
HAL Id: hal-03265556
https://hal.inria.fr/hal-03265556

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

No need to ask the Android: Bluetooth-Low-Energy
scanning without the location permission

Vincent Toubiana, Mathieu Cunche

To cite this version:
Vincent Toubiana, Mathieu Cunche. No need to ask the Android: Bluetooth-Low-Energy scan-
ning without the location permission. WiSec 2021 - 14th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks, Jun 2021, Abu Dhabi, United Arab Emirates. pp.1-6,
�10.1145/3448300.3467824�. �hal-03265556�

https://hal.inria.fr/hal-03265556
https://hal.archives-ouvertes.fr

No need to ask the Android: Bluetooth-Low-Energy scanning
without the location permission

Vincent Toubiana ∗

CNIL
France

vtoubiana@cnil.fr

Mathieu Cunche
INSA-Lyon, Inria, University of Lyon CITI, Lab.

France
mathieu.cunche@insa-lyon.fr

ABSTRACT
Bluetooth-Low-Energy (BLE) scanning can be misused by appli-
cations to determine a device location. In order to prevent uncon-
sented location tracking by applications, Android conditions the
use of some BLE functions to the prior obtention of the location
permission and the activation of the location setting. In this paper,
we detail a vulnerability that allows applications to perform BLE
scans without the location permission. We present another flaw
allowing to bypass the active location requirement. Together those
flaws allow an application to fully circumvent the location restric-
tions applying to BLE scanning. The presented vulnerability affects
devices running Android 6 up to 11 and could be misused by appli-
cation developers to track the location of users. This vulnerability
has been disclosed to Google and assigned the CVE-2021-0328.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Access
control.

KEYWORDS
Location, Bluetooth, Bluetooth-Low-Energy, Scanning, Permission,
Android, Vulnerability

1 INTRODUCTION
Although the primary use of Bluetooth-Low-Energy (BLE) is to
allow the wireless exchange of data with nearby devices (headset,
smartwatch, etc.), it can also be leveraged to geolocate smartphones
users. Hence, some companies are deploying BLE beacons for geolo-
cation purposes in stores [8] and results of wireless network scans
are already used to locate users [23, 27]. To prevent users from
being geolocated without their knowledge, Google has integrated
protections in Android to prevent unconsented location tracking.
Since Android 6, in order to be able to use BLE to scan for nearby
devices, an application must first obtain the location permission [2].
This verification ensures that applications cannot misuse BLE to
illegitimately obtain the location of a user [1]. In addition, BLE
scanning requires the location to be activated on the smartphone,
thus providing hint to the user that its location may be determined.

We found that the restriction on BLE functionalities can easily
be circumvented on many Android devices due to an inconsistent
enforcement. By abusing some features and parameters of the BLE
API, a malicious application could perform a BLE scan even when it
has not been granted the location permission andwithout activating
the location setting. This paper makes the following contributions:

∗This research has been prepared before joining the CNIL. The views expressed do not
necessarily reflect the views of the Commission or any individual Commissioner.

• we present a detailed review of the location-related restric-
tion applying to the BLE features on Android.

• we introduce and demonstrate two flaws allowing a mali-
cious application to bypass the location permission require-
ment, as a well as the active location requirement.

• we analyze the impact of these flaws on mobile application
and discuss how they can be fixed.

The paper is organized as follows: Section 2 presents BLE scan-
ning and location features of Android. Section 3 details the restric-
tions applying to BLE scanning features. Section 4 presents how
BLE restrictions can be bypassed. Section 5 and 6 respectively look
at how this flaw impacts existing Android applications and how it
can be fixed. Section 7 presents the related works.

2 BACKGROUND
2.1 BLE scanning on Android
Android includes since version 4.3 an API for the support of Blue-
tooth Low Energy. It features mechanisms for the scanning of
nearby BLE devices. The scanning features are provided by the
BluetoothLeScanner class, in which are defined among others,
essential elements for BLE scanning: the startScan()method and
the ScanCallback() object and its onScanResult() method.

The startScan() method. is used to initiate the BLE scanning
process and takes as parameter a ScanCallback object through
which the results of the scan will be returned.

The startScanmethod can take additional parameters to specify
the settings of the scan (ScanSettings object) or to specify a filter
(ScanFilter object – see section 2.1.1).

The onScanResult() method. belongs to the ScanCallback ob-
ject that is passed to the startScan() method when a scan is
initiated. This method specifies how scan results are handled and it
needs to be implemented to define this result handling process. This
callback method is called whenever a new scan result is available.

2.1.1 Filtered scans. By default, all discovered BLE devices will be
reported as scan results to the scan callback. It is possible to select
which scan results will be reported by using a ScanFilter that
specifies a set of matching criteria. Using this feature, an applica-
tion can specify filters for services UUIDs, MAC addresses, device
names or manufacturer specific data. For instance, contact tracing
applications have defined a service UUID that is used to listen only
to devices that are running the same contact tracing application.

A benefit of filtered scan is a reduced energy consumption. In-
deed, an application that is not using a filter will get notified for
every detection of BLE device within range, consequently the call-
ing application will be woken-up more often and will be draining

Toubiana and Cunche

more battery. For the same reason, since Android 8, filtered scans
are the only scan that can be run while the screen is off [16].

2.1.2 Batch scans. Instead of reporting each new scan result (i.e.,
each new detected device), it is possible to report the results by batch
at a time specific interval [7]. To use batch scanning, an application
specifies a positive scan delay when starting the scan and use the
onBatchScanResults() method instead of the onScanResult()
to retrieve the results. The onBatchScanResults() method is also
part of the ScanCallback() object and is called whenever a batch
of scan results is delivered.

Using batch scan is another mean to reduce energy consumption
of applications performing BLE scans. Indeed, with batch scanning,
the application will be notifed and woken-up less often than with
standard scanning.

2.2 Location on Android
On Android, an application can obtain the location of the device
through the system’s Location Manager API. In addition to GPS,
Android can derive the location of the device from other sources
such as cellular network and wireless network. For instance based
on the list of nearby Wi-Fi and Bluetooth/BLE devices, the system
can derive a location with an accuracy as low as 10 meters.

2.2.1 Location permissions. Being a sensitive information, the lo-
cation is protected by a number of elements in the Android sys-
tem. The first protection is implemented through the location per-
missions: ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION.
These permissions needs to be declared in the application manifest
to allow an application to get access to location. These two per-
missions are enough to access the location while the application
is running in foreground. To access location while in background,
the ACCESS_BACKGROUND_LOCATION is required.

In addition to the declaration in the application manifest, permis-
sion to access location need to be granted by the user at runtime.
While running, an application having declared one of the location
permissions can request access to location. This access authoriza-
tion can be granted permanently or on a one-time basis.

2.2.2 Location setting. Another element controlling the access to
location information is the location setting, which defines whether
the location service can provide a location information. Therefore,
application (having the location permission) can only obtain loca-
tion when this service is active.

If an application requests the access to location while the location
setting is off, the user will be asked if it want to activate location.

When the location is enabled, an icon appears to inform the
user that the location of the device is currently available, and that
some application may use it. Indeed, once the location service is
active, any application that has been granted one of the location
permission can access the location information.

Furthermore, this location information can be used by the system
and, unless the user disabled Google Location Services, is reported
to Google. The Google Location Services is the location provider
activated by default of most Android devices. According to Google
documentation, when a device uses the Google Location Services,
Google may collect location data periodically and use this data in an

anonymous way to improve location accuracy and location-based
services.

3 ANDROID RESTRICTIONS ON BLE
SCANNING

As result of BLE scans could be leveraged to derive geolocation,
restrictions have been added to Android to protect abuse of the
BLE features. Those restrictions apply to two main BLE features,
namely start scanning and getting scan results, and are based on two
elements: the location permissions and the status of the location
setting. A summary of those restrictions is presented in Table 1.

3.1 Start scan & location setting
Starting Android 9, a constraint was added in the ScanManager
class: to start a scan, an application must either use a filter or the
Android location must be enabled [5]. This constraint is enforced in
the handleStartScan() that is interrupted if the aforementioned
conditions are not satisfied (see code 1)

329 final boolean locationEnabled = mLocationManager.

isLocationEnabled ();

330 if (! locationEnabled && !isFiltered) {

331 Log.i(TAG , "Cannot start unfiltered scan in location -

off. This scan will be" + " resumed when location is

on: " + client.scannerId);

332 mSuspendedScanClients.add(client);

333 if (client.stats != null) {

334 client.stats.recordScanSuspend(client.scannerId);

335 }

336 return;

337 }

Listing 1: Extract of the handleStartScan() method of the
ScanManager class that checks if location is enabled or if the
scan is filtered.

To the best of our knowledge, this constraint has not been doc-
umented and the code update does not provide much details [15].
This constraint aims to verify that either the calling application
is running a filtered scan or that the Android location setting is
enabled. Note that this test done in the ScanManager class just
before starting the scan. It does not verify that the calling function
has the location permission.

3.2 Scan result & location permission
As early as 2015, Google added a protection to Android 6 [12]:
location permissions are now required to obtain scan results [2].
As stated in the Android documentation [3] of the StartScan()
method which an application calls to initiate a BLE scan: "An app
must hold ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCAT-
ION permission in order to get results." In later version of Android (9
and above), ACCESS_FINE_LOCATION was required.

This location permission constraint is implemented by the has-
ScanResultPermission() method (see code 2) which checks that
an application has the appropriate permission before calling its
callback to give it the scan result.

1089 /** Determines if the given scan client has the

appropriate permissions to receive callbacks. */

1090 private boolean hasScanResultPermission(final ScanClient

client) {

1091 final boolean requiresLocationEnabled =

No need to ask the Android: BLE scanning without the location permission

1092 getResources ().getBoolean(R.bool.

strict_location_check);

1093 final boolean locationEnabledSetting =

1094 Settings.Secure.getInt(getContentResolver (),

Settings.Secure.LOCATION_MODE ,

1095 Settings.Secure.LOCATION_MODE_OFF) != Settings.

Secure.LOCATION_MODE_OFF;

1096 final boolean locationEnabled =

1097 !requiresLocationEnabled ||

locationEnabledSetting || client.legacyForegroundApp

;

1098 return (client.hasPeersMacAddressPermission || (

client.hasLocationPermission

1099 && locationEnabled));

1100 }

Listing 2: Code of the hasScanResultPermission in Android
PIE [6]

The hasScanResultPermission() method is called in the on-
ScanResult() method to determine whether a scan result should
be reported to the application. Consequently, as suggested by the
documentation [3], even if it could start a BLE scan an application
without the location permission should always receive an empty
list of results from the onScanResult() method [4].

Note that the other method able to receive scan results, onBatch-
ScanResult(), does not perform a permission check via the has-
ScanResultPermission(). In fact, no verification regarding the
location permission is implemented in the onBatchScanResult()
method.

3.3 Scan result & location setting
Google has imposed a second constraint on Bluetooth: "with privacy
in mind, [Google] designed the Android operating system to prevent
Bluetooth scanning unless the device location setting is on" [24]. This
constraint was also added in Android 6 [13] and is enforced, as the
location permission constraint, by the hasScanResultPermission
method (see code 2). If the location the setting is not enabled the
application will receive an empty scan result.

On Android 8 and 9, a parameter called strict_location_check
defined in a configuration file editable by device manufacturers
could be edited to not require the location to be enabled for BLE
scan to return results. Initially, this possibility was added for devices
that had no location services (e.g., wearables) [14], but it seems that
it was also used on smartphones [11, 28].

filter location location
permission enabled

startScan()
unfiltered ✓
filtered

onScanResult()
unfiltered ✓ ✓
filtered ✓ ✓

onBatchScanResult()
unfiltered
filtered

Table 1: Summary of the restriction on theBLE scanningAPI
(a ✓ indicates that the item is required).

4 FLAWS IN ANDROID RESTRICTIONS
In this section, we detail two flaws in the restriction of Android’s
BLE features. More specifically, we found how an application can
start a BLE scan and get results without having the location permis-
sion. This flaw can be misused by Android application to determine
the user location without his consent thus completely bypassing the
restrictions implemented in Android since 2015. Furthermore, we
discover a second flaw affecting scan filters that allows application
to bypass the requirement on active location.

4.1 Bypassing the location requirements using
batch scans

As presented in section 3, use of BLE scanning features is restricted
by the location permission as it could be misused to locate uncon-
senting users. It appears that the constraints preventing applications
from misusing BLE are not coherently enforced and that an appli-
cation can bypass both the location permission and the location
setting requirements.

Enforcement of the constraints is distributed over different ele-
ments of the Android code. A first set of verifications is done when
starting the scan but these verifications do not check whether the
application has the location permission, and only checks that the
location is enabled or that it is a filtered scan.

A second set of verification is done when scan results are col-
lected through callbacks. Before returning the scan result, the sys-
tems checks that the application has the scan result permission
using the hasScanResultPermission method. This verification is
done in the onScanResult() method (see code 3), which handles
the standard scan results. However, a similar verification cannot be
found in themethods handling batch scan results: onBatchScanReports()
and sendBatchScanResults()1.

1003 // Do no report if location mode is OFF or the client has

no location permission

1004 // PEERS_MAC_ADDRESS permission holders always get

results

1005 if (! hasScanResultPermission(client) || !matchesFilters(

client , result)) {

1006 continue;

1007 }

Listing 3: Verification of scan result permission in
onScanResult() in Android PIE [9]

Therefore, batch scan results are reported to the application
without checking if it has the scan result permission. In other words,
the application can collect batch scan results even if it does not
have the location permission and even if the location is not enabled.

Regarding the location setting, we saw that it is required to start
standard scans. Thus, an application will still need to activate the
location to start the scanning, even if scan result could be obtained
without it. We present a solution to remove this constraint in the
next section.

1This verification was added in the onBatchScanReports()method after we disclosed
this vulnerability.

Toubiana and Cunche

4.2 Abusing scan filters to scan while location
is off

Filtered scans (see section 2.1.1) can be used to scan for specific
devices matching a set of criteria. As seen in section 3.1, less con-
straints apply to filtered scans than to classic scans: filtered scans
do not require the location to be enabled to be started, and they
can run while the screen is off [17].

We found that, because of an implementation bug, it is possible
to create a scan filter that will include all records. Such pass-all filter
can be created by passing certain values to a method in charge of
creating scan filters. More specifically, building a scan filter focused
on the Manufacturer Specific Data while passing the null value for
both the data and the datamask parameters will create a filter that
do not exclude any result (see code 4).

1003 ScanFilter.Builder ().setManufacturerData (42,null ,null).

build()

Listing 4: Creation of a bogus scan filter. The first
parameters specifying a company ID is set to 42, while the
data and datamask parameters are set to null.

The scan results obtained are identical to those of an unfiltered
scan (all records are included), while the scan results will be con-
sidered as filtered. Because the scan is labelled as filtered, it can
be started without the location to be active and can be performed
while the application is in background.

This behavior could have been a simple bug, but because of the
privileged handling of filtered scans, it allows application to scan
all nearby devices without needing to activate the location setting.

4.2.1 Cause of the bug. This unintended behavior appears to be
tied to the offloading of filtering on the hardware. Some Bluetooth
controllers supports on-board filtering and filters can be passed by
the OS through HCI commands2 If filters are configured and if the
hardware supports it, the filtering will be offloaded to the controller
and the OS filtering emulation will be disabled (see code 5).

1003 BluetoothLeScannerCompat.java emulateFiltering = !

filters.isEmpty () && (! offloadedFilteringSupported

|| !settings.getUseHardwareFilteringIfSupported ());

Listing 5: Code of ScanCallbackWrapper()method disabling
filtering emulation when hardware supports it (Android
PIE)

When filtering is offloaded to the hardware, the OS will not apply
the filters when receiving the scan results and will return them as
is (see code 6).

1102 /* package */ void handleScanResults(@NonNull final List

<ScanResult > results) {

1103 if (scanningStopped)

1104 return;

1105 List <ScanResult > filteredResults = results;

1106 if (emulateFiltering) {

1107 filteredResults = new ArrayList <>();

1108 for (final ScanResult result : results)

1109 if (matches(result))

1110 filteredResults.add(result);

1111 }

1112 scanCallback.onBatchScanResults(filteredResults);

2https://source.android.com/devices/bluetooth/hci_requirements#advertising-
packet-content-filter

1113 }

Listing 6: Code of handleScanResults() in which filters are
not applied if the filtering emulation is not enabled

Therefore, the hardware is trusted with the filtering task and
no verification is done by the OS on the returned scan results. We
have been able to reproduce this behavior on all the devices we’ve
have tested3.

We analyzed HCI communications between the Bluetooth con-
troller and the host, and looked for the messages corresponding to
the configuration of the filters. We found that when the filter is con-
figured with non-null values for the data and datamask parameters,
the expected command is transmitted by the host to the controller.
However, when the data and datamask parameters are null, no
command is transmitted and the filter is therefore not configured
on the controller. This suggests that the problem is not coming
from an implementation issue on the controller but rather from a
problem on the host.

4.3 Summary of the flaws
The flaws we have identified are caused by the following behaviors:

• The location permission is not required to start batch scans
nor to get batch scan results;

• The location setting is not required to get batch scans results;
• The location setting is not required to start filtered scans;
• On some devices, it is possible to run filtered scans that will
keep all results.

Some of these flaws can be leveraged independently to bypass
restrictions on BLE scans. Put together, they can be used fully
circumvent the location restriction of the BLE scanning: collecting
scan results of all nearby devices without requiring the location
permission nor activation of the location setting. Such features
would be obtained by an application that starts filtered batch scans
with a pass-all filter and that collects scan results in batch.

4.4 Proof-of-concept
In order to demonstrate the vulnerability, we developed a proof-of-
concept application. This application simply performs BLE batch
scans (i.e. with a non-null reporting delay as explained in sec-
tion 2.1.2) and displays detected devices. The application can run
scans even when the application has not been granted the loca-
tion permission, thus allowing to check that the constraint can be
effectively bypassed. The application can run two types of scans:

• unfiltered scan that requires the android location to be en-
abled to obtain results.

• filtered scan that does not need the location to be enabled. By
leveraging the scan filter bug, the scans include all records
and the results are thus identical to the unfiltered one.

In addition to the code of the proof of concept, the application
APK is also available online [10]. This proof of concept has been
tested on devices running Android 8, 10 and 11. On devices running
these three versions of the operating system, the proof of concept
effectively displayed all nearby devices.
3Galaxy A5 (SM-A510F) Android 7, Galaxy A5 (SM-A520F) Android 8, Galaxy A40
(SM-A405FM) Android 10, Moto G5S Android 10 (LineageOS 17.1), Pixel 4a 5G Android
11

https://source.android.com/devices/bluetooth/hci_requirements#advertising-packet-content-filter
https://source.android.com/devices/bluetooth/hci_requirements#advertising-packet-content-filter

No need to ask the Android: BLE scanning without the location permission

5 IMPACT ON MOBILE APPLICATIONS
5.1 Flaw used by malicious applications
It is possible that some applications already abuse those flaws to
gain illegitimate access to BLE scan results. So far, we have not
identified any application exploiting those flaws.

5.2 Scanning without permission
As developers have followed the Android documentation, they have
taken into consideration the "location permission" constraint as
it was clearly mentioned in Android documentation. Indeed, it
appears that many applications performing BLE scan are actually
requesting the location permission before starting BLE scan. Some
applications performing batch scan (e.g. StopCovid) do require the
location permission even though the permission is – as we have
described in this paper – not enforced.

5.3 Scanning with location off
On the other hand, the undocumented restriction that requires
location to be enabled in order to perform a scan has not always
been handled by applications. Contact tracing applications like
StopCovid and TraceTogether do not verify that the location is en-
abled before starting a BLE scan. This lack of test is inconsequential
on Android devices that can perform batch scan because in these
instances the application callbacks are not affected by the location
constraint, but these applications may not perform effectively on
the few Android devices[30] that do not support batch scanning.

5.4 The case of contact tracing applications
Many contact tracing applications use BLE scanning to detect prox-
imity with other devices and eventually notify them if the device
owner is positive to Covid-19. Most BLE based contact tracing ap-
plications use the Exposure Notification API but a few make direct
use of Android BLE APIs.

Applications that use Exposure Notification APIs have to ask
that the user turns-on the Android location but do not require the
location permission as the Google Play Services, on which the Ex-
posure Notification is built, already have the location permission.
Unlike applications based on Exposure Notification, StopCovid [21]
and TraceTogether [20] require the location permission – at least
according to Android documentation – but neither of these applica-
tions condition their use to the activation of the Android location.

Due to the flaws discussed in this paper, on devices supporting
batch scanning, none of the applications mentioned above must
actually obtain the location permission or require that the device
location is enabled. Indeed, these applications use filtered scan (as
specific services IDs have been defined) and can use batch scanning
instead of regular scan (as StopcCovid already does).

6 FIXING THE FLAWS
The flaw allowing to bypass location permission has been disclosed
to the Android security team and was addressed in the February
2021 Android security bulletin (CVE-2021-0328) [18].

6.1 Patching Android code
The location permission flaw has been fixed in Android code by
calling the hasScanResultPermission from the callback function of
batchScan to verify that, similarly to regular scans, the batch scan
had the required permission to process the results [19]. This will
prevent applications performing batch scanning from bypassing
the location restrictions and would force them to obtain the loca-
tion permission and to enable the location setting. While being
convenient, this solution would address the problem on devices
running up to date versions of Android however devices that no
longer receive updates will remain indefinitely vulnerable.

The scan filter issue is likely the result of an implementation
mistake and should be easy to fix. However, to avoid similar future
issues, filters could be applied by OS even if the results returned by
the controller are supposed to be already filtered.

6.2 App store enforcement
Applications abusing the location permission flaw could also be
removed fro the applications stores or blocked by device protection
systems (e.g., Google Play Protect). Such enforcement could be
performed by verifying that applications calling the startScan()
method also have the location permission.

7 RELATEDWORKS
Several works have demonstrated weaknesses in Android that
would allow an application to obtain personal information. Some
of those works focus on the abuse of wireless features to infer
information as demonstrated in [23] where Wi-Fi scans can al-
low an application to obtain location without having the location
permission. Focusing on Bluetooth, it has been demonstrated that
identifiers associated to Bluetooth features can be used to perform
cross-application tracking[26]. A large-scale collection of BLE scan
results has been identified in [25]. Public information available
in Android can be exploited to collect personal data [31]. Overall,
those attacks leverage side channels to gain access to information
otherwise protected by permissions [27]. Our work shows that,
even if those threats have been identified for some time, protection
mechanisms are still affected by serious flaws.

Illegitimate access to personal information can be caused by
inconsistencies in the enforcement of restrictions [22, 29]. In [22]
the author explains the causes of those inconsistencies and propose
AceDroid a framework to identify them. Our work provides an
additional illustration of these inconsistencies.

As noted in [32] and [22], some of those issues are caused by
vendor customization of the OS. The strict_location_check setting
discussed in Section 3.1 provides a typical example of how vendor
can lower protection through customization.

8 CONCLUSION
This paper presented issues with the enforcement of location re-
strictions applying to Android’s BLE scanning feature. The main
issue is a vulnerability that allows application to bypass location
permission associated with BLE scanning. This vulnerability has
been assigned the identifier CVE-2021-0328. We identified a sec-
ondary issue that allows to bypass the need for the location to be
active when scanning. By combining those flaws, an application

Toubiana and Cunche

can fully bypass the location restrictions of BLE scanning and could
thus be exploited to surreptitiously collect information (including
location) on users. The main vulnerability associated to the CVE-
2021-0328 has been fixed in Android but the patch will not reach
devices that are not maintained, leaving millions (billions) users
exposed.

These findings highlight the difficulty of implementing restric-
tion in systems. In particular, when verification are spread over
several location in the code, inconsistency in the checks is likely to
appear [22]. Furthermore, we note that there are several inconsis-
tencies between code and documentation as some restriction found
in the code are not documented, and documented restrictions are
not fully enforced.

ACKNOWLEDGMENTS
We would like to thank Monir Azraoui, Régis Chatellier, Jérôme
Gorin and Vincent Rasneur for fruitful discussions. This research
has been supported by the ANR-BMBF PIVOT and ANR DAPCODS
projects.

REFERENCES
[1] [n.d.]. Android developers documentation: Bluetooth Overview. https://developer.

android.com/guide/topics/connectivity/bluetooth#Permissions. Accessed: 2021-
03-25.

[2] [n.d.]. Android documentation Android 6.0 Changes. https://developer.android.
com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-
id. Accessed: 2021-03-25.

[3] [n.d.]. Android documentation BluetoothLeScanner. https://developer.android.
com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.
bluetooth.le.ScanCallback). Accessed: 2021-03-25.

[4] [n.d.]. Android Oreo source code GattService class. https://android.
googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/oreo-r6-
release/src/com/android/bluetooth/gatt/GattService.java#859. Accessed:
2021-03-25.

[5] [n.d.]. Android source code ScanManager class. https://android.googlesource.
com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/
gatt/ScanManager.java#329. Accessed: 2021-03-25.

[6] [n.d.]. HandleScanResults. https://android.googlesource.com/platform/packages/
apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/
gatt/GattService.java#1089. Accessed: 2021-03-20.

[7] [n.d.]. HCI Requirements. https://source.android.com/devices/bluetooth/hci_
requirements#batching-of-scan-results. Accessed: 2021-03-25.

[8] [n.d.]. iBeacon - Apple Developer. https://developer.apple.com/ibeacon/. Ac-
cessed: 2021-03-25.

[9] [n.d.]. onScanResult. https://android.googlesource.com/platform/packages/apps/
Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/
GattService.java#1003. Accessed: 2021-03-20.

[10] [n.d.]. Proof of Concept : Android-Check-Location-required. https://github.com/
vtoubiana/Android-Check-Location-required. Accessed: 2021-03-25.

[11] [n.d.]. Xiaomi Mido Config file. https://git.aicp-rom.com/device_xiaomi_
mido.git/tree/overlay/packages/apps/Bluetooth/res/values/config.xml?h=
31f220353508077236e84d7655dd8fd90914060e. Accessed: 2021-03-25.

[12] 2015. Android code commit: location permission constraint. https:
//cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/
d2fc8cbd87c7a742223e8742a442a48690d426ce. Accessed: 2021-03-25.

[13] 2015. Android code commit: location settings constraint. https:
//cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/
312e10ad5bcbb1e3d021c4798d55c40f99c7a6ef. Accessed: 2021-03-25.

[14] 2015. Android code commit: make location check configurable.
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/
+/72ecb4caa630b63f66505ccb202a807b1af4e294. Accessed: 2021-03-25.

[15] 2015. Android code commit: ScanManager verifications. https:
//cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/
efc013507b0b2b5c772f6db0389b5bd29116a0b7. Accessed: 2021-03-25.

[16] 2017. Android 8.1 App compatibility w.r.t BLE Behaviour. https://issuetracker.
google.com/issues/70619940. Accessed: 2021-03-25.

[17] 2017. Stop unfiltered BLE scanning on screen off. https://cs.
android.com/android/_/android/platform/packages/apps/Bluetooth/+/
319aeae6f4ebd13678b4f77375d1804978c4a1e1. Accessed: 2021-03-25.

[18] 2021. Android Security Bulletin—February 2021. https://source.android.com/
security/bulletin/2021-02-01. Accessed: 2021-03-25.

[19] 2021. Check permission before sending batch scan result. https:
//android.googlesource.com/platform/packages/apps/Bluetooth/+/
6f7f9bbf46acaaf266537256da4d0345909ea1c4%5E%21/#F0.

[20] 2021. OpenTrace Android App Source Code. https://github.com/opentrace-
community/opentrace-android. Accessed: 2021-03-24.

[21] 2021. StopCovid Source Code. https://gitlab.inria.fr/stopcovid19/stopcovid-
android. Accessed: 2021-03-24.

[22] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen
Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks for
Inconsistency Detection. In Proceedings 2018 Network and Distributed System
Security Symposium. Internet Society, San Diego, CA. https://doi.org/10.14722/
ndss.2018.23121

[23] Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca, and Aurélien Francil-
lon. 2014. Short Paper: WifiLeaks: Underestimated Privacy Implications of the
ACCESS_WIFI_STATE Android Permission. In Proceedings of the 2014 ACM Con-
ference on Security and Privacy in Wireless & Mobile Networks (Oxford, United
Kingdom) (WiSec ’14). ACM, 231–236. https://doi.org/10.1145/2627393.2627399

[24] Dave Burke. 2020. An update on Exposure Notifications. https://blog.google/
inside-google/company-announcements/update-exposure-notifications. Ac-
cessed: 2021-03-25.

[25] Paul-Olivier Dehaye and Joel Reardon. 2020. Proximity Tracing in an Ecosystem
of Surveillance Capitalism. Proceedings of the 19th Workshop on Privacy in the
Electronic Society (Nov 2020). https://doi.org/10.1145/3411497.3420219

[26] Aleksandra Korolova and Vinod Sharma. 2018. Cross-App Tracking via Nearby
Bluetooth Low Energy Devices. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (Tempe, AZ, USA) (CODASPY
’18). Association for Computing Machinery, New York, NY, USA, 43–52. https:
//doi.org/10.1145/3176258.3176313

[27] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 ways to leak your data: An exploration
of apps’ circumvention of the android permissions system. In 28th {USENIX}
Security Symposium ({USENIX} Security 19). 603–620.

[28] Darek Seweryn. 2019. A Curious Relationship: Android BLE and Location (via
Webarchvie). https://web.archive.org/web/20201212091443/https://www.polidea.
com/blog/a-curious-relationship-android-ble-and-location/. Accessed: 2021-03-
25.

[29] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2016.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In Proceedings 2016 Network and Distributed System Security Sympo-
sium. Internet Society, San Diego, CA. https://doi.org/10.14722/ndss.2016.23046

[30] Martijn van Welie. 2019. Making Android BLE work — part 1. https://medium.
com/@martijn.van.welie/making-android-ble-work-part-1-a736dcd53b02. Ac-
cessed: 2021-03-25.

[31] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. 2013. Identity,
Location, Disease and More: Inferring Your Secrets from Android Public Re-
sources. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13). ACM, New York, NY, USA, 1017–1028.
https://doi.org/10.1145/2508859.2516661

[32] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In 2014 IEEE Symposium on Security and Privacy. IEEE, 409–423.

https://developer.android.com/guide/topics/connectivity/bluetooth#Permissions
https://developer.android.com/guide/topics/connectivity/bluetooth#Permissions
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/oreo-r6-release/src/com/android/bluetooth/gatt/GattService.java#859
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/oreo-r6-release/src/com/android/bluetooth/gatt/GattService.java#859
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/oreo-r6-release/src/com/android/bluetooth/gatt/GattService.java#859
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/ScanManager.java#329
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/ScanManager.java#329
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/ScanManager.java#329
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1089
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1089
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1089
https://source.android.com/devices/bluetooth/hci_requirements#batching-of-scan-results
https://source.android.com/devices/bluetooth/hci_requirements#batching-of-scan-results
https://developer.apple.com/ibeacon/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1003
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1003
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/refs/heads/pie-security-release/src/com/android/bluetooth/gatt/GattService.java#1003
https://github.com/vtoubiana/Android-Check-Location-required
https://github.com/vtoubiana/Android-Check-Location-required
https://git.aicp-rom.com/device_xiaomi_mido.git/tree/overlay/packages/apps/Bluetooth/res/values/config.xml?h=31f220353508077236e84d7655dd8fd90914060e
https://git.aicp-rom.com/device_xiaomi_mido.git/tree/overlay/packages/apps/Bluetooth/res/values/config.xml?h=31f220353508077236e84d7655dd8fd90914060e
https://git.aicp-rom.com/device_xiaomi_mido.git/tree/overlay/packages/apps/Bluetooth/res/values/config.xml?h=31f220353508077236e84d7655dd8fd90914060e
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/d2fc8cbd87c7a742223e8742a442a48690d426ce
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/d2fc8cbd87c7a742223e8742a442a48690d426ce
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/d2fc8cbd87c7a742223e8742a442a48690d426ce
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/312e10ad5bcbb1e3d021c4798d55c40f99c7a6ef
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/312e10ad5bcbb1e3d021c4798d55c40f99c7a6ef
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/312e10ad5bcbb1e3d021c4798d55c40f99c7a6ef
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/72ecb4caa630b63f66505ccb202a807b1af4e294
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/72ecb4caa630b63f66505ccb202a807b1af4e294
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/efc013507b0b2b5c772f6db0389b5bd29116a0b7
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/efc013507b0b2b5c772f6db0389b5bd29116a0b7
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/efc013507b0b2b5c772f6db0389b5bd29116a0b7
https://issuetracker.google.com/issues/70619940
https://issuetracker.google.com/issues/70619940
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/319aeae6f4ebd13678b4f77375d1804978c4a1e1
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/319aeae6f4ebd13678b4f77375d1804978c4a1e1
https://cs.android.com/android/_/android/platform/packages/apps/Bluetooth/+/319aeae6f4ebd13678b4f77375d1804978c4a1e1
https://source.android.com/security/bulletin/2021-02-01
https://source.android.com/security/bulletin/2021-02-01
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/6f7f9bbf46acaaf266537256da4d0345909ea1c4%5E%21/#F0
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/6f7f9bbf46acaaf266537256da4d0345909ea1c4%5E%21/#F0
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/6f7f9bbf46acaaf266537256da4d0345909ea1c4%5E%21/#F0
https://github.com/opentrace-community/opentrace-android
https://github.com/opentrace-community/opentrace-android
https://gitlab.inria.fr/stopcovid19/stopcovid-android
https://gitlab.inria.fr/stopcovid19/stopcovid-android
https://doi.org/10.14722/ndss.2018.23121
https://doi.org/10.14722/ndss.2018.23121
https://doi.org/10.1145/2627393.2627399
https://blog.google/inside-google/company-announcements/update-exposure-notifications
https://blog.google/inside-google/company-announcements/update-exposure-notifications
https://doi.org/10.1145/3411497.3420219
https://doi.org/10.1145/3176258.3176313
https://doi.org/10.1145/3176258.3176313
https://web.archive.org/web/20201212091443/https://www.polidea.com/blog/a-curious-relationship-android-ble-and-location/
https://web.archive.org/web/20201212091443/https://www.polidea.com/blog/a-curious-relationship-android-ble-and-location/
https://doi.org/10.14722/ndss.2016.23046
https://medium.com/@martijn.van.welie/making-android-ble-work-part-1-a736dcd53b02
https://medium.com/@martijn.van.welie/making-android-ble-work-part-1-a736dcd53b02
https://doi.org/10.1145/2508859.2516661

	Abstract
	1 Introduction
	2 Background
	2.1 BLE scanning on Android
	2.2 Location on Android

	3 Android restrictions on BLE scanning
	3.1 Start scan & location setting
	3.2 Scan result & location permission
	3.3 Scan result & location setting

	4 Flaws in Android restrictions
	4.1 Bypassing the location requirements using batch scans
	4.2 Abusing scan filters to scan while location is off
	4.3 Summary of the flaws
	4.4 Proof-of-concept

	5 Impact on mobile applications
	5.1 Flaw used by malicious applications
	5.2 Scanning without permission
	5.3 Scanning with location off
	5.4 The case of contact tracing applications

	6 Fixing the flaws
	6.1 Patching Android code
	6.2 App store enforcement

	7 Related works
	8 Conclusion
	Acknowledgments
	References

