
HAL Id: hal-03269966
https://hal.inria.fr/hal-03269966

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling paths leveraging dynamic information in
SIMT architectures

Lily Blanleuil, Caroline Collange

To cite this version:
Lily Blanleuil, Caroline Collange. Scheduling paths leveraging dynamic information in SIMT archi-
tectures. COMPAS 2021 - Conférence francophone d’informatique en Parallélisme, Architecture et
Système, Jul 2021, Lyon / Virtual, France. pp.1-6. �hal-03269966�

https://hal.inria.fr/hal-03269966
https://hal.archives-ouvertes.fr


Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Scheduling paths leveraging dynamic information in SIMT
architectures
Arthur Blanleuil, Caroline Collange

Univ Rennes, Inria, CNRS, IRISA

Résumé
Thread divergence optimization in GPU architectures have long been hindered by restrictive
control-flow mechanisms based on stacks of execution masks. However, GPU architectures
recently began implementing more flexible hardware mechanisms, presumably based on path
tables. We leverage this opportunity by proposing a hardware implementation of iteration shif-
ting, a divergence optimization that enables lockstep execution across arbitrary iterations of a
loop. Although software implementations of iteration shifting have been previously proposed,
implementing this scheduling technique in hardware lets us leverage dynamic information
such as divergence patterns and memory stalls. Evaluation using simulation suggest that the
expected performance improvements will remain modest or even nonexistent unless the orga-
nization of the memory access path is also revisited.

Mots-clés : GPU, SIMT, divergence, microarchitecture

1. Introduction

Graphics Processing Units (GPUs) execute multi-thread programs (kernels) on SIMD units by
grouping threads running in lockstep into so-called warps. This model is called SIMT (Single
Instruction Multiple Threads) [7]. As the multi-thread programming model allows branching,
independent threads withing a warp can diverge. To maintain SIMD execution, SIMT proces-
sors keep track of divergent paths inside each warp. The execution pipeline selectively enables
which threads execute the currently fetched instruction using an execution mask. Therefore
divergence hurts performance as it lowers the warp occupancy.
Both software and hardware techniques have been proposed to reduce the divergence or its
cost. Software approaches mainly focus on compiler optimization changing control-flow to
remove divergence. One of them is Novak’s loop scheduling [8] which consists in allowing
threads to reconverge inside loops at different iterations to increase warp occupancy.
The model most commonly used in the GPU literature for handling divergence is the SIMT
stack [1]. Each time a group of threads diverge, execution masks that correspond to each path
are pushed onto the stack, and the top most mask is used untill it reaches a reconvergence
point. At a reconvergence point, the current mask is removed from the stack and the second
path is executed. This approach constrains path scheduling and reconvergence.
Since the Volta architecture from NVIDIA, the SIMT stack model appears obsolete as the archi-
tecture supports interleaved execution of divergent threads on a warp, a technology referred to
as Independent Thread Scheduling [9]. To account for these new features, we then use a path
table [2], which we presume resembles Volta architecture. Each warp keeps track of every path



Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

taken by its threads, represented by their current PC and execution mask. This allows to select
which path to run at any moment.
Using this model, we propose to explore more complex path scheduling policies. In particular,
we revisit the loop scheduling technique, so far only applied in software [8] and generalize it to
a purely-hardware implementation. We implement it by allowing threads to reconverge inside
loops at different iterations to increase warp occupancy.

2. The potential for control-flow divergence optimizations

When a group of threads running in lockstep executes a conditional branch instruction, all
threads won’t necessarily take the same path. They may diverge. As SIMD cannot execute
different instructions at once, we carry a mask telling us which thread needs to execute a given
instruction.
Traditionally, this mechanism is implemented using an SIMT stack [1]. Whenever divergence
occurs, the execution masks of threads taking the branch are pushed onto the stack along with
their PC. The warp then executes the topmost path until its reconvergence point, then pops the
current path off the stack, continuing with a new path. This simplifies hardware and allows
for more parallel hardware threads. Reconvergence points are typically marked statically by
the compiler, at the immediate post-dominator (PDOM) of the branch. The immediate post-
dominator is the first node in the control-flow graph such that all execution paths from the
branch to the exit node go through the node.
The way we schedule paths execution will affect warp occupancy as paths will reconvergence
differently, especially with loops. In this case, threads may re-execute the same static instruc-
tions (same binary addresses) multiple times. This provides an opportunity to assemble SIMD
instructions from threads executing the same static instruction from different iterations. This
can be the case when a group of threads advance to the iteration n+ 1 while the others are still
waiting in iteration n. For instance, the algorithm of Figure 1a illustrates a two-sided conditio-
nal statement within a loop.
Prior work using software modification to allow mimic Volta’s independent thread scheduling
has shown that delaying some iterations to enable converged execution across different ite-
rations can lead to better performance [8]. In Figure 1b, we show for instance, the difference
between PDOM reconvergence and a schedule which allows iteration shift (Z) on the example
of Algorithm 1a.
The PDOM schedule (Y) forces all paths to execute, even though some paths are not populated
a lot. This is why each iteration always has the full length of the then and else part. Novak’s
idea is to use a majority policy (The Z schedule). This policy tries to maximize the population of
an executed path, and allows iteration shifting. As it allows iteration shift, threads which took
the then path can converge with threads which took the else path, increasing its population.
The policy also tries to keep a low iteration difference between threads to tackle issues with
paths not taken frequently which can hit performances.

3. Loop Aware Scheduler

In this section, we describe our implementation of the Loop Aware Scheduler (LAS), and how
we used it to implement Novak’s loop optimization scheduling policy in hardware.



Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

for i = 0 to 5 do
if Cond(tid, i) then

A()
else

B()
end

end

(a) Example of a simple loop
kernel. When executed by a
GPU, it is executed by many
threads which have their own
ID (tid).

Schedule X

0 ;0 1 ;0 2 ;0 3 ;0

0 ;1 1 ;1 2 ;1 3 ;1

0 ;2 1 ;2 2 ;2 3 ;2

0 ;3 1 ;3 2 ;3 3 ;3

0 ;4 1 ;4 2 ;4 3 ;4

0 ;5 1 ;5 2 ;5 3 ;5

Schedule Y

0 ;0

0 ;0

0 ;0

0 ;1

0 ;0

0 ;2

0 ;3

0 ;0

0 ;0

0 ;4

0 ;0

0 ;5

1 ;0

1 ;0

1 ;1

1 ;0

1 ;2

1 ;2

1 ;3

1 ;3

1 ;0

1 ;4

1 ;5

1 ;0

2 ;0

2 ;0

2 ;1

2 ;0

2 ;2

2 ;2

2 ;3

2 ;3

2 ;4

2 ;4

2 ;5

2 ;5

3 ;0

3 ;0

3 ;1

3 ;1

3 ;2

3 ;2

3 ;3

3 ;3

3 ;4

3 ;4

3 ;5

3 ;5

Schedule Z

0 ;0

0 ;0

0 ;1

0 ;2

0 ;3

0 ;4

0 ;5

0 ;0

1 ;0

1 ;1

1 ;1

1 ;0

1 ;2

1 ;3

1 ;4

1 ;5

2 ;0

2 ;1

2 ;2

2 ;3

2 ;4

2 ;5

2 ;3

2 ;3

3 ;0

3 ;0

3 ;1

3 ;2

3 ;2

3 ;3

3 ;4

3 ;5

0 ;0

0 ;0

0 ;0

A()

B()

Idle

(b) Different thread schedulings of algorithm 1a. Schedule X, Y, Z
represent respectively an MIMD execution, an SIMT execution with
PDOM reconvergence, and an SIMT execution with majority policy.
Coordinates in each block represent the thread ID followed by the
iteration number.

FIGURE 1 – Example of a GPU kernel with a loop, and different execution traces obtained
with different scheduling policies on 4 threads. In figure 1b, we can see that schedule Z allows
threads to execute different iterations at the same time which makes the schedule more com-
pact.

3.1. Path table
Because SIMT stacks can only be affected by instructions, the only way we can schedule paths
is by using the software to manage the stack. This method has a runtime cost if we want to
implement complex scheduling policies. This is why we propose to implement it in hardware.
In order to do it, we need to relax the traditional SIMT stack model and use a paths table [2].
Each time a divergence occurs, a path is split in 2, and a new path is added to the list. The
scheduler then choses a path from this table given a priority function. This priority function
can switch between two policies at runtime given dynamic information about the process as
the loop table (figure 2).

3.2. Loop detection
As the scheduling policy focuses on loops with conditional branches, we need to detect them
in hardware.
We assume loops are entirely defined by an address range between a backward branch and
its target [4]. This approximation can lead to non-loop basic blocks inside detected ranges,
but this scenario is rare, especially for optimized code. When a backward-jump instruction is
encountered, LAS adds the detected loop’s entry in the loop table. In the case the loop is already
detected we update its information. The loop table is a directly-mapped cache.
Its entries are indexed by a hash of the PC of the loop’s backward branch as two loops can not



Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Path Table

PC Mask Loop Iter Count

A 0110 Pre 1

B 1001 Pre 1

Loop Table

Upper PC Lower PC Taken Ratio

Pre Post 0.5

I-Buffer Issue ALU / Branch unit

S
e
l
e
c
t

Fetch Per warp data

Update

FIGURE 2 – Schematic view of LAS. The state of Per warp data is a snapshot of the example in
Figure 1b right after the first diverging branch.

have the same, even in nested loops cases. Whenever a new loop is overlapping a previously
detected one, there are two cases. If one loop include the other, we have nested loops so we
keep both. Either way, we merge them by removing the backmost entry from the cache. Each
entry has a valid bit telling if the data represent a loop or nothing.

3.3. Scheduling policies
When a loop is detected, information such as trip count and divergence stats is gathered in a
table for this particular loop. Loops are indexed by their backward-jump instruction address.
Trip count is increased as each individual thread take the backward-jump of the loop. Diver-
gence stats include if there is some divergence inside the loop, and the ratio of taken vs not
taken outcomes for each thread. Because we don’t use statically defined reconvergence points,
we use a Min-PC policy by default (execute the path with the minimal PC), which is the closest
from the PDOM. Whenever the path which should be executed is inside a loop, another check
is performed based on paths in the same loop and the loop’s statistics.
For the second phase, we use the majority policy, biased with threads maximum iteration count.
More information is kept inside the loop table for future policies. Taken ratio is the ratio of
taken/not taken for the first branch.

4. Experiments and results

4.1. Experimental setup
We tested LAS on the Rodinia CUDA benchmark suite. We implemented LAS on the GPGPU-
Sim [5] simulator with a GTX480 configuration. For comparison, the unmodified simulator was
used as the baseline. It features the same architecture but with a classic SIMT stack instead of a
path list.
We measured the mean number of instructions executed per cycle (IPC) to evaluate perfor-
mance and plot it on Figure 3a. We also evaluate the number of accesses to the L1 data cache in
Figure 3b and the L1 data cache miss rate in Figure 3c.
We measured the mean number of instructions executed per cycle (IPC) because it allows us
to compare performances between architectures. We also show memory accesses and L1 cache
miss rate because it is the main factor of performance difference.



Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

We could not compare LAS with an oracle which would give us a perfect (or near perfect) sche-
duling because this scheduling problem is too computationally-intensive [6]. We found that the
oracle fails to compute a schedule withing a week even with a short trace of 20 iterations on 32
thread-wide warps.

bac
kpro

p bfs

hotsp
ot

nw

par
tic

lefi
lte

r
sra

d

str
ea

m
clu

ste
r

0

100

200

300

400

500

600

M
ea

n
IP

C

Baseline
LAS

(a) Mean IPC per benchmark

bac
kpro

p bfs

hotsp
ot

nw

par
tic

lefi
lte

r
sra

d

str
ea

m
clu

ste
r

0

0.2

0.4

0.6

0.8

1
·107

L1
ca

ch
e

ac
ce

ss
es

(t
im

es
1
0
7
)

Baseline
LAS

(b) Number of L1 cache access
per benchmark

bac
kpro

p bfs

hotsp
ot

nw

par
tic

lefi
lte

r
sra

d

str
ea

m
clu

ste
r

0.2

0.4

0.6

0.8

1

L1
ca

ch
e

m
is

s
ra

te

Baseline
LAS

(c) L1 cache miss rate per
benchmark

FIGURE 3 – Results of benchmarks executed with the baseline architecture and LAS

4.2. Discussion
Figure 3a shows an equal or lower performance for LAS, due to equal or lower warp occupancy.
Kernels with no difference are kernels with no loops, or loops with no divergence. Because LAS
does not trigger iteration shift in the latter case, it keeps the Min-PC scheduling policy and is
equivalent to the static scheduling policy of the baseline.
We observe a significant slowdown in the backprop, hotspot, and nw benchmarks (Figure 3a). All
these benchmarks effectively trigger iteration shifting.
The backprop and nw benchmarks show the problem of iteration shifting on cache miss rate.
Shifting iterations makes kernels access memory in a non-contiguous manner, resulting in more
cache misses (Figure 3c). As the scheduling algorithm implemented in GPGPU-Sim does not
take into account stalled warps because of cache misses, extra pipeline stalls due to memory
lower the IPC. Secondly, conditional paths in these kernels are very unbalanced in term of
execution time, because they are of the if-then form. The iteration overhead accumulated by
shifting has more impact than with balanced branches.
hotspot has fewer cache misses overall with sensibly the same amount of cache accesses (Fi-
gures 3b, 3c). It is due to a lower warp occupancy with LAS. Some instructions are executed
by divergent thread groups, so early threads trigger a cache miss but not later threads which
arrive after the cache is populated.

4.3. Future work
For now, iteration shifting does not show performance improvements at least in the Rodinia
benchmark suite. We highlighted metrics which can badly impact performance and explain
why the LAS technique did not do well. In order to fix these issues, we will need to modify the
inclusion criteria for loops using dynamic information such as cache statistics.
For now the whole warp is waiting when a memory access occurs. Having a path table should



Compas’2021 : Parallélisme/ Architecture / Système/ Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

also allow the architecture to advance paths in a warp which are not waiting for a memory
instruction. Implementing this behavior should reduce impact of memory on performances.
We also aim at testing LAS with more divergence-heavy CUDA kernels, because the kernels
we considered were mostly not using iteration shifting policy.
One kind of divergence we did not cover is the termination divergence [3]. Kernels with very
regular loops often have conditional branches which selects which thread needs to do heavy
computation or not. Threads with no work could be recycled by starting new blocks early, thus
increasing warp occupancy.

5. Conclusion

SIMT architectures based on path tables open new opportunities to implement path schedu-
ling policies at the microarchitecture level. Implementing them in hardware lets us leverage
dynamic information such as divergence patterns and memory stalls.
In this paper we leverage this opportunity for a hardware implementation of the iteration shif-
ting algorithm, which was reported to be efficient in software [8]. We implement the algorithm
by modifying the classical Post Dominator path scheduling policy for loops that contain di-
vergence. This scheduler was tested against a Fermi architecture GPU (GTX480). The simu-
lations highlighted several technical issues preventing performance gains, both due to actual
limitations of the architecture and to artifacts of the simulation platform and benchmarks. The
insights obtained suggest that special care must be taken to memory access patterns when im-
plementing iteration shifting optimizations.

Bibliographie

1. Brunie (N.) et Collange (C.). – Reconvergence de contrôle implicite pour les architectures
SIMT. Revue des Sciences et Technologies de l’Information - Série TSI : Technique et Science Infor-
matiques, vol. 32, n2, février 2013, pp. 153–178.

2. Collange (C.) et Brunie (N.). – Parcours par liste de chemins : une nouvelle classe de méca-
nismes de suivi de flot SIMT. – In ComPAS 2017 - Conférence d’informatique en Parallélisme,
Architecture et Système, Sophia Antipolis, France, juin 2017.

3. Frey (S.), Reina (G.) et Ertl (T.). – SIMT Microscheduling : Reducing Thread Stalling in
Divergent Iterative Algorithms. – In 2012 20th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, pp. 399–406, février 2012.

4. Gordon-Ross (A.) et Vahid (F.). – Frequent loop detection using efficient nonintrusive on-
chip hardware. IEEE Transactions on Computers, vol. 54, n10, octobre 2005, pp. 1203–1215.

5. Khairy (M.), Shen (Z.), Aamodt (T. M.) et Rogers (T. G.). – Accel-sim : An extensible simula-
tion framework for validated gpu modeling. – In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 473–486, 2020.

6. Milanez (T.), Collange (S.), Quintão Pereira (F. M.), Meira (W.) et Ferreira (R. A.). – Thread
scheduling and memory coalescing for dynamic vectorization of SPMD workloads. Parallel
Computing, vol. 40, n9, octobre 2014, pp. 548–558.

7. Nickolls (J.) et Dally (W. J.). – The GPU Computing Era. IEEE Micro, vol. 30, n2, mars 2010,
pp. 56–69.

8. Novak (R.). – Loop Optimization for Divergence Reduction on GPUs with SIMT Architec-
ture. IEEE Transactions on Parallel and Distributed Systems, vol. 26, n6, juin 2015, pp. 1633–
1642.

9. NVIDIA. – NVIDIA Tesla V100 GPU Architecture, 2017.


