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Figure 1: Progressive discrete domain for surface reconstruction. Left: input point set. Right: our approach jointly refines and optimizes the
implicit function (bottom) and its discretized domain (a 3D Delaunay triangulation) around the refined isosurface (top). In such a progressive
approach, the implicit solver is used iteratively, as a means of consolidating hypotheses emitted in previous iterations. Top: the isosurface and
only the set of tetrahedra intersected by the isosurface are shown. Bottom: the implicit function (piecewise-linear over the 3D triangulation)
is depicted on the facets intersected by a clipping plane.

Abstract

Many global implicit surface reconstruction algorithms formulate the problem as a volumetric energy minimization, trading
data fitting for geometric regularization. As a result, the output surfaces may be located arbitrarily far away from the input
samples. This is amplified when considering i) strong regularization terms, ii) sparsely distributed samples or iii) missing
data. This breaks the strong assumption commonly used by popular octree-based and triangulation-based approaches that the
output surface should be located near the input samples. As these approaches refine during a pre-process, their cells near the
input samples, the implicit solver deals with a domain discretization not fully adapted to the final isosurface. We relax this
assumption and propose a progressive coarse-to-fine approach that jointly refines the implicit function and its representation
domain, through iterating solver, optimization and refinement steps applied to a 3D Delaunay triangulation. There are several
advantages to this approach: the discretized domain is adapted near the isosurface and optimized to improve both the solver
conditioning and the quality of the output surface mesh contoured via marching tetrahedra.

CCS Concepts
e Computing methodologies — Mesh geometry models; Point-based models;
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1. Introduction

Assuming input measurement data provided as an unorganized
point set, surface reconstruction is the process of recovering shapes
or entire scenes that fit these data, while dealing with defect-laden
or missing data. The reconstruction problem is inherently ill-posed
as an infinite number of shapes may fit the data. The common wis-
dom consists of reducing the search space, i.e. regularizing the
problem via adding predetermined priors deriving from assump-
tions about geometry, semantics, acquisition, or structure. A geo-
metric prior may relate to trivial topology, absence of boundaries,
canonical shape primitives or smoothness. Furthermore, data fit-
ting is only half the problem, as satisfactory complexity-distortion
tradeoffs are also sought after. In addition, other properties are de-
sirable for downstream use of the reconstructed discretized surfaces
(often triangle meshes), such as well-shaped elements and adaptive
density.

Global implicit surface reconstruction methods commonly hinge
upon global solvers (possibly multi-scale). These solvers, com-
monly tailored to discrete differential operators, yield implicit func-
tions that trade data fidelity for geometric prior matching, where the
prior often favors closed smooth surfaces. Such global solvers re-
quire discretizing both the 3D domains where the implicit function
is defined and the aforementioned operators, and contouring the
implicit function to extract the final meshes. Ideally, the above dis-
cretization should provide (1) just-enough degrees of freedom near
the reconstructed surface for the solver, (2) well-shaped volumet-
ric elements everywhere to ensure good numerical conditioning for
the solver, (3) geometric regularity when inferring smooth surfaces,
and (4) well-shaped elements of the output surface mesh.

1.1. Previous Work

Surface reconstruction has been explored extensively during the
past decades and a wide range of approaches tackle different set-
tings [Dey06, BTS*17, MWA*13]. We restrict our review to im-
plicit global reconstruction methods with a focus on discretization
issues and a mention to coarse-to-fine reconstruction approaches.
As our progressive approach utilizes tetrahedron mesh optimiza-
tion and refinement principles, we also review the related work.

Implicit Surface Reconstruction. A general implicit surface is
defined as the level-set of a scalar function { f(x),x € R*}. The ex-
isting approaches mostly differ in the way they (1) define the scalar
function with respect to the inferred surface (e.g., smoothed indi-
cator [KBHO6], signed distance [CT11], signed robust Wasserstein
distance [MdGD™*10], or occupancy function [MON*19]), (2) de-
fine the objective function (often trading data fidelity for regularity)
and (3) solve for it (Poisson equation, generalized eigenvalue solver
or machine learning). Other main differences include the choice of
level-set and the method used for contouring it (marching cubes,
marching tetrahedra, dual contouring, Delaunay refinement).

In the aforementioned methods, an important aspect is the type
of domain discretization used for representing the implicit func-
tion. The popular Poisson reconstruction method and its vari-
ants [KBH06, KH13, KCRH20] refine an octree before solving. It
utilizes smooth basis functions defined on the octree elements, and

requires diffusing the input normals in order to compute the diver-
gence operator. As smooth functions and normal diffusion tend to
oversmooth, the screened variant [KH13] adds a data fitting term to
the objective function, to favor that the isosurface passes through
the data points. On areas with missing data, such approaches can
generate spurious surfaces and coarse output meshes where the
cells of the octree are not refined. A recent variant [KCRH20] adds
a close envelope and constraints the solver to generate level sets
only inside this envelope, which significantly reduces the unde-
sired spurious surfaces. The smooth signed distance (SSD) recon-
struction approach proposed by Calakli and Taubin [CT11] also
utilizes an octree before solving, but does not require diffusing
the normals or discretizing the divergence operator. A spectral ap-
proach [ACTDO07] removes the need for oriented point sets as input
points, at the cost of solving for a generalized eigenvalue problem
instead of a simpler linear system. It uses a 3D Delaunay triangu-
lation as domain discretization, refined before solving as in previ-
ous work. The signing-the-unsigned approach [MdGD*10] signs
an outlier-robust distance function. It performs an adaptive domain
discretization by using an octree only for initialization, combined
with Delaunay refinement before solving.

In summary, most common implicit-based approaches rely upon
a predetermined domain discretization: they determine a data struc-
ture (often an axis-aligned bounding volume hierarchy such as an
octree) from the local density of input samples, a resolution for
the reconstructed surfaces, and then utilize a global solver to infer
an implicit surface. Refining the data structure a priori, and only
near the input samples, can either overlook areas where the solver
completes missing data or over-refine where the reconstructed sur-
face is flat. In addition, the axis-aligned nature of the above data
structure is too rigid: it produces output meshes that may contain
badly shaped elements and the overall approach is not intrinsi-
cally invariant to rotations. We are thus left with a chicken-and-
egg problem, as knowing the reconstructed surface requires solv-
ing, and ideal solving conditions require knowing the final recon-
structed surface. The difficulty of sequencing actions where each
seems to depend on others calls for a progressive approach in which
the solver is used iteratively, as a means of consolidating hypothe-
ses emitted in previous iterations, and interleaved with (isosurface-
driven) optimization and refinement of the discretization. Several
approaches already proceed coarse-to-fine during reconstruction
(e.g., [OBA*03, SLS™06] to cite a few), but do not jointly refine
and optimize both the implicit function and its representation do-
main, where optimize should be understood by adapting the domain
geometry around the isosurface.

Tetrahedron Mesh Optimization. Quality meshes commonly re-
fer to tetrahedron elements with controlled size and shape, which
offer both accuracy and conditioning for discrete operators such
as Laplacian, Hessian or divergence [She02]. Some approaches
optimize via local topological transformations [LCS09, CZZ*17].
Other approaches relocate the vertices, either locally [JWZ11] or
globally [VWP13]. Klingner and Shewchuk use an even broader
repertoire of mesh transformations [KI1i08]. These approaches are
insufficient for our specific context where both the discretized do-
main (shape of tetrahedra) and the discretized isosurface (shape
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of triangles extracted via marching tetrahedra) must be optimized
jointly.

Tetrahedron Mesh Refinement. Mesh refinement is a relevant
paradigm for improving the complexity-distortion tradeoff of fi-
nite element simulations [BKK?20]. Mesh adaptation requires es-
timating the simulation error [GBA*17]. Delaunay refinement is a
popular greedy refinement method for isotropic mesh generation
and shape approximation [CDS13,Si15]. The Delaunay refinement
paradigm is also relevant for discretizing the 3D domain in our con-
text, by inserting circumsphere centers of tetrahedra. However, we
also need a specialized refinement scheme around the inferred sur-
face (discretized by marching tetrahedra), tailored to preserve the
shape of isosurface triangles.

1.2. Positioning and Contributions

Departing from most implicit surface reconstruction methods that
discretize the domain a priori based on the input data, we propose
an output-sensitive progressive coarse-to-fine approach that jointly
refines the implicit function and its representation domain, while
discovering its isosurface (see Figure 1). The motivation for such an
approach stems from the observation that the global surface recon-
struction problem is two-fold: the domain should be adapted both
for the solver to capture adequately the variations of the solution
as a scalar field ({f(x),x € R3}) and then specifically around an
isosurface to be extracted (without loss of generality, S = f -1 (0)).
Dedicated refinement and optimization approaches must be devel-
oped for these two entangled sub-problems. Our method is intended
to deal with implicit reconstruction methods that can be discretized
on tetrahedron meshes.

Our key insights and technical contributions are:

o The domain discretization should be of high quality, so that the
differential operators used to solve for the implicit function can
perform reliably. Meanwhile, the discretization should be eco-
nomical, to allow for fast updates of the solution between two
iterations. We contribute a sparse refinement scheme that allo-
cates degrees of freedom where most needed.

e The local discretization density should be adapted to the target
surface: denser near the isosurface, and even denser where it ex-
hibits small local feature size. Without prior knowledge about the
output surface (i.e., the locus where { f(x) = 0}), rendering pre-
allocation of an adaptive structure around input samples inade-
quate, we adopt a progressive approach that allocates additional
degrees of freedom that are necessary to improve the accuracy
and quality of the isosurface.

o The isosurface should be of high-quality. Given a current isosur-
face contoured by marching tetrahedra, we optimize the tetrahe-
dron mesh so that the isosurface intersects the tetrahedra prefer-
ably through their edge midpoints. Our approach differs from
the recent contribution from Hass and Trnkova [HT20] in that
we also optimize for the shape of tetrahedra.

e Our method is intended to be generic, making little assump-
tions about the implicit function, solver and surface extraction
method, so that existing solvers can be used as black boxes. We
demonstrate the relevance of our method by instantiating it on
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the Poisson, smooth signed distance (SSD) and spectral recon-
struction methods.

2. Background
2.1. Implicit Surfaces

An implicit surface, referred to as isosurface in the sequel, is de-
fined as the level-set of a function f : R3 — R. Some conditions
such as non-vanishing gradients are required to ensure that the iso-
surface is a surface. In our context where we perform a progressive
implicit reconstruction of surfaces from point samples, we distin-
guish between three main cases, locally: (1) The isosurface passes
near the input points: the original objective of faithfully approxi-
mating the input data is met; (2) The isosurface locally passes far
away from the input points: either it fills a hole or the domain dis-
cretization is too coarse, or a high regularization term creates a high
tension of the isosurface; (3) Some points are isolated, i.e., not lo-
cally approximated by the isosurface: these points are outliers or
the domain discretization is too coarse.

Once the implicit function is computed, the isosurface can be
contoured by the marching tetrahedra approach. Since the function
is linearly interpolated inside each tetrahedron, in general (omit-
ting degenerate cases), it extracts linear surface elements (quadran-
gles or triangles) inside the tetrahedra whose vertices have function
values with opposite signs. The isosurface is thus a hybrid quad-
triangle surface mesh.

2.2. Discretization

What is a good tetrahedron discretization for the global implicit
reconstruction problem is a central question in our context. The
tetrahedron elements should be well-shaped to ensure a good con-
ditioning of the solver. In addition, the 3D triangulation should ex-
hibit denser elements only near the isosurface, where the inferred
surface has a small local feature size (equivalently: large curva-
ture, small thickness or separation distance). Furthermore, the qual-
ity of the isosurface mesh elements has a close relationship with
the discretized domain used to represent the implicit function, for
the tetrahedra intersecting the isosurface. Figure 2 depicts four dif-
ferent discretizations of an implicit function approximating a unit
sphere, and the resulting isosurface meshes. The implicit function
is defined analytically in order to eliminate the solver’s influence,
and all quadrangles are triangulated so as to maximize the smallest
triangle angle. This illustrates that contouring well shaped tetra-
hedron elements through their edge midpoints lend to isosurface
meshes containing mostly high-quality triangles, with controlled
size. To summarize, we seek a discretized domain whose elements
are well shaped, denser near detailed isosurfaces and sparser far
away, with one layer of well shaped tetrahedra intersecting the iso-
surface in their edge midpoints.

3. Method
3.1. Overview

Our algorithm takes as input a 3D point set with oriented or unori-
ented normals (depending on the implicit solver) and generates as
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Figure 2: Contouring a discretized domain. (a) A “biased” trian-
gulation is generated by two layers of randomly-generated vertices
located on two concentric spheres with inner radius 0.95 and outer
radius 1.15. (b) A noisy yet unbiased triangulation is generated by
two layers of random vertices sampled on two concentric spheres
(outer radius 1.1, inner radius 0.9). The resulting isosurface con-
tains badly shaped triangles as well. (c¢) A biased triangulation
is generated by two layers of evenly-placed vertices sampled on
two concentric spheres. Although the tetrahedra are well shaped
(isotropic, i.e., nearly-equilateral), the isosurface mesh contains
many skinny triangles which correspond to triangulated quadran-
gle elements connecting well shaped triangles of different size due
to the biased triangulation. (d) A unbiased triangulation is gener-
ated by two layers of evenly-placed vertices sampled on two con-
centric spheres. Most triangles of the isosurface are well shaped
and uniformly sized.

output a discretized reconstruction domain following the pipeline
shown in Figure 3. We assume that the point set is sampled around
a closed 2-manifold smooth surface, i.e., the boundary of a solid.
Some measurement noise as well as missing data are tolerated.

We aim at generating and adapting a tetrahedron mesh discretiz-
ing the domain, serving as a support of an implicit function com-
puted via a user-defined implicit surface reconstruction solver, from
which we extract an isosurface in the form of a surface triangle
mesh. Possible choices for the solver include Poisson (screened or
not) [KBHO06, KH13], smooth signed distance [CT11] and spec-
tral [ACTDO7].

Our algorithm outputs an isosurface that fits well the input data
set while exhibiting the following properties: (1) It represents an
approximation of the smooth inferred surface, with a uniform or
adaptive sizing; (2) It completes missing data (holes) with piece-
wise linear approximations of smooth surface patches, in accor-
dance to the regularity requested for the solver; and (3) Its triangles
are well shaped, i.e. isotropic.

A main user parameter of our algorithm is the aforementioned
sizing field, which provides indirect control over the final mesh
complexity. In the uniform case, a target triangle area is required.
In the adaptive case, a variable sizing field is required. We propose
such a sizing field based on a local curvature estimate.

Notations. The input point set is denoted by X =
{(p1,np,)s---,(pn,npy)}. The loose bounding 3D volume
mesh is denoted by 7 = {V,E,T} where V = {vy,...,vm}
denotes the vertex set, E = {ey,...,ep} denotes the edge set and
T ={11,...,tp} denotes the tetrahedron set. The implicit function
is denoted by a piecewise linear scalar function f : R? = R defined
onto 7 and the isosurface is denoted by a set of oriented triangles
S = f710) = {(a1,na,),...,(ag,naz)}. A uniform (constant)
sizing field is denoted by s, and an adaptive sizing field is defined
as a scalar function s(x) from R? — R.

Assumptions Made on the Solver. Our method requires the solver
to be discretizable on tetrahedron meshes. This is the case for all
solvers requiring discrete differential operators such as the Lapla-
cian, gradient, divergence and Hessian. For solvers that take as in-
put parameter a kernel for diffusing attributes from the input sam-
ples (e.g., normals for Poisson reconstruction), we require as pa-
rameter the kernel size in order to ensure a minimal vertex sampling
around the input point samples. SSD and Spectral reconstruction do
not suffer from this constraint. We assume that the solver provides
as output a piecewise-linear scalar implicit function defined on the
tetrahedron mesh vertices, and that the output surface is the zero
level set of this function.

3.2. Initialization

Given the input point set X', we compute its bounding sphere whose
center is denoted as cy and radius denoted as ry. The geometric
domain is initialized by inserting into a 3D Delaunay triangulation
100 points uniformly sampled on the surface of a sphere centered
at c x with radius 1.4ry . We then perform 3D Delaunay refinement
according to the circumradius-to-shortest edge ratio (threshold set
to 1.3 by default), which ensures an initial quality 3D triangulation.
The initialization has little impact on the final reconstructed surface
when the enlarge ratio (1.4 by default) is large enough. Its role is to
bootstrap the refinement algorithm after obtaining an initial implicit
function from the solver. The domain is then further discretized
gradually in the following process.

3.3. Optimization

Given the current triangulation 7, implicit function and relating
isosurface S, the optimization step is designed to relocate the tri-
angulation vertices so as to find a balance between improving the
shape of tetrahedra (making them as isotropic as possible), favor-
ing that tetrahedra intersected by S are intersected through their
edge midpoints (creating a layer of tetrahedra “sandwiching” the
isosurface), while preserving the boundary of the initial bounding
sphere.

We formulate the optimization as a function-minimization pro-
cess for the variable vertex positions {v;}, in which the objective
function comprises three terms: (1) The As-Similar-As-Possible
(ASAP) term E, rewards isotropic tetrahedra, weighted by a co-
efficient A4, (2) The mid-edge term E,, rewards midpoint isosur-
face intersection, weighted by a coefficient A,, and (3) The damp-
ing term E; penalizes large-scale vertex relocation far away from
the isosurface.

(© 2021 The Author(s)
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Figure 3: Overview. The domain boundary is initialized by a loose sphere bounding the input point samples, refined by coarse Delaunay
refinement. The algorithm then iterates through the solver, optimizer and refiner. The isosurface, contoured by marching tetrahedra, is

generated as output once user-specified criteria are met.

Denote by Ts the set of tetrahedra intersecting S, the objective
function E(7’) is defined as:

E(T) =2 Z Wa(t)Ea(t) +Am Z Win(t)Em(t) + Z waEq(v).
€T 1€7s vev "

Figure 4 depicts the two principal terms of the optimized objec-
tive function.

(a) ASAP Energy

(b) Mid-Edge Energy

Figure 4: Objective function. (a) The as-similar-as-possible
(ASAP) term favors the tetrahedron t to become equilateral under
volume constraint. (b) The mid-edge term favors the midpoint of
edges with opposite function value signs to pass through the iso-
surface (blue).

ASAP Objective. The goal is to deform each tetrahedron ¢ to make
it as congruent as possible to an equilateral tetrahedron, referred to
as reference tetrahedron, under a scaling operator that preserves a
given volume, while preserving its center. We define the reference
tetrahedron ¢’ as the centered unit regular tetrahedron and find the
optimal transformation by minimizing the following function:

3
Ea(t) =min ) [|(e(t) +Svy) = vi|” @
i=0

where S denotes an arbitrary isotropically stretched rotation matrix
(a similarity matrix), c(¢) denotes the center of ¢, and #; (resp. tl-' )
denotes the i corner of ¢ (resp. t'). To find the minimizer matrix
S*, we borrow our idea from the local/global optimization strategy
introduced in [SAO7]. We start from translating the centroid of the
tetrahedron c(¢) to the origin, and then compute the 3 X 3 covari-
ance matrix as

C(t t—c(t)) =1 (t—c@t))". 3)

(© 2021 The Author(s)

We then perform a singular value decomposition (SVD) onto the
covariance matrix:

c=uzv’. @

To determine the scaling factor of C, we first compute the vol-
ume of all tetrahedra 7" and then smooth it by averaging the volume
values of adjacent tetrahedra, which decreases the sizing gradation
among adjacent tetrahedra, thus better conditions the system. Given
vol(t), the smoothed volume of the tetrahedron ¢, we set the modi-
fied singular value matrix X’ to be:

3| vol(t)

Y= 5. 5
vol(t') 3 )

The minimizer matrix S* is set to:
s*=vr'u’. (6)

If the determinant of 8* is negative, we invert the sign of the last
singular vector of U and then recompute S*. The objective function
can then be written as:

3
Ea(t) = Y |I(c(t) +S8™vy) —vi || )
i=0

where the vertex locations v;; denote the variables under optimiza-
tion.

Mid-edge Objective. This term favors that the isosurface inter-
sects tetrahedra through their edge midpoints. Combined with the
ASAP objective, contouring the intersected tetrahedra yields well-
shaped triangles with locally uniform sizing, where the length
should be expressed within the norm of the sizing field.

Given a tetrahedron ¢ intersected by isosurface S, we consider
only the edges intersecting S, i.e. the edges with alternating signs
of the implicit function value. In essence, this term encourages the
midpoint of all edges crossing S to be mapped to it, which in turn
encourages the isosurface S to be located in the middle of two off-
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set surfaces composed of the faces of Ts that do not cross S.

(CEE P

where a; denotes the isosurface inside tetrahedron ¢ (a quadrangle,
resp. a triangle, if the number 1; of edges of  crossing S is 4, resp.
3), pe is the intersection of edge e and ar, and ng, is the normal
of a;. The variables v,, and v, refer to the vertex locations of the
vertices of edge e.

Em(t) =
eet-,f("el )'f(Ve2)<0

Damping Objective. To prevent the boundary of the triangula-
tion 7 from expanding or shrinking during optimization, we add
a damping term to restrict the movement of the vertices near 97 .
More specifically, we first iterate over each vertex v and compute
the minimum / maximum function values fi,in, fmax, and the mini-
mum / maximum function values at each vertex adjacent to a tetra-
hedron crossing the isosurface f[fin, f,}?ax.

The weight of vertex g;(v) is defined as:

_£S
% it f(v) < fS
S R Ry N
; max otherwise.

Large holes may generate open isosurfaces with boundary on
the domain boundary 07 . In order to avoid shrinking of the iso-
surface’s boundary, we compute the distance from each vertex v to
d7 and set gz(v) =1 for vertices located near d7 to ensure that
they remain unchanged. Once the weight g;(v) is determined, the
objective is computed as:

- 2
Eq(v) =ga(v)- IV —vll%, (10)
where 7 denotes the vertex position at the previous iteration.

There are several reasons motivating this design choice: i) We
observed that large sliver tetrahedra are generally located at the
boundary of 7, and while they contribute in practice very little to
the accuracy of the solution around the target isosurface S, penal-
izing their shape’s distortion comes at the much higher price of
preventing optimization of the tetrahedra around S. ii) Formulating
the damping weights as a function of the scalar field f itself allows
us to favor shape improvement of the tetrahedra around S without
having to walk explicitly on the triangulation (making it possible to
set them in linear time), or updating and querying a nearest neigh-
bor structure, which would be necessary if the weights were defined
in terms of distance to S. iii) For all solvers we consider, the un-
certainty of S is better expressed in terms of variation of the scalar
field around O than in terms of distance to S (consider the Poisson
solver for example, for which large holes in the data are filled with
an extremely slowly-varying scalar field f).

Weighting Functions. To make the optimization invariant to rigid
motion and scaling of the input point set X and triangulation 7T,
we define weighting functions for the three terms respectively.
Denote by r(7) the diameter of the triangulation (furthest dis-
tance between pairs of vertices). For the ASAP term we define

wa(t) = vol(t)/r(T)?; for the mid-edge term we define wi () =
area(ay)/r(T)?%; for the damping term we define a high coefficient,
by default wy; = 100/r(7), which makes it a hard constraint to
E(T).

Linear Solver. Since the three above terms are quadratic, the to-
tal objective function E(7) is quadratic and can be minimized by
solving a linear system with 3|V| variables. We initialize the solu-
tion by the unoptimized vertex coordinates and utilize an iterative
linear solver. As all vertices are relocated, we update the implicit
function values at the vertices by linear interpolation over the trian-
gulation computed by the previous solver, since the cost of running
a solver on a large triangulation is substantially more expensive
than the one of the optimizer.

3.4. Adaptive Refinement

We now describe a progressive and parsimonious refinement pro-
cess for the 3D triangulation of the domain, in order to provide
“just enough” degrees of freedom around the isosurface S for fur-
ther computation. More specifically, we propose two refinement
schemes tailored to induce a local subdivision of the triangle facets
of the isosurface with variable granularity, that preserves the shapes
of both the facets of the isosurface and tetrahedra of the 3D trian-
gulation.

First observe the two possible configurations of a tetrahedron in-
tersecting the isosurface, i.e. with both positive and negative func-
tion values at its vertices (see Figure 5). For case 1, we have either
3 positive values and 1 negative value, or vice-versa: the isofacet ar
is a triangle. For case 2, we have 2 positive and 2 negative values:
the isofacet a; is a quadrangle. In order to triangulate a;, we split
the quadrangle by its shortest diagonal.

> >

(a) Trisection (Case 1)

(d) Bisection (Case 2)

(b) Bisection (Case 1)

(c) Trisection (Case 2)

Figure 5: Subdivided facets of the isosurface. Left: two configura-
tions of a tetrahedron containing the isosurface. Middle: trisection
refinement. Right: bisection refinement. For case 1 (1/3 vertices),
the number of triangles is multiplied by a factor 9 after trisection
refinement (a) and by 4 after bisection refinement (b). For case 2
(2/2 vertices), the number of triangles is multiplied by a factor be-
tween 9 and 15 after trisection refinement (c) and by 4 after bisec-
tion refinement (d).

Trisection Refinement. Given a tetrahedron ¢ to be refined, we
insert the trisection points of each edge and the centroid of each
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face into the domain triangulation (see Figure 6(b)). While for case
1 the isofacet is always divided into 9 sub-triangles (Figure 5(a) and
6(e)), it is not true for case 2, in which the number of sub-triangles
depends on the shape of ¢. Empirically, the number is between 9
and 17, with an average 12, which we use to define our refinement
algorithm.

Bisection Refinement. We insert the midpoint of each edge with
same value signs (Figure 6(c)(d)). In both cases, the isofacet is di-
vided into 4 sub-triangles (Figure 5(g-h)).

+ +

(d) Bisection
(Case 2)

(c) Bisection
(Case 1)

v o - N

(f) Trisection
(Case 2)

(a) Tetrahedron

(b) Trisection

(e) Trisection
(Case 1)

(g) Bisection
(Case 1)

(h) Bisection
(Case 2)

Figure 6: Refinement schemes. (a) Tetrahedron before refinement.
(b) Refinement by crossing edge trisection: we insert three points
uniformly sampled on each edge and the centroid of each face. (c-
d) Refinement by bisection: we insert the midpoint of each edge
with similar value signs (two cases). (e-f) Refined isosurfaces for
both cases after trisection refinement. (g-h) Refined isosurfaces for
both cases after bisection refinement.

Refinement Strategy. The adaptive mesh refinement step utilizes
the above refinement schemes as follows. Consider a tetrahedron
t intersecting the isosurface into a facet f;. We evaluate the target
area at the centroid of f; from the input sizing field, denoted as
s(ft). The area ratio r; is defined as the ratio between the current
area of f; and the target area s(f; ). If r; is smaller than 1, we deduce
that the local sizing criterion is already satisfied, and we do not
refine ¢. Otherwise, we check the following conditions and adopt
the following schemes:

If ¢ belongs to case 1 and r; > 9, we trisect ¢

If t belongs to case 2 and r; > 12, we trisect ¢

If ¢ belongs to case 1 and 4 < rr <9, we bisect ¢
If ¢ belongs to case 2 and 4 < r; < 12, we bisect ¢
If 1 < r <4, we bisect ¢ with a certain probability

Dk wD =

When 1 < rr < 4, we expect r; to approach 1 while avoiding
over-refining ¢. Suppose we have N tetrahedra intersecting isosur-
face with average area a before refinement. We bisect u percent of
tetrahedra and the average area after the refinement is @’. In order
to preserve the total area of the isosurface, we have:

o Na _a-d
TN T(—wN 37
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For a specific tetrahedron 7, we evaluate a uniform random variable
¢ € ]0,1] and bisect the tetrahedron only if ¢ < %(r, —1). Otherwise
we do not refine it.

Adaptive Sizing Field. While the target area is intuitive to deduce
for a uniform sizing field, the adaptive sizing field remains a tricky
problem. Users can come with their own sizing fields, but we pro-
vide a reasonable choice guided by the curvature of the surface.
Our sizing field is dense near the region with high curvatures and
sparse otherwise.

We start by evaluating the minimum curvature cp;, and the
maximum curvature cmax onto the input point cloud X by monge
form. Then each time before beginning the refinement, we con-
struct a smoothed curvature map for tetrahedra intersecting isosur-
face. Given a tetrahedron ¢ intersecting isosurface, we consider the
k-nearest neighbors of the centroid of a; in X and estimate the lo-
cal curvature by computing the maximum absolute value of the
two principal curvatures of the neighbors. This curvature map is
smoothed following the same process of the volume field in ASAP
energy and then clipped between [¢pin, Cmax]-

When refining a tetrahedron ¢, we deduce the target sizing from
its smoothed curvature ¢. A mapping function is applied to ¢ in
order that users can control the gradation of the sizing field.

/ C — Cmin A
¢ = - (€max — Cmin) + Cmin
Cmax — Cmin

Given d a user-controlled parameter which defines the expected
distance tolerance from the isosurface to the point cloud, the target
sizing s is computed by:

‘9:4\/5-(%—%)

Last, s is clipped between [syin,Smax], Which guides the refine-
ment described above.

3.5. Solvers

We now detail our framework at work using global implicit recon-
struction solvers applied to tetrahedron meshes.

Discretization Elements. We use piecewise-linear basis functions
{0:}i, 9ilv)) = 5{ for all vertices v; of 7). For a point x in-
side a tetrahedron r = (1°,¢1,12,1%), {0 }i_o(x) are its barycen-
tric coordinates, and given scalar values {f;} associated with the
vertices {v;} of T, f(x) is defined as f(x) = ¥Yi_o0u(x)fux =
¥ 0;(x)f;. Similarly, the gradient of f at x is defined as 7 f(x) =
Yi_o V0 (x)fr. We note G € R3ITIXIVI the gradient matrix
whose (3t,3t + 1,3t + 2) rows contain the four gradients of the
barycentric coordinate functions of the tetrahedron ¢, Div the (in-
tegrated) Divergence matrix, L € RIVIXIVI the (integrated) Lapla-
cian matrix, B := LM, 1L e RVIXIVI the (integrated) bi-Laplacian
matrix, and H € ROVIXIVI the (integrated) Hessian matrix. We
use the construction presented by Stein et al. [SGWIJ]: Noting
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Gyx,Gy,G; € RITVI the gradient matrices of the (x,y,z) coor-
dinates, H is defined as
H :=D" M7G, with (11
Gy G GyG; 0 0 0 0 0 O
G:=|Gy|,D:=|0 0 0 GG, G. 0 0 0
G, 0 0 0 0 0 0 GxGy G,

L, denoting the integrated Laplacian matrix, is defined using the
standard cotangent formula as:

Lij =Y5, lijcot(v;;)/6
Li =—-YxLij

Vj € Ni(i) (12)

where /;; denotes the length of edge (i, j), and ] ; denotes the dihe-
dral angle opposite to edge (i, j) in the tetrahedron ¢.

Screened Poisson Solver. We minimize the objective function:
Esp _/ |7 £ (x) — ii(x)|* dx+|X| Y f(p)* = min, (13)

where 7i(x) denotes a smooth approximation of the normal field n
defined on X'. Note that it is common to shift the solution after min-
imization, in order to find the isosurface best approximating the in-
put samples X: f < f —median({f(p)}pex). If ais set to 0, one
obtains the original Poisson solver, in which case it is necessary
to add at least one constraint as otherwise the system is undercon-
strained. Minimizing this objective function on tetrahedron meshes
amounts to solving the following linear system:

{ |X‘<I>X<I>X]F DivN, (14)

where @y denotes the matrix stacking the barycentric coordinates
of X.

Smooth Signed Distance Solver. We minimize the objective func-
tion:
_ 2, B 2
Essp =17 L LAp)+ iR LIV Fp)—mll”  (15)

H dx — min.
i sl

Minimizing this objective function on tetrahedron meshes
amounts to solving the following linear system:

B
2 olyt P GIShSvG+ L H L H|F
| X | X 7] v
B
2 GTSh Ny,
k]

where Ny € R stacks the normals of X, My € RIVIXOVI ge.
notes the mass matrix of the vertices repeated 9 times along the di-
agonal, and Sy denotes the selection matrix whose (3i,3i+ 1,3i +
2) rows contain the Identity matrix at columns (3¢,3r 4 1,374 2) if
vertex i lies inside the tetrahedron 7.

Spectral Solver. We minimize the objective function:

Espec = Y. Vf(p)" - Cp- v f(p) — max, s.t. (16)
P

o 2 ) -
[ DI 48 [ 1V Py [ 670070~

Maximizing this objective function on tetrahedron meshes
amounts to finding the largest eigenvalue and related eigenvector
of the following generalized eigenvalue problem:

[GTSQCXSXG] F:h{ d)Xd)X—i-ﬁL—i-yB} 17)

X
where Cy denotes the block diagonal matrix whose " block is
the anisotropy matrix C; := I+ ,un,'niT, n; denotes the (unoriented)
normal of input point p; € X and u controlling the anisotropy fa-
voring alignment between the gradient and the unoriented normal
at p;. Compared to the above solvers, this one is oblivious to the
orientation of the input normals. This comes at the cost of solv-
ing a generalized eigenvalue solver to solve for signing the implicit
function.

4. Experiments

Our framework is implemented in C++, using the CGAL library
for 3D triangulations and geometric computations [The21], the
Eigen library for linear algebra and solvers [GJ*10], the Spectra
library for solving generalized eigenvalue problems [Qiu21] and
OpenMP for multithreading acceleration [DM98]. The experiments
are conducted on a MacBook Pro with 2,9 GHz Quad-Core Intel
Core i7 CPU and 16GB memory.

4.1. Adaptivity

Figure 7 depicts the progressive reconstruction process on the Mas-
sai point set. The optimizer and the refiner jointly improve the
quality of the discretized domain and isosurface mesh. The dis-
cretized domain is getting denser and denser while sandwiching the
reconstructed isosurface. The ratio between the number of vertices
near the isosurface and of the entire triangulation increases rapidly,
showing that we allocate more degrees of freedom where needed.
The implicit functions depicted in a cutting plane highlight that the
triangulation is denser around the high curvature area, which helps
reducing the interpolation error.

4.2. Progressive Refinement

We validate the relevance of the proposed progressive domain ap-
proach, by comparing four different approaches for generating the
discretized geometric domain and reconstructing the output isosur-
face:

1. Octree-based initialization: we discretize the domain by in-
serting into the 3D triangulation all nodes of a dense octree re-
fined from the local density of the input point set.

(© 2021 The Author(s)
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Figure 7: Reconstruction process for the Massai Model. The first and third rows depict the isosurface and the tetrahedra intersected by the
isosurface during the reconstruction process. The second and fourth rows depict the implicit function clipped by a plane.

2. Input-based initialization: we first insert all input points into
the 3D triangulation, then perform dense Delaunay refinement
inside a loose bounding box of the input point set until all tetra-
hedra are well-shaped.

3. Direct Refinement: we initialize the 3D triangulation by a
sparse point set sampled on the loose bounding box of the input
point set, followed by Delaunay refinement until all tetrahedra
are well-shaped. We then launch the solver to obtain an initial
isosurface and refine the 3D triangulation by using our refine-
ment process until the sizing criteria is satisfied, without using
any optimizer or solver. We run a final solver to generate the
final isosurface.

4. Progressive Refinement: we perform the proposed progressive
algorithm through "solver-optimizer-refiner" iterations.

(© 2021 The Author(s)

Our goal is not to evaluate the output result by common crite-
ria such as e.g. the average distance from the points to the recon-
structed surface, or deviation of normals, etc. Instead, we wish to
verify the relevance of our domain discretization, given a solver
and its regularization parameters. Once combined, they trade data
fidelity for regularization, and can thus deviate largely from perfect
data fidelity.

In order to evaluate and compare the results, we compute a
“ground truth” reference isosurface from a point set, by running the
given solver and regularization parameters on a densely discretized
domain. We generate the domain as follows: (1) Compute the iso-
surface using a dense octree-based SSD (2) Sample very densely
the isosurface, duplicate the resulting point set and offset the two
point sets along the negative and positive local normal directions
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Figure 8: Two point clouds and their corresponding reference re-

constructed surfaces computed on a very dense triangulation.

Table 1: Reconstructing the Arc de Triomphe and Indonesian Lady
models

Measures Methods
Octree Input Direct Progressive | Reference
Hausdorff 1.622006 | 2.463567 | 3.124351 1.504585 -
Mean (Method - Ref) 0.054016 | 0.085333 | 0.053248 | 0.033301 -
Mean (Ref - Method) 0.049102 | 0.080371 | 0.048665 0.031906 -
RMS (Method - Ref) 0.093774 | 0.184979 | 0.111763 0.055931 -
1? RMS (Ref - Method) 0.080871 | 0.162403 | 0.08594 0.051933 -
c Timing 78.27 805.42 758.92 2532.42 31493.71
# Isovertices (1) 116232 53340 232447 331968 741211
# Vertices around iso (2) 57643 24361 115574 153514 364041
# Vertices (3) 117160 309478 238417 231673 1419823
Parsimony (4) 0.492002 | 0.078716 | 0.484756 | 0.662632 0.256399
I Hausdorff 0.024654 | 0.036668 | 0.041566 | 0.022067 -
n Mean (Method - Ref) 0.000430 | 0.000838 | 0.002920 | 0.000596 -
g Mean (Ref - Method) 0.000612 | 0.001235 | 0.002925 0.000588 -
2 RMS (Method - Ref) 0.001444 | 0.001785 | 0.005649 | 0.001324 -
s RMS (Ref - Method) 0.001801 | 0.002647 | 0.005501 0.001185 -
;li Timing 615.17 1222.79 702.13 1502.67 27806.79
n # Isovertices (1) 249969 1576551 88207 312517 455312
];; # Vertices around iso (2) 123723 754457 46928 144366 229912
3 # Vertices (3) 280335 974507 272648 254091 1947880
Parsimony (4) 0.441340 | 0.774194 | 0.172119 | 0.568167 0.118032

(1) Number of vertices on the remeshed isosurface. (2) Number of triangulation vertices around the
isosurface. (3) Number of vertices of the entire triangulation. (4) Parsimony = (2)/(3).

(3) Insert all offset points into a 3D Delaunay triangulation (4) Op-
timize the 3D triangulation by minimizing the ASAP energy, and
(5) Solve via SSD to generate the reference isosurface.

Figure 8 shows the selected point clouds and their correspond-
ing ground truth isosurfaces. Figure 9 and Table 1 depict and record
the four aforementioned reconstructions and relating statistics. For
both input point sets, using our progressive approach we obtain
more than 55% vertices of the triangulation near the final isosur-
face, which validates the parsimony of our approach. We compare
the 4 above approaches in terms of (1) the output surface (2) the
discretized domain (3) the distances from the reconstructed surface
to the reference surface computed using Metro [CRS98], (4) the
parsimony, defined as the number of vertices adjacent to tetrahedra
intersecting the isosurface, divided by the total number of vertices
of the triangulation.

4.3. Robustness

Different Densities. We sample the kitten model with different
densities and compare the results of our algorithm using the SSD
solver and uniform area criteria with the results of the original
octree-based SSD algorithm, see Figure 10.

Octree Initialization Input Initialization Direct Refinement

Progressive Refinement

Figure 9: Reconstructed surfaces and discretized domains of the
four above approaches, clipped by a cutting plane. We utilize the
SSD solver for both point clouds and use a uniform sizing field to
guide the refinement. Our optimized domain adapts to the isosur-
face.

Variable Resolution. We generate a point set of the Kitten with
two different resolutions: dense on the head and sparse elsewhere.
Figure 10 compares our optimized one with the original SSD.

Noise. We compare our results with the original octree-based
SSD on a model with increasing levels of noise (G €
{0.005,0.01,0.05,0.1}). The results are shown by Figure 11. When
increasing G, the original SSD becomes more and more sensitive to
solver parameters and the isosurface becomes less and less smooth.

Holes. We verify the capability of our approach to fill holes on the
two Indonesian models, see Figure 12, which are two laser scans
with large holes and imperfect normals. Albeit filling holes is an
ill-posed problem, our method seems to fill the holes more grace-
fully. The artifacts of the octree-based SSD is getting more evident
when the depth of octree increases, while there are no such arti-
facts when we solve SSD on an optimized domain. Note that these
artifacts (bumps with high curvature variations) are in contradiction
with what is expected from an SSD solution on a smooth input with
strong Hessian penalization, indicating that the allocated structure
prevented the solver to obtain an accurate result, which an a poste-
riori remeshing approach would not help fixing.

(© 2021 The Author(s)
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Figure 10: Reconstruction results of Kitten model with differ-
ent sampling densities. Top row: input point clouds. Middle row:
SSD solved on our optimized geometric domain. Bottom row: SSD
solved on an octree. It fails to discover more details when the point
cloud is sparse.

Table 2: Reconstructing the Tiki model. Performing several iter-
ations of ASAP optimizations results in faster solver convergence
rates, indicating empirically that our optimization improves the
conditioning of the solver for a fixed number of vertices.

Num of ASAP Optimization 0 3 5 10
Num of Solver Iterations 13542 8403 2944 2444
Solver Error 8.67667e-11 | 9.88958e-11 | 9.96412e-11 | 9.94334e-11
Solver Time (s) 2.82103 1.59871 0.569161 0.46091

4.4. Solver Conditioning

The ASAP energy is the key component for improving the solver
conditioning. It improves the quality of the tetrahedral elements in
the triangulation to achieve this goal. We start by comparing the
number of iterations to make the linear solver attain a fixed tol-
erance error (le-10) before and after a pure ASAP optimization
(without mid-edge energy). All the solvers begin with a zero vector
as a guess solution to make it a fair comparison. From Table 2 and
Figure 13, we observe that the number of iterations decreases and
the quality of the triangulation tetrahedra is improved through the
optimization step.

Combining with mid-edge energy, the optimizer makes a trade-
off between the quality of the triangulation and the quality of the
remeshed isosurface. In practice, we find that A, = A, = 3 is a good
choice for most of the cases. For challenging cases, for example,
when the point cloud has many salient features, A, can be increased
to prevent the failure of the solver.

(© 2021 The Author(s)

4.5. Ablation Study

We show the impact of the optimizer by removing one or several
components from our approach and compare the produced isosur-
faces on the Horse point cloud. The following options are tested:

1. Non-optimized strategy: Iterating over solver and refiner with-
out any optimization. One step of ASAP optimization is applied
before the solver, otherwise the solver fails to converge.

2. Mid-edge strategy: Iterating over solver, optimizer and refiner,
while disabling ASAP energy. One step of ASAP optimization
is applied before the solver, otherwise the solver fails to con-
verge.

3. ASAP strategy: Iterating over solver, optimizer and refiner,
while disabling mid-edge energy.

We notice that the ASAP energy is indispensable to the conver-
gence of the solver. The reconstructed isosurfaces and the his-
togram of their qualities are shown in Figure 14. Together with
mid-edge energy, they improve a lot the quality of the isosurface,
eliminate the influence of outliers and fill the holes with a smooth
surface.

4.6. Timings

Figure 15 records the execution times for each model shown. Each
color represents one iteration and the final pink color indicates the
time for the final solver, which produces the final isosurface on the
optimized geometric domain. Compared to octree-based solvers,

6 =0.005 6=0.05
e o ~
Optimized SSD
g . .

Original SSD (Octree-based)

Figure 11: Reconstruction results of the Guitar model with differ-
ent noise levels. Top row: input point clouds. Middle row: SSD
solved on our optimized geometric domain. Bottom row: SSD
solved on an octree. The parameters of the original SSD are chosen
to make the isosurface as smooth as possible.
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(1a) Indonesian Lady 1 (1b) Original SSD (Octree-based)  (1¢) Optimized SSD

(2a) Indonesian Lady 2 (2b) Original SSD (Octree-based) (2¢) Optimized SSD
Figure 12: Reconstructing the Indonesian Lady models, the first
has large holes between the legs and near the stomach. The second
has many small holes.

Iteration 0 Iteration 3 Iteration 5 Iteration 10

Figure 13: Reconstructing the Tiki model. The first row shows the
clipped domain at iteration {0, 3, 5, 10} and the second row plots
the distribution of dihedral angles of the triangulation tetrahedra.

our algorithm takes more time. However, it is scaling fairly well
with the number of input points, and the execution time mostly
depends on the target sizing field.

4.7. More Results

Figure 16 depicts a gallery of reconstructed surfaces. (1) is a very
sparse point set with oriented normals (from [HCJ19]). Common
octree-based methods cannot produce a smooth surface since the
octree is refined only near the input point set, while our progressive
approach yields smooth surfaces. (2)-(7) depict other scanned point
sets with holes and noise. Our progressive approach reconstructs

(a) Non-optimized (b) Mid Edge (Disable ASAP)

N

(c) ASAP (Disable Mid Edge) (d) Our Method

@ - )

Histogram of the Angles of Isofaces

Figure 14: Reconstruction results of Horse model by disabling one
or several components of the proposed approach. The third row
plots the distribution of the angles of all isofacets (triangles).
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Figure 15: Timeline of our reconstruction for all models shown.
Each color corresponds to one iteration and pink corresponds to
the final solver running on the optimized domain.

smooth surfaces in accordance to the regularity parameter of the
selected solver.

5. Discussion
5.1. Failure Cases

With no a priori knowledge about the curvature and local feature
size (Ifs) of the inferred isosurface, our approach may fail to re-
construct fine details due to insufficient discretization. Figure 17
depicts one failure case of our discretized domain. The book in the
hand of Ignatius is a region with two layers of points with oppo-
site normals. In order to reconstruct it correctly, this region should
be densely refined to offer enough degrees of freedom. Given that
the initial solution does not capture this region, it is not sufficiently

(© 2021 The Author(s)
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Figure 16: Reconstruction gallery. We compare our reconstruction
results (right) with the one solved using common input-sensitive
approaches (middle).

(© 2021 The Author(s)

Point Cloud

Initial Isosurface  Intermediate Isosurface Final Isosurface

Figure 17: Reconstruction process for the Ignatius Model. The fi-
nal isosurface fails to completely reconstruct the book.

refined. As the reconstruction goes on, the region gets denser, but
this is insufficient to yield a good solution around this region.

5.2. Limitations and Future work

Our current approach presents several limitations. First, the abil-
ity of our method to discover salient geometric events - and adapt
the reconstruction domain to them - remains bounded to the ac-
tual performance of the underlying reconstruction algorithm used
at each iteration. Second, deriving sufficiency conditions for en-
suring convergence remains to be done, and we believe that per-
solver approaches could first be designed before addressing the
more generic case. Third, our approach focuses on improving the
quality of the solvers’ outputs at the cost of longer execution tim-
ings, but we envision that simple strategies could be used to reduce
those. For instance, we rely on Delaunay triangulations, whose
structures can change unexpectedly when relocating vertices, re-
quiring the solvers’ algebraic structures to be updated accordingly
even with a fixed vertex count. Adopting other tetrahedron mesh
structures could help addressing this problem, while lowering the
amount of slivers present in the triangulation, thus improving the
conditioning of the solvers. Last, we discretized our solvers us-
ing piecewise linear elements. In future work we plan to explore
a higher-order variant of this approach, in which the tetrahedron
elements of the domain are the support of a non-linear implicit
function. We also wish to address piecewise-smooth surfaces with
boundaries and non-manifold features.

5.3. Conclusion

We proposed a progressive domain approach for global implicit
surface reconstruction methods. Given an initial 3D Delaunay trian-
gulation of the domain and an implicit solver, our approach iterates
over three main steps (solve, optimization, adaptive refinement),
all steps being designed to cooperate with each other and improve
the conditioning of the solver, and the quality and complexity-
distortion tradeoff of the output isosurface mesh. In such a pro-
gressive approach, the implicit solver is no longer used once, but
iteratively as a means to discover more and more details for the iso-
surface. The benefit is to reconstruct and generate altogether output
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meshes with well-shaped triangles and adapted to the intrinsic ge-
ometric complexity of the reconstructed surface, instead of to the
input point set density, as in previous work.
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