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Abstract—In a learning context, data distribution are usually
unknown. Observation models are also sometimes complex. In an
inverse problem setup, these facts often lead to the minimization
of a loss function with uncertain analytic expression. Conse-
quently, its gradient cannot be evaluated in an exact manner.
These issues have has promoted the development of so-called
stochastic optimization methods, which are able to cope with
stochastic errors in the gradient term. A natural strategy is to
start from a deterministic optimization approach as a baseline,
and to incorporate a stabilization procedure (e.g., decreasing
stepsize, averaging) that yields improved robustness to stochastic
errors. In the context of large-scale, differentiable optimiza-
tion, an important class of methods relies on the principle of
majorization-minimization (MM). MM algorithms are becoming
increasingly popular in signal/image processing [18], [36] and
machine learning [27], [34], [38]. MM approaches are fast, stable,
require limited manual settings, and are often preferred by
practitioners in application domains such as medical imaging
[16] and telecommunications [29]. The present work introduces
novel theoretical convergence guarantees for MM algorithms
when approximate gradient terms are employed, generalizing
some recent work [11], [27] to a wider class of functions and
algorithms. We illustrate our theoretical results with a binary
classification problem.

Index Terms—Stochastic optimization, convergence analysis,
Majorization-Minimization, subspace acceleration, binary logistic
regression.

I. INTRODUCTION

A common strategy to find a relevant solution to supervised
learning problems and inverse problems relies on the mini-
mization of a loss function. This function integrates knowledge
about the available data/models, and some prior information
on the sought parameters. This yields the generic problem

minimizex∈RNF (x), (1)

where F : RN 7→ R is differentiable on RN . A major chal-
lenge arises when the analytical properties of F , and, more im-
portantly, of its gradient ∇F , cannot be precisely known. For
instance, in the context of supervised learning, x corresponds
to a set of parameters to be learned. Moreover, F is interpreted
as a random expectation, making an exact evaluation of F
and ∇F either impossible or too computationally intensive.
Consequently, only a stochastic approximation can used in-
stead [2]. In the context of inverse problems, stochastic errors
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mainly arise from two sources: (i) sophisticated acquisition
models, requiring for instance solving a PDE for evaluating
the fidelity to data [25], and (ii) on-the-fly (i.e., online) data
processing resulting from joint acquisition and reconstruction
process, imposed in some specific application contexts (e.g.,
medical imaging [24]). Here again, the evaluation of F and
∇F is approximate, which jeopardizes the stability of the
retained optimization solver. As a response to this challenge,
it is necessary to design large scale optimization tools whose
robustness to stochastic errors is guaranteed. Although ex-
tending deterministic optimization methods to a probabilistic
context does not in principle affect the structure of their
original version, the analysis for asymptotical guarantees in the
stochastic context requires novel theoretical analysis making
use of specific tools from stochastic approximation theory [32].

A large amount of studies in stochastic optimization litera-
ture have been dedicated to the famous gradient descent algo-
rithm [3], [17], [31] and its various first order variations such
as NAG [28]. One can also mention ADAM, ADAGRAD, and
RMSprop methods [14], [26], [37], widely adopted in the field
of deep neural network. The account for non-differentiable
terms, through proximal-based approaches, has also been
investigated in [1], [12], [33]. Another avenue of works adopt
the key concept of majorization-minimization (MM). MM
algorithms rely on successive majorizing approximations of
the function in order to produce a sequence of iterates that will
converge to a solution of the problem, under suitable assump-
tions. The loss function F is thus substituted, by a sequence
of surrogates with better properties (typically, strongly convex
quadratic functions), ensuring sounded theoretical stability and
fast practical convergence to the resulting scheme. The theoret-
ical robustness of MM approaches to stochastic errors has been
studied in [11], [13], [27]. However, the aforementioned works
are, up to our knowledge, over specific in the MM scheme
and/or the loss function class they studied. For instance, [13]
focused on the expectation-minimization framework, while
[27] requires averaging procedures over consecutive majoriz-
ing approximation and iterates. Finally, [11] deals with online
recursive least-squares problems enjoying specific recursive
forms for the gradient and majorizing approximations.

In this work, we propose a more versatile formulation of
the problem, when F is a non necessarily convex, smooth
function. We follow an approach where we build, at each
iteration, a stochastic quadratic surrogate involving a randomly



perturbed evaluation of the current gradient. This yields an
inexact stochastic MM scheme, in which we also allow the
possibility for a subspace acceleration [8], [30], in the spirit
of momentum-based approaches [15], [21], [23], [26], [28].
We establish almost sure convergence results for our approach,
under mild assumptions on F . We illustrate the validity of the
proposed scheme and its great performance in a problem of
large scale binary logistic regression.

The paper is organized as follows. Section II introduces
the MM framework and the considered inexact version for it.
Section III presents our main contribution, that is the conver-
gence analysis for this algorithm. Numerical experiments are
depicted in Section IV. Finally, Section V concludes the paper.

II. PROPOSED FORMULATION

A. Deterministic MM approach

The MM algorithm is an iterative process which solves (1)
by generating a sequence (xk)k∈N ∈ RN of iterates. Passing
from a iterate xk to the next one xk+1 for a given k ∈ N is
made by minimizing h, a tractable majorant approximation of
F . Typical choice is to resort to a quadratic approximation for
F , reading similarly as a second-order Taylor expansion of it,
at a given point y ∈ RN :

h : (x,y) 7→ F (y) +∇F (y)>(x−y) +
1

2
‖x−y‖2A(y). (2)

Here above, ‖ · ‖2A(y) = 〈·|A(y)·〉, and A : y 7→ A(y) is a
function returning a symmetric positive definite matrix such
that (∀x,y ∈ RN ) h(x,y) ≥ F (x). This mapping, also
called the majorant metric mapping, completely describes h
and thus the quality of the majorizing approximation of F .
Consequently, the generic MM update reads:

(∀k ∈ N) xk+1 = xk −A−1k ∇F (xk), (3)

denoting Ak := A(xk). The above MM scheme yields, by
construction, the monotonic decrease of (F (xk))k∈N. Useful
strategies to build the majorant metric can be found in [9],
[36], [38], for a large class of problems arising in applications
from supervised learning, telecommunications, and image
restoration, to name a few. In the latter case, the algorithm
in Eq. (3) is also known as half-quadratic method [22], highly
popular in the 90s.

B. Subspace acceleration

As can be seen, the minimization of the surrogate at each
current iterate requires the inversion of an N × N operator.
However, the commonly very large number of parameters en-
countered in practical situations (e.g., in 3D image restoration,
N ≥ 109) could make such an operation hazardous. One major
key of improvement introduced by [8], and later assessed
in the survey paper [36], consists in integrating so-called
“subspace acceleration” [30] in the update (3). Mathematically,
this amounts to defining

(∀k ∈ N) xk+1 = xk +Dkuk, (4)

with

(∀k ∈ N) uk ∈ arg min
u∈RMk

h(xk +Dku,xk). (5)

Here above, Dk ∈ RN×Mk , N ≥ Mk ≥ 1 is a new degree
of freedom in the approach. Columns of matrix Dk contain
a set of search directions to explore and in order to define
the new iterate xk+1. Case of Mk = N and Dk = IN the
identity matrix of RN obviously leads back to Algorithm (3).
More interesting choices are listed in [8, Tab.1]. In particular,
Dk = [−∇F (xk) | xk − xk−1] leads to the so-called
MM Memory Gradient (3MG) algorithm [9], [10] whose great
performances have been assessed in [9], [19]. It is worth noting
that the quadratic structure of h makes a solution uk to (5)
easy to be determined as:

(∀k ∈ N) uk = −
(
D>k AkDk

)†
D>k ∇F (xk), (6)

with † being the pseudo-inverse operation. The convergence
properties of (4)-(6) are discussed in [9], [10].

C. Stochastic subspace MM scheme

In this paper, we focus on the introduction of a perturbation
on F (and its gradient). More precisely, we will consider that,
at each iteration k ∈ N, one only has access to:

gk = ∇F (xk) + εk, (7)

with (εk)k∈N ∈ RN modeling a stochastic noise process with
zero mean and bounded variance, which will be specified in
the next section. In order to write the stochastic version of
(4)-(6), we need to introduce the concept of inexact majorant
function. Let k ∈ N. We can evaluate the stochastic quadratic
function ĥk defined by:

ĥk : u ∈ RN 7→ F (xk) + g>k (u−xk) +
1

2
‖u−xk‖2Ak

. (8)

Similarly to its deterministic counterpart, the proposed
stochastic MM subspace scheme will consist in finding the
next iterate according to the available ĥk, within the subspace
spanned by the columns of Dk. We will assume, without loss
of generality, that Dk has full column rank. Moreover, for
better stability of the iterates, we introduce a positive step-
size sequence (γk)k∈N. This leads to our novel stochastic MM
subspace algorithm:

(∀k ∈ N) xk+1 = xk + γkDkûk, (9)

where

(∀k ∈ N) ûk = −
(
D>k AkDk

)−1
D>k gk. (10)

D. Link with preconditioned gradient method

One may combine (9)-(10) to reach the more compact
structure:

(∀k ∈ N) xk+1 = xk − γkBkgk, (11)

with Bk = Dk

(
D>k AkDk

)−1
D>k . The main interest of the

latter formulation comes from its similarity with a precon-
ditioned stochastic gradient structure [4], [6]. The symmetric



matrix Bk ∈ RN×N gathers both the information given by the
majorant matrix Ak and the subspace matrix Dk. To a certain
extent, understanding the behaviour of Bk should allow to
control the convergence of sequence (xk)k∈N. The theoretical
challenges to tackle are twofold: (i) Bk is random and non
necessarily full rank, (ii) F is non necessarily convex. Up to
our knowledge, the convergence of the scheme (11) has never
been studied under such context.

III. ASYMPTOTICAL ANALYSIS

Let us introduce (Ω,F , P ) a probability space provided
with the filtration (Fk)k∈N where F0 = {Ω, ∅} and for
all k ≥ 1, Fk = σ (ε0,x1, ..., εk−1,xk) is the sub-sigma
algebra generated by {ε0,x1, ..., εk−1,xk}, gathering all of
the information available at time k. For all k ∈ N, we denote
by E(.|Fk), the conditional expectancy operator relative to Fk.
A property will be said to be satisfied almost surely (a.s) if it
holds on a probability-one set of F .

A. Assumptions
We enumerate here the necessary technical assumptions for

the establishment of our main convergence theorem. A dis-
cussion around these assumptions will be provided in Section
III-C.

Assumption 1: F is coercive, differentiable on RN , with a
bounded gradient along the iterates, i.e., there exists G > 0
such that, for every k ∈ N, ‖∇F (xk)‖ ≤ G a.s.

Assumption 2: There exists (η, ν) > 0 such that, for every
k ∈ N, ηIN � Ak � νIN a.s.

Assumption 3: For every iteration k ∈ N,
(i) rank(Dk) = Mk a.s.

(ii) gk ∈ Ker(D>k )⊥ a.s.
Assumption 4: The stochastic noise process (εk)k∈N fulfills:

(i) (∀k ∈ N) E (εk|Fk) = 0 a.s.
(ii) There exists C ∈ [0, Cmax[ with Cmax = 1

2 ((1+ 4η
ν )

1
2−1)

such that:

(∀k ∈ N) E
(
‖εk‖2|Fk

)
≤ C2‖∇F (xk)‖2 a.s. (12)

Assumption 5:
∞∑
k=0

γk = +∞,
+∞∑
k=0

γ2k < +∞.

B. Convergence results
We start by an intermediary result, regarding the behaviour

of (Bk)k∈N.
Lemma 1: Under Assumptions 2 and 3(i), (10) is a.s well

defined and, for every k ∈ N,{
O � Bk � 1

ηIN a.s.
(∀x ∈ Ker(D>k )⊥) x>Bkx ≥ 1

ν ‖x‖
2 a.s.

Let us now state our main convergence result:
Theorem 1: Assume that (xk)k∈N satisfies scheme (9)-(10)

and Assumptions 1-5 are verified. Then the following holds :
(i) The sequence (F (xk))k∈N converges a.s to an a.s finite

random variable.
(ii) lim inf

k→+∞
‖∇F (xk)‖ = 0 a.s.

The proof, that we skipped by lack of space, is made
of two main steps. First, we rely on Lemma 1 to obtain
a specific stochastic relationship between two consecutive
iterates. Second, we make use of the Robbins-Siegmund’s
lemma of [32] which leads to Theorem 1(i) and to a Zoutendijk
type condition. The latter allows us to deduce Theorem 1(ii).

Theorem 1 promotes an interesting general behaviour (i.e
a sub-sequence criterion) which is nonetheless not sufficient
to guarantee convergence of (xk)k∈N to a minimizer or even
to a stationary point of F . To this aim, we need additional
topological assumptions on F and on its set of stationary
points. Let us denote zer∇F such a set. Moreover, for every
v ∈ RN , we introduce lev=v F :=

{
x ∈ RN | F (x) = v

}
,

the level set of F relative to v. Then, we can derive the
following convergence theorem.

Theorem 2: Assume that assumptions of Theorem 1 hold
on RN . Then:
(i) If all level set of F are finite, (xk)k∈N converges a.s to

a stationary point of F .
(ii) If F is convex on RN and all of its stationary points are

isolated i.e ∀v ∈ R Card(lev=v F ∩ zer∇F ) < +∞,
then (xk)k∈N converge a.s to a minimizer of F .

Remark that a strongly-convex F sees the sequence (xk)k∈N
converging almost surely to its unique minimizer as a direct
corollary of Theorem 2(ii).

C. Discussion about the assumptions

Assumption 1 and 5 are rather standard in the analysis of
stochastic gradient-based methods. Note that Assumption 1
is less restrictive than the Lipschitz continuity, assumed for
instance in [23], [27]. Assumptions 2 and 3 are typically re-
quired in the convergence analysis of quadratic MM subspace
methods [8]. Assumption 3(ii) holds for instance when −gk
belongs to the range of Dk. Assumption 4(i) corresponds
to a standard hypothesis when it comes to study stochastic
process optimization. Assumption 4(ii), reminiscent from [23],
relates to the second order moment of εk and expresses that
the uncertainty affecting the gradient should remain moderate,
in regards with the norm of the (true) gradient. The upper
bound Cmax is as large as the condition number η/ν of the
majorant metric sequence is. The theoretical maximal value
corresponding to

√
5−1
2 ' 6, 1×10−1 is obtained when η = ν.

This can happen when Ak ≡ ηIN with some η > 0 (for
e.g., η can be taken as the Lipschitz constant of ∇F , when it
exists). However, such a choice goes back to a basic gradient
descent scheme, which can have limited practical convergence
speed. In contrast, Cmax ∼ η/ν for η/ν → 0+, which shows
that poorly conditioned majorant matrices would impose a
high demanding bound on the gradient error as a balance. A
compromise is thus necessary, between the sophistication of
the majorant metric and its condition number.

D. Link to existing works

The theoretical result closer to our Theorem 1 is the one
obtained in [21], [23]. These works address an algorithm
similar to the famous ADAM [26], that can actually be viewed



as a particular case of ours, when no MM metric is used
(i.e., Ak ≡ IN ) and a 3MG-like subspace is employed
associated to manually tuned stepsize and momentum weight.
As already mentioned, the method from [27], also shares
connection with our algorithm, since it includes an MM
strategy, though not combined with any subspace acceleration.
A convergence result, similar to our Theorem 1, is obtained
in [27], with a slightly less tractable subsequence criterion
(see [27, Prop.3.3]). Finally, the approach from [4], [6] can
be understood as a particular choice for the subspace, related
to quasi-Newton approximation of F , but without the use
of MM metric/stepsize. The authors show an `1 behaviour
for the sequence (F (xk))k∈N, however under more restrictive
assumptions (e.g., convexity of F ). The use of the level-set
hypothesis (see Theorem 2(i)) is reminiscent from [20], [21].
Finally, it is worth noting that our study, and in particular
Theorem 2(ii), generalizes the conclusions that were obtained
in [11] for a specific class of loss function, gradient error and
majorant approximation.

IV. APPLICATION TO SUPERVISED CLASSIFICATION

A. Problem statement

We consider the problem of supervised binary classification
through regularized logistic regression. Starting from a training
dataset made of m feature vectors (vi)1≤i≤m ∈ RN , and
their associated labels (yi)1≤i≤m ∈ {−1, 1}, we learn the
parameters x ∈ RN of a linear classifier by minimizing the
following penalized empirical risk:

(∀x ∈ RN ) F (x) =
1

m

m∑
i=1

log (1 + exp (−[Lx]i))+
µ

2
‖x‖2.

(13)
Here above, L = Diag{(yi)1≤i≤m}[v1, ...,vm]> ∈ Rm×N
and µ is a positive regularization parameter aiming at limiting
overfitting effects. We can obtain majorant mapping A(·)
following [5]:

(∀x ∈ RN ) A(x) = L>Diag{(ω([Lx]i)1≤i≤m}L+ µIN ,
(14)

where ω : x 7→ 1
x

(
1

1+exp(−x) −
1
2

)
, extended by continuity

so that ω(0) = 1
4 . Let us note that such mapping satisfies

Assumption 2 for any µ > 0, since we have:

(∀x ∈ RN ) µIN � A(x) �
(
µ+

1

4m
‖L‖2

)
IN . (15)

Constant ‖L‖2/4m relates to the conditioning of the training
dataset. The smaller it is, the higher the permissible noise value
(see Ass. 4(ii)).

B. Numerical settings

The algorithms are implemented in Matlab 2020a and run on
a desktop having an Intel Core i7 3.2 GHz pro with 16 GB of
RAM. We consider the perturbed MM scheme (9)-(10), for two
choices for the subspace Dk both satisfying Assumption 3,
namely Dk = IN , and Dk = [−gk | xk−xk−1], yielding the
so-called SMM and S3MG algorithms, respectively. For the

former, the inversion of Ak is performed using the solver [35].
The decreasing stepsize sequence γk = 1/(k+ 1)0.51 is used,
so as to verify Assumption 5. Comparisons are made with
several state-of-the-art stochastic algorithms, namely SGD [3],
ADAM [26], ADAGRAD [14] and RMSprop [37]. The tuning
for their parameters (e.g., learning rate, momentum weight)
was made empirically so as to reach best convergence profiles.
Function F is strongly convex as far as µ > 0, so the
convergence of the sequence generated by SMM and S3MG
to the unique solution of (1) is ensured, as long as Assumption
4 holds. In our experiments, multiplicative noise following a
uniform law centered in 1 (so that Ass. 4(i) holds) is added
on each component of the gradient. Several noise amplitudes
will be tested, satisfying (12), with C ≥ 0 satisfying or not the
range constraint imposed in Assumption 4 (ii) (see hereafter
for more details).

We use rcv1 and a8a datasets from LIBSVM library [7],
whose properties are summarized in table below. Parameter µ
was manually set to get a good accuracy for the classifier on
the test set, when training without noise perturbation on the
gradient loss. This leads to an accuracy of 0.92 and 0.82 on
test set, for rcv1 and a8a, respectively.

Train Size m Test Size Features N ‖L‖2/(4m) µ
20242 677399 47236 5, 5× 10−3 1
9865 22696 122 1,6 10−1

C. Experimental results

Fig. 1 illustrates the performance of the different methods,
in terms of gradient norm evolution along time. In this case,
we set C ' 0.9 × Cmax so that Ass. 4(ii) holds, and
thus the convergence of S3MG and SMM is ensured. It is
remarkable that both largely outperform their competitors.
Moreover, one can see the advantage brought by the subspace
acceleration in both examples. Finally, let us emphasize that
the implementation of the MM methods did not require any
tedious manual tuning. Fig. 2 shows the evolution of the
gradient norm, when using S3MG with different noise levels,
on the rcv1 example. Faster convergence is reached for lower
noise amplitudes, as expected. Moreover, one can see that
S3MG starts showing oscillating behaviour when C ≥ Cmax.
This shows our theoretical bound Cmax is valid and not over
pessimistic for guaranteeing practical stability of the method.
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Fig. 1. Evolution of the gradient norm along time for various algorithms, on
dataset rcv1 (left) and a8a (right). Noise amplitude C ' 0.9× Cmax.
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Fig. 2. rcv1: Evolution of the gradient norm along time for various noise
amplitudes using S3MG algorithm.

V. CONCLUSION

This work sheds some new light on the stability of MM
quadratic schemes in the presence of a stochastic error on
the gradient evaluation. New asymptotic results are obtained
under mild assumptions. Our numerical application aims at
illustrating the great performance of MM schemes in a super-
vised learning context, both in terms of convergence speed and
stability, when compared to several competitors. Future work
will be dedicated to convergence rate analysis.
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[1] Y. F. Atchadé, G. Fort, and E. Moulines. On perturbed proximal gradient
algorithms. Journal on Machine Learning Research, 18:1–33, 2017.

[2] F. Bach and E. Moulines. Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NIPS
2011), pages x–x+8, Granada, Spain, Dec. 12 - 17 2011.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient
methods with errors. SIAM Journal on Optimization, 10(3):627–642,
2000.

[4] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton
stochastic gradient descent. Journal on Machine Learning Research,
10:1737–1754, Jul. 2009.

[5] G. Bouchard. Efficient bounds for the softmax function and applications
to approximate inference in hybrid models. In Proceedings of the Neural
Information Processing Systems (NIPS 2008), volume 31, 2008.

[6] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic
quasi-newton method for large-scale optimization. SIAM Journal on
Optimization, 26(2):1008–1031, 2016.

[7] C.-C. Chang and C.-J. Lin. Libsvm: A library for sup-
port vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2(3):1–27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[8] E. Chouzenoux, J. Idier, and S. Moussaoui. A majorize–minimize
strategy for subspace optimization applied to image restoration. IEEE
Transactions on Image Processing, 20(6):1517–1528, 2010.

[9] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot. A majorize-
minimize subspace approach for `2 − `0 image regularization. SIAM
Journal on Imaging Sciences, 6(1):563–591, 2013.

[10] E. Chouzenoux and J.-C. Pesquet. Convergence rate analysis of the
majorize-minimize subspace algorithm. IEEE Signal Processing Letters,
23(9):1284–1288, Sep. 2016.

[11] E. Chouzenoux and J.-C. Pesquet. A stochastic majorize-minimize
subspace algorithm for online penalized least squares estimation. IEEE
Transactions on Signal Processing, 65(18):4770–4783, 2017.

[12] P. L. Combettes and J.-C. Pesquet. Stochastic approximations and
perturbations in forward-backward splitting for monotone operators.
Pure Applied Functional Analysis, 1(1):13–37, Jan. 2016.

[13] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic
approximation version of the EM algorithm. The Annals of Statistics,
27(1):94–128, 1999.

[14] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(7), 2011.

[15] V. Dudar, G. Chierchia, E. Chouzenoux, J.-C. Pesquet, and V. Semenov.
A two-stage subspace trust region approach for deep neural network
training. In Proceedings of the 25th European Signal Processing
Conference (EUSIPCO 2017), Kos Island, Greece, 28 Aug.-2 Sep. 2017.

[16] H. Erdogan and J. A. Fessler. Monotonic algorithms for transmission
tomography. IEEE Transations on Medical Imaging, 18(9):801–814,
Sept. 1999.

[17] J. M. Ermoliev and Z. V. Nekrylova. The method of stochastic gradients
and its application. In Seminar: Theory of Optimal Solutions. No. 1
(Russian), pages 24–47. Akad. Nauk Ukrain. SSR, Kiev, 1967.

[18] M. Figueiredo, J. Bioucas-Dias, and R. Nowak. Majorization-
minimization algorithms for wavelet-based image restoration. IEEE
Transactions on Image Processing, 16(12):2980–2991, Dec. 2007.

[19] A. Florescu, E. Chouzenoux, J.-C. Pesquet, P. Ciuciu, and S. Ciochina. A
majorize-minimize memory gradient method for complex-valued inverse
problems. Signal Processing, 103:285–295, 2014.

[20] S. Gadat. Stochastic optimization algorithms, non asymptotic and
asymptotic behaviour. Lecture notes, University of Toulouse, 2017.

[21] S. Gadat and I. Gavrat. Asymptotic study of stochastic adap-
tive algorithm in non-convex landscape. Technical report, 2021.
https://arxiv.org/abs/2012.05640.

[22] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic
regularization. IEEE Transactions on Image Processing, 4(7):932–946,
1995.

[23] I. Gitman, H. Lang, P. Zhang, and L. Xiao. Understanding the role
of momentum in stochastic gradient methods. In Advances in Neural
Information Processing Systems, pages 9633–9643, 2019.

[24] L. E. Gueddari, E. Chouzenoux, A. Vignaud, J.-C. Pesquet, and P. Ciu-
ciu. Online MR image reconstruction for compressed sensing acquisition
in T2* imaging. In Proceedings of SPIE 11138, Wavelets and Sparsity
XVIII, volume 1113819, Sep. 2019.

[25] M. Huska, D. Lazzaro, S. Morigi, A. Samore, and G. Scrivanti.
Spatially-adaptive variational reconstructions for linear inverse electrical
impedance tomography. Journal on Scientific Computing, 84(46), 2020.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[27] J. Mairal. Stochastic majorization-minimization algorithms for large-
scale optimization. arXiv preprint arXiv:1306.4650, 2013.

[28] Y. E. Nesterov. A method for solving the convex programming problem
with convergence rate O(1/k2). In Dokl. akad. nauk Sssr, volume 269,
pages 543–547, 1983.

[29] D. Ramirez, I. Santamaria, L. L. Scharf, and S. Van Vaerenbergh.
Multi-channel factor analysis with common and unique factors. IEEE
Transactions on Signal Processing, 68:113–126, 2020.

[30] E. Richardson, R. Herskovitz, B. Ginsburg, and M. Zibulevsky. Seboost-
boosting stochastic learning using subspace optimization techniques.
arXiv preprint arXiv:1609.00629, 2016.

[31] H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, pages 400–407, 1951.

[32] H. Robbins and D. Siegmund. A convergence theorem for non negative
almost supermartingales and some applications. In Optimizing methods
in statistics, pages 233–257. Elsevier, 1971.

[33] V. S. Rosasco, L. and B. Vu. Convergence of stochastic proximal
gradient algorithm. Applied Mathematics and Optimization, 82:891–
917, 2020.

[34] V. Singhal and A. Majumdar. Majorization minimization technique for
optimally solving deep dictionary learning. Neural Processing Letters,
47:799–814, Jun. 2018.

[35] P. Sonneveld. CGS: A fast Lanczos-type solver for nonsymmetric linear
systems. SIAM Journal on Scientific Statistical Computing, 10(1):36–52,
Jan. 1989.

[36] Y. Sun, P. Babu, and D. P. Palomar. Majorization-minimization al-
gorithms in signal processing, communications, and machine learning.
IEEE Transactions on Signal Processing, 65(3):794–816, 2016.

[37] T. Tieleman and G. Hinton. RMSProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 6(5), 2012.

[38] Z. Zhang, J. T. Kwok, and D.-Y. Yeung. Surrogate maximiza-
tion/minimization algorithms and extensions. Machine Learning, 69:1–
33, 2007.


