
HAL Id: hal-03274803
https://hal.inria.fr/hal-03274803

Submitted on 30 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Make-Before-Break Layer 2 Reoptimization
Huy Duong, Brigitte Jaumard, David Coudert, Romualdas Armolavicius

To cite this version:
Huy Duong, Brigitte Jaumard, David Coudert, Romualdas Armolavicius. Efficient Make-Before-
Break Layer 2 Reoptimization. IEEE/ACM Transactions on Networking, 2021, 29 (5), pp.1910-1921.
�10.1109/TNET.2021.3078581�. �hal-03274803�

https://hal.inria.fr/hal-03274803
https://hal.archives-ouvertes.fr

Efficient Make-Before-Break Layer 2 Reoptimization

Huy Duong1,2, Brigitte Jaumard2, David Coudert3, and Ron Armolavicius4

1Centre de Recherche Informatique de Montréal (CRIM), Montréal, Qc, Canada
2Department of Computer Science and Software Engineering, Concordia University,

Montreal (QC) Canada
3Université Côte d’Azur, Inria, CNRS, I3S, France

4CIENA

June 30, 2021

Abstract

Optical multilayer optimization periodically reorganizes layer 0-1-2 network elements to
handle both existing and dynamic traffic requirements in the most efficient manner. This
delays the need for adding new resources in order to cope with the evolution of the traffic,
thus saving capex.
The focus of this paper is on Layer 2, i.e., on capacity reoptimization at the optical transport
network (OTN) layer when routes (e.g., LSPs in MPLS networks) are making unnecessarily
long detours to evade congestion. Reconfiguration into optimized routes can be achieved by
re-defining the routes, one at a time, so that they use the vacant resources generated by the
disappearance of services using part of a path that transits the congested section.
To maintain the Quality of Service, it is desirable to operate under a Make-Before-Break
(MBB) paradigm, with the minimum number of reroutings. The challenge is to determine
the best rerouting order while minimizing the bandwidth requirement.
We propose an exact and scalable optimization model for computing a minimum bandwidth
rerouting scheme subject to MBB in the OTN layer of an optical network. Numerical results
show that we can successfully apply it on networks with up to 30 nodes, a very significant
improvement with respect to the state of the art. We also provide some reoptimization
analysis in terms of the bandwidth requirement vs. the number of reroutings.

Keywords: Network reconfiguration, rerouting, reoptimization, make-before-break.

1 Introduction

Network reconfiguration is required in order to adapt to traffic changes, network failures, or
new deployment of network resources. It occurs at the optical layer in order to make sure that
the upper layer traffic, e.g., IP layer traffic, can be efficiently carried. In such a case, we deal
with lightpath reconfigurations and the primary objective is to reduce disruptions to user traffic
carried by existing lightpaths, measured by the number of disrupted lightpaths or the duration
of lightpath disruptions [1]. Network reconfiguration may also appear in the logical layer, in
order to attain a better resource utilization [2]. In heavily loaded networks, dynamic connection
request addition and drop actions may result in a set of connection requests where some paths
are not the shortest possible ones, leading to poor resource utilization compared to an optimal
or at least an optimized state. Thus, global connections rerouting is proposed at certain time
intervals (e.g., daily, weekly) to improve the network performance.

1

Researchers have investigated this connections rerouting along two directions. The first
one consists in computing an optimized provisioning of the connection requests with respect to
resource utilization, and then finding a sequence of connection rerouting operations in order to
migrate from the current network provisioning to the optimized one with the minimum number
of disruptions [3, 4, 5, 6, 7, 8]. These studies usually have the constraint that a connection
request can be rerouted at most once (i.e., from legacy to optimized route). The existence of
a strategy using only make-before-break (MBB) is not always possible due to the presence of
dependency cycles. Consider the example in Figure 1 in which the state of Figure 1(c) results
from add and drop requests of states represented in Figures 1(a) and 1(b). In order to reach the
optimal provisioning of Figure 1(d), connection request k2 needs to be rerouted before k3 because
a link of the new route of k3 belongs to the current route of k2, and for similar reasons, k3 needs
to be rerouted before k2, as illustrated in Figure 1. In order to find rerouting strategies, authors
have proposed to use the break-before-make (BBM) paradigm that allows for the temporary
interruption of connection requests, and so for breaking dependency cycles [3, 4, 6, 7].

(a) Initial Provisioning:
k1, k2

(b) Provision k3, k4

v1

v3 v4

v2

k2

k3

(c) Next Provisioning:
k1, k2 drop

(d) Optimal Provisioning

(e) Dependency Graph

Figure 1: Optimal Provisioning is not MBB Reachable if all links and connections are with unit
capacities and requirements, respectively

The idea of the second direction is to compute the best provisioning that is reachable from
the legacy provisioning by a sequence of connection reroutings with no disruption, i.e., under the
so-called MBB paradigm. While many studies have investigated the first direction, this second
direction has received very little attention [9]. In this paper, we propose a scalable optimization
model, called reopt_sim, for this NP-Complete optimization problem. Numerical results show
that we improve very significantly against the state-of-the-art [9], enabling to solve instances on
networks with up to 30 nodes.

The paper is organized as follows. We briefly review in Section 2 the papers related to reopti-
mization in the OTN layer, as well as the model of Klopfenstein [9], which is the only previously
proposed optimization model for rerouting subject to MBB. We next describe in Section 3 our
proposed decomposition model, called reopt_sim, which requires in practice a much smaller
number of variables and constraints than the model of Klopfenstein [9]. In Section 4, we ex-
plain how to solve efficiently the proposed reopt_sim model with the reopt_mbb algorithm,
which contains a polynomial time algorithm for the generation of the rerouting configurations.
In Section 6, we show how to use parallel reroutings for reducing the number of rerouting events
or, in other words, the duration of each reoptimization event as output by reopt_sim (see
Section 2.2 for a concise definition of rerouting/reoptimization events). Numerical results are
presented in Section 7. Conclusions are drawn in the last section.

2

2 State of the Art

Note that we focus on Layer 2, while being aware that a lot of work has been recently made
on Layer 0 in the context of flexible optical networks. But capacity reoptimization differs from
spectrum defragmentation as there is no need to take care of continuity or contiguity constraints,
and therefore we omit references related to Layer 0.

2.1 Literature Review

Several studies have been devoted to network reconfiguration with the minimum number of dis-
ruptions, following the strategy of migrating from a legacy ineffective provisioning to a given
pre-computed optimized/optimal one. As a result, it usually prevents the existence of a strategy
using only MBB due to the presence of dependency cycles as explained in the introduction. In
order to find a rerouting strategy, authors have then proposed to use the Break-Before-Make
(BBM) paradigm sparingly to allow temporary interruption of connection requests, and so to
break dependency cycles. For instance, Jose and Somani [5] propose heuristics for minimiz-
ing the total number of BBMs used in the rerouting strategy, and Coudert et al. [3, 10] and
Solano and Pióro [7] provide scalable exact algorithms to minimize the concurrent number of
BBMs. Tradeoffs between these two conflicting objectives are investigated by Cohen et al. [4]
and Solano [6].

To further reduce the total or concurrent number of BBMs, Kadohata et al. [8] propose to
use spare wavelengths to reroute a connection request to a temporary route rather than using a
BBM. For example, assume that the current connection k needs to be rerouted from path p to
path p′, but such a rerouting cannot be MBB due to resource dependence. Then one unavoidable
BBM reroute is performed. However, using an intermediate reroute, it may be possible to reroute
k under the MBB paradigm. For instance, assume that there exists a path p′′ such that the
reroutings from p to p′′ and from p′′ to p′ satisfy the MBB condition. In other words, one BBM
can be avoided at the expense of performing two MBBs.

The network reconfiguration problem has also been investigated in logical layers, and in
particular for MPLS [2, 11, 12] and SDN [13] networks, with the same constraints and objectives
as above. Surprisingly, it has been found that deciding if the problem can be solved using MBB
only can be done in polynomial time for Layer 0 [14], but this decision problem is NP-Complete
for logical layers, i.e., for Layer 2 [12].

On the other hand, while many studies have investigated rerouting strategies both at the
optical and the logical layers, very few studies have looked at rerouting subject to the MBB
paradigm (i.e., joint computation of optimal provisioning and rerouting strategy subject to
MBB, or, in other words, we perform a sequence of MBB reroutings to achieve an optimal
provisioning in terms of minimum bandwidth requirement). Klopfenstein’s study [9] is the only
one proposing an optimization model, but unfortunately it is not scalable. Still, we recall it in
Section 2.3 as an introduction to our decomposition model in Section 3.

2.2 Notations

We consider a network represented by a directed multi-graph G = (V,L), where V is the set of
nodes (indexed by v) and L is the set of links (indexed by `). Different links may exist between
two nodes in order to model different logical links, with e.g., different types of traffic. We denote
ω−(v) (resp. ω+(v)) the set of incident links incoming to (resp. outgoing from) node v ∈ V .
Let C` denote the transport capacity of link `.

Let K be the set of connection requests (indexed by k). Connection request k ∈ K is
characterized by its source sk, its destination dk, and its bandwidth requirement bk.

3

In what follows, we call rerouting operation the action of rerouting a connection request
k ∈ K, and rerouting event the action of either performing a single rerouting operation, or a
set of parallel rerouting operations (see Section 6 for the details on the conditions under which
we conduct parallel rerouting). A reoptimization event is an ordered sequence of rerouting
events, and so of rerouting operations. Let T , indexed by t, be the set of rerouting events of
a reoptimization event. Hence, t designates one rerouting event. Observe that under parallel
rerouting, t designates the set of rerouting operations performed in parallel (again see Section 6
for the details).

2.3 Klopfenstein’s Model (2008)

The model of Klopfenstein [9] consists in finding the best possible rerouting strategy, while
guaranteeing it can be reached within a Make-Before-Break (MBB) policy.

Before developing further, we define the set of variables.

- xtk` = 1 if connection request k ∈ K uses link ` ∈ L in its routing at step t ∈ T , 0 otherwise.

- πtk = 1 if connection request k is rerouted at step t, 0 otherwise.

Indeed, Klopfenstein [9] proposed a very general network resource utilization function subject
to a parameter α and that can be written as follows:

OBJα =
1

1− α
∑
`∈L

(
C` −

∑
k∈K

bkx
|T |
k`︸ ︷︷ ︸

link load

)1−α

, (1)

In the sequel, we will adopt OBJ0. The objective is then to maximize the overall spare
capacity:

max

(
OBJ0 =

∑
`∈L

C` −
∑
k∈K

bk

(∑
`∈L

x
|T |
k`

))
. (2)

These objectives and variables are decided by the set of below constraints:

∑
`∈ω−(v)

xtk` −
∑

`∈ω+(v)

xtk` =


−1 if v = sk

1 if v = dk

0 otherwise

k ∈ K, v ∈ V, t ∈ T (3)∑
k∈K

bkx
t
k` ≤ C` ` ∈ L, t ∈ T (4)∑

k∈K
πtk ≤ 1 t ∈ T (5)

xtk` − xt−1k` ≤ π
t
k k ∈ K, ` ∈ L, t ∈ T (6)

xtk` ∈ {0, 1} k ∈ K, ` ∈ L, t ∈ T (7)
πtk ∈ {0, 1} k ∈ K, t ∈ T. (8)

Constraints (3) are flow constraints and are used in order to establish a route for each con-
nection request, at each rerouting event. Due to the subsequent constraints, the set of paths
at rerouting event t will differ by at most one path from the set of paths at rerouting event
t−1. Constraints (4) enforce the transport capacity constraints. Constraints (5) impose that at

4

most one connection request is rerouted per rerouting event. Constraints (6) are used to detect
rerouted connection requests. More precisely, if the route of connection request k at rerouting
event t uses a link ` that was not previously used to route that connection request (i.e., at time
t− 1), we have xtk` = 1, xt−1k` = 0, and so πtk = 1, which indicates that connection request k has
been rerouted at rerouting event t. Now, if the route of connection request k is not changed, we
have xtk` = xt−1k` and πtk ∈ {0, 1}, in which case the value of πtk is forced to 0 by Constraints (5)
if another request k′ is rerouted at rerouting event t. Observe that the case πtk = 0, xtk` = 0
and xt−1k` = 1 cannot happen. Indeed, it would imply that the routing of connection request k
at rerouting event t − 1 is not simple (i.e., is not loop-free), which is prevented by the objec-
tive. Hence, when πtk = 0, we have xtk` = xt−1k` and so the routing of connection request k is
unchanged. The last two sets of constraints define the domain of the variables. Note that if
the rerouted path has a link in common with the original one, there is no need to double the
capacity reservation corresponding to the considered connection request [9].

The largest data instance on which experiments were conducted in [9] was on a network
with 10 nodes and about 40 links with capacity C`. The author was not able to obtain optimal
solutions for more than 5 rerouting operations within the time limit imposed (30 minutes).

3 A Decomposition Model: reopt_sim

In this section, we propose a decomposition model, called reopt_sim, based on a set of rerout-
ing operations, where each rerouting operation proposes a potential MBB rerouting of a single
connection request, i.e., a connection request for which there exists an alternate route with
enough spare bandwidth for its routing. The model is parameterized by |T |, a bound on the
number of rerouting operations. A solution of reopt_sim is an ordered sequence of at most
|T | rerouting operations leading to the best provisioning reachable from the legacy provisioning.
Observe that less than |T | rerouting operations might be sufficient to reach that optimized pro-
visioning. No external connection setup or release requests are granted between these rerouting
operations. The objective is to minimize the bandwidth requirements of the best reachable MBB
provisioning within at most T reroutings. Observe that there is no guarantee to reach the best
provisioning with a monotonous sequence, i.e., such that the overall bandwidth requirement
decreases after each single rerouting operation (of a connection request). It may happen that
the overall bandwidth requirement increases after a given rerouting operation before decreasing
again in order to reach the best reachable MBB provisioning.

Let P be the overall set of potential rerouting operations, with P =
⋃
k∈K

⋃
t∈T P

t
k, where

P tk is the set of possible routes for connection request k ∈ K at rerouting event t ∈ T .

The integer linear programming (ILP) formulation of reopt_sim uses the following binary
variables:

- ztkp = 1 if route p ∈ P tk is selected at rerouting event t ∈ T for the rerouting of k ∈ K, 0
otherwise.

- Ct` = required bandwidth on link ` ∈ L at rerouting event t ∈ T .

It also uses the following parameters:

- a0k` = 1 if link ` ∈ L is used in the initial routing of connection request k ∈ K, 0 otherwise.

- C0
` =

∑
k∈K bka

0
k` = initial bandwidth usage on link ` ∈ L.

- δp` = 1 if path p ∈ P uses link ` ∈ L, 0 otherwise.

5

Minimize
∑
`∈L

C
|T |
` (10)

s.t.:
∑
k∈K

∑
p∈P t

k

ztkp ≤ 1 t ∈ T (11)

∑
t∈T

∑
p∈P t

k

ztkp ≤ 1 k ∈ K (12)

Ct
` ≤ C` ` ∈ L, t ∈ T (13)

Ct
` = Ct−1

` −
∑
k∈K

∑
p∈P t

k

bk(a
0
k` − δ

p
`)z

t
kp

` ∈ L, t ∈ T (14)

Ct
` ≥ 0 ` ∈ L, t ∈ T (15)

ztkp ∈ {0, 1} k ∈ K, t ∈ T, p ∈ P t
k (16)

(Restricted) Master problem, RMP

Minimize cPPt = −u
(11)
t −

∑
k∈K

u
(12)
k πk

−
∑
`∈L

∑
k∈K

bku
(14)
`t (πk a

0
k` − αk`) (17)

s.t.:
∑

`∈ω−(v)

αk` −
∑

`∈ω+(v)

αk` =


−πk if v = sk

πk if v = dk

0 otherwise

k ∈ K, v ∈ V (18)∑
`∈ω+(v)

αk` ≤ 1 k ∈ K, v ∈ V (19)

αk` ≤ πk k ∈ K, ` ∈ L (20)∑
k∈K

πk = 1 (21)

αk` ∈ {0, 1} k ∈ K, ` ∈ L (22)
πk ∈ {0, 1} k ∈ K. (23)

Pricing problem, PPt

Optimality ?Solve exactly (ILP) the last RMP

Dual
values

No
Yes

Figure 2: Flow chart of decomposition model reopt_sim

The objective of reopt_sim is to maximize the spare capacity

max
∑
`∈L

(
C` − C

|T |
`

)
. (9)

As
∑

`∈LC` is a constant value, the objective can be re-expressed as minimizing the bandwidth
usage:

[reopt_sim] min
∑
`∈L

C
|T |
` subject to (11)− (16).

Constraints (11) in Figure 2 prevent the selection of more than one rerouting operation at
each rerouting event. Note that |T | ≤ |K| is an upper bound on the number of rerouting oper-
ations as we cannot predict a priori the number of required MBB reroutings. Constraints (12)
ensure that a connection request is rerouted at most once. Constraints (13) make sure that
transport capacities are never exceeded at any rerouting event. Constraints (14) update the
bandwidth usage on link ` at rerouting event t, taking into account the unique connection
request that has been rerouted at t. Constraints (15)-(16) define the domain of the variables.

Since less that |T | rerouting operations might be necessary to reach the best possible provi-
sioning reachable from the legacy provisioning after at most |T | rerouting operations, it might
be desirable to ensure that rerouting operations are performed with consecutive indexes. This
can be done adding Constraints (24) to the model (10)-(16). Indeed, Constraints (24) prevent
performing a rerouting operation at rerouting event t+1 if no rerouting operation is performed
at rerouting event t. ∑

k∈K

∑
p∈P t+1

k

zt+1
kp ≤

∑
k∈K

∑
p∈P t

k

ztkp t ∈ T. (24)

6

4 Solution Process

4.1 Generic Process

The model (10)-(16) has an exponential number of variables, and therefore column generation
[15] is required in order to efficiently solve its linear relaxation.

This technique consists of decomposing the original problem into a Restricted Master Prob-
lem (RMP), i.e., model (10)-(16) with a very restricted number of variables, and one or several
pricing problems (PPs). In the particular case of model (10)-(16), we will show in the next
section that the pricing problem can be decomposed into |K| × |T | independent smaller pricing
problems, each denoted by PPkt . The RMP and the PP(s) are solved alternately. Solving the
RMP consists in selecting the best connection reroutings, while solving the PPs allows for the
generation of new columns, i.e., potential connection routes, and more precisely routes such
that, if added to the current RMP, improve the optimal value of its linear relaxation. The pro-
cess continues until the optimality condition is satisfied, that is, all the so-called reduced costs
that define the objective function of the pricing problems are positive (see [15] if not familiar
with linear programming concepts). An ε-optimal solution is derived by solving exactly the ILP
model associated with the last RMP, with ε defined as follows:

ε = (z̃ilp − z?lp) /z?lp, (25)

where z?lp and z̃ilp denote the optimal LP value and the optimal ILP value of the last RMP,
respectively. The solution process is illustrated in the flowchart of Figure 3.

4.2 reopt_sim Algorithm

Pricing Problem PPt

Let u(11)
t ≤ 0, u(12)

k ≤ 0 and u
(14)
`t R 0 be the values of the dual variables associated with

constraints (11), (12) and (14), respectively.
We use the following binary variables:

- πk = 1 if k ∈ K is selected for rerouting, 0 otherwise.

- αk` = 1 if πk = 1 and the route of k ∈ K uses link ` ∈ L, 0 otherwise.

The goal of PPt (Figure 2) is to select a unique request for potential rerouting, the one with
a new route of minimum cost (Objective (17)). Constraints (18) take care of identifying the best
possible route, using flow constraints, for the request that is rerouted, i.e., the unique request
k such that πk = 1. Constraints (19) make sure that we only output simple paths, with no
loops. Constraints (20) make sure that routing variables αk` are null if request k is not selected
for rerouting during rerouting event t, i.e., the rerouting event associated with the PPt pricing
problem. Constraints (21) ensure that each PPt selects exactly one connection for potential
rerouting at rerouting event t. Constraints (22)-(23) define the domain of the variables.

Observe that we can decompose each PPt into |K| elementary pricing problems PPkt , each
examining the option of rerouting request k ∈ K at rerouting event t by setting πk = 1 in PPt.
Then, the solution of PPt is given by

cPPt = min
k∈K
{ckPPt

: k is rerouted at rerouting event t}, (26)

where ckPPt
denotes the reduced cost of PPkt , that we next describe.

7

Figure 3: Flowchart of the Proposed Solution Scheme

Elementary Pricing Problem PPk
t

In each elementary pricing problem PPkt , we examine the option of rerouting request k at
rerouting event t by setting πk = 1 in PPt. Thus, the ILP formulation of PPkt is as follows.

min ckPPt
= −u(11)

t − u(12)
k −

∑
`∈L

bku
(14)
`t (a0kl − αk`) (27)

∑
`∈ω−(v)

αk` −
∑

`∈ω+(v)

αk` =


−1 if v = sk

1 if v = dk

0 otherwise
, v ∈ V (28)

∑
`∈ω+(v)

αk` ≤ 1 v ∈ V (29)

αk` ∈ {0, 1} k ∈ K, ` ∈ L. (30)

Now, observe that PPkt is a weighted shortest simple path problem in a graph with possibly
negative weight cycles. This problem is NP-hard by a reduction from the longest simple path
problem (see [16, Section 24.1] or [17, Chapter 5]), and so cannot be solved using only the
Bellman-Ford-Moore (BFM) algorithm, even if it takes care of the negative weights. However,
we can still use the BFM algorithm, but with some additional tool. As we cannot enforce the
simple path condition, the BFM algorithm may fail to output a path with a negative reduced
cost, due to the discovery of a negative cycle. In such a case, we then recourse to the solution
of the ILP formulation of PPkt ((27)-(30)), which includes constraints to enforce the simple path
condition.

8

It is worth noting that calls to the BFM algorithm can be grouped by sources. So |V | calls
to BFM suffice to solve PPt.

Theorem 1. All pricing problems can be investigated with at most O(|V |) runs of the BFM
algorithm, leading to an O

(
|L| × (|K|+ |V |2)× |T |

)
time complexity.

Proof. Note that the reduced cost in (27) can be rewritten:

ckPPt
= −u(11)

t − u(12)
k −

∑
`∈L

bku
(14)
`t a0kl︸ ︷︷ ︸

constant

+
∑
`∈L

bku
(14)
`t αk`. (31)

This entails that the solution of PPkt can be reduced to the solution of:

[PPgeneric
tk] min

∑
`∈L

u
(14)
`t ϕ` subject to: (28)− (30).

Observe that problem PPgeneric
tk is equivalent to a shortest simple path problem with negative

weights, without any guarantee that it contains no negative cycles. Taking into account that (i)
the coefficients of the objective function are independent of k, and (ii) the BFM algorithm can
be easily modified in order to output a shortest path tree from a given source node, see, e.g.,
[16], (i.e., it computes all the (weighted) shortest paths from a given source node), we can then
use |V | calls of the BFM algorithm, one from each possible source node, for a given t. Then,
for each connection k, we can compute ckPPt

using (31) and check whether the reduced cost is
negative, and, if so, generate a new potential rerouting. For a given t, computing ckPPt

for all
k can be done in O(|K| × |L|) time, once all |V | BFM calls have been made, and each call to
BFM requires time O(|V | × |L|), hence the overall complexity

O
(
|L| × (|K|+ |V |2)× |T |

)
.

Solution Process
In order to be done efficiently, the resolution of the |K| Elementary Pricing Problems (PPkt)

for a given t require their grouping as seen in the previous paragraph. In the context of a
column generation model with a large set of different pricing problems, the efficiency of the
solution depends on the best combination of linear program re-optimization (i.e., solution of the
current Restricted Master Problem), and the solution of the whole set or a subset of pricing
problems. We consider the following three options.

1. Re-optimize the current RMP after solving all the elementary PPkt associated with a given t,
and perform a round-robin on t. Re-optimization of the RMP (Restricted Master Problem)
is performed with all the rerouting configurations with a negative reduced cost for a given t.

2. Solve all PPt with the same set of dual values, and add all the new improving columns
simultaneously. Again, either solve exactly each PPt or stop their solution as soon as one
PPkt has a negative reduced cost.

3. Solve all the elementary PPkt associated with a given t, and add to the RMP the rerouting
associated with the smallest reduced cost. Perform a round-robin on t. This strategy focuses
on k, instead of on t as in the two previous options. It consists of solving all the elementary
PPkt associated with a given k, and add to the RMP the rerouting associated with the smallest
reduced cost. Perform a round robin on k. The connections can be sorted according to the
length of their paths.

9

Based on a careful analysis of the pros. and cons., we went on with the third option. Details
are available in Algorithm 1. Therein, function CostBFM(k, t, RMP) computes the weighted
shortest path for connection k with weights defined by the dual values associated with the
optimal solution of the current RMP. If we cannot find a shortest path due to a negative cycle
(leveraging the CostBFM function), k is included into the set Kneg. When there is no positive
reduced cost found by the BFM algorithm and the set Kneg is not empty, we try the exact ILP
model (CostILP) for the connections in Kneg, Lines 8-11.

Algorithm 1 Solution Process
Require: RMPlp, Current Linear Relaxation of Restricted Master Problem (RMP)
1: repeat
2: for t ∈ T do
3: k′ ← argmax

k∈K
(CostBFM(k, t, RMPlp))

4: if reduced cost of k′ < 0 then
5: add a new column to RMPlp
6: optimize RMPlp
7: else
8: k′ ← arg max

k∈Kneg
(CostILP(k, t, RMPlp))

9: if reduced cost of k′ < 0 then
10: add a new column to RMPlp
11: optimize RMPlp

12: until no new column is found

Generation of an Initial Set of Columns
We use two complementary strategies to generate the initial set of columns. The first strategy

is to identify the subset KI ⊆ K of connection requests that can be rerouted on a shortest path.
So, none of the connection requests k ∈ KI is routed on a shortest path in the legacy routing.
Then, we arbitrarily select at most |T | of these connection requests, and all of them if |KI | ≤ |T |,
to form the initial set of columns. The first strategy is described in Algorithm 2. Therein,
function Shortest_Avail_Path(G, k) finds the shortest path with current spare resources (it
may be different from the shortest path without capacity constraints). Note that if the shortest
path is sharing links with the current path, the resources on those links are not required twice.
The second strategy is used when |T | is large. Let T1, T2 and T3 be pairwise disjoint sets of
rerouting events such that T = T1∪T2∪T3 and |T | = |T1|+ |T2|+ |T3|. We use the first strategy
to find a subset KI1 of initial columns, with KI1 ≤ |T1|. We then use KI1 as initial columns
for running the reopt_mbb algorithm with a bound |T1| on the number of rerouting events.
We next obtain as an output a subset K1 ⊆ K of connection requests. We go on using the first
strategy to find a subset KI2 of initial columns, with KI2 ≤ |T2| and K1 ∩KI2 = ∅. Then, we
use KI2 to run the reopt_mbb algorithm with a bound |T2| on the number of rerouting events
and the extra constraints that connection requests in K1 cannot be rerouted (i.e., we set πk = 0
for all k ∈ K1). We obtain a subset K2 ⊆ K of connection requests such that K1 ∩K2 = ∅. We
repeat the same procedure to find a subset K3 ⊆ K of connection requests such that K1∩K3 = ∅
and K2 ∩K3 = ∅. Finally, we use K1 ∪K2 ∪K3 as the initial set of columns for running the
reopt_mbb algorithm with the bound |T | on the number of rerouting events. Observe that
|K1 ∪K2 ∪K3| might be less than |T | depending on the instance.

The number of subsets of rerouting events used in the second strategy can be adjusted
depending on the value of T . In our experiments, we used only the first strategy when |T | = 50,
the second strategy with two subsets of size 50 when |T | = 100, and the second strategy with

10

three subsets of size 50 when |T | = 150. Reported computation times include the time needed
for generating the initial columns and the resolution of the reopt_mbb algorithm with 50
rerouting events. The second strategy is described in the Algorithm 3. In this algorithm, we
demonstrate the case where T is divided into three smaller non-intersecting subsets.

Algorithm 2 Initial Set of Columns - Strategy 1
Require: G, current network state
Ensure: KI , initial set of columns
1: KI ← ∅
2: #reroutes ← 0
3: for k ∈ K do
4: pnew ← Shortest_Avail_Path(G, k)
5: if pnew is shorter than k’s current path then
6: change k’s current path to pnew

7: KI ← KI ∪ {k}
8: #reroutes ← #reroutes + 1
9: update G’s state // route of k is changed

10: if #reroutes = |T | then
11: break
12: return KI

Algorithm 3 Initial Set of Columns - Strategy 2
Require: G, current network state
Require: T = T1 ∪ T2 ∪ T3, set of rerouting events
Ensure: KI , initial set of columns
1: KI ← ∅
2: #reroutes← 0
3: for i from 1 to 3 do
4: KIi ← initial set of columns using Strategy 1 with G,K, Ti
5: remove KIi from G
6: K ← K \KIi

7: KI ← KI ∪KIi

8: return KI

5 Minimum Rerouting: reopt_mimo

In this section, we show how to modify the reopt_sim model in order to minimize the to-
tal number of rerouting operations required to obtain a solution satisfying a given bandwidth
requirement (i.e., BW ? is used in this section). The reopt_mimo model, is formalized as
follows.
Master Problem

min
∑
t∈T

∑
k∈K

∑
p∈P t

k

ztkp (32)

subject to Constraints (11)-(16) and: ∑
l∈L

C
|T |
l ≤ BW ?. (33)

11

Constraint (33) ensures that the solution must be at least as good as the given bandwidth
requirement BW ?, and the Objective (32) is to minimize the total number of rerouting opera-
tions.

Observe that the reopt_mimo model might not admit a feasible solution if the given upper
bound on the bandwidth requirement or on the number of rerouting events is too small. However,
if these bounds are at least the objective value (BW ?) obtained from the reopt_sim model
with the same number |T | of rerouting events, then the reopt_mimo model always admits a
feasible solution (at least the solution of reopt_sim).

Pricing Problem
Let u(11)

t ≤ 0, u(12)
k ≤ 0 and u

(14)
`t R 0 be the values of the dual variables associated with

constraints (11), (12) and (14), respectively.
We use the following binary variables:

- πk = 1 if k ∈ K is selected for rerouting, 0 otherwise.

- αk` = 1 if πk = 1 and the route of k ∈ K uses link ` ∈ L, 0 otherwise.

[PPmimo]

min cPPt = 1− u(11)
t −

∑
k∈K

u
(12)
k πk −

∑̀
∈L

∑
k∈K

bku
(14)
`t (πka

0
k` − αk`).

Subject to Constraints (18)-(23)

In the new pricing problem PPmimo, the additional term (to the original pricing problem PP)
is a constant, as the variables ztkp are introduced to the master objective function. Thus, this
additional term does not change the pricing problem principle, i.e., the solution process of the
reopt_mbb algorithm can be applied completely to the reopt_mimo model.

6 Parallel Rerouting

Enabling parallel rerouting operations allows for reaching either a better provisioning within the
specified bound on the number |T | of rerouting events since more individual rerouting operations
can be performed, or the same provisioning as reopt_sim within less rerouting events. In this
section, we explore the latter advantage of parallel rerouting operations.

In the decomposition model reopt_sim, Constraints (11) restrict the number of rerouting
operations per rerouting events to 1, although some rerouting operations could be safely done in
parallel with respect to the MBB paradigm. Indeed, a subset K ′ ⊆ K of the connection requests
can be rerouted in parallel, or concurrently, at rerouting event t if the sum of their bandwidth
requirements on the old and new routes does not exceed any link’s capacity.

More formally, let Kr ⊆ K be the subset of connection requests that are rerouted by re-
opt_sim, i.e., Kr contains each connection request k ∈ K such that

∑
t∈T
∑

p∈P t
k
ztkp = 1. For

convenience, we assume that |Kr| = |T |. Let pk ∈ ∪t∈TP tk be the route selected for the rerouting
of connection request k ∈ Kr. Recall that a connection request can be rerouted at most once.
Let B, indexed by rerouting event t ∈ T , be a set of bins. The bin Bt corresponds to a subset
of the connection requests that can be safely rerouted in parallel at rerouting event t. Given
a solution of reopt_sim, the problem of packing the connection rerouting operations into the
minimum number of bins can be formalized as the ILP (34)-(42), using the following variables.

- qtk = 1 if k ∈ Kr is packed into bin Bt, for some t ∈ T , 0 otherwise.

- qt = 1 if bin Bt is used.

12

Observe that the rerouting operations of the connection requests in bin Bt must be performed
before those of bin Bt+1. Hence, our problem combines a bin packing problem with a scheduling
problem.

Minimize
∑
t∈T

qt (34)

Subject to: ∑
t∈T

qtk = 1 k ∈ Kr (35)

qtk ≤ qt k ∈ Kr, t ∈ T (36)

qt+1 ≤ qt t ∈ T (37)
Ct` ≤ C` ` ∈ L, t ∈ T (38)

Ct−1` +
∑
k∈Kr

bkδ
pk
` (1− a0k`)qtk ≤ C` ` ∈ L, t ∈ T (39)

Ct` = Ct−1` −
∑
k∈Kr

bk(a
0
k` − δ

pk
`)qtk ` ∈ L, t ∈ T (40)

qtk ∈ {0, 1} k ∈ Kr, t ∈ T (41)
qt ∈ {0, 1} t ∈ T (42)
Ct` ≥ 0 ` ∈ L, t ∈ T (43)

The goal of this ILP is to minimize the number of bins (Objective (34)), hence minimizing the
number of rerouting events needed to perform all parallel operations. Constraints (35) ensure
that each connection request is packed into a single bin. Constraints (36) are used to identify
used bins. Constraints (37) are used to break symmetries in the solution, ensuring that bin
Bt+1 can be used only if bin Bt is used. Constraints (38)-(40) make sure that the capacity
of a link is never exceeded. In particular, Constraints (39) ensure that the “make" part of the
MBB operations of the connection requests in bin Bt respect the capacity constraints, i.e., there
is enough capacity to establish all the new routes before releasing the capacity used by the
legacy routes. Finally, Constraints (40) set the link capacities after the rerouting operations of
rerouting event t are made. Constraints (41)-(43) define the domain of the variables.

The ILP formulation (34)-(43) is difficult to solve. Also, we now propose a simple greedy
algorithm that packs rerouting operations into bins. Let σ : T → Kr be a mapping from
rerouting events to connection requests, such that σ(t) indicates the connection request that
is rerouted at rerouting event t by reopt_sim. That is, σ(t) =

∑
k∈Kr

∑
p∈P t

k
k · ztkp since

Constraints (11) ensure that, for each t ∈ T , a unique variable ztkp can be set to 1. We denote
σ−1 the inverse mapping. So σ−1(k) is the rerouting event t at which connection request k is
rerouted by reopt_sim.

Algorithm 4 arranges the connection requests of Kr into bins, each bin corresponding to a
set of connection requests that can safely be rerouted in parallel, and so fulfills Constraints (39).
It proceeds as follows. After initializing the first bin, it considers the connection requests in
the rerouting ordering given by reopt_sim (Lines 3-8). If the addition of connection request
k to the current bin results in a violation of Constraints (39), then a new bin is created and k
is added to it. Then the algorithm considers the next connection requests until all connection
requests have been placed into a bin.

Algorithm 4 ensures that if connection request k is placed into bin Bt+1, then it satisfies
σ−1(k) > σ−1(k′) for all k′ ∈ Bt. In other words, the connection requests in Bt are rerouted

13

Algorithm 4 Parallel Rerouting with respect to Original Order
Require: σ, mapping from rerouting events to connection requests
Require: T , set of rerouting events in original ordering
Ensure: B, bins containing requests rerouted in parallel
1: B1 ← ∅ // Initialize the first bin
2: i← 1 // Index of the current bin
3: for t from 1 to |T | do
4: k ← σ(t)
5: if adding k to Bi violates Constraints (39) then
6: i← i+ 1
7: Bi ← ∅ // Create a new bin
8: Bi ← Bi ∪ {k} // Add k to current bin
9: return B

before those in Bt+1, which is consistent with the solution given by reopt_sim. Furthermore,
the link capacity after the rerouting operations of bin Bt is exactly the same as the link capacity
in the solution of reopt_sim after the rerouting of connection request k = σ(

∑t
i=1 |Bi|). The

number of bins created by Algorithm 4 depends on the solution given by reopt_sim. In the
worse case, when no parallel rerouting operation is possible, it creates |T | bins.

7 Numerical Results

7.1 Data Sets

We consider a network with 32 nodes and 250 directed links, which corresponds approximately
to a Ciena customer network. Existing network connections were used to construct a traffic
matrix input to a network simulator generating realistic random connection states. Connection
requests had Poisson arrivals based on the traffic matrix and random durations drawn from a
common exponential distribution. Each connection had a Weibull distributed bandwidth with a
coefficient of variation of 0.3. Connections were routed on the shortest path (in hop count) that
had sufficient bandwidth. A load factor parameter was used to globally vary the connection ar-
rival rates: the corresponding equilibrium (after simulation start-up transients had disappeared)
connection states represent a range of congestion levels from light (0.5) to heavy (1.0). For
each load factor, we considered 10 reoptimization events. Reoptimization was performed with
a period of 1 mean connection duration, ensuring that sufficient connection request arrival and
termination events occurred in order to produce comparably degraded connection state. Char-
acteristics of the data sets are described in Table 1, where for each load factor, we provide the
average number of granted requests right before each reoptimization and the average number of
connection requests that are not initially routed on a shortest path.

7.2 Comparison with the Model of Klopfenstein [9]

We compared the performance of our model and algorithm with the model of Klopfenstein [9].
We use a dataset with a load factor of 0.5, |T | = 40 and for each reoptimization event, only
250 connections from the original connection set are taken into account. The differences are
significant even for such small instances, as indicated by the results reported in Table 2. Therein,
we report the results for each of the 10 reoptimization events. Since the Klopfenstein model can
take enormous time to finish, we report the best solution found within a computation time limit
of one hour. Note that due to these computation times, we were not able to perform comparisons

14

Table 1: Characteristics of the data sets
Load factor Number of requests # Req. not on shortest path

0.5 777.2 90.2
0.6 894.6 199.1
0.7 951.4 252.3
0.8 971.1 268.3
0.9 993.3 285.7
1.0 1,015.4 295.7

Table 2: Comparison with Klopfenstein: Traffic load 0.5, |T | = 40, number of connection
requests = 250

Defrag. Bandwidth saving (%) Accuracy ε (%) # reroutings Computing times (sec.)
events (limit = 1 hour)

reopt_sim Klopfenstein [9] reopt_sim Klopfenstein [9] reopt_sim Klopfenstein [9] reopt_sim Klopfenstein [9]

210 5.7 5.7 0.00 0.00 16.0 21.0 14.7 2316.7
220 4.0 4.0 0.00 0.00 10.0 12.0 14.4 1020.8
230 3.4 2.9 0.00 0.55 9.0 8.0 13.4 limit
240 1.7 1.7 0.00 0.00 5.0 16.0 11.9 755.3
250 2.3 2.3 0.00 0.00 8.0 9.0 14.1 859.1
260 7.5 7.5 0.00 0.00 13.0 15.0 15.1 802.8
270 5.7 5.9 0.27 0.00 14.0 19.0 7.2 2249.1
280 3.0 3.0 0.00 0.00 9.0 11.0 13.9 895.1
290 2.3 2.3 0.00 0.00 6.0 13.0 13.9 479.1
300 7.1 4.5 0.00 2.81 17.0 11.0 11.6 limit

Average 4.3 4.0 0.03 0.34 10.7 13.5 13.0 1661.0
Ratio 1.1 0.08 0.8 0.0078 (≈ 1/130)

on larger instances. Columns entitled reopt_sim correspond to the results obtained with the
reopt_sim model and reopt_mbb algorithm.

As expected, our model can be solved orders of magnitude faster than the compact ILP
model of Klopfenstein [9], that is, about 130 times faster. Furthermore, the computation time
limit of one hour was reached for two instances with the compact ILP model (reoptimization
events indexed as 230 and 300). Moreover, our model yields on average a better accuracy (i.e.,
0.03% versus 0.34%), because Klopfensteins’s model was stopped by the time limitation twice,
resulting in significant optimality gaps.

Obviously, when optimal solutions are obtained with both models, the bandwidth savings are
equal. However, for the instances indexed 230 and 300 that were not optimally solved with the
model of Klopfenstein, the solutions computed with our model offer better bandwidth savings.
In addition, the solutions obtained with our model involve on average less rerouting operations.
This can be explained by the facts that firstly, the minimization of the number of rerouting
operations is part of none of the objective functions of the models, and that secondly, the model
of Klopfenstein allows a connection request to be rerouted more than once.

7.3 Accuracy and Performance of the Reoptimization Solution

All statistics computed in this section correspond to averages over all the 10 reoptimization
events performed for each load factor.

Recall that we initialize the reopt_mbb algorithm with at most |T | potential rerouting
operations (columns). When |T | = 50, we use the first strategy presented in Section 4 for
generating the initial set of columns. When |T | = 100 or |T | = 150, we use the second strategy.
We have reported in Table 1 the average number of connection requests that are not routed on a

15

Table 3: Impact of the Initial Rerouting Configurations and Overall Number of Configurations

Load
Initial # Initial potential reroutings Overall # of generated

potential reroutings in the optimal solution potential reroutings

T = 50 T = 100 T = 150 T= 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 43.3 68.1 70.0 18.5 (39.1%) 44.9 (63%) 42.0 (57.6%) 595.7 797.0 1401.0
0.6 50.0 99.0 145.4 15.3 (30.9%) 76.8 (77.4%) 112.8 (77.4%) 590.4 1157.7 1738.9
0.7 50.0 99.2 149.0 12.6 (25.4%) 63.9 (64.5%) 113.1 (75.8%) 546.0 1010.2 1408.2
0.8 50.0 98.6 148.5 14.1 (28.9%) 68.3 (69.4%) 110.2 (74.4%) 469.2 911.5 1348.5
0.9 50.0 99.1 149.1 12.6 (25.6%) 65.4 (66%) 122.8 (82.3%) 504.2 950.2 1283.4
1.0 50.0 99.5 149.5 12.1 (24.4%) 73.0 (73.7%) 120.5 (80.9%) 520.8 827.8 1207.8

shortest path in the legacy routing, and in Table 3 the average size of the initial sets of potential
rerouting operations (initial columns) as produced by the first or second strategy. These sets are
given as inputs to the reopt_mbb algorithm. The relatively low number of initial potential
reroutings for the instances with traffic load 0.5 is explained by the small number of connection
requests (90.2 in average) that are not routed on a shortest path in the legacy routing.

Concerning the choice of |T |, which can be as large as the cardinality of the whole connec-
tion set, we conducted our experiments for values of |T | of at most 150 in order to limit the
computation time of our model to about one hour.

We now analyze the results reported in Table 3 on the efficiency of our strategies for gener-
ating the initial potential reroutings. Observe that the number of potential reroutings increases
with the traffic load due to the increased number of routes that are not the shortest possible
ones. For |T | = 50, where the initial potential reroutings are produced by the first strategy only,
we observe in the middle set of columns of Table 3 that at most 39.1% of the initial potential
reroutings appear in the final solutions. But, for |T | = 100 and |T | = 150, where we use the
second strategy, at least 57.6% and up to 82.3% of these initial potential reroutings are part of
the final solutions. This means that the time spent by the second strategy in the resolution of
sub-problems results in very good choices of initial potential reroutings. Furthermore, it has a
strong impact on the total number of generated potential reroutings, reported in the last set of
columns of Table 3, and so on the number of times the pricing problem PP is solved. Indeed,
the pricing problem generates a potential rerouting only if it is expected to improve the current
solution of reopt_mbb algorithm. Hence, when many initial potential reroutings are actually
part of the final solution, fewer calls to the pricing problem are needed to solve the problem.

Table 4: Number of Reroutings and Accuracy of the Solutions

Load
Number of Accuracy Computational times ILP Pricing Problem
required (ε) in minutes computational times in seconds
rerouting (number of solved ILPs)

T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 47.2 71.2 72.9 1.2 1.7 1.5 1.5 7.1 16.1 0.0 (0.0) 0.0 (0.1) 0.0 (0.2)
0.6 49.4 99.1 145.6 2.0 1.6 1.6 2.0 20.4 89.7 0.3 (1.1) 0.2 (2.8) 3.6 (1.5)
0.7 49.6 99.0 149.1 2.4 1.3 1.2 1.8 20.0 65.9 2.0 (4.6) 0.7 (2.9) 2.2 (1.8)
0.8 48.7 98.4 148.1 2.7 1.6 1.2 1.7 15.8 63.2 1.5 (3.8) 2.0 (7.5) 2.1 (9.8)
0.9 49.1 99.0 149.1 2.2 1.3 1.2 2.0 16.8 64.3 0.4 (1.3) 0.6 (2.9) 9.7 (15.6)
1.0 49.5 99.0 148.9 2.3 1.4 1.0 2.2 14.3 45.9 1.8 (4.0) 4.0 (7.1) 3.7 (4.4)

In Table 4, we report on the accuracy of the solutions. We first observe that the accuracy of
computed solutions is always between 1% and 3%, which is satisfactory taking into account the
additional computation time it would require for getting an optimal solution with a branch-and-
price method [18], instead of the current solution process (Section 4). Furthermore, solutions
obtained for larger values of |T | have a better (smaller) accuracy, except for load factor 0.5. This
shows that the proposed solution process performs very well even on large instances.

16

Computation times, which include the generation of initial potential reroutings, are also quite
reasonable, although too long for a real-time reoptimization operation. However, we expect to
reduce them significantly in the near future with the addition of heuristics to speed up the
solution process. Moreover, we observe that the overall computation time due to the resolution
of the pricing problems using ILPs, which occur when the BFM algorithm fails to find a solution,
is negligible. In the last part of Table 4, the main number is the averaged computing time spent
on the ILP executions and the number in the parentheses is the averaged number of executions.
We need less than 10 seconds (for at most 16 executions) for solving the ILPs of the pricing
problems. This supports the effectiveness of the decomposition of PP into PPkt subproblems,
each solved independently with the BFM algorithm.

7.4 Reoptimization Performance

We investigated the reduction of the overall bandwidth requirements after each reoptimization
event. We have reported in Figure 4 the reduction after each reoptimization event for the two
extreme load factors, i.e., 0.5 and 1.0. As already anticipated with the results of Table 4, enabling
more than |T | = 100 rerouting operations for the instances with load factor 0.5 does not help
further reducing the overall bandwidth usage. However, with load factor 1.0, enabling more
rerouting operations allows for significant reduction of the bandwidth usage. More precisely,
increasing |T | from 50 to 100 leads to more than 5% gain, and increasing |T | from 100 to
150 provides 5% additional bandwidth gain. An example of bandwidth usage evolution during
a sequence of rerouting operations is depicted in Figure 5 for the case of load factor 0.5 and
|T | = 50. We observe that the bandwidth usage is essentially monotonically decreasing, although
local increases of the bandwidth usage are possible with our model that only ensures that the
final bandwidth usage is minimized.

(a) Load factor = 0.5 (b) Load factor = 1.0

Figure 4: Reduction (%) of bandwidth requirement

7.5 Multiple Rerouting

In order to confirm the benefit of enabling multiple rerouting operations per connection requests,
i.e., a connection is allowed to be rerouted more than once, we applied reopt_sim consecutively,
taking as input the routing obtained in the previous call. More precisely, after first solving the
problem with |T | = 50, we solve it again with |T | = 50, starting from the routing R1 computed
by the first execution of reopt_sim, and then again producing R3 taking as input the routing
R2 resulting from the second call.

In the first set of columns of Table 5, we ensure that a connection request is rerouted at most
once. This is done by setting πk = 0 for the connection requests that were previously rerouted.

17

Figure 5: Trend of bandwidth usage after each rerouting operation on load 0.5 within |T | = 50.

In the second set of columns of Table 5 we allow the reroute in R2 (resp. R3) of a connection
request that has already been rerouted in R1 (resp. R1 or R2). Hence, a connection request can
be rerouted up to three times. We observe a small improvement in the bandwidth gain (around
0.1% for R3) when enabling up to three reroutings per connection request.

Table 5: Impact of Multiple Rerouting

Load
At most one rerouting per connection & t Multiple rerouting per connection

reroutings bandwidth gain (%) # reroutings bandwidth gain (%)
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

0.5 47.2 20.9 1.9 6.7 8.0 8.2 47.2 21.0 2.5 6.7 8.1 8.2
0.6 49.4 49.6 46.4 9.4 14.9 18.4 49.6 49.3 46.3 9.4 14.8 18.5
0.7 49.6 49.6 49.8 9.8 16.6 21.0 49.1 49.7 49.8 9.8 16.6 21.1
0.8 48.7 49.9 49.9 9.9 16.8 21.5 48.7 49.5 49.6 9.9 16.8 21.4
0.9 49.1 50 50 10.1 17.2 22.1 49.4 49.6 50.0 10.1 17.2 22.2
1 49.5 50 50 9.9 17.1 21.9 49.7 49.8 50.0 9.9 17.1 21.9

7.6 Minimum Rerouting

The reopt_mimo model (Section 5) aims at minimizing the number of rerouting events to
obtain a solution with specified quality (i.e., satisfying a given upper bound on the bandwidth
usage). Figure 6 illustrates the results of reopt_mimo and reopt_sim for the instances with
load factor 0.5 and 1.0, when |T | = 100. We observe that the reduction in the number of
rerouting events offered by reopt_mimo over reopt_sim is small. With a 0.5 load factor,
there are more connections which are being rerouted on their ultimate shortest path in terms
of the number of links. In addition, although it is allowed to use up to |T | = 100 reroutes,
it is usually not necessary to have so many before reaching an optimized or optimal rerouting
(e.g., for events 4 and 8, only about half of the allowed number of reroutes are needed). With
a 1.0 load factor, i.e., in a competitive resource environment, there are many more connections
that are routed over longer paths than the shortest possible. As a result, the solution must
use more re-routings (more than 95 reroutings for all events). The reason is that the objective

18

of minimizing the number of rerouting operations was implicitly involved into the reopt_sim
model, since it is parameterized by |T |.

(a) Load factor = 0.5 (b) Load factor = 1.0

Figure 6: Number of Rerouting operations with reopt_sim and reopt_mimo

7.7 Parallel Rerouting

Table 6 demonstrates the efficiency of the parallel rerouting methodology (Section 6) in terms
of the number of required rerouting events, i.e., a rerouting event will perform several rerouting
operations in parallel provided that they do not violate the capacity limitation. Assuming that
the duration of a rerouting event made of parallel rerouting operations is the same (or almost
the same) as a single rerouting operation, applying parallel rerouting operations reduces by a
factor 10 to 30 the cost of the reconfiguration procedure. In addition, the computing time for
the reopt_par model is remarkably less than for the reopt_sim model.

Table 6: Number of Parallel Rerouting Events

Load Heuristic (Algorithm 4) reopt_par reopt_par Computational Time (min.)

T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

0.5 7.5 12.2 12.8 4.6 6.1 5.6 3.6 5.8 6.0
0.6 9.4 16.6 20.7 5.1 6.6 7.5 3.9 8.4 13.8
0.7 9.2 16.5 21.1 5.5 7.0 6.7 3.9 8.5 14.2
0.8 9.2 16.3 21.2 5.3 7.4 6.8 3.9 8.4 12.9
0.9 8.6 16.2 20.3 4.8 6.2 6.3 4.0 8.4 12.9
1.0 10.5 17.6 21.8 5.9 6.4 6.3 4.1 8.5 13.5

8 Conclusion

We have proposed a new model for progressive reoptimization, i.e., computing a sequence of
make-before-break reroutings leading to the minimum bandwidth requirements. It corresponds
to a huge improvement with respect to the previous model proposed by Klopfenstein [9] as we
reach up to 150 reroutings in less than a few hours, while the model of [9] was only scalable for
toy problems.

We plan to further study the proposed model so that it can handle the case of more than
one rerouting per (selected) connection. In addition, we plan to study the adaptation of our
optimization model to other seamless migrations, e.g., to requests in Content Delivery Networks
(CDNs), [19].

19

Acknowledgments

B. Jaumard has been supported by a Concordia University Research Chair (Tier I) and by an
NSERC (Natural Sciences and Engineering Research Council of Canada) grant. H. Duong was
supported by a MITACS & Ciena Converge Fellowship. D. Coudert has been supported by
the French National Research Agency (ANR), through the UCAJEDI Investments in the Future
project with the reference number ANR-15-IDEX-0001, and the Inria associated-team project
EfDyNet.

References

[1] H. Li and J. Wu, “Survey of WDM network reconfiguration: topology migrations and their
impact on service disruptions,” Telecommunication Systems, vol. 60, pp. 349–366, Nov.
2015.

[2] B. G. Józsa and M. Makai, “On the solution of reroute sequence planning problem in MPLS
networks,” Computer Networks, vol. 42(2), pp. 199–210, 2003.

[3] D. Coudert, F. Huc, D. Mazauric, N. Nisse, and J.-S. Sereni, “Reconfiguration of the routing
in WDM networks with two classes of services,” in Conference on Optical Network Design
and Modeling - ONDM, 2009, pp. 1–6.

[4] N. Cohen, D. Coudert, D. Mazauric, N. Nepomuceno, and N. Nisse, “Tradeoffs in pro-
cess strategy games with application in the WDM reconfiguration problem,” Theoretical
Computer Science, vol. 412, no. 35, pp. 4675–4687, 2011.

[5] N. Jose and A. K. Somani, “Connection rerouting/network reconfiguration,” in Proceedings
of IEEE/VDE Workshop on Design of Reliable Communication Networks - DRCN, 2003,
pp. 23–30.

[6] F. Solano, “Analyzing two conflicting objectives of the WDM lightpath reconfiguration
problem,” in IEEE Global Telecommunications Conference - GLOBECOM, Nov. 2009, pp.
1–7.

[7] F. Solano and M. Pióro, “Lightpath reconfiguration in WDM networks,” IEEE/OSA Journal
of Optical Communications and Networking, vol. 2, no. 12, pp. 1010 – 1021, December 2010.

[8] A. Kadohata, A. Hirano, F. Inuzuka, A. Watanabe, and O. Ishida, “Wavelength path re-
configuration design in transparent optical WDM networks,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 5, no. 7, pp. 751 – 761, July 2013.

[9] O. Klopfenstein, “Rerouting tunnels for MPLS network resource optimization,” European
Journal of Operational Research, vol. 188(1), pp. 293–312, 2008.

[10] D. Coudert, D. Mazauric, and N. Nisse, “Experimental evaluation of a branch-and-bound
algorithm for computing pathwidth and directed pathwidth,” ACM Journal of Experimental
Algorithmics, vol. 21, no. 1.3, pp. 1–23, 2016.

[11] S. Beker, D. Kofman, and N. Puech, “Off-line MPLS layout design and reconfiguration: Re-
ducing complexity under dynamic traffic conditions,” in International Network Optimization
Conference (INOC), October 2003, pp. 61–66.

20

[12] D. Coudert, D. Mazauric, and N. Nisse, “On rerouting connection requests in networks with
shared bandwidth,” Electronic Notes in Discrete Mathematics, vol. 32, pp. 109–116, 2009.

[13] S. Brandt, K.-T. Förster, and R. Wattenhofer, “On consistent migration of flows in SDNs,”
in IEEE Annual Joint Conference of the IEEE Computer and Communications Societies -
INFOCOM, 2016, pp. 1–9.

[14] D. Coudert and J.-B. Sereni, “Characterization of graphs and digraphs with small process
number,” Discrete Applied Mathematics, vol. 159, no. 11, pp. 1094–1109, Jul. 2011.

[15] V. Chvatal, Linear Programming. Freeman, 1983.

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed.
Cambridge: The MIT Press, 2001.

[17] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms and Applications.
Prentice Hall, 1993.

[18] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance, “Branch-and-price:
Column generation for solving huge integer programs,” Operations Research, vol. 46, no. 3,
pp. 316–329, 1998.

[19] J. Lai, Q. Fu, and T. Moors, “Using SDN and NFV to enhance request rerouting in ISP-CDN
collaborations,” Computer Networks, vol. 113(1), pp. 176–187, Fev. 2017.

21

