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Abstract. Caches leak information through timing measurements and
side-channel attacks. Several attack primitives exist with different re-
quirements and trade-offs. Flush+Flush is a stealthy and fast one that
uses the timing of the clflush instruction depending on whether a line
is cached. We show that the CPU interconnect plays a bigger role than
previously thought in these timings and in Flush+Flush error rate.
In this paper, we show that a naive implementation that does not account
for the topology of the interconnect yields very high error rates, espe-
cially on modern CPUs as the number of cores increases. We therefore
reverse-engineer this topology and revisit the calibration phase of Flush+
Flush for different attacker models to determine the correct threshold
for clflush hits and misses. We show that our method yields close-
to-noiseless side-channel attacks by attacking the AES T-tables imple-
mentation of OpenSSL, and by building a covert channel. We obtain a
maximal capacity of 5.8 Mbit/s with our method, compared to 1.9 Mbit/s
with a naive Flush+Flush implementation on an Intel Core i9-9900 CPU.

1 Introduction

The cache hierarchy is a key component of modern CPUs, and relies on the
principle of making the common case fast [13,3]. Caches have been extensively
studied with respect to side-channel attacks, resulting in several primitives such
as Prime+Probe, Evict+Time [24], Flush+Reload [35], and Flush+Flush [10].
These can be used to build covert channels and side-channel attacks, e.g., on
cryptographic libraries. Flush+Reload is a popular choice due to ease of imple-
mentation, reliability, and reasonable requirements on x86 platforms: for exam-
ple, a variety of transient execution attacks [15,17,9] used it as a covert channel.

These primitives aim to observe memory accesses from other processes, through
cache timings. Flush+Reload resets the state using the x86 64 clflush instruc-
tion, which ensures that the latest value of a cache line is flushed back to memory,
with no copy remaining in the cache hierarchy. It then makes a costly reload to
check if the line is cached. Flush+Flush is a variant that uses the execution time
of the clflush instruction itself to do the check. Flush+Flush is thus faster and
stealthier, as it causes no memory accesses by the attacking process.
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Calibration is a critical step of the attack where an attacker chooses a thresh-
old between clflush hits (timing of the clflush instruction when the line is
present in the cache) and clflush misses (timing when the line is absent). A
sub-optimal threshold leads to errors in a covert channel or a side-channel at-
tack. The main source of Flush+Flush noise comes from the fact that the median
execution time of clflush hits is close to the median value for misses, whereas
the distributions of load execution time for hits and misses are more separated.

Our experiments show that the timing of the clflush instruction actually
suffers from multiple sources of variability, which impairs the threshold and the
subsequent attacks. A careful analysis of these execution timings unmasks a
major culprit: the CPU interconnect. We uncover the various contributions of
the CPU interconnect between the attacker, the cache slice, the victim core, and
the system agent accessing the main memory, and propose a method to find
the topology of recent Intel CPUs. Accounting for this topology, we significantly
reduce this noise, making Flush+Flush a low-noise attack primitive that remains
both fast and stealthy, and, thus, a realistic alternative to Flush+Reload. Our
evaluation shows that a higher number of cores and larger caches distributed in
more slices increases Flush+Flush noise on modern single-socket machines.

We show that our calibration improvements to Flush+Flush improve covert
channel capacity. A naive Flush+Flush implementation has a 20% error rate
while our improved Flush+Flush has a negligible error rate and a bandwidth 3×
higher. The latter’s bandwidth is also 3 to 4 % higher than Flush+Reload.

In summary, we thus make the following key contributions5:

1. We present a method to uncover the interconnect topology of Intel CPUs,
and apply it on Coffee Lake CPUs. We explain the variation of the execution
time of clflush caused by topology on single-socket systems (Section 5).

2. We measure the resulting error rate depending on the location of the at-
tacker, victim, and cache slice accessed on single-socket machines, and ana-
lyze the differences with dual-socket machines (Section 6).

3. We benchmark the improved covert channel ideal capacity that results, com-
pared with Flush+Reload and a naive implementation of Flush+Flush. We
show how these improvements make Flush+Flush a reliable side-channel
primitive, on par with Flush+Reload (Section 7).

2 Background

In this section, we describe some necessary background on CPU caches and
the CPU uncore and interconnect, multi-socket systems, and cache side-channel
attacks. We focus on Intel CPUs in the remainder of this paper.

2.1 CPU caches

DRAM-based main memory is slow compared to the CPU frequency. Caches are
smaller but faster SRAM-based memories placed in front of the main memory

5 Code: https://github.com/GuillaumeDIDIER/calibration-done-right

https://github.com/GuillaumeDIDIER/calibration-done-right
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to speed up accesses, applying the “make the common case fast” principle [13].
Caches exploit access locality to keep blocks of memory that are likely to be
accessed soon. An access to a block currently in the cache is a cache hit, a fast
access. Otherwise, the request gets served at the next level, until main memory.

Modern Intel CPUs typically have a three-level hierarchy. At the first level,
on each core, the instruction and data memory access paths each hit their own
small caches in 4-5 cycles (L1-D and L1-I). At the second level, each core has an
L2 cache, that serves the L1 misses in 15-20 cycles. At the last level, the chip
has a shared L3, which acts as the last-level cache and answers in 50-100 cycles,
while memory takes over 200 cycles.

Cache associativity and eviction policy. Caches store fixed-size chunks of
contiguous memory called cache lines, typically 64 bytes in size. The 6 least
significant bits of the address determine the offset within the line, while the re-
mainder gives the location of the line. Caches are generally organized, from an
abstract interface point of view, as an array of cache sets. Addresses are assigned
to a deterministic set by a hash function that usually corresponds to a few bits
of the address, next to the offset bits. Each set is composed of a fixed number
of ways, each containing a cache line, along with metadata identifying the line
cached in the way. This metadata usually comprises the coherence state (see be-
low) and a tag, corresponding to the address bits that are not used for index and
offset. The tag, index and offset can be used together to check whether the re-
quested address is cached in this way. The number of ways is called associativity.
A direct-mapped cache has an associativity of 1, while a fully-associative cache
has a single set with as many ways as the number of lines in the cache. Most
large caches associativity is of the order of 10, and a large number of sets [13].

In each set, the eviction policy determines what to do when a new line needs
to be inserted in a set full of valid lines. Modern CPUs usually use a variant of
the least recently used policy, that evicts the line whose last use is the furthest
in the past, but the exact policy is undocumented [29].

Cache coherence. Due to the cache hierarchy, the same memory location may
be simultaneously stored in several different places. It is thus important to ensure
all these locations store the same value. This is achieved using a cache coherence
protocol, which enforces a Single Writer or Multiple Reader invariant. Intel uses
a variation of the MESI cache coherence protocol [14], in which a line can be:

– Invalid (I): The cache does not store a valid value, accesses are misses and
require making a request to the next level.

– Shared (S): The cache holds a clean copy of the correct value, matching the
one in memory, but other caches may also own one. The line can be read with
no further request, but a write requires communicating with the other caches.

– Exclusive (E): The cache holds the correct value, as in the shared case, but
it is additionally the only cache to do so. The line can be modified (and can
transition to the Modified state) without any further request to the hierarchy.

– Modified (M): The cache holds exclusively a modified value. The stale value in
memory must be updated before this dirty line can be evicted from the cache.
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This protocol guarantees that, for a given cache line, all cores will see the
same sequence of values, but it offers no guarantee about the order in which each
core sees changes to different locations. This ordering is governed by the memory
consistency model. In non-server Intel CPUs, an inclusive L3 cache maintains
cache coherence. It includes a copy of all lines cached in lower-level caches, and
keeps track of the coherency state of each line.

Cache slicing. The bigger SRAM is, the slower it is to access. Moreover, more
cores mean higher request traffic to the cache hierarchy. To make the last-level
cache scale properly with multiple cores, it is split into several slices, each asso-
ciated with a core. Chips with more cores have proportionally more slices, which
can proportionally serve a greater number of requests.

Physical addresses are mapped to a single slice, using a hash function. The
first sliced caches simply used specific bits of addresses, similar to set indexes.
However, as uncovered by Maurice et al. [20], modern Intel CPUs use a com-
plex function, which uses the XOR of several bits of the physical address to
generate each bit of the output. This was introduced in the Sandy Bridge micro-
architecture, and is still present in client Skylake derivatives such as Coffee Lake.
Examples of such functions are given in Appendix A. On CPUs whose number
of cores is a power of two, the resulting function is linear, otherwise, a non-linear
component is required [36].

clflush instruction. The x86 ISA includes an instruction to flush a cache line,
clflush. Executing this instruction causes the cache hierarchy to make sure the
memory contains the latest value and evicts the cache line from all levels of
cache. Such an instruction is privileged in many ISAs as its main use is in device
drivers using DMA. However, x86 also allows it in user mode, where it can be
used to manually evict lines from the cache in the unlikely case manual cache
management improves performance. This instruction can thus be used in cache
side-channel attacks. A significant property of clflush is that calling clflush

on one core evicts it from the all of the coherency domain, usually all the cores.

2.2 CPU uncore and interconnect

Modern CPUs tend to have several distinct clock domains. Each core can vary
its frequency independently, but there is also a significant part of the system that
is not part of a core. A common clock domain is needed for the interconnection
network in between the cores, the GPU, the memory, and I/O systems. This
part of the core, i.e., everything that is not a specific core, is called the uncore.

Prominent in the uncore is the core interconnect, which is not well docu-
mented by Intel apart from stating it is a bidirectional ring ([14], Section 2.4.5.3).
This leaves room for several interpretations and topologies. The last-level cache
is distributed among the nodes of the interconnect network, with each slice being
associated with a core. While it was usually assumed that each core had exactly
one slice, it no longer the case on some recent Intel systems [30].

Figure 1a is a die shot, annotated by WikiChip [1] of the 8 core Coffee Lake
CPUs, this layout is used to produce among others the Intel Core i9-9900 CPU.
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2.3 Multi-socket systems

A multi-socket system is a system where several multi-core CPUs, each with
its cache system, share a single physical memory space with an interconnect
between the two packages. In multi-socket systems, there is no single last-level
cache ensuring the coherence between the caches of the two cores. It appears that
some of the ECC bits inside the DRAM are used to maintain some coherency
metadata, and requests may need to flow in between the two sockets [14,22].

2.4 Cache side-channel attacks

The cache hierarchy contains a global state that is shared among processes.
The cache impacts timing but not the correctness of code since its memory
permissions are enforced and the value it stores is preserved whether a line is
cached or not. However, the time it takes to access a line leaks information to the
party that performs the measurement. There are two common scenarios. First,
in a covert channel, two processes can cooperate to communicate when they
are monitored on other channels or simply when not allowed to. Second, in a
side-channel attack, an attacker process measures which cache line an unwitting
victim accesses, leaking access pattern information.

There exist two main techniques of cache attacks: Prime+Probe [24,18] and
Flush+Reload [12,35]. In Prime+Probe, the attacker fills a set with her cache
lines, and the victim accesses a line within that set. This causes an eviction of
one of these lines, which the attacker then measures. Prime+Probe has the least
requirements, as the attacker does not need to share memory with her victim,
and does not require any specific instruction to evict cache lines.

However, in many settings, the attacker and victim can share read-only mem-
ory, in which case the attacker can probe a specific shared cache line. The Flush+
Reload attack uses the clflush instruction to flush a line that may or may not
be accessed by the victim, and then times how long it takes to reload it. The
attacker therefore detects whether the victim accessed this line.

Flush+Flush [10] is a variant of Flush+Reload, in which the attacker times
a cache line flush instead of a reload. Indeed, clflush takes a different time
depending on whether the line is cached or not. This is however a very small
variation of time, around 10 cycles, and the measurements have a large standard
deviation, leading to a significant amount of noise. This attack is noisier than
Flush+Reload, but faster and stealthier, as it avoids costly misses, and cannot
be detected using performance counter to monitor suspicious cache misses.

One of the sources of timing variation is the scaling of the CPU frequency,
for which Saxena and Panda [28] have proposed a solution.

3 Motivation

Using clflush as the measurement, such as in Flush+Flush, has the potential
of monitoring several addresses with less interference than Flush+Reload, as
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flushing does not trigger the prefetcher. It is also fast, as a reload operation is
slower than a flush on a miss, which Flush+Reload attacks cause frequently.

However, one point that has been overlooked for this attack is the choice of
the threshold to distinguish between a flush hit and a flush miss. This threshold
is crucial to avoid noise. When looking at the timings for a single address and
on a single run, it appears that there is a good separation between the hits
(slower) and the misses (faster), for a single-socket system. However, from one
run to another, the exact threshold may change, even with a fixed frequency.
The threshold also differs for different addresses.

We hypothesize that the variability is due to the complex topology of sliced
caches, and that accounting for these sources of variability improves significantly
the quality of the channel, especially as the number of cores grows. Our experi-
ments show that ignoring CPU topology can result in very poor error rates, e.g.,
in some cases, a 45% error rate for a covert channel using a naive method for
choosing the threshold. In the remainder of the paper, we show that taking into
account the topology and slices to compute tailored thresholds allows us to build
a side channel with an error rate well under 0.01%. Flush+Flush is therefore,
contrary to what was thought before, not a noisy attack when crafted carefully.

4 Experimental setup

We run experiments on two single socket systems:

– 4-core machine: a Dell Latitude 7400 machine with an Intel Core i5-8365U
CPU (Whiskey Lake, 4 cores, 8 threads). We have validated that it uses the
cache slicing functions that were previously reverse-engineered from Sandy
Bridge to Skylake [20] (see Appendix A). It runs Fedora 30.

– 8-core machine: a Dell Precision 3630 machine with an Intel Core i9-9900
CPU (Coffee Lake, 8 cores, 16 threads). We have reverse-engineered its last-
level cache hash functions (see Appendix A). It runs Ubuntu 18.04.5 LTS.

We enable hyper-threading, but disable turbo boost on those machines. The
intel pstate driver is set to performance mode on all cores, to stabilize the core
frequencies. Additionally, we write a non-null value in each page before use, this
prevents any optimization and involuntary page sharing involving the zero-page.

5 Topology Modeling

In this section, we investigate the factors that influence the execution time of
clflush to improve the Flush+Flush attack, and propose a mathematical model
with an associated ring topology. The only information we have from the Intel
documentation is that the interconnect is a “bidirectional ring”.

A clflush miss occurs when a cache line is not validly cached, which corre-
sponds to a line in the I state. A line that has just been flushed is in the I state —
the cache may have an entry in the I state or no entry at all, but it is equivalent
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a: Intel Coffee Lake 8-core die shot.
Image by Intel, annotated by WikiChip [1].

GPU

0

1 3

2 64

5 7Sys.
Agent

RARA RA RA RA RA RARA RA RA

b: Proposed i9-9900/8-core topology.
Each core (0 to 7, blue) has a ring agent (RA,
red), handling accesses to the local L3 slice and
communication over the ring. The GPU and the
system agent, handling outside world communi-
cation, such as memory, also have their own RA.

Fig. 1: Core i9-9900 die shot and topology.

at the cache coherency protocol level. A clflush hit occurs when the line is in
any valid state. However, in practice in a Flush+Flush attack, the cache line of
interest transitions from an I to an E state when the single victim core loads the
line that has just been flushed. Therefore, the two relevant timings are clflush

of a line in the E state for a hit, and in the I state for a miss. We study these
timings depending on three parameters:

1. A: the attacker core that executes clflush on an address,
2. V : the victim core that accesses the address and caches it in its L1 or L2,
3. S: the core that contains the last-level cache slice that this address maps to.

V doesn’t contribute to miss timing as invalid lines are not cached in any L1/L2.

Measurements and topology. For each attacker core, Figure 2a shows the
time it takes to execute a clflush instruction on a cache line in the I state,
depending on the slice. The first finding is that all 8 cores have a distinct timing
pattern, which implies that the ring has no symmetry.6 For each attacker, we
notice that slices with a lower core number than the attacker all have the same
timing, while for slices with a higher number the time increases with the distance
between the attacker and the slice. Such a pattern only makes sense if the nodes
are aligned in a linear fashion, and if the attacker sends a message to the slice,
which then sends a message to the system agent, and then back to the slice and
finally to the attacker. Consequently the miss time is more variable for attackers
closer to the system agent than for one further away.

Figure 2b shows the time it takes to execute a clflush instruction on a
cache line in the E state. Here, we notice an asymmetry in the core, which can
be explained if the recall request is always sent by the slice in the same direction
without knowing in which core the line is cached. We omit the graphs for other
A as they only show a simple linear offset depending on |A− S|.

Given that the topology is described as a ring, given the die shot in Figure 1a
and our results, we thus propose the topology in Figure 1b, with 8 cores aligned
in a linear graph with forward and backward links. For a 4-core machine, similar
measurements lead to a similar topology with only cores 0-3.

6 Unlike the figure in Intel documentation [14] and the figure by WikiChip [1].
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a: For a cache line in the I state, depending on its slice S for each attacker core A.
There are 32 points per slice S, as we made one measurement for each attacker
hyper-thread (2) and for each victim logic core (16). Victim logic core has no
impact on a miss.
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b: For a cache line in the E state, depending on the victim core V for each slice
S, using a fixed attacker core (A = 0). There are 4 points per victim core V , one
for each attacker and victim hyper-thread.

Fig. 2: Median timings of clflush on the 8-core machine depending on the victim
core V , the slice S, and the attacker A, along with the fitted model according
to our proposed topology, which corresponds to our measurements.

Mathematical model. The above timing measurements can be interpreted
within the proposed topology as follows, leading to a mathematical model that
can be fitted and compared with the measurements. Misses result in a request
to be sent on the ring from the core requesting the flush to the slice, which then
sends a message to the memory, and then answers the same path in reverse,
using each time the shortest path. The eviction time in state I, tI(A,S) is thus:

tI(A,S) = C + h× |A− S|+ h× |S −M |,

in which:

– C is a constant base timing,
– h is a constant corresponding to the time a round-trip hop on the ring takes,
– M corresponds to the system agent location, which is −1.

Upon receipt of a request to flush a line in the E state, the slice sends a single
message along the ring, in one privileged direction. For core numbered from 0
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to ncore

2 included, this is towards the higher numbered cores (and the GPU),
otherwise, it is towards the lower numbered cores. This message is passed around
the ring until the victim core V that has the line cached in its lower level cache
(L1/L2) receives it. If the core is not in the initial direction, the message will
follow the ring back in the other direction until it reaches the victim core. The
victim core then discards the line, which is clean, and sends a reply to the slice,
along the shortest path. The eviction time in state E, tE(A,S, V ) is thus:

tE(A, V, S) =


C ′ + h× |A− S|+ h× |R− (V −M)| if S 6 N

2 and V < S

C ′ + h× |A− S|+ h× |S − V | if S 6 N
2 and V > S

C ′ + h× |A− S|+ h× |S − V | if S > N
2 and V 6 S

C ′ + h× |A− S|+ h× |M − V | if S > N
2 and V > S,

where:

– C ′ is a different base time constant,
– h is a constant, roughly how long a round-trip hop on the ring takes,
– N is the number of cores,
– R is the ring diameter in hops, corresponding to how many hops there are

between the system agent and the GPU, and thus, in our case, R = N + 1.

In addition to our measurements, Figure 2a and Figure 2b present the fitted
model for the 8-core machine, which appears to explain the behavior consistently.

Summary. We have uncovered that while CPUs appeared to be arranged sym-
metrically in Intel’s bidirectional ring, they are in fact aligned one after the other
in a linear graph, with the system agent at an end and the GPU at the other
end. First, the clflush instruction timing is always influenced by the distance
between the core requesting the flush and the slice where the address lives in the
last-level cache. Second, in the I state the timing will depend on the distance
between the slice and the system agent, whereas in the E state, it will depend on
how long a message sent along the ring will need to reach the core that currently
has the line, and then go back to the slice. These finding are consistent with
those by Paccagnella et al. [25].

6 Improving error rate accounting for topology

6.1 Attacker models

We define different attacker models depending on attacker capabilities. We mea-
sure the error rate that can be achieved for each triple consisting of an attacker
core, a victim core, and a slice. We also compute the average over all triples.

The attacker core can be set using the sched_set_affinity Linux system
call. We therefore assume that the attacker always chooses the core with the
lowest error rate. In some cases, the attacker may also control the victim core,
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e.g., if she launches the process. The victim core can always be found using the
/proc/pid file system that gives the core affinity and the last core used.

The slice can be found using the physical address but this information is
usually unavailable to an unprivileged attacker. However, when the hash function
is linear, it is possible to define an equivalence class of addresses within a page
that belong to the same slice. It is not possible to know which equivalence class
corresponds to which physical slice a priori, but the pair of page and result of
the hash function defines an equivalence class of virtual address with the same
timing impact. We name this equivalence class S̃. Using timing measurements,
each equivalence class can be, a posteriori, attributed to a precise physical slice,
on a per page basis, but we do not use this attribution for our attacks.

If the attacker launches a covert channel, she can pick the addresses used
to communicate, and therefore the optimal equivalence class. In a side-channel
attack, the attacker cannot pick the addresses to monitor, but usually knows
the equivalence class, as she knows both addresses and hash functions. We still
present models where the attacker has no knowledge of the slices to compare the
previous naive models with the ones that yield the best attacks.

– Global Threshold (GT): The simplest model, using a single threshold that
minimizes the average error rate over all triples of attacker, victim, and slice.
This is a topology oblivious attacker, as in the initial Flush+Flush attack [10].

– Best A, Known V : The attacker knows on which core the victim is running and
chooses the attacker core it runs on. The attacker computes a single threshold
for all addresses, therefore ignoring the impact of cache slices.

– Best AV : The attacker can pick the cores both the victim and the attacker
are running on, e.g., in the case of a covert channel or a side-channel attack in
which the attacker launches the victim process. It ignores the impact of slices.

– Known S̃: The attacker does not know on which core she or her victim runs,
but takes into account the slices, using per-slice thresholds. We use this model
for comparison with the GT model.

– Best A, Known S̃V : The attacker pins her process to the best core, knows
the victim core and takes into account the slices. This is a realistic attacker
model. To be compared with Best A, Known V model.

– Best AV , Known S̃: This is the most powerful side-channel attacker, that can
pin both the attacker and victim.

– Best AV S̃: This is the best covert channel attack model, where the attacker
chooses the cores and an address in a slice that yields the best results.

6.2 Experimental results on error rate

For each (A,V ,S̃) we make 220 measurements, 219 hits (in E state), and 219

misses (in I state). We time how long clflush takes to execute in each case using
the rdtsc instruction and build a histogram of the execution time distribution.
From these histograms, we can evaluate the number of hits and misses that
would be correctly or incorrectly classified using a threshold, and determine
thresholds that minimize the average error rate for each model, along with the
corresponding average error rate. We present three such histograms above:
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Fig. 3: Histograms for both machines of hit (outlined, red) and miss (filled, blue)
clflush timing distributions for: – a, b: the superposition of all possible (A, V, S̃)
triples (Average in the GT model). – c, d: the best possible (A, V, S̃) choice (Best
AV S̃ model) – e, f: the worst possible (A, V, S̃) choice.

– In Figure 3a and 3b the histograms for all attackers, victim, and slices.
– In Figure 3c and 3d the histograms on the best choice of attacker, victim, and

slice equivalence class in the Best AV S̃ attacker model.
– In Figure 3e and 3f the histograms on the most unfavorable choice of attacker,

victim, and slice, with severe overlap between the two distributions.

Table 1 shows the results for the 4-core and 8-core machines, indicating for
A, V and S̃ whether they are unknown, known or chosen in each case. For the
8-core machine, we observe a staggering difference between the 25% error rate
of the GT attacker model, to the close to 0% error rate of the Best AV S̃ model
(less than 1 error per 220 measures).

Summary. Choosing the attacker and victim locations significantly improves
the accuracy over the very unreliable global threshold. On top of that, using a
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Table 1: Results for each attacker model on the 4-core and 8-core machines. U.
means Unknown, and K. Known.

4-core machine 8-core machine

Error rate A V S̃ Error rate A V S̃

GT 14.0% U. U. U. 25.1% U. U. U.
Best A, Known V 6.07% 3 K. U. 10.5% 7 K. U.
Best AV 0.176% 7 0 U. 0.115% 7 8 U.

Known S̃ 11.6% U. U. K. 22.8% U. U. K.

Best A, Known S̃V 3.16% 5 K. K. 7.18% 7 K. K.

Best AV , Known S̃ 0.103% 7 0 K. 0.0174% 1 0 K.

Best AV S̃ 4.96 × 10−3% 3 3 3 0 (< 2−20) 2 7 14
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4

6
·104

time (rdtsc)

a: A and V in the same socket.

200 300 400
0
2
4
6
8

·104

time (rdtsc)

b: A and V on different sockets.

Fig. 4: Histograms of hit (red) and miss (blue, around 340) clflush timing dis-
tributions, for two different (A, V ) pairs on a 2x Intel Xeon E5-2630 v3 machine.

per-slice threshold provides a further boost. However, when the victim cannot
be chosen, accounting for slices gives a much greater boost. Lastly, choosing the
best combination of attacker, victim, and slice gives close-to-perfect error rates.

6.3 The case of dual-socket machines

In dual-socket machines, there is no cache shared between all of the coherency
domain. Coherence is maintained using bus snooping and using ECC bits in the
DRAM to store some coherency information [14,22]. Thus, clflush behavior
differs significantly from single-socket systems, depending on the attacker and
victim location. The slice is not attached to a specific socket as each socket has
its own last-level cache, and thus its contribution here was not studied in detail.

Figure 4a shows that when the victim is in the same socket, we observe that
a hit is faster than a miss. This makes sense if the socket last-level cache has
the coherency info of the accessed line in the E state, whereas it needs to reach
out to the DRAM directory on a miss. However, when the victim is located in
the other socket, a hit is slower than a miss as shown by Figure 4b. This can
probably be explained because more communication is required in the former
case, to cause the remote core to evict and then update the DRAM directory.



Calibration Done Right: Noiseless Flush+Flush Attacks 13

Overall, if the sockets on which the attacker and victim reside are not con-
trolled, a simple threshold model will give poor results. A dual threshold model
may give good quality results, separating same-socket hits, misses and remote-
socket hits, or a detailed model accounting for attacker and victim location.

7 Evaluation

In this section, we evaluate our improved Flush+Flush primitive on a covert
channel and on a side-channel attack on the AES T-tables implementation.

7.1 Building a better channel

Protocol. We implement a framework to benchmark covert channel ideal band-
width with different primitives. We use the same protocol for each primitive. The
benchmark uses two threads in the same process, and an optimized synchroniza-
tion primitive. Such an ideal synchronization is unlikely to exist in real-world
implementation but it allows us to measure theoretical limits of the channel itself.
Real-world channels are likely to observe a lower bit-rate, and a corresponding
decrease in true capacity, but with similar error rates.

In practice, we use several shared pages, and within each, we pick an address
in the optimal S̃. We also synchronize on a per page basis indicating which
thread can currently access the page (to transmit or receive), using mutable
shared memory, as the ideal synchronization primitive. Once done with a page,
threads hand the page over to the other threads by flipping the per-page bit.

Implementation. We implement three covert channels with different primi-
tives: 1. a single threshold naive Flush+Flush, with no core pinning (GT model),
2. a single threshold Flush+Reload that doesn’t need to account for topology,
and 3. a topology-aware Flush+Flush using the Best AV S̃ attacker model.

Evaluation. For each channel on each machine, we evaluate the raw bit rate C,
the error rate p, and the (true) capacity T = C×(1+p log2 p+(1−p) log2(1−p))
[23].

Results. We run our experiments on both machines mentioned in Section 4.
Figure 5 shows statistics on the performance of the covert channels depending
on the number of pages used, for each machine: the average error rate, the raw
bit rate, and the true capacity of the resulting channel.

As shown by table Table 2, our carefully calibrated Flush+Flush yields a
threefold increase in bandwidth on both machines compared to the naive Flush+
Flush, and provides a bandwidth higher than Flush+Reload by 3 to 4 %. We
conclude that Flush+Flush is now a compelling alternative to Flush+Reload.
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Fig. 5: Covert channel performance depending on the number of pages used.

7.2 AES T-tables attack using Flush+Flush

AES T-tables implementation. The AES T-tables implementation is well-
known to be vulnerable to side-channel attacks, we, therefore, use it as a bench-
mark to compare our Flush+Flush implementation [2,7,12,4,5,31,11,24]. We com-
pare our improved Flush+Flush implementation with per-slice thresholds to the
naive version of Flush+Flush and to the Flush+Reload attack. We attack the
OpenSSL 1.1.1g library, compiled with no-asm and no-hw to enable T-tables.
For this experiment, prefetchers are enabled on both machines.

T-tables are an implementation of an AES round using lookups in tables. The
lookup in the first round is Tj [pi ⊕ ki], where 0 ≤ i ≤ 16 and j is the remainder
of i divided by 4 (j = i & 0x3). With 4-byte elements and 64-byte cache lines,
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Table 2: Result of covert channel benchmarking

4-core machine 8-core machine

Channel Capacity Bit rate Err. rate Capacity Bit rate Err. rate

Naive F+F 1.01 Mbit/s 2.96 Mbit/s 20% 1.88 Mbit/s 5.89 Mbit/s 23%
Opt. F+F 2.99 Mbit/s 3.03 Mbit/s 0.1% 5.81 Mbit/s 5.81 Mbit/s 0.005%
F+R 2.88 Mbit/s 2.91 Mbit/s 0.1% 5.57 Mbit/s 5.57 Mbit/s 0.0005%

there are 16 entries per cache line, and a cache attack can only monitor the
upper 4 bits of pi ⊕ ki. See Osvik et al. [24] for the detailed explanation.

Attacking the T-tables. We run the attack using all three side channels with
the attacker and the victim in the same thread. For the naive Flush+Flush and
Flush+Reload, the core is chosen randomly. For our improved Flush+Flush, we
chose the best core according to Section 6, with the model Best AV , Known S̃.

We run the experiment with two different keys. One of them is the null key,
and the other is a key with k0 = 0x51. In this chosen-plaintext attack, a byte of
the plaintext is set to fixed values (0x00, 0x10, 0x20, by increment of +0x10),
while the remainder is chosen randomly. In this case, one of the cache lines
(depending on the fixed byte value) of the T-table is deterministically accessed,
while the other ones are not always accessed, and have a higher number of misses.
Plotting the misses, such cache lines show distinctive pattern that identifies a
byte of the key. Notably, the null-key pattern is diagonal.

Results. We observe that a naive Flush+Flush attack will show some lines with
all hits or all misses, due to the threshold depending on the slice (see Figures
6a, 6b, 6c and 6d). Using a per-slice threshold (see Figures 6e, 6f, 6g and 6h)
allows us to achieve an accuracy similar to Flush+Reload (see Figures 6i, 6j, 6k
and 6l). Again, accounting for the contribution of slices and CPU interconnect to
clflush timing variations makes an optimized Flush+Flush channel competitive
with Flush+Reload, and improves the reliability over naive Flush+Flush.

8 Related work

Cache attacks are a rich field, with several primitives extensively studied and new
emerging ones. The AES T-tables implementation is well-known to be vulnerable
to side channels, with various ways of exploiting it. Moreover, reliable covert
channels are one of the key elements for transient microarchitectural attacks.

8.1 Cache attacks primitives

The first cache-based attacks were published around 2005. Percival [26] attacked
RSA while Osvik et al. [24] attacked AES and were the first to define the Prime+
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Probe primitive. The “high resolution [and] low noise” Flush+Reload primitive
was defined by Yarom et al. [35], which was then automated by Gruss et al.
[11] with Cache Template Attacks. Gruss et al. [10] then introduced the stealthy
Flush+Flush primitive, a variant of Flush+Reload.
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Fig. 6: Results of the T-table attack using a Naive Flush+Flush, Optimized
Flush+Flush and Flush+Reload side channels. Each column represents an ad-
dress and each row corresponds to a different value of the first byte of the chosen
plaintext, with the remaining bytes filled randomly. The color scale cuts off lines
with too many misses, T-tables that are deterministically accessed have very few
misses and reveal key bits.
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Cache attacks on cloud computing and virtualized environments [27,33,32],
were shown to be a practical threat [19,18]. Maurice et al. [21] also studied
protocols that could obtain a reliable channel on top of various primitives.

In recent years, various other primitives have been developed to adapt to evo-
lutions in modern CPUs. Yan et al. [34] reverse-engineered non-inclusive caches
directories to mount an attack on CPUs with non-inclusive caches, while Saxena
et al. [28] tackled dynamic frequency scaling, and pointed out a first difference
between same core and different core attackers. Briongos et al. [8] uncovered the
replacement policy of some Intel CPUs and built an attack that avoids causing
misses to the victim, whereas Flush+Flush avoids causing for the attacker.

Since 2018, transient microarchitectural attacks, such as Meltdown [17], Spec-
tre [15] and Fallout [9] make extensive use of reliable cache-based covert channels.

In concurrent work, Paccagnella et al. [25] have built a contention-based
channel on the ring interconnect, reversing in detail the protocol for memory
loads and the finer structure of the interconnect.

8.2 Attacking AES T-tables

Koeune and Quisquater [16] uncovered an implementation issue in AES that
caused a timing attack. Bernstein [6] also developed a timing-based attack and
uncovered various sources of variability including caches. Osvik et al. [24] then
published the first attack based on monitoring the T-tables accesses. Many re-
lated publications [2,7,12,4,5,31,11] now use the AES T-tables as a benchmark.

9 Future work

We have explored the timing of clflush for two coherence states, but using our
framework, it should be possible to set-up lines in other coherence states, such
as shared (S) and modified (M), that do not impact side-channel research, but
can help to better understand CPU memory hierarchy and performance.

The impact of frequency on timing channels, especially those relying on small
differences is significant. Most attacks are described at a steady frequency, but in
a real setting, frequency scaling can severely hamper them. A model instruction
execution time depending on the frequency could mitigate this variability.

Intel large server CPUs starting with Skylake Scalable Processors (SP) no
longer use inclusive caches. However the ISA still requires that clflush flushes
a cache line from all the coherency domain. It should thus be possible to use the
clflush instruction to attack such systems, an approach that [34] has not cov-
ered. These systems also use a different topology that warrants further inquiry.

clflush also behaves differently on multi-socket systems, as shown in Sec-
tion 6.3, in a way that is not always tractable with a simple global threshold
model. Further work could evaluate the benefits of dual-threshold versus per
A, V, S̃ threshold models, and the performance of channels built in this way.
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10 Conclusion

The interconnect topology of Intel CPU plays a larger role than was previously
known in cache attacks, and in particular Flush+Flush. A naive Flush+Flush
implementation that does not account for the topology yields poor error rates,
especially as the number of cores increases. We reverse-engineer this topology
and study its timing impact on the clflush instruction. Using these insights, we
significantly enhance the Flush+Flush primitive by accounting for the topology
during the calibration step. Consequently, we recommend taking into account
these findings into the calibration step, measuring timings for all possible com-
binations of attacker, victim, and home slice location, and then determining the
best thresholds depending on the attacker model. Our results therefore demon-
strate that the Flush+Flush primitive is as reliable as Flush+Reload, with the
further advantages in stealth and being less affected by prefetcher noise.
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29. Vila, P., Ganty, P., Guarnieri, M., Köpf, B.: Cachequery: learning replacement
policies from hardware caches. In: PLDI (2020)

30. Vila, P., Köpf, B., Morales, J.F.: Theory and practice of finding eviction sets. In:
S&P (2019)

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://doi.org/10.1109/THS.2010.5654967


20 Guillaume Didier and Clémentine Maurice

31. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualiza-
tion environments. In: Keromytis, A.D. (ed.) Financial Cryptography and Data
Security, FC (2012)

32. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: High-bandwidth and re-
liable covert channel attacks inside the cloud. IEEE/ACM Trans. Netw. 23(2),
603–615 (2015)

33. Xu, Y., Bailey, M., Jahanian, F., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D.:
An exploration of L2 cache covert channels in virtualized environments. In: Cloud
Computing Security Workshop, CCSW. pp. 29–40. ACM (2011)

34. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C.W., Campbell, R.H., Torrellas,
J.: Attack directories, not caches: Side channel attacks in a non-inclusive world.
In: S&P (2019)

35. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security Symposium (2014)

36. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the intel last-level
cache. IACR Cryptol. ePrint Arch. (2015)

A Cache slicing functions uncovered

Our research relies on having prior knowledge of the cache slicing functions.
We have updated the code base used by Maurice et al. [20] to support newer
architectures and used it to uncover the slicing functions of the i9-9900 (Coffee
Lake R, 8 cores) and the older i7-4980HQ (Crystal Well, 4 core Haswell with
an eDRAM L4 cache), which differ from the previously known functions (see
Table 3) that applied to most CPUs from Sandy Bridge to Broadwell. The CPU
in our 4-core machine also uses those well known functions. The most significant
bits of the functions uncovered are limited by the available memory.

This method uses performance counters located in a per physical core struc-
ture called CBox. The uncovered functions map addresses onto each CBox. How-
ever, it is suspected that starting with Skylake there are two slices within the
same CBox [30], which we cannot detect with this method.

Table 3: Functions from [20] for the 2-, 4- and 8-core Xeon and Core CPU and
new functions for the Intel Core i7-4980HQ and i9-9900.

Address Bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

Sandy o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Bridge o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
& later [20] o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(New) o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
i7-4980HQ o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(New) o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

i9-9900 o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
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