is equal to X(tn) found at the previous
physical space-time cell Cn−1

i . The local motion equation (22) is weaken in a similar way to the local equation
(12) and in algebraic form it reads

([θm, θl]1 − 〈∂τθm, θl〉)X̂ l = ∆t〈θm, θl〉V̂ l + [θm, θl]0X̂
n

l , (23)

for any m = 1, . . . , 27, with V̂ l = V |ξ̂l . The last term [θm, θl]0X̂
n

l takes into account the initial given

configuration of the space at time tn.
When the mesh is neither moving nor deforming, as for cells in the background, the mesh velocity is thus
coincident with zero, i.e. V ≡ 0. In that case, the map is known a priori and it consists in the rescaling of
the reference space-time cell Ĉ to the physical space-time cell Cni :{

x = x(ξ) = xi−1/2 + hxi ξ

y = y(η) = yi−1/2 + hyi η
, (24)

where coordinates xi−1/2 and yi−1/2 and xi+1/2 and yi+1/2 define the extremes along x- and y-direction of
the physical space-time cell Cni ≡ [xi−1/2, xi+1/2]× [yi−1/2, yi+1/2]× [tn, tn+1]; and hxi and hyi are the length
along x and y of the cell, respectively, i.e. hxi = xi+1/2 − xi−1/2 and hyi = yi+1/2 − yi−1/2.
Since the mesh motion equation (3) is essentially solved via a sort of Discontinuous Galerkin (DG) approach,
possible numerical (and non physical) discontinuities could arise. As a matter of fact, for a given vertex

X̄
n+1
j shared by a set of spatial cells {Ωn+1

i }i∈Zn+1
j

at time tn+1, there could be as many different values of

the vertex, namely {X̄n+1
j,i }i∈Zn+1

j
, for any mapMi referring to the cell Cni to which Ωn+1

i belongs. The set

Zn+1
j collects the index(es) of the cells sharing the vertex X̄

n+1
j . The cardinality Nj of set {Ωn+1

i }i∈Zn+1
j

,

coinciding with the cardinality of the indexes set Zn+1
j , depends on the position of the vertex X̄

n+1
j on the

foreground mesh: it is either 1 or 2 if the vertex is on the boundary of the mesh, otherwise it is 4, if the
topology of the cell is quadrilateral. For this reason we consider a weighted average value for the shared
vertex in order to tackle the possible arising discontinuities. As suggested in [30], we first consider a weighted

velocity V̄
n+1
j corresponding to the vertex X̄

n+1
j

V̄
n+1
j =

1

Nj

∑
i∈Zn+1

j

V̄
n+1
j,i , with V̄

n+1
j,i =

ˆ 1

0

θl(ξ
∗, η∗, τ) dτ V̂ l,i, (25)

where coordinates (ξ∗, η∗) depend on the position of the coordinate X̄
n+1
j in the cell Ωn+1

i ; it can assume

four values: (0, 0), (1, 0), (1, 1) and (0, 1). Once equation (23) is solved, the just found coordinates {X̂ l}27
l=1
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12 Bergmann, Carlino, Iollo & Telib

are used for computing the velocity components V̂ l,i and, thus, the weighted velocities V̄
n+1
j in (25). Finally,

the coordinates X̄
n+1
j at time tn+1 is

X̄
n+1
j = X̄

n
j + ∆t V̄

n+1
j . (26)

For another definition of the weighted vertex velocities V̄
n+1
j in (25) by exploiting the Voronoi neighborhood

parameters of any vertex, the reader is addressed to [20] .
In Algorithm 2 we resume the salient stages of the prediction step.

Algorithm 2 Prediction step

1: Compute the foreground mesh motion (26) from the motion equation (3) and through the weighted
velocity (25);

2: for i = 1, . . . , N do
3: Find the map Mi for the space-time cell Cni ;
4: Compute (14), the Jacobian matrix J associated to Mi;
5: Compute J−1 and take the submatrix J−1

s as defined in (16);
6: Update the convective-diffusive terms F [ and F ] in the reference domain;
7: Evolve the local predictor solution through (20);

4.1.2 The space-time finite volume scheme

Once the local predictor solution qk is computed in each space-time cells Cni , we can perform the ADER cor-
rection stage. First, we rewrite the convective-diffusive equation (7) in divergence form. Let FUn(u∗k,∇u∗k) =
Unu∗k −∇u∗k/Re, with k = 1, 2, be the convective-diffusion term associated to the component-wise equation
(7); let ∇x,t = [∇, ∂t]T be the space-time differential operator and, finally, let Uk = [FUn(u∗k,∇u∗k), u∗k]T ,
k = 1, 2, be the k-component of the space-time solution, thus problem (7) can be rewritten as: for any
k = 1, 2,

∇x,t · Uk = 0 in Ω(t)× (0, T ). (27)

the objective is to find a finite volume solution for the above equation, where the finite volume is the
space-time cell Cni , whose boundary reads

∂Cni = Ωni ∪ Ωn+1
i ∪

4⋃
j=1

Γnij , (28)

where the boundaries Γnij , j = 1, . . . , 4, are the space-time boundaries of Cni linking any edge of Ωni at time tn

to any edge of Ωn+1
i at time tn+1 (see the sketch of the physical space-time cell in Figure 4). By integrating

equation (27) over Cni and by applying the divergence theorem to the left side, we obtain

‹
∂Cni

Unk · nx,t dΓ = 0, (29)

with nx,t = [nx, nt]
T = [nx, ny, nt]

T being the normal unit vector to the boundary ∂Cni of the cell. Let ū∗,nk,i
be the spatial average solution u∗k cell-centered in the space cell Ωni at time tn, i.e.,

ū∗,nk,i =
1

|Ωni |

ˆ
Ωn

i

u∗k(x, y, tn) dx dy, (30)

where |Ωni | is the measure of the spatial cell Ωni . Though (28) and (30), equation (29) explicitly is

−|Ωni |ū∗,nk,i + |Ωn+1
i |ū∗,n+1

k,i +

4∑
j=1

ˆ
Γn
ij

Uk · nx,t dΓ = 0, (31)

Inria
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where the unknown is the average solution ū∗,n+1
k,i at time tn+1, while the last term of the left hand side

is the space-time flux along the space-time sides
⋃4
j=1 Γnij . Scheme (31) is the space-time Finite Volume

scheme; we remark that it is still exact. In order to solve (31), the integral function of the space-time flux
is approximated through a Local Lax-Friederichs (LLF) approach:

[Uk · nx,t]Γn
ij
≈ Φ(q+

k,j , q
−
k,j) =

1

2
(U+

k,j + U−k,j) · nx,t −
s

2
(q+
k,j − q−k,j), (32)

where U+
k,j = Uk,j(q

+
k,j) and U−k,j = Uk,j(q

−
k,j) are the space-time solution of (27) computed by solutions q+

k,j

and q−k,j , which represent the local predictor solutions outside and inside the cell, respectively, with respect
to the space-time side Γnij . The term s is the local stabilization coefficient depending on the face-centered
velocity Un considered constant over the space-time side Γnij . It reads

s =
1

2

∣∣∣∣∣Un · nx + 2nt +

√√√√[(Unx )2 +
4

εRe

]
n2
x + 2UnxU

n
y nxny +

[
(Uny )2 +

4

εRe

]
n2
y

∣∣∣∣∣, (33)

where ε is a relaxation parameter. In order to ensure a second-order convergence for the scheme, the
relaxation term ε is chosen to be smaller than an optimal relaxation parameter ε2 [31, 32] defined as

ε2 =
O(1)h2

max

C2
, (34)

where hmax is the maximum characteristic length among all the cells and C2 = (1− 2−1/2)/(2−3/2 − 1) is a
parameter depending on the convergence rate of the scheme. In particular, the relaxation parameter ε is set
as ε2/2. For further details, the reader is referred to [24] and its references.
Equation (31) with the flux approximation (32) closes the correction stage of the ADER method. At the
end of this stage, the cell-centered k-th component of the solution u∗,n+1

k,i is found over any cell Ωn+1
i at time

tn+1.

4.2 The pressure equation

The second step of the fractional method is the projection step defined by the Poisson equation (10) for
pressure ψn+1 = ∆t pn+1 at time tn+1 on the Chimera configuration for the domain Ωn+1. In this section, in
order to lighten the notation, the reference to time tn+1 is omitted for all involved variables and quantities.
Let the stencil Si centered on cell Ωi be decomposed in Si = S+

i ∪ S×i , with S+
i of cells sharing either one

or no edge with Ωi and S×i the remaining cells sharing only one vertex of Ωi. The proposed scheme for (10)
is a spatial FV approach. Thus, by integrating over the space cell Ωi, whose boundary is ∂Ωi =

⋃
j∈S+

i
γij ,

and by applying the divergence theorem both to the left and right hand sides, the problem exactly reads∑
j∈S+

i

ˆ
γij

∇ψ · nij dγ = −
∑
j∈S+

i

ˆ
γij

U∗ · nij dγ, (35)

with nij the unit outer normal to side γij . The integrals in (35) are approximated as∑
j∈S+

i

|γij |[∇ψ · n]ij = −
∑
j∈S+

i

|γij |U∗ij · nij , (36)

where |γij | is the length of side γij . In order to achieve the Poisson algebraic system for problem (36), the
approximation of the face-centered normal divergence term [∇ψ · n]ij along γij is needed. For this reason,
two different strategies are adopted with respect to the position of the spatial cell Ωi: if the cell is not fringe,
namely it is not at the boundary of the overlapping interface of its partition, the approximation is performed
through a geometric reconstruction, otherwise, an analytic approach is employed.
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v1

v2

Ω1

Ω2

•
P

◦
c1

◦
c2 dc

nγ

dt

x

y

Figure 5: Sketch of two internal cells Ω1 and Ω2 sharing the edge γ.

4.2.1 The geometric reconstruction

By considering Figure 5, let us consider two internal cells Ω1 and Ω2 in the same partition and sharing the
edge γ of normal n. Let P be the face-center of γ. Moreover, let c1 and c2 be the cell-centers of the two cells
and v1 and v2 be the extremes of edge γ. These points define the unit direction vectors dc (of the centers)
and dt (tangent), respectively. The objective is to approximate the normal gradient [∇ψ · n]P , applied on
P , assumed to be constant over γ. It is approximated via the diamond formula [25, 26] as

[∇ψ · n]P ≈
1

dc · n

(
ψc2 − ψc1
|c2 − c1|

− ψv2 − ψv1
|γ| dc · dt

)
. (37)

In the above approximation, due to the cell-centered nature of the scheme, an approximation of the vertex-
centered quantities ψv1 and ψv2 are necessary. In particular, they have to be expressed as function of some
cell-centered quantities of the unknown pressure ψ. Let us study this approximation for vertex v1; the
extension to vertex v2 trivially follows. Let S̃v1 be the substencil of indexes of those cells sharing vertex
v1. For internal cells, the cardinality of substencil S̃v1 is equal to 4. Thus, let Ẽv1 =

⋃
j∈S̃v1

Ωj be the

subdomain composed of cells sharing the vertex v1. Finally, let Π̃v1φ be the polynomial interpolation of a
given function φ ∈ C2(Ẽv1), whose knowledge is available to the cell-centers, by employing the bilinear basis
of the polynomial space function Q0

1 = span{1, x, y, xy}. In particular, it holds that

Π̃v1ψ(x, y) = αv1,1 + αv1,2x+ αv1,3y + αv1,4xy = zTαv1 ,

with z = [1, x, y, xy]T and the unknown polynomial coefficients collected in vector αv1 . The polynomial
coefficients are looked for by imposing that the polynomial equals the pressure at the cell-centers of the
substencil (i.e., Π̃v1ψ(xj , yj) ≡ ψj for any j in S̃v1). This yields the resolution of linear system Av1αv1 = ψv1 ,
where the row space of Av1 ∈ R4×4 is defined by the coordinates in zj and vector ψv1 collects the cell-centered

values ψj , with j ∈ S̃v1 . Finally we approximate as follows:

ψv1 ≈ Π̃v1ψ(xv1 , yv1) = zTv1αv1 = zTv1A
−1
v1 ψv1 , (38)

that only depends on cell-centered values of ψ. This allows to finally define the i-th line of system for problem
(36). The scheme for internal cells reads

∑
j∈S+

i

|γij |
dcij · nij

(
ψj − ψi
|cj − ci|

−
zTv2jA

−1
v2jψv2j − zTv1jA−1

v1jψv1j
|γij |

dcij · dvij

)
=
∑
j∈S+

i

|γij |U∗ij · nij , (39)

where the unknowns are the cell-centered values of ψ.
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ADER for incompressible Navier-Stokes on overset grids 15

4.2.2 Truncation error and stencil at fringe cells

For the fringe cells, the diamond formula (37) for approximating the normal gradient in (35) is more compli-
cated. In fact there exists at least one edge for which the second center c2 falls in the other partition. Thus,
in a generic configuration, it could be happen that the center direction dc tends to be parallel to the tangent
direction dt, implying a vanishing term dc ·n. The approach that we adopt exploits the analytic information
stored in any stencil Si centered on cell Ωi. Let Ri = Si∪{i} be the increased stencil which includes also the
index i. Let P the generic face-centered point on which the pressure gradient needs to be approximated. In
the sequel we provide the gradient approximation along the x-direction; the approximation along y similarly
follows. For any j in Ri, the Taylor polynomial expansion of ψj with respect to the face-centered value ψP
truncated to the second-order terms is

ψj = ψP + hxj ∂xψP + hyj∂yψP + hxjh
y
j∂

2
xyψP +

1

2
(hxj )2∂2

xxψP +
1

2
(hyj )2∂2

yyψP +O(H3
j ), (40)

with hxj = xj−xP , hyj = yj−yP and Hj = max{|hxj |, |hyj |}. As done in the previous subsection, the objective
is to represent the face-centered gradient as dependent on the cell-centered quantity in the stencil, i.e.,

∂xψP =
∑
j∈Ri

βxsP (j)ψj , (41)

with coefficients βxsP (j) to be found. The discrete function sP : Ri → {1, . . . ,m}, with m = |Ri| being
the cardinality of the enlarged stencil, sorts the indexes in Ri in increasing order. By plugging the Taylor
truncated expansion (40) in (41), it holds:

∂xψP =

( ∑
j∈Ri

βxsP (j)

)
ψP +

( ∑
j∈Ri

βxsP (j)h
x
j

)
∂xψP +

( ∑
j∈Ri

βysP (j)h
y
j

)
∂yψP +

( ∑
j∈Ri

βxsP (j)h
x
jh

y
j

)
∂2
xyψP

+

( ∑
j∈Ri

1

2
βxsP (j)(h

x
j )2

)
∂2
xxψP +

( ∑
j∈Ri

1

2
βxsP (j)(h

x
j )2

)
∂2
xxψP +O

(
max
j∈Ri

H3
j

)
.

(42)
Since the right side of (42) is the approximation of the x-derivative of ψP , the condition on the coefficients
βxsP (j) are ∑

j∈Ri

βxsP (j) = 0;
∑
j∈Ri

βxsP (j)h
x
j = 1;

∑
j∈Ri

βxsP (j)h
y
j = 0;

∑
j∈Ri

βxsP (j)h
x
jh

y
j = 0;

∑
j∈Ri

1

2
βxsP (j)(h

x
j )2 = 0;

∑
j∈Ri

1

2
βxsP (j)(h

y
j )2 = 0;

(43)

which can be synthesized in the linear system Mβx = bx, with M ∈ R6×m, βx ∈ Rm, bx ∈ R6. Similar
consideration can be assumed for the approximation of the y-derivative. For this reason, for now we consider
the generic system

Mβ = b. (44)

Inspired by [27], for a general value of m, system (44) is solved by minimizing a Lagrangian function under
the constraints defined by a convex function H : Rm → R. Let λ ∈ Rν be a vector of Lagrangian multipliers.
Moreover let L : Rm × Rν → R be the Lagrangian function to be minimized defined as

L(β,λ) = H(β)− λT (Mβ − b). (45)

To minimize this function means to find the stationary point (β,λ) such that{
∂L
∂β = 0
∂L
∂λ = 0

⇐⇒
{
∂H
∂β −MTλ = 0

Mβ = b
. (46)

Let C ∈ R4×m be the sub-matrix relative to the second-order constraints. Two cases are distinguished:
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Tb

? ? Tf
�

�1
2

3

4

(a) In this configuration it holds: abf ({1, 2}) =
{3, 4} while afb({3, 4}) = {2}.

Tb

Tf

? ?� �1
2 ≡ 3

4•P

(b) No-shift configuration. It holds: abf (2) = 3 =
a−1
fb (2), afb(3) = 2 = a−1

bf (3) and Ω2 ≡ Ω3.

Figure 6: Sketch of overlapping configurations. Black cells {1, 2} belong to the background partitions, blue
cells {3, 4} to the foreground. The star symbols (?) and the diamond symbols (�) represent the cell-centers
for cells in the background and in the foreground, respectively.

m ≤ 10 : The convex function is H(β) = 1/2βT [(1− δ)CTC+ δG]β, with ν = 6, consequently the local system
to be solved is [

[(1− δ)CTC + δG] −MT

M O

] [
β
λ

]
=

[
0
b

]
, (47)

where O is the null matrix in R6×6. This choice of the convex function H(β) is such that the discretiza-
tion coefficients minimize the second-order truncation error encoded in matrix M and their L∞-norm
is penalised by coefficient δ (which is put equal to 0.01 in the presented test cases) in that region of
the stencil indicated by matrix G ∈ Rm×m, as it will be later discussed.

m > 10 : The convex function reads H(β) = 1/2βTβ and ν = 10. Thus the local minimization system is[
I −M̃T

M̃ O

] [
β
0

]
=

[
0
b

]
, (48)

with M̃ =

[
M
C

]
and I is the identity matrix in R10×10. In this case the coefficients satisfy 10 second-

order accuracy constraints while their norm is minimized.

The scheme for the fringe cells is∑
j∈S+

i

|γij |
∑
l∈Ri

(βxsij(l)nx,ij + βysij(l)ny,ij)ψl =
∑
j∈S+

i

|γij |U∗ij · nij , (49)

where the unknowns are the cell-centered values of ψ.

One goal for numerically solving the pressure problem is to have the same scheme for fringe and internal
cells in the limit of a perfect no-shift overlapping between the background and foreground meshes. This
allows to properly control the fluxes exiting from the background and entering in the foreground (and vice
versa) and, consequently, to have a conservative scheme at least in this limit condition.
Let O be the set of indexes for cells in the overlapping zone. It is possible to separate this set in two sets Ob
and Of for the background and foreground, respectively, such that O = Ob∪Of and Ob∩Of = ∅. Moreover,
let abf : Ob → Of (and afb : Of → Ob) be the function associating the closest background (foreground)
overlapping cell to a given foreground (background) overlapping cell, i.e., for any i ∈ Ob (and j ∈ Of )

abf (i) = arg min
j∈Of

|xi − xj |
(

and afb(j) = arg min
i∈Ob

|xj − xi|
)
. (50)

In a general overlapping configuration, it holds that a−1
fb 6= abf and a−1

bf 6= afb, as it is showed in Figure 6a.
Through the association functions it is possible to formalize the no-shift overlapping limit configuration.

Definition 4.1 (No-shif overlapping configuration) The overlapping configuration is said to be no-shift
when it holds both

abf = a−1
fb or afb = a−1

bf ; (51a)

∀i ∈ Ob ∃!j = abf (i) ∈ Of such that i = afb(j) and Ωi ∩ Ωj = Ωk, with k = i, j. (51b)
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The limit of no-shift condition takes place when all overlapping cells in the background perfectly coincide
with all overlapping foreground cells in the foreground with a one-to-one match defined by the associations
functions (an example is sketched in Figure 6b).
Let us consider a fringe cell Ωi in a no-shift overlapping configuration for uniform Cartesian meshes of
characteristic length h and let us suppose to compute the gradient at the face-center P of the side after which
there is cell Ωj not belonging to the same partition of Ωi (as in Figure 6b for cells Ω3, fringe, and Ω1, internal).
If the diamond formula (37) is used in this case, the tangential contribution vanishes because dc · dt = 0,
consequently, the diamond formula corresponds to the minimization of the Lagrangian functional associated
to problem (44) fulfilling the second-order constraints (43) with coefficients: βsij(i) = −βsij(j) = −1/h and
βsij(k) = 0 for any k ∈ Ri/{i, j}. This means that the diamond formula in the view of the problem defined
by (47) is minimizing the L∞-norm of the local parameters only in those cells of the stencil sufficiently far
from the face-center point P (where the value of the local coefficients is put to 0). Consequently, all the
information for the reconstruction of the gradient is recovered from the closest cells to P . This concept
is encoded in matrix G defined as a diagonal matrix G = diag(gsij(k))k∈Ri

, with the diagonal components
defined as

gsij(k) =

{
1; k 6= arg minl∈Ri |xl − xP |
0; otherwise

. (52)

With this definition, in the considered overlapping configuration, components gk assume value 1 only for
k 6= i, j (thus for all cells whose centers do not minimize the distance with the face-center P ) and the solution
of problem (47) can be proved to provide βsij(i) = −βsij(j) = −1/h and βsij(k) = 0 for any k ∈ Ri/{i, j}, as
defined by the diamond formula. When matrix G is put equal to the identity, the L∞-norm is penalized all
over the stencil [27]. In the simulations of this work, matrix G with coefficients defined by (52) is used for
any overlapping configuration, allowing to have a unique scheme for internal and fringe cells in the limit of
the no-shift overlapping condition.

4.3 The face-center discrete operators on overset grids

Accordingly to the Chorin-Temam scheme presented at the beginning of Section 4, the face-centered values
of the velocity and pressure gradient are needed. These computations takes again into account either the
internal or fringe position of the cell.
When the intermediate velocity u∗ is computed at the end of the predictor step (7), its face-centered
counterpart U∗ becomes the force term for the pressure equation (10). If the edge is shared by two cells of
the same partition, the face-centered approximation is the mean of the P2-interpolations evaluated on the
face-center by using both the stencils of the two involved cells. On the contrary, when the side only belongs
to one cell (because it is fringe), the approximation is still the evaluation of the polynomial interpolation on
the face-center but just considering the hybrid stencil of the cell.
In the last step (11b) of the fractional step, the face-centered gradient pressure is used to correct the new
face-centered velocity. For fringe cells, the face-centered approximation still exploits the local coefficients
explained in the Section 4.2.2. For internal cells, through the diamond formula (37), it is possible to
approximate the directional derivatives on the face-center along the center and tangential directions. In
particular they read

∂dc
ψ ≈ ψc2 − ψc1

|c2 − c1|
and ∂dt

ψ ≈ ψv2 − ψv1
|γ| , (53)

respectively, where ∂dψ = ∇ψ · d is the directional derivative of ψ along direction d. Consequently it holds[
dc,x dc,y
dt,x dt,y

] [
∂xψ
∂yψ

]
=

[
∂dc

ψ
∂dt

ψ

]
(54)

which can be compactly written in an algebraic form as D (∇ψ)fc = w. By solving the local face-centered
system (54), correction (11b) is finally performed.

4.4 Dynamics of the overlapping zone

During the simulation, the foreground mesh moves and, consequently, the background mesh changes its
configuration in the zone of the overlapping as well as in the hole. Let Ωi(t) be a background cell in a
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Table 1: Convergence analysis for Taylor-Green Vortexes in (−π, π)2 at final time T = 1.

h L2-error convergence rate

velocity pressure velocity pressure

1.57e-1 2.7636e-5 2.0345e-3 - -
1.05e-1 8.4817e-6 9.4667e-4 2.95 1.91
7.85e-2 3.8148e-6 6.9023e-4 2.79 1.11
6.28e-2 2.1021e-6 4.8696e-4 2.68 1.57
5.24e-2 1.3363e-6 3.4589e-4 2.49 1.88

neighborhood of the overlapping. From times tn to tn+1, it can happen one of the following three scenarios:

1. Cell Ωi(t) is present at time tn and it disappears at time tn+1 because the hole completely covers it;

2. Cell Ωi(t) is not present at time tn but it appears at time tn+1 because the hole gets away;

3. The overlapping zone does not drastically change its configuration with respect to cell Ωi(t), thus the
cell is present at time tn and it still continues to be present at time tn+1.

The third case is trivial. For the first case, the algorithm is performed on the vanishing cell because of the
computation of fluxes needed by the neighbouring cells and at time tn+1 the cell (with data) is suppressed.
For the second possibility, information at current time tn is missing and it is necessary for evolving the
same information at next time tn+1. By recalling the previously introduced notation, in this case index i
belongs to the overlapping background set Ob. Thus, it is possible to associate to it an index j = abf (i)
in the foreground set Of such that information stored in Ωnj is known. Successively, a P2-reconstruction
evaluated on Ωi is employed by using the stencil Sj of Ωnj . Since there are several layers of cells composing the
overlapping zone, this ensures stencil Sj to be entirely defined in the foreground partition and, consequently,
the reconstructed data do not need information coming from the other partition where possibly there is
the new born cell Ωi, namely where data themselves want to be approximated. Finally, the algorithm is
performed as usual.

5 Numerical results

In Section 5.1 the performances of the algorithm with respect to the order of grid convergence is presented.
In Sections 5.2 and 5.3 validations of physical data for simulations of lid driven cavity and flows around
cylinders, respectively, compared to the literature are presented.

5.1 Order of convergence

For measuring the order of convergence of the method we computed the L2-norm of the mismatch between
the numerical solutions (both velocity and pressure) and the exact ones (uex, pex) for the Green-Taylor
vortexes at Re = 100 in the computational domain Ω = (−π, π)2 at final time T = 1. In particular,
the foreground mesh originally covers the subdomain (−0.76, 0.76)2; it is composed of cells of the same
characteristic dimension h of cells in the background and it rigidly counterclockwise rotates around the
origin of axes accordingly to the mesh velocity V = 1/2[−y, x]T . At the boundaries, the numerical velocity
is imposed to be equal to the exact solution. In order to measure the space-time order of convergence, the
time step ∆t is chosen by respecting the CFL condition; in particular, since at the boundaries the maximum
velocity is 1, we set ∆t = CFLh/u∞, with CFL = 0.4 and u∞ = 1. Despite the overset configuration is
changing due to the rotation of the foreground mesh, the convergence rate for the velocity and the pressure
is around 2.50 for the velocity and slightly smaller than 2 for the pressure, as showed in Table 1.
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Table 2: Comparison on the primary vortex for the lid driven cavity: maximum stream-function Ψmax,
vorticity ω and location of the topological point. The reference into brackets indicates the used methodology.

Ψmax ω x y

Present 0.1171 1.9721 0.4687 0.5625
Bruneau [33] 0.1179 2.0508 0.4687 0.5625
Bruneau [33] (Upwind) 0.1180 2.0549 0.4687 0.5625
Bruneau [33] (Kawamura [34]) 0.1179 2.0557 0.4687 0.5625
Bruneau [33] (Quickest [35]) 0.1150 1.9910 0.4687 0.5625
Ghia [36] 0.1179 2.0497 0.4687 0.5625

5.2 The lid driven cavity

In this section we study a lid driven cavity flow at Re = 1000. At the initial time the fluid has zero velocity
inside the cavity Ω = (0, 1)2. No shift conditions (i.e., u ≡ 0) are strongly imposed on all sides of the
cavity with exception to the upper boundary where velocity is constant and equal to [−1, 0]T . A steady
foreground mesh occupies the subdomain (0.21, 0.79)2. Both the background and the foreground meshes
are uniform and Cartesian, with a characteristic length h = 1/128. Moreover the overlapping configuration
is no-shift. We are interested in the steady solution. This solution is reached when the L2-norm of the
difference between the solutions at two consecutive times tn and tn+1 is less than 10−10. Figure 7 shows the
streamlines at the steady state. The solution presents a main vortex and two minor vortexes located towards
the lower corners of the cavity. The main vortex originates from the upper boundary and moves to the
region discretized by the foreground mesh. In order to quantitatively measure this movement, we consider
the geometrical topological point where the stream-function Ψ is maximized. Before the steady condition,
this topological point moves from the background to the foreground by passing through the overlapping
zone. Table 2 resumes the comparison of the maximum stream-function Ψmax and its location. Along the
topological point, also the value of the vorticity ω is reported. All data from the literature for the comparison
consider a discretization grid of 128×128. The validation confirms that the presence of the foreground mesh
does not influence the performance of the simulation. The results are in good agreements with reference
ones. No perturbations to the numerical solution are induced by the foreground mesh in the case of no-shift
overlapping condition.

5.3 The cylinders

In this section the method is validated by studying the flow around a cylinder that can be steady or moving.
Let u∞ be the fluid velocity at the inlet boundary of the computational domain. Moreover we recall that
uB is the body velocity (i.e. of the cylinder). Let the dimensionless stress tensor T(u, p) be defined as

T(u, p) = −pI +
1

Re
(∇u+∇uT ), (55)

with I the identity tensor. The fluid dynamics force F f and torque Mf exerted by the fluid on the cylinder
are

F f =

˛
∂ΩB

T(u, p)nB dγB , (56a)

Mf =

˛
∂ΩB

rB ∧ T(u, p)nB dγB , (56b)

where nB is the unit outer normal to the cylinder and rB is the position of any point along the boundary
∂ΩB of the cylinder. We define the aerodynamics coefficients as C = 2F f/(ρu

2
∞D), with D the diameter of

the cylinder. Finally, let the drag CD and lift CL coefficients be CD = C · ex and CL = C · ey, respectively,
with {ex, ey} the canonical basis for R2.
The geometrical setting in this section is the same for all test cases. For this reason we study the grid
convergence on one case and we consider the same set of back- and foreground meshes for all the other
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Figure 7: Steady streamlines for the lid driven cavity test: blue for the background and black for the
foreground.

Table 3: Features of the five considered Chimera meshes for the convergence grid study. The number of cells
in background and foreground are Nb and Nf , respectively, whose sum is N . Label NB refers to the number
of cells around the cylinder.

Background Foreground N

h Nb min(h) max(h) Nf NB

Grid1 4.00e-1 2604 2.14e-2 4.00e-1 2686 80 5290
Grid2 3.00e-1 4510 1.11e-2 3.00e-1 4554 100 9044
Grid3 3.00e-1 4510 7.90e-3 3.00e-1 7848 110 12358
Grid4 2.00e-1 10004 7.90e-3 2.00e-1 7194 110 17198
Grid5 1.00e-1 39204 6.90e-3 1.00e-1 18183 210 57387

test cases. This zero test case simulates the flow around a steady cylinder at Re = 550 with an inlet fluid
velocity u∞ = [1, 0]T . The center of the cylinder is located in the origin of the axis and is 8D far from the
inlet boundary, 16D from the outlet boundary and 8D from any of the upper and lower boundary of the
channel. At the boundaries, at the inlet a constant velocity u∞ is imposed, there are no-reflecting conditions
at the outlet [37] and streamline conditions (i.e., v = 0 and ∂yu = 0) on the other two boundaries. Since the
analytical solution for this case is not available, we compute the drag coefficient evolution in the time window
[0, 5] for five different Chimera grid configurations, resumed in Table 3. Grid1 is the coarsest grid and Grid5
is the finest one. In particular, Grid3 is an intermediate configuration between Grid2 and Grid4. In fact
it mixes the background characteristics of Grid2 with the foreground ones of Grid4. The drag coefficients
from the different overset configurations are also compared with the one by Ploumhans and Winckelmans
[38] for the same test case. Figure 8 shows the comparison. All curves match the one from the literature
and, from the second to the last configuration, the drag coefficient is the same. For this reason we use the
Chimera mesh Grid3 (in Figure 9) because, among all the meshes, it allows a good compromise between
computational times and numerical results.
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Figure 8: Drag coefficient for the zero test case (steady cylinder at Re = 550). The comparison is also
validated with the drag coefficient from Ploumhans and Winckelmans (PW2000) [38].
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Figure 9: Chimera configuration of Grid3.
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Table 4: Comparison for the average drag coefficient CD and the Strouhal number St for the steady cylinder
at Re = 200.

CD St

Present 1.3430 0.1979
Bergmann [39] 1.3900 0.1999
Bergmann Iollo [40] 1.3500 0.1980
Bergmann et al. [41] 1.4000 -
Braza et al. [42] 1.4000 0.2000
He et al. [43] 1.3560 0.1978
Henderson [44] 1.3412 0.1971
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Figure 10: Drag and lift coefficients for the steady cylinder at Re = 200.

5.3.1 Steady cylinder

Let us consider the same configuration of the zero test case for a Reynolds number Re = 200. In particular
we study the asymptotic regime (long time integration). For this test case the validation with literature is
performed for the average drag coefficient and the Strouhal number St = fvD/u∞, with fv the frequency
of vortex shedding. The comparison in Table 4 shows that the results obtained with the presented scheme
match the results of the literature. In Figure 10 there are the plots of the drag and lift coefficients for the
whole time period of integration.

5.3.2 Impulsively started cylinders

We now consider the impulsively started cylinders, namely test cases for which uB 6= 0 and u∞ = 0. In
this case no reflecting conditions are imposed also on the inlet boundary. At the initial time the cylinder is
horizontally shifted of 5D towards the outlet boundary with respect to the steady test cases. For the whole
time interval of integration a constant velocity u∞ = [−1, 0]T is imposed to the cylinder.
In these conditions, at Re = 550 we expect a similar situation with the zero test case. Thus we compute the
drag coefficient by comparing it to both the one of the steady case and the one from the literature provided
by Ploumhans and Winckelmans [38] as previously done. The comparison is plotted in Figure 11. The curves
for the steady and moving cases are very similar and comparable with the reference literature data. The
similarity of the two test cases is also evident from the color plots of the pressure at the same time t = 5 in
Figure 12.
As for the steady test cases, we also considered the impulsively started cylinder at Re = 200. By analysing
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Figure 11: Comparison of drag coefficient between the steady and impulsively started cylinder at Re = 550.
Both are compared with the results by Ploumhans and Winckelmans (PW2000) [38].

the comparison in Figure 13 of the drag coefficient and data from the literature by Koumoutsakos and
Leonard (KL1995) [45] and Bergmann et al. (BHI2014) [41], there is a good agreement with the previous
studies.

5.3.3 Impulsively started then stopped cylinders

With the same boundary conditions of the previous subsection, we also consider test cases where the cylinder
is impulsively starting its movement and at a given time t0 it stops. For this subsection we consider a viscous-
dominant flow at Re = 40 and a convective-dominant flow at Re = 550. For the former case the stopping
time t0 = 5, while in the latter case the cylinder is stopped at t0 = 2.5. For both cases, before stopping, the
cylinder has a constant velocity uB = [−1, 0]T . Figures 14 and 15 show the plot of the evolution of the drag
coefficient compared with data from literature provided by Koumoutsakos and Leonard [45] and Bergmann
et al. [41] for both test cases. Also in this case present data match the previous studies.

With the same accuracy, evaluated against the test cases of Bergmann et al. [41], the validated data
though the presented method require the mesh to be composed of a number of cells from 1 to 2 orders of
magnitude less. As a matter of fact, if the degrees of freedom in [41] and [40] are ∼106 and ∼105, respectively,
the overset grid exploits ∼104 spatial cells.

6 Sedimentation of a cylinder

The last test case analyses the sedimentation of a cylinder in a cavity. In order to validate the computed
data with the proposed method, we set the same configuration by Coquerelle and Cottet [46], Bergmann
et al. [41] and Bergmann and Iollo [40]. The cavity is defined by the vertical channel [0, 2] × [0, 6] with a
two-dimensional cylinder, with its center of mass originally located in (1, 4), falls subjected to the gravity
up to the lower boundary. The cylinder radius is r = 0.125 with a density ρs = 1.5. The viscosity and the
density of the bounding fluid are ν = 0.01 and ρf = 1.0, respectively. The gravity has a modulus g = −980.
The cylinder moves accordingly to

uB = V + Ω ∧ (x− xG), (57a)

mBV̇ = −F f + m̃g, (57b)

JBΩ̇ = Mf , (57c)
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(a) Steady cylinder (b) Moving cylinder

Figure 12: Pressure at t = 5 for steady and impulsively moving cylinders at Re = 550.
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Figure 13: Comparison of the evolution of the drag coefficient up to t = 0.25 for the impulsively started
cylinder at Re = 200 with data by Koumoutsakos and Leonard (KL1995) [45] and Bergmann et al. (BHI2014)
[41].
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Figure 14: Comparison of the evolution of the drag coefficient up to t = 7.5 for the impulsively started and
then stopped cylinder at Re = 40 with data by Bergmann et al. (BHI2014) [41].
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Figure 15: Comparison of the evolution of the drag coefficient up to t = 5 for the impulsively started and
then stopped cylinder at Re = 550 with data by Koumoutsakos and Leonard (KL1995) [45] and Bergmann
et al. (BHI2014) [41].
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where V and Ω are the translation and rotational velocities, respectively, and xG is the center of the cylinder;
in the translation equation (57b) mB = πr2ρs is the cylinder mass while m̃ = πr2(ρs − ρf ) is the difference
of fluid and cylinder masses after the Archimedes’ law; in the rotational equation (57c) the cylinder inertia
is denoted by JB = πr4ρs; finally F f and Mf are the fluid dynamics forces and torque defined in (56),
respectively.

The background mesh is uniform and Cartesian with cells of size h = 5 × 10−2. The foreground mesh
fits the cylinder shape with the characteristic lengths of the cell varying from 1.4 × 10−3 to 5 × 10−2. The
time step is ∆t = min(h)/20. Since we are interested in simulating the cylinder up to the lower boundary,
there exists a time t0 after which the foreground mesh overcomes the physical boundaries of the cavity, as
showed in Figure 16. In order to manage the part of the foreground mesh exceeding the physical domain,
we extend the computational domain as Ω̃ = (0, 2) × (−1, 2) such that the foreground mesh is always fully
contained. Thus, the exceeding region is discretized by a part of the background and, and for any time
t > t0, by a part of the foreground mesh. Consequently, also the hole in the background will overcome
the physical boundary after t0. In the whole computational domain a fluid-solid single flow is considered
by modeling a solid material in the extended part (i.e., for any y < 0). This single flow is computed via
a penalization method [5]. With this approach the entire system is considered as a porous medium with a
variable discontinuous permeability K. In particular, the extended domain simulates an impermeable body
with a very low permeability (i.e., K � 1). In this case, the considered equation in place of (2) reads

∂u

∂t
+∇ · (uuT ) = −∇p+

1

Re
∆u+

χW
K

(uW − u), (58)

where uW is the velocity of the wall, zero in our case, and χW is the characteristic function defined as

χW =

{
1, in the wall

0, elsewhere
. (59)

In the limit of K → 0, equation (58) tends to the Navier-Stokes equation (2) [5]. In this test case K = 10−8.
Despite in principle the penalization method can be used also for the cylinder, we remark that in this case
we use is only for managing the extended part of the computational domain. In particular, we consider
the solid below the wall having the same density of the cylinder (i.e., ρs = 1.5). Since the new reaction
term in (58) affects the velocity, with respect to the fractional Chorin-Temam method, it is included in the
predictor solution (7). Thus, it implies the ADER scheme to consider a reaction no-stiff source term [29].
In particular, in the local space-time Galerkin solution for equation (20), a pseudo-mass term arises as

∆t

K
〈θm, χW |ξ̂lθl〉q̂k,l (60)

for m, l = 1, . . . , 27, with χW |ξ̂l = χW (x(ξ̂l), y(ξ̂l)) is the characteristic function composed with the spatial
components of the reference map Mi along the l-th tensor Gauss-Legendre quadrature point. Successively,
for the fixed-point problem (21), at the iteration r, this reaction term (60) yields an unknown component as
∆t/K〈θm, χW |ξ̂lθl〉q̂

r+1
k,l . During the ADER correction step (27) , the penalization term is just added at the

left hand side of the space-time divergence form as

∇x,t · Uk +
χW
K

uk = 0. (61)

In order to write the FV scheme, by integrating the above expression in the physical space-time slab Cni , the
method becomes

−|Ωni |ū∗,nk,i + |Ωn+1
i |ū∗,n+1

k,i +

4∑
j=1

¨
Γn
ij

Uk · nx,t dΓ +

˚
Cni

χW
K

uk dC = 0. (62)

Scheme (62) is not affected in the space-time fluxes by the new reaction term. For this reason, the procedure
of the method remains the same as explained in Section 4.1.
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Figure 16: Chimera configuration for the sedimentation cylinder.
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Figure 17: Comparison of the vertical velocity v on a horizontal cut through the center of the cylinder at
time t = 0.1 for the sedimentation test case with data by Coquerelle and Cottet (CC2008) [46], Bergmann
et al. (BHI2014) [41] and Bergmann and Iollo (BI2011) [40].

0 0.1 0.2 0.3 0.4
0

2

4

6

t

y G

CC2008
BHI2014
BI2011
Present

Figure 18: Comparison of the evolution of the vertical position yG of the center of the cylinder for the
sedimentation test case with data by Coquerelle and Cottet (CC2008) [46], Bergmann et al. (BHI2014) [41]
and Bergmann and Iollo (BI2011) [40].

Inria



ADER for incompressible Navier-Stokes on overset grids 29

Figures 17 and 18 show the validation for the vertical velocity on the horizontal line cutting the cylinder
along the center and the evolution of the heigth of the cylinder, respectively. Present data present good
agreement with all the ones from the literature. In particular it is possible to remark a closer match with
the curves by Bergmann et al. [41]; indeed both the present method and the method used in that paper
are second-order accurate. Also in this case it is possible to remark the sensible decreasing of degrees of
freedom needed by the numerical solution through the presented method with respect to the ones from the
literature. In fact if the overset grid is composed of 9267 cells (i.e., 5964 in the background and 3663 in the
foreground), grids employed in [46], [41] and [40] use about 3× 106, 8× 105 and 2× 106 cells.

7 Conclusions

We presented a FV scheme that is second-order accurate in space and time for the solution of the incompress-
ible Navier-Stokes equations with moving meshes. The method is based on the Chorin-Temam fractional
step method. The predictor velocity is solved through an extension of the ADER method for a nonlinear
convective-diffusive system on a Chimera mesh with a compact data transmission condition for fringe cells,
i.e., those cells devoted to the communication between the different meshes of the overset grid. The pro-
jection step exploits a FV hybrid method for the reconstruction of the pressure gradient. In particular a
geometric approach is used for internal cells and a weighted expansion is employed for expressing the gra-
dient along the fringe cells. We proved that the approaches for internal and fringe cells are the same in the
limit of a no-shif overlapping condition. This result is achieved by properly minimizing a convex function
for the local coefficients allowing to take into account both the second-order truncation of the solution and
the distribution of data in the local stencil.
The numerical results showed that the movement of the mesh does not introduce sporious oscillation to the
numerical solution of the problem and that second-order accuracy is preserved in both space and time. In
order to test the method, a wide range of canonical cases is exposed. Their validation confirms that the
obtained data match the ones from the literature. In particular, results for tests where the exact solution
is not available are always closer to the ones obtained by second-order methods. Moreover, at equal accu-
racy, the total number of cells for the overset grid (namely the degrees of freedom) is reduced by up to two
orders of magnitude compared to the ones from the cited literature. With the sedimentation test case, we
introduced a reaction term which is not present a priori in the original equation. In particular, we mixed
the adapted ADER method for Chimera meshes with a penalization method in order not to cut part of
the foreground mesh that overcomes the physical boundaries of the domain. This application highlights the
versatility of the proposed method even in proximity of boundaries defined on other mesh blocks. Extension
to three-dimensional flows on octree meshes is now envisaged.
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