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Abstract6

Bayesian filtering based structural health monitoring algorithms typically assume stationary white Gaussian7

noise models to represent an unknown input forcing. However, typical structural damages occur mostly under8

the action of extreme loading conditions, like earthquake or high wind/waves, which are characteristically9

non-stationary and non-Gaussian. Clearly, this invalidates this basic assumption, causing these algorithms to10

perform poorly under non-stationary noise conditions. This paper extends an existing interacting filtering11

algorithm to efficiently estimate structural damages while being robust to unknown non-stationary non-12

Gaussian input forcing. Furthermore, this approach is generalized beyond linear measurements to encompass13

the case of non-linear measurements such as strains. The joint estimation of state and parameters is14

performed by combining Ensemble Kalman filtering, for non-linear system state estimation, and Particle15

filtering to estimate changes in the structural parameters. The robustness against input forcing is achieved16

through an output injection approach embedded in the state filter equation. Numerical simulations for two17

kinds of response measurements (acceleration and strain) are performed on a 3D frame structure under18

different damage location and severity scenarios. The sensitivity with respect to noise and the impact of19

different sensor combinations have also been investigated.20

1. Introduction21

The objective of this paper is to monitor mechanical structures excited by some unknown time-varying22

input forces, by analyzing the measurements collected by means of some linear and non-linear sensors. To23

ascertain safety in structures, damages due to strong forces or extreme service conditions should be detected24

immediately after their occurrence. Traditionally, structural health monitoring (SHM) employs deterministic25

approaches for real-time structural damage detection with no consideration about uncertainties originating26

from unavoidable model inaccuracies, sensor noises and unknown external disturbances. This limits the27

utility of the methods for real-field applications. Bayesian filtering has been proved as an efficient alternative28

in this regard.29
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For dynamics of mechanical structure, idealized as a Markov process and defined in state-space form30

with state variables x1:k observed for a time span of [1 : k] through a measurement sequence y1:k, Bayesian31

filtering employs two probabilistic models: i) for system state propagation p(xk|xk−1) formulated by the32

Chapman–Kolmogorov equation as p(xk,xk−1) = p(xk−1)×p(xk|xk−1) and, ii) likelihood estimation model33

of states, i.e., p(yk|xk) for state estimate correction, to estimate recursively the states using the measurement34

sequence y1:k. The sequence y1:k can be linear, non-linear or mixed structural response through which35

the structural health, parameterized with a set of location-based structural health indices (HIs), can be36

interpreted. Eventually, SHM with Bayesian filtering is posed as a joint probability estimation of state37

and parameters to obtain p(xk,θk|y1:k), in order to detect, localize and quantify the damages; where the38

additional states, θk, signify the HIs.39

There exist successful applications of Bayesian filtering in SHM wherein HIs in θk are tracked to localize40

any deterioration in structural health [31, 36, 38, 42]. In the related literature, θks are mostly augmented41

in the state definition as Xk = [xk;θk] to estimate them alongside xk [5, 9–11]. Yet, owing to the induced42

non-linearity and/or the loss of observability, this approach is reported to cause divergence, leading to43

false or infeasible solutions, especially for time varying systems [11]. Recently, an interacting filtering44

strategy has emerged as a reliable alternative to tackle time varying systems with moderate state size.45

With this approach, a conditional posterior distribution estimation for the system states is followed by a46

marginal posterior distribution of the system parameters (also known as Rao-Blackwellisation) [4, 13, 35, 38].47

The advantage of the interacting approach, in terms of computational burden and stability, over the joint48

estimation approach has been discussed in [8].49

Nevertheless, the likelihood estimation function, p(yk|θk), for parameter estimation problems, is typically50

a non-linear mapping of xk / θk (e.g., finite element (FE) models) for which only non-linear filter variants51

(e.g., Extended (EKF) [21], Unscented (UKF) [23, 30], Ensemble Kalman filter (EnKF), Particle filter (PF),52

etc.) are applicable. PF [18] has been recognized as a powerful approach in this endeavor [2, 7, 9] with some53

concerns regarding its computational expense [39]. To manage the computational expense, the Interacting54

Particle-Kalman filter (IPKF) [36, 38] was introduced, that efficiently handles the linear state estimation55

with linear measurements (e.g. acceleration, displacement, etc.) using a standard KF while PF handles the56

non-linear parameter estimation. However, because of the use of KF, the applicability of IPKF is limited to57

linear systems (linear state propagation and measurements) only.58

To generalize the application of IPKF to non-linear systems, KF therefore should be replaced with non-59

linear filter variants like EKF/UKF/EnKF. As an alternative, EKF employs approximate local lineariza-60

tion through first order Taylor approximation. The associated Jacobian calculation, even being compute-61

intensive, does not usually hinder estimation for moderate sized systems. Nevertheless, some comparative62

studies [19, 20] identified that EKF’s approximate closure scheme may lack accuracy and hamper the de-63

tection promptness. With UKF, on the other hand, uncertainty propagation through a sparse set of “sigma64

2



points” limits its performance for severely non-linear systems [20, 40]. EnKF employs a set of ensembles –65

realized from the entire domain of states – for uncertainty propagation while preserving the non-linearity in66

state transition. It also offers flexibility to enhance the accuracy through the employment of bigger ensemble67

pools. The selection of EnKF in this study takes basis on the comparative study of [20].68

Filtering based SHM techniques typically idealize the unknown input force as a Stationary White Gaus-69

sian Noise (SWGN). Contrarily, the exogenous forces, that can potentially damage civil infrastructures (e.g.,70

seismic forcing or heavy wind/waves), are mostly unforeseen and do not satisfy this assumption. Clearly,71

to ensure estimation accuracy and subsequently the structural safety, the adopted SHM technique has to72

be robust against input forcing. [24] proposed an unbiased minimum-variance linear state estimation filter73

that does not require prior information about the unknown input. This was later improved for practical74

application by [22]. Joint state and input estimation has been employed by [16] for a system without a direct75

transmission term, and later updated for a system with a direct transmission term [17]. To avoid numerical76

instability especially for the systems that are redundantly instrumented, [26] proposed similar filters that77

jointly estimate states and inputs. However, it was mentioned that the unobservability in the system may78

lead to an estimation instability, for this augmentation strategy.79

[3] proposed a dual PF for exogenous force estimation for time invariant systems. [1] combined the80

parameters and the inputs together in a very large state vector in order to estimate the seismic excitation81

acting on a linear time invariant (LTI) system. The estimation of the input alongside the system matrices82

and states have been done by [38]. An analogous approach focusing on the estimation of the input statistics83

has been presented in [37] for systems with varying noise level. [15] presents an auto-covariance least square84

based method for estimating noise covariances online for linear time varying (LTV) as well as non-linear85

systems.86

[6] proposed an UKF based algorithm that employs a time varying auto-regressive model to jointly87

estimate the structural parameters and the unknown inputs. For time varying systems, [29] generalized88

their earlier proposal [28] of a smoothing algorithm for joint estimation of state, parameters and input.89

With a similar objective, [12] proposed a dual filtering approach in which the structural parameters, as90

augmented states, are jointly estimated with the response states conditioned on an estimate for the input91

force. Instead of an explicit reconstruction of the input forces, [34] estimated the input force model through92

the parameters of a Gaussian process within a Bayesian framework.93

Recently, for LTV systems with known system matrices, instead of estimating the input time histories94

[12, 29, 38], or its statistics [34], [43] developed a robust and stable linear state estimator unaffected by95

unknown inputs. This unknown input rejection approach is used in Kalman filter environment with linear96

measurements. With an intent to generalize earlier works of IPKF [42] for non-linear systems with an added97

robustness against unknown external disturbances, PF has been coupled with EnKF. While the authors’98

previous works [38] approached this input robustness through an explicit estimation of inputs online, the99
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present article rejects the effect of input variability through output injection for a modified state transition100

equation following [43].101

Rejection of unknown inputs is usually addressed by unknown input observers, with a rich literature on102

this topic (see [43] and references therein). While most unknown input observers are limited to linear systems,103

they do not consider parameter estimation in addition to state estimation. The methods for designing such104

unknown input observers cannot be applied to EnKF and PF. The method for unknown input rejection105

adopted in this paper is not limited to a particular unknown input observer design. It rejects unknown106

inputs by simply transforming the system model, so that state and/or parameter estimation algorithms107

can be applied as if the rejected unknown inputs no longer exist. This output injection has therefore108

been embedded within the EnKF environment to yield input-robust response state estimates for non-linear109

systems. In this process, the present article also overcomes the limitation of IPKF [38] of using linear110

measurements (e.g. acceleration) only, and extend its applicability to non-linear measurements (e.g. strain)111

as well. The novel contributions of the study can therefore be listed as: a novel noise robust Interacting112

Particle-Ensemble Kalman Filter (rIP-EnKF) algorithm in which, i) PF coupled with EnKF extends the113

reach of [38] to non-linear systems, ii) noise robust EnKF ensures rejection of unknown non-stationary114

excitation and finally, iii) linear and non-linear measurements can be dealt with, simultaneously.115

The proposed algorithm is predictor model-based that involves a precise model (preferably a calibrated116

FE model) for state propagation. At least a few accelerometer measurement channels are assumed to be117

available for perfect functioning of the algorithm. Also, sensor noise statistics corresponding to accelerome-118

ters and strain gauges are assumed to be available. The system dynamics is assumed to remain linear even119

after damage.120

It should be noted here, that stability of state estimation algorithms with unknown input rejection is121

studied in the literature of unknown input observers for LTI systems and for some affine parameter varying122

systems. To our knowledge, the only stability analysis of such algorithms for general LTV systems has been123

proposed in [43]. The generalization of this analysis to EnKF with output injection, applied in this paper to124

address non-linearities, is certainly an important and difficult task clearly outside of the scope of this paper.125

In the following, based on the non-linear state-space modeling detailed in Section 2, output injection is126

demonstrated in Section 3, followed by the detailed proposal in Section 4. The proposed approach is tested127

on a numerical simulation in Section 5.128

2. Modeling and system dynamics129

The stiffness and damping matrices of LTV mechanical system, i.e., K(θ(t))n×n and C(θ(t))n×n, are130

functions of time varying location based HIs represented by the time varying parameter vector θ(t)Nθ×1.131

The dynamics of such a system under seismic excitation, in state space domain, can be described by a time132

invariant mass matrix M, a time varying stiffness matrix K(θ(t)) and damping matrix C(θ(t)) [42]. Defining133
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Bc =

 0n×m

M−1


2n×m

, Ec =

 0n×r

τ


2n×r

and F(t) =

 0n×n In×n

−M−1K(θ(t)) −M−1C(θ(t))


2n×2n

, the134

dynamic equation [1] is defined as follows,135

ẋ(t) = F(t)x(t) + Bcu(t) + Ecä
g(t) (1)

where system state, x(t) =
[
q(t) q̇(t)

]T
2n×1

, with q(t) and q̇(t) representing the displacement and velocity136

responses. 0 and I are null and identity matrices of mentioned dimensions, respectively. u(t)m×1 is encom-137

passing both the process noise and the ambient force acting on the structure and will be collectively defined138

as process noise from now on. It is assumed that, u(t)m×1 has known statistics and can be modelled as an139

SWGN of constant covariance Qm×m, which takes into account both ambient forces and model uncertainty.140

äg(t)r×1 represents an unknown disturbance (e.g. seismic ground motion) which is an unknown arbitrary141

function of t, without any assumed statistical property. r is the number of channels for the disturbance142

input.143

The measurement y(t) can be a linear mapping (denoted here as linear measurement, yl(t), e.g., relative144

acceleration, displacement, etc.) or a non-linear mapping (denoted here as non-linear measurement, ynl(t),145

e.g., dynamic strain, etc.) of the state variable x(t). The adopted nomenclature for this measurement is in146

line with [25, 32, 33, 44]. A mix of yl(t) or ynl(t) is also possible. The present study adopts a combination147

of acceleration, as yl(t), and strain, as ynl(t), as measurements. The equation for the relative accelerations148

q̈p(t), at p accelerometers, can be written as,149

q̈p(t) = L [H(t)x(t) + Du(t)] + Läg(t) + wa(t) (2)

LTV measurement model, H(t)n×2n =
[
−M−1K(θ(t)) −M−1C(θ(t))

]
and LTI direct transmission ma-150

trix, Dn×m = M−1, maps (2n × 1) order states and (m × 1) order inputs to the corresponding n order151

acceleration response, q̈(t), at every dof (Degree of Freedom). Lp×r maps the direct impact of r distur-152

bance channels to p output channels. The location matrix Lp×n selects p measured dof s from n. wa(t)p×1,153

representing the measurement noise in p accelerometers, is an SWGN process of covariance Ra
p×p.154

In practice, for a base excited structure fitted with accelerometers patched onto its surface, the relative155

acceleration, q̈(t) / q̈p(t), can never be measured due to lack of fixed reference. Clearly, for such cases, the156

measured acceleration yl(t) is a summation of q̈p(t) with a contribution from the base acceleration äg(t).157

The measurement equation, with respect to measured acceleration, yl(t), can be presented as,158

yl(t) = q̈p(t)− Läg(t) = L{H(t)x(t) + Du(t)}+ wa(t) (3)

Sampled at discrete time instants indexed by k = 0, 1, 2, . . . , Equations (1) and (3) then lead to the discrete159
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time state-space model [1],160

xk = Fkxk−1 + Bkuk + Ekä
g
k;

ylk = Hkxk + Dkuk + wa
k

(4)

where Fk, Bk, Dk, Ek, Hk, xk, ylk and wa
k are the discrete time counterparts of the corresponding continuous161

time entities described above, obtained through zero-order-hold technique. The location matrix L has been162

incorporated into Hk, Dk and wa
k for simplicity.163

Following the time indexing scheme employed in [41], the inputs uk and ägk, sampled at the (k − 1)th164

time instant, take part in state transition from xk−1 (past) to xk (current) which are observed at the current165

time instant as ylk. Fk and Hk, defined at the current time instant, are functions of θk that remain constant166

over the time interval k − 1 to k. The process uncertainty is carried over to the kth instant and eventually167

ylk is contaminated with wa
k at the kth instant. The same time index formalism is also used in [38].168

Strain measurements are additionally included in this study for system health estimation. The motivation169

behind this consideration is the relatively low cost of strain gauges over accelerometers. Discrete time170

strain response, εxxk , denoted as discrete non-linear measurement ynlk , measured at s strain gauges, can be171

obtained by mapping the nodal displacements, qk (a subset of xk) through the non-linear strain-displacement172

relationship ynlk = f(xk) + wg
k; with wg

k being the sensor noise in strain gauges, modelled as an SWGN173

of covariance Rg
s×s. A specific case of strain-displacement function for an Euler-Bernoulli beam has been174

demonstrated in Appendix A.175

The strain response εxxk is then added into the state vector in order to estimate them alongside xk176

resulting in an extended state vector, Xk =
[
xk εxxk−1

]T
. With a non-linear state mutation function177

F̃k(Xk−1) =

Fkxk−1

f(xk−1)

 , where f(•) is the non-linear strain-displacement mapping mentioned earlier, the178

process and measurement equations can be redefined as,179

Xk = F̃k(Xk−1) + B̃kUk + ẼkSgk

Yk = H̃kXk + D̃kUk + Wk

(5)

where the linear system matrices have been defined as B̃k =

Bk

0

 , Ẽk =

Ek

0

, H̃k =

Hk 0p×s

0s×2nIs×s

,180

D̃k =

Dk

0

, and the random processes as Yk =

ylk

ynlk

, Uk =

uk

0

, Sgk =

ägk

0

, Wk =

wa
k

wg
k

.181
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3. Unknown input rejection from system dynamics182

While the process noise Uk can be well modeled as a random noise, typically with an assumed Gaussian183

distribution, the unknown input Sgk (e.g. seismic excitation) is totally arbitrary, without any prior statistical184

property, and not necessarily random. A major goal of this paper is to design an SHM approach robust to185

the unknown input Sgk without assuming or estimating its statistical properties. This study thus neither186

reconstructs the unknown input Sgk as in [12, 26, 27, 29, 38], nor estimates its statistics as in [15, 34].187

Following the ideas of [43], the proposed approach ensures robustness against the unknown input Sgk by188

rejecting its effect from the system dynamics by means of an output injection, as demonstrated in the189

following.190

Owing to the output equation in (5), the following holds true with an arbitrary bounded matrix Gk ∈191

R2n+s×p+s:192

0 = Gk

(
Yk − H̃kXk − D̃kUk −Wk

)
(6)

Setting,193

Lk = I2n+s −GkH̃k, (7)

the state equation in (5) is then rewritten as194

Xk = F̃k(Xk−1) + B̃kUk + ẼkSgk + Gk

(
Yk − H̃kXk − D̃kUk −Wk

)
= LkF̃k(Xk−1) + LkẼkSgk + LkB̃kUk + Gk(Yk − D̃kUk −Wk)

(8)

By choosing Gk so that the matrix Lk defined in (7) satisfies,195

LkẼk = 0, (9)

Equation (8) gets decoupled from Sgk and can be rewritten as,196

Xk = Fk(Xk−1) + BkUk + GkYk + Vk (10)

with Fk(X) = LkF̃k(X), Bk = LkB̃k−GkD̃k and Vk = −GkWk modelled as an SWGN process of variance197

Gk

Ra 0

0 Rg

GT
k . The unknown input Sgk has disappeared from Equation (10), owing to an appropriate198

injection of the known output Yk through Gk. For Equation (9) to be valid, Gk is chosen as: Gk =199

Ẽk(H̃kẼk)†, where † denotes Moore-Penrose Pseudo-inverse operation. It is assumed that the inverse of the200

square matrix ẼTk H̃
T
k H̃kẼk exists and is bounded, so that the Penrose Pseudo-inverse of H̃kẼk is upper201
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bounded. In the particular case of time invariant matrix product H̃Ẽ, it is sufficient that H̃Ẽ is full column202

rank. This assumption implies that p ≥ r.203

Notice that when no linear measurements are available (i.e., p = 0), Equation (6) yields Gk = 0, thus204

input rejection can not be achieved. With linear measurements only, rejecting Sgk is possible following the205

lines of [43]. With both linear/non-linear measurements, as in the current state transition function in (10),206

the rejection depends on the available number of linear measurements only with a condition of p ≥ r to207

ensure perfect robustness. Yet, due to the presence of non-linear measurements, the approach has to be208

modified since standard KF is no longer an option. Eventually, the part of Equation (10) (excluding the209

strain states) responsible for input rejection can be isolated as,210

xk = F̄kxk−1 + B̄kuk + Gx
kyk + v̄k (11)

where, F̄k = (I2n − Gx
kHk)Fk, B̄k = (I2n − Gx

kHk)Bk − Gx
kDk and v̄k = −Gx

kw
a
k. The new process211

noise v̄k in Equation (11) can still be defined as SWGN with an altered co-variance Gx
kR

a
kG

x
k
T , where212

(I2n −Gx
kHk)Ek = 0. Since the strain response states are non-linear explicit functions of the state subset213

xk, the induced robustness in xk will also ensure robustness in the strain response states. Notice that any214

linear or non-linear measurement can be used in place of accelerations or strains respectively. This paper215

thus extends the assumptions of [5] where only linear measurements are considered.216

4. Robust Interacting Particle-Ensemble Kalman Filtering217

To generalize the IPKF methods [37, 38] to non-linear systems, the present work replaces KF within218

IPKF with EnKF to handle the non-linear state estimation problem as in Equation (5). In the modified219

interacting particle-ensemble Kalman filter (IP-EnKF), a set of EnKFs runs within an envelop of PF.220

Within PF, each particle represents a parameter instance that defines the structural matrices to be used221

in the process equation of the EnKF. Thus, both filters interact to obtain the conditional estimates for the222

response states and parameters simultaneously.223

4.1. Envelop Parameter Filter224

Bayesian belief propagation requires an explicit analytical integration to be performed over the entire225

state domain. This task is simple with Gaussian states evolving through a linear state transition. The226

current parameter estimation problem is, however, non-linear for which an explicit analytical integration227

over the entire parameter space is not possible. PF attempts a particle approximation of this integration228

by representing and propagating the parametric uncertainty through a cloud of Np independent particles229

Ξk = [ξ1k, ξ
2
k, · · · , ξ

Np
k ] listing all individual particles as ξikNθ×1, where Nθ denotes the number of health230

parameters (HI) that are to be estimated. Additionally, no presumption on the stochastic nature of the231
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parameter states is enforced. The time evolution of these particles is a random perturbation around their232

current position ξjk−1 along with a forced shift towards the current particle mean estimate ξ̄k−1 [38],233

ξjk = αξjk−1 + N(δξk;σξ
k) (12)

where a Gaussian blurring is performed on ξjk−1 with a shift δξk = (1− α)ξ̄k−1 and a spread of σξ
k
1. α is a234

hyper-parameter that controls the turbulence in the estimation. The evolved particles are assigned a weight235

which gets updated on each iteration based on their likelihood, detailed later in this article.236

4.2. Nested robust state filter237

Unlike the typical EnKF formalism, the EnKF in the present study does not model the unknown input238

disturbance, Sgk , as a case of SWGN. Instead, rejection of this unknown input through output injection is239

approached (as detailed in Section 3) to gain robustness against Sgk . To accommodate this modification, the240

state and measurement equations within EnKF have been redefined accordingly.241

For any arbitrary jth particle ξjk among the Np parameter particles available at the kth time step, Ne242

state ensemble ({Xi,j
k|k}; i = 1, 2, · · · , Ne) are propagated over time using EnKF. Using a set of simulated243

SWGN processes Ui,j
k , Vi,j

k and Wi,j
k , with variances as defined in Section 3, the ith ensemble is propagated244

and subsequently observed as follows as per Equations (5) and (10),245

Xi,j
k|k−1 = F jk(Xi,j

k−1|k−1) + BjkU
i,j
k + Gj

kYk + Vi,j
k

Yi,j
k|k−1 = H̃j

kX
i,j
k|k−1 + D̃j

kU
i,j
k + Wi,j

k ;
(13)

The corresponding innovation for each of the ith ensemble can be obtained as a departure of predicted246

measurement Yi,j
k|k−1 from the actual measurement Yk as εi,jk|k−1 = Yk −Yi,j

k|k−1, with an ensemble mean247

εjk|k−1 = 1
Ne

∑Ne
i=1 ε

i,j
k|k−1. The cross-covariance between the state and the measurement prediction Cj,XY

k248

and the innovation covariance Sjk can be computed as suggested in [14],249

Cj,XY
k =

1

Ne − 1

Ne∑
i=1

{Xj
k|k−1 −Xi,j

k|k−1}{Y
j
k|k−1 −Yi,j

k|k−1}
T

Sjk = Cj,YY
k =

1

Ne − 1

Ne∑
i=1

{Yj
k|k−1 −Yi,j

k|k−1}{Y
j
k|k−1 −Yi,j

k|k−1}
T

(14)

where Xj
k|k−1 and Yj

k|k−1 are the ensemble mean estimates for the propagated states and predicted mea-250

surements, which can be obtained as: Xj
k|k−1 = 1

Ne

∑Ne
i=1 Xi,j

k|k−1 and Yj
k|k−1 = 1

Ne

∑Ne
i=1 Yi,j

k|k−1. The EnKF251

gain can further be obtained as Kj
k = Cj,XY

k (Sjk)−1. Finally, the state ensembles are updated as,252

Xi,j
k|k = Xi,j

k|k−1 + Kj
kε
i,j
k|k−1 (15)

1A+BN(µ;σ) means A+Bz where z follows N(µ;σ)
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Thus with EnKF, a set of prior state ensembles, i.e., {Xi,j
k−1|k−1} gets updated as {Xi,j

k|k} with the ensemble253

mean Xj
k|k without being affected by Sgk .254

Algorithm 1 rIP-EnKF algorithm

1: procedure rIP-EnKF(yk,Q,R
a,Rg) . Process and measurements noise covariances

2: At k = 0 initialize particles {ξj0} and state estimates: {Xi,j
0|0} and {Pi,j

0|0} . Initialization

3: for <each kth measurement yk> do
4: procedure rIP-EnKF({ξjk−1}, {X

i,j
k−1|k−1

}, {Pi,j
k−1|k−1

})

5: for <each particle ξjk ∈ {ξjk}> do

6: evolve {ξjk−1} → {ξjk} . Particle evolution , as per Equation (12)

7: Define system matrices Fk(θk),Hk(θk) with θk = ξjk and Bk,Dk,Ek

8: procedure Robust Ensemble Kalman Filter(ξjk) . For jth particle

9: Define Gk, F̄k, B̄k and v̄k and realize ui
k from N (0, Q)

10: for <each ensemble Xi,j
k−1|k−1

∈ {Xi,j
k−1|k−1

}> do

11: Predict Xi,j
k|k−1

and Yi,j
k|k−1

as per Equation (13)

12: end for
13: Calculate Xj

k|k−1
, Yj

k|k−1
, εi,j

k|k−1
, and εj

k|k−1
as per Section 4.2

14: Perform correction as per Equation (15)
15: end procedure
16: end for
17: procedure Particle re-sampling({ξjk})

18: Calculate w(ξjk) for each ξjk ∈ {ξjk} and re-sample . see Equation (17)

19: Calculate, Xk|k and parameter estimate, ξ̄k . see Equation (18)
20: end procedure
21: end procedure
22: end for
23: end procedure

4.3. Particle approximation255

Since Xj
k|k is conditioned on particle ξjk, the likelihood of ξjk, i.e., L(ξjk) = p(Yk|θk = ξjk) can thus be256

defined using the ensemble mean of innovation, εjk|k−1, and the error covariance, Sjk, as,257

L(ξjk) = p(Yk|θk = ξjk) = (2π)−(p+s)/2|Sjk|
−1/2 exp

− 1
2 ε
j
k|k−1

T
Sjk
−1
εj
k|k−1 (16)

Using L(ξjk), the normalized updated weight for ξjk can be obtained as,258

w(ξjk) =
w(ξjk−1)L(ξjk)∑Np
l=1 w(ξlk−1)L(ξlk)

(17)

leading to the particle approximation for state and parameter estimates as,259

Xk|k =

Np∑
j=1

w(ξjk)Xj
k|k and ξ̄k =

Np∑
j=1

w(ξjk)ξjk. (18)

The proposed algorithm is detailed in a pseudo-code in Algorithm 1.260
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5. Numerical experiment261

The case study is built from a numerical FE model of a 3D two storey - one bay fixed base concrete262

frame structure consisting of sixteen members and 72 dof s (48 free dof s)(cf. Figure 1). Each frame member263

is modelled with twelve dof s Euler Bernoulli beam element as detailed in Figure A.10 in Appendix A. The264

length and cross section for each member are assumed to be 3m and 0.3m× 0.3m, respectively. The beam265

material is assumed to have a modulus of elasticity of 30 GPa, a modulus of rigidity of 10 GPa and a density266

of 2500 kg/m3. This frame is excited by the true recorded data of the bi-directional El-Centro earthquake267

ground motion (May 18, 1940 in CA, USA, direction North–South and East-West) (Data source: http:268

//peer.berkeley.edu/research/motions/). In addition, SWGN and/or non-stationary WGN (NSWGN)269

have been applied on all dof s throughout the simulation time, detailed later in the manuscript.270

Figure 1: Schematic diagram of the sixteen member numerical frame

Strain measurements are collected from the strain gauges patched on to the top and the vertical external271

surfaces for the beams and the vertical external surfaces of the columns at their midpoints. In addition,272

horizontal accelerations are recorded at a set of nodes (cf. Figure 1). Various combinations of strain gauges273

and accelerometers have been tried, with a maximum of 32 strain gauges (two for each of 16 members) and274

8 accelerometers. Responses are sampled at a fixed sampling frequency of 50 Hz for 61.44 seconds to collect275

the response time histories of length 3072. Noise contamination levels are defined in terms of signal-to-noise276

ratio (SNR) in which the noise power of an SWGN has been scaled with respect to the structural response277

against an SWGN vibration of variance 100 N. Various noise levels corresponding to different SNRs have278

been experimented with.279

A numerical reduction in elasticity is considered as damage for the simulations. To maintain consistency,280
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member 9 has been consistently assumed as damaged. A pool of 2000 particles are chosen for PF while281

50 ensembles are chosen for EnKF. A better precision in estimation can be obtained with a bigger particle282

pool or a bigger set of ensembles, which however comes at a higher computational cost. The particle pool283

size and other tuning parameters relevant to the particle evolution have been standardized in [37, 38, 42].284

For EnKF, 50 ensembles have been found to be sufficient with no significant loss in precision. A Gaussian285

noise model, N (1, 0.02), has been chosen as the initial distribution for the parameter particles with α chosen286

as 0.98 (cf. Equation (12)). A lag has been introduced between the arrival of earthquake and the damage287

occurrence to mimic the reality.288

The member health is quantified using HIs. mHIs corresponding to m individual members are estimated289

as individual elements of the m× 1 order parameter vector θk. With a damage induced in the structure in290

terms of reduction in the initial elasticity Ek = {E1
k E2

k · · ·Emk } of its members, the effect of HIs as θk on291

member elasticity can be defined as,292

Edk(θk) =< Ek · θk > (19)

where Edk(θk) denotes the reduced elasticity of the potentially damaged members and < · > denotes the293

element-by-element multiplication operator. Since the structural stiffness K(θk) is a linear function of the294

member elasticity Edk(θk), HIs monitor the member health in terms of the ratio of the final to the initial295

member stiffness within a range of 0 to 1, where 1 and 0 signify 0% and 100% damage levels. However,296

instead of a reduction in elasticity, any other definition for damage can be applied. The impact of HIs to297

the corresponding damaged stiffness is however required to be mapped. For instance, HI = 0.25 is roughly298

equivalent to a 40% loss in beam depth for a conventional rectangular beam, which is practical for a real299

world scenario.300

5.1. Scenario description301

A numerical investigation has been performed for undamaged, and therefore linear time invariant (LTI),302

systems with constant system matrices. Further, linear time varying (LTV) systems are also investigated303

for which the system matrices are varying because of the induced damage. These LTI and LTV systems are304

experimented in combination with three forcing types (SWGN, NSWGN and earthquake (EQ)) with both305

robust rIP-EnKF and non-robust IP-EnKF algorithms. This leads to 8 different scenarios (C1-C8) that have306

been tested to validate the proposed method’s relative efficiency in estimating damage over the non-robust307

approach: i) LTI under SWGN and EQ (C1/2-LTI-EQ); ii) LTV under SWGN (C3/4-LTV-SWGN); iii) LTV308

under NSWGN (C5/6-LTV-NSWGN); and finally, iv) LTV under SWGN and EQ (C7/8-LTV-EQ), with309

odd and even numbered cases estimated with non-robust (NR) and robust (R) approaches, respectively. The310

assumed SWGN of variance 100 N mimics the ambient excitation of known statistics. NSWGN is modelled311

as two consecutive SWGNs (first one between 0-5 secs, second one between 5-62 secs) of variance 100 N and312
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1000 N. The bi-directional El centro earthquake excitation is adopted as EQ. The corresponding seismic313

excitation is presented in Figure 2. SWGNs are applied from the initiation of the simulation while NSWGN314

and EQs are introduced at the fifth second followed by damages (if any) at the eighth second. For all the315

cases, the responses are contaminated with SWGN of different SNR levels. With rIP-EnKF and IP-EnKF316

algorithms, denoted as R and NR, the case names in the figure are defined using the following formalism317

<case number>-<system>-<forcing>-<damage type>-<member number>-<estimation algorithm>.318

Figure 2: El centro seismic excitation in North-South (NS) and East-West (EW) direction

Further additional case studies (C9-C12) are performed to investigate the proposed method’s sensitivity319

to measurement noises through a numerical Noise Sensitivity Test (NST). The following eight case studies320

(C13-C20) investigate the effect of two sensor combinations (SC1 and SC2) under four different noise con-321

tamination levels (1/2/5/10% SNR). In this regard, additional results of ten numerical experiments (C-SC1322

– C-SC10) corresponding to ten other sensor combinations (SC1-SC10) are presented to explicitly demon-323

strate the effect of sensor densities under different particle and ensemble pool sizes. Case studies C21-C22324

demonstrate the capability of the proposed approach in detecting multiple damages while C-23 is included325

to illustrate the stability of the algorithm under a prolonged usage. A tabular description of each of the326

above mentioned scenarios has been given in Table 1 for better understanding. Each scenario has further327

been detailed in the subsequent sections.328

5.2. Robust vs Non-robust IP-EnKF approach329

The relative advantage of rIP-EnKF over the non-robust IP-EnKF is demonstrated through a compara-330

tive study presented in Figure 3. For the sake of brevity, HI estimations are presented for two members only,331

one damaged (member 9) and one undamaged (member 1). Cases C1/2-LTI-EQ (Figure 3a) present that332

both IP-EnKF and rIP-ENKF perform equally good with the later being a little more stable. Further, in333

cases C3/4-LTV-SWGN (Figure 3b), better efficiency with rIP-EnKF becomes more evident. Till this phase,334

it is safe to conclude that neither of these two algorithms suffers from variations in the system matrices alone.335

Non-robust IP-EnKF starts performing poorly once the temporal variation is introduced in the input forcing336

in the case studies C5-LTV-NSWGN (cf. Figure 3c) and C7-LTV-EQ (cf. Figure 3d). For C5-LTV-NSWGN,337

the solution is not even converging (cf. Figure 3c), while for C7-LTV-EQ, the convergence is unstable and338
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Table 1: Details of numerical case studies

Objective Case name Algorithm System Forces dl SNR Ns : Na

IP-EnKF
vs

rIPEnKF

C1-LTI-EQ IP-EnKF LTI EQ+SWGN NA 1 32:8
C2-LTI-EQ rIP-EnKF LTI EQ+SWGN NA 1 32:8
C3-LTV-SWGN IP-EnKF LTV SWGN 9 1 32:8
C4-LTV-SWGN rIP-EnKF LTV SWGN 9 1 32:8
C5-LTV-NSWGN IP-EnKF LTV SWGN+NSWGN 9 1 32:8
C6-LTV-NSWGN rIP-EnKF LTV SWGN+NSWGN 9 1 32:8
C7-LTV-EQ IP-EnKF LTV EQ+SWGN 9 1 32:8
C8-LTV-EQ rIP-EnKF LTV EQ+SWGN 9 1 32:8

Noise
sensitivity

test

C9-NST rIP-EnKF LTV EQ+SWGN 9 1 32:8
C10-NST rIP-EnKF LTV EQ+SWGN 9 2 32:8
C11-NST rIP-EnKF LTV EQ+SWGN 9 5 32:8
C12-NST rIP-EnKF LTV EQ+SWGN 9 10 32:8

Sensor
combination

test

C13 rIP-EnKF LTV EQ+SWGN 9 1 32:4
C14 rIP-EnKF LTV EQ+SWGN 9 2 32:4
C15 rIP-EnKF LTV EQ+SWGN 9 5 32:4
C16 rIP-EnKF LTV EQ+SWGN 9 10 32:4
C17 rIP-EnKF LTV EQ+SWGN 9 1 32:8
C18 rIP-EnKF LTV EQ+SWGN 9 2 32:8
C19 rIP-EnKF LTV EQ+SWGN 9 5 32:8
C20 rIP-EnKF LTV EQ+SWGN 9 10 32:8

Double
damage

C21 rIP-EnKF LTV EQ+SWGN 1 & 5 1 32:8
C22 rIP-EnKF LTV EQ+SWGN 3 & 7 1 32:8

Stability
check

C23 rIP-EnKF LTV EQ+SWGN 9 1 32:8

Ns and Na denote the number of strain gauges and accelerometers, respectively. dl and SNR denote damaged element/s and
signal-to-noise ratio for the given case.

(a) LTI system with SWGN and EQ inputs (b) LTV system with SWGN input

(c) LTV system with NSWGN input (d) LTV system with seismic excitation

Figure 3: Comparative study between IP-EnKF vs rIP-EnKF under different system (LTI/LTV) and input (Stationary/non-
stationary/seismic) conditions

not prompt. It takes more samples than rIP-EnKF to approach the actual value of the parameter. The339

evolution is also not stable after convergence (cf. Figure 3d). Thus, the non-robust algorithm fails to handle340

this variation at the onset of change in the input statistics. Putting the same dataset through rIP-EnKF for341

C6-LTV-NSWGN (Figure 3c) and C8-LTV-EQ (Figure 3d), prompt and precise estimations are achieved.342

The estimation history for C8-LTV-EQ is further demonstrated in terms of particle dispersion and particle343
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histogram in Figure 4.344

Figure 4: Temporal evolution of particles for damaged and undamaged members: Variation of standard deviation (top) and
particle histogram (bottom)

5.3. Robustness against measurement noise345

The proposed algorithm is tested for its robustness against measurement noise through four case studies346

corresponding to four increasing SNR levels (1/2/5/10% SNR) while keeping the other parameters (damage347

location, extent and forcing) similar to that taken for the case study C8. The earthquake signal is introduced348

at the fifteenth second of simulation while damage is initiated at the twentieth second. Figure 5 presents349

the results of the noise sensitivity test for four case studies (C9-NST – C12-NST) corresponding to the four350

SNR levels adopted. As expected, with the increasing noise levels, the estimation promptness and precision351

gradually degrades (cf. Figure 5). Yet, the algorithm is observed to be efficient till SNR noise level of352

5%, beyond which (10% SNR), some undamaged elements are falsely identified as slightly damaged. This353

illustrates the limiting noise contamination level for the algorithm to work precisely.354

Figure 5: Measurement noise sensitivity of rIP-EnKF algorithm
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5.4. Effect of measurement density and measurement type combinations355

From a theoretical point of view, it can be perceived that robustness against input forcing depends on356

the number of available linear measurement channels (acceleration in this case) while the detection precision357

is governed by the overall instrumentation density. Positioning of sensors with respect to damage locations,358

power in the recorded signal with respect to noise, size of particle and/or ensemble pools also play major359

roles in defining detection certainty. Thus, judging the detection ability of the proposed algorithm merely360

by sensor density may not be proper or practical. Yet a few test cases (C-SC1–C-SC10) are simulated for361

different sensor combinations and particle and ensemble pool sizes. The results are presented in Table 2.362

It is evident from Table 2, the proposed method efficiently estimates the damage location and severity363

even with reduced sensor densities. It can also be observed that a lack of sensors can be complimented364

with proper positioning of the sensors relative to the damage location and populating the ensemble and/or365

particle pools. Additionally, HI estimation for two case studies (Cases C13-SC11 – C20-SC12) corresponding366

to two sensor combinations (SC11: 32 strain gauges and 4 accelerometers and SC12: 32 strain gauges and 8367

accelerometers) (other details are same as taken for C8) are presented in Figure 6a and 6b, respectively. These368

case studies investigate the performance of rIP-EnKF under varying noise contamination levels (1/2/5/10%369

SNR) under reduced instrumentation. Evidently, it can be observed that with reduced instrumentation, the370

algorithm’s weakness to measurement noise increases.371

(a) Strain gauge vs Accelerometer ratio 32:4 - SC11 (b) Strain gauge vs Accelerometer ratio 32:8 - SC12

Figure 6: Performance of the algorithm under varying ratio of strain gauge and accelerometers

Table 2: Efficiency of varying ratio of strain gauge and accelerometers

No. Ns Na Ne Np D11 Acc No. Ns Na Ne Np D11 Acc
C-SC1 16 4 50 2000 X 99.4% C-SC6 2 1 200 2000 X 94.4%
C-SC2 16 2 50 2000 X 99.4% C-SC7 4 1 100 2000 X 88.9%
C-SC3 16 1 50 2000 X 98.8% C-SC8 4 2 100 2000 X 94.4%
C-SC4 8 4 50 2000 X 73.3% C-SC9 4 1 75 2000 X 88.9%
C-SC5 8 2 75 2000 X 94.4% C-SC10 4 2 100 3000 X 96.1%

Ns, Na, Ne, Np denote the number of strain gauges, accelerometers, ensembles and particles, respectively. D11 and Acc
denotes true detection and corresponding accuracies.
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(a) Double damage detection study - DD1 (b) Double damage detection study - DD2

Figure 7: Performance of the algorithm to detect multiple damage location and stability

5.5. Detection of multiple damage scenario372

Multiple damage scenarios are also tested with the proposed algorithm through two case studies (C21-373

C22). Figure 7 presents two such cases with damage at two locations − case study C21-DD1: with damages374

located at 1&5 (Figure 7a) and case study C22-DD2: with damages located at 3&7 (Figure 7b). A separate375

case to check the stability of the algorithm under prolonged usage is also undertaken in C23-SC. The forcing376

used in C9-NST – C12-NST is also used for the above mentioned cases. The algorithm performs promptly and377

precisely in detecting multiple damages (cf. Figure 7). Case study, C23-SC, tests the proposed algorithm’s378

stability for a period of 388 seconds against possible error accumulation or divergence. The algorithm is379

observed to be stable for the mentioned duration showing no trend or significant turbulence (cf. Figure 8).380

Figure 8: Stability check of the algorithm

The limiting value of damage that can be tracked with the proposed algorithm is investigated next. The381

results are presented in Figure 9 corresponding to four different damage levels (75%, 30%, 20% and 10%).382

It has been observed that rIP-EnKF is consistent in detecting the damage occurrence even for 10% damage383

level (HI = 0.9). The precise estimation of the damage extent should however be limited to 20% damage384

levels corresponding to HI=0.80.385

Overall, the proposed algorithm took about 5448 seconds of cpu time to process a 1024 long time series,386

with 2000 particles and 50 ensembles for any case study discussed in this article. The employed computation387

system is equipped with Intel(R) Xeon(R) Silver 4210 CPU @ 2.2GHz 2.19GHz (2 processors and 20 physical388

cores with multi threading capability) with 64 GB RAM.389

17



(a) Damage extent study - 75% (b) Damage extent study - 30%

(c) Damage extent study - 20% (d) Damage extent study - 10%

Figure 9: Performance of the algorithm to detect various damage levels

6. Conclusions390

This paper has presented a Bayesian filtering-based structural health monitoring strategy robust to391

unknown and arbitrary input forcing using a mix of linear (acceleration) and non-linear (strain) sensor392

measurements. The considered framework leads to a non-linear estimation problem beyond the capability of393

classical Kalman filtering. The proposed algorithm is thus based on an interacting filtering strategy coupling394

Ensemble Kalman filters (EnKF), to track the evolution of the system states, with a Particle filter (PF), to395

track the changes in the system parameters due to damage. The input robustness is achieved through an396

output injection technique embedded within the EnKF formalism. The efficacy, robustness, stability and397

sensitivity of the proposed approach is validated numerically.398
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Appendix A. Strain-diaplcement function for Euler-bernoulli beam494

Figure A.10: Assumed Euler-Bernoulli Beam element with local and global degrees of freedom

A Strain-displacement mapping using FE model is performed using 3D Euler-Bernoulli beam elements495

schematically drawn in Figure A.10. The transverse deflection, w(x, t) at a distance x along beam orientation496

(i.e., Xl), with its components, wy(x, t) and wz(x, t) along Yl and Zl, can be defined as the interpolation of497

the nodal displacements as,498

w(x, t) =

wb(x, t)
wa(x, t)

 =

wby(x, t)

wbz(x, t)

+

way(x, t)

waz (x, t)

 = ψ(x)ql(t) (A.1)

ql(t) =
[
qex qey qez qeθx qeθy qeθz qfx qfy qfz qfθx qfθy qfθz

]T
can be retrieved from the nodal dis-499

placements, q(t), defined in Global Coordinate System (GCS) through coordinate transformation as ql(t) =500

Tq(t) where T is the coordinate transformation matrix. ψ(x) is the interpolation function constituted with501

the associated shape functions. Similar to displacement, the slope φb(x, t) and curvature κb(x, t) at x at time502

t due to bending can be obtained as, φb(x, t) = ψb(x)′ql(t) and κb(x, t) = (1 + φb(x, t)
2
)

3
2 {ψb(x)′′ql(t)}−1.503

The curvature, measured through longitudinal strains, εxx(x, t)), is eventually a function of ql(t) or q(t).504

q(t) being a subset of the state variable x(t) yields the non-linear mapping εxx(x, t) = f(x(t) to describe505

strain-displacement relationship.506
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