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ABSTRACT

This paper aims to experimentally evaluate a simplified vision-based method for structural health monitoring
(SHM). Contrary to conventional solutions that rely on extracting motions through image processing, this pa-
per proposes to conduct the SHM analysis by the direct processing of pixel brightness without extracting the
motion signals beforehand. After some pre-processing steps, it is shown that the brightness data reveal essential
information about the dynamic characteristics of the monitored vibrating structure. Furthermore, the low-level
information of the pixel is compensated by an efficient selection of the so called ”active pixels” throughout the
image time flow. Finally, a subspace system identification-based method is applied to the brightness data, so
that the modal parameters with uncertainty bounds are estimated within a large range of model orders displayed
in a stabilization diagram. The experiment database consists of image time flows of a cantilever beam excited
by a shake table driven by a band limited random noise. Modal vibrations range from 1 to 173Hz.

Keywords: Vision modal decomposition, Pixels intensity, Motion extraction, Subspace identification, Uncer-
tainty bounds

1. INTRODUCTION

Many infrastructures of our society, including bridges and buildings, are facing increasing challenges due to
climate change. To this end, extensive research works have been carried out over the past decades for structural
health monitoring (SHM).1–3 Operational modal analysis (OMA) is a mature field in SHM. Its goal is to identify
inherent structural information such as natural frequencies, damping ratios, and mode shapes from output-only
vibration measurements on a structure under unknown ambient excitation. OMA is of high interest for many
applications, e.g. damage diagnosis,4–6 structural model updating,7 identification of excitation forces.8

The process of OMA starts with data collection. Conventional sensing technology was based on setting
accelerometers on the structure. Then, methods like frequency domain decomposition,9,10 auto-regressive moving
average (ARMA),11 stochastic subspace identification12,13 and the natural excitation technique14,15 can be used
to obtain the modal parameters with high accuracy. However, with traditional sensors, vibrations are measured
only at (relatively few) discrete points in the structure, providing limited information for damage diagnosis or
model updating.16,17

Non-contact sensing technology, such as laser sensor18 and ground-based synthetic aperture radar,19 have
been successfully applied as an alternative to traditional devices. Whereas numerous applications benefit from
these measurement technologies, they are expensive and not adapted to all types of structures.

With both technological and processing improvements, computer vision-based techniques have emerged in
the past decade as an alternative, cheaper and easier solution to perform SHM. Commonly, this is done in two
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steps. First, the vibrating motion is estimated at long-range from video image flows. Various image processing
techniques have been developed to extract the local motion signals from subtle changes in the pixel brightness
over time. One can classify the approaches to video-based motion extraction into optical flow ,20,21 including
phase based optical flow,22 and the image template matching, including the widespread digital image correlation
(DIC).23 Second, the most dominant vibrating frequencies of the structure are determined from the power
spectral density of the motion time history. More advanced SHM tools rely on using the stochastic subspace-
based identification (SSI) method.24

By contrast, this paper proposes to conduct SHM by the direct processing of pixel intensity time variations
without extracting the motion signals beforehand. The proposed approach is believed to be less computationally
expensive. To circumvent the low-level information of the pixel intensity, the proposed approach is able to
represent the brightness time variations within each image blocks (ROI : region of interest) by a single time signal
obtained after selecting the so called ’active pixels’ and averaging their time variations. Then, the stochastic
subspace-based identification method24 that provides more accurate modal parameters along with uncertainty
bounds was adopted for refined SHM analysis.

Experiments in a laboratory setting on a vertical cantilever beam are performed to verify the proposed
intensity-based processing approach. A comparison has been made with conventional motion-based processing
in terms of identified spectral lines and on the stability diagrams of modal identification.

2. EXPERIMENTAL SETUP

A vertical cantilever beam of 2m long, 30mm wide, 5mm thick, and of density 7800kg/m3 was tested to evaluate
the performance of the proposed method for vision modal identification. Details of the experimental setup are
given bellow and shown in Fig. 2:

• The vertical beam was fixed at its bottom to a shake table (model: NEBS GR-63), which was driven in
random mode horizontally in the direction perpendicular to the axis of the camera.

• Video images were recorded at the frame rate 512 fps and at the frame resolution 1920 × 136 with a
PHANTOM camera (model :MIRO 320S), mounted with a NIKKOR lens with a fixed 50mm focal length.
The camera was set on a tripod and installed at a distance of about 5.6m from the beam, so that the full
beam length was in the scene. The scaling factor was 1.02mm/pixel.

• Three additional lighting (Halogen Spotlight, MAZDA CORMORAN type of 1500 W) were used to improve
the brightness conditions; in addition, a white curtain was used as a backdrop to enhance the contrast with
the structure edges.

• For motion tracking, three paper markers were mounted at some particular positions along the beam,
namely, at the top (1/1), middle (1/2) and 0.5m (1/4) from the cantilever beam bottom. Please see Fig.
4 (top left) for illustration of the marker.

• Three laser displacement sensors were located at the same heights of the markers to serve as the motion
benchmark.

3. IMAGE PROCESSING FOR SHM

In this section, the images of the vibrating cantilever are decomposed into image blocks (or ROIs). Two processing
are performed on each ROI assuming a solid state motion without deformation. The first processing aims at
computing a specific averaged of the brightness time variation. The second one estimates motion signal by the
conventional video-based technique. For both cases, The time signals over the set of ROIs will be processed by
SSI method for SHM purposes in Section 4.

3.1 Proposed Image Brightness Processing

The proposed image processing includes the selection of active pixels, some phase correction of the brightness
time variations, before computing the final averaged time signal.
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Figure 1: Experimental setup: (left) video cameras in the foreground, the cantilever beam in the background,
(right) a close-up view of the lighting conditions, the cantilever beam and the shaking table.

3.1.1 Selection of active pixels

Active pixels are supposed to bring the most information about the vibrating motion. Active pixels usually
correspond to the edge between adjacent contrasted areas (The amount of active pixels increase when the image
is highly textured, e.g., speckle pattern or random dot pattern). The brightness time variation of such pixels is
then closely correlated to the structure motion at that location. According to Fig. 2, this is easily seen when the
motion range is within a pixel. When the motion covers a few pixels range, the brightness time variations of each
pixel is truncated in amplitude. The correlation with the structure motion is then recovered on the averaged
brightness over some pixel neighborhood.

Many algorithms were developed in the literature to locate the edges from the detection of significant local
spatial changes in images by either the gradient operators,25 Gaussian derivatives,26 or the steerable filters27 as
illustrated in Fig. 4 (top row).

Within the scope of application, the edge computation is usually performed once from the first image frame.
These methods are then better tailored to small motion range, namely within one pixel. However, in practical
condition, the motion amplitude range is not known beforehand and can be beyond one pixel.

By contrast, a spectral approach is proposed in this section to select the active pixels without any prior
knowledge. Indeed, it can be used to determine the pixel-wise motion range. Active pixels are selected within
each ROI on the basis of the spectral magnitude of the pixel brightness time history. The proposed selection of
pixels is based on the following three-steps processing.
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Figure 2: Schematic representation of the pixel brightness variation w.r.t. the motion of some step edge in front
of the camera. Top row figures: the right edge of a black object moving from the left to the right along 3 pixels.
Bottom row figures: the corresponding pixel brightness variations of the camera.
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Figure 3: Frequency peaks histogram computed from the brightness time variations of the pixels within the
selected ROI.

• First, the Beam Resonance Frequencies (BRF) of the mechanical structure are determined. If the finite
element modelling of the structure is available, BRF can be theoretically determined. Otherwise, the main
BRFs are determined from the peak magnitudes of the pixel spectrogram. The histogram of the frequency
peak location is illustrated in Fig. 3. At this step, the spectrogram is approximated because the pixel
brightness may bring truncated information (see Fig. 5). Nevertheless, it is sufficient to determine the set
of BRFs.

• Second, the set of BRFs is used to compute the energy of ROI pixels according to Algorithm 1. The
maximum energy value serves as the reference level to select active pixels.

• Finally, the pixels having energy above 20% of the latter reference energy level, are selected as active pixels.

Algorithm 1: Active pixel selection within N × P ROI

1 Inputs: - (x, y) pixel intensity time history, III(x, y, ttt), where, ttt is a L× 1 time vector;
2 - K Beam resonance frequencies BRF ;
3 Output: Pixels energy;
4 for x = 1, . . . , N do
5 for y = 1, . . . , P do
6 for k = 1, . . . ,K do
7 Band-pass filtering around BRF (k) : IIIk,filtered ;

8 Mean intensity computation IIIk,filtered;

9 end

10 Energy computation Ex,y = sum(|Ik,filtered|2);

11 end

The results of active pixels selection procedure are illustrated in Fig. 4 (bottom row) and by the red pixels
in Fig. 5. Compared with the conventional edge pixels selection at the top row, the proposed spectral approach
achieves more accurate detection. On the one hand, the target edges which are perpendicular to the motion
were accurately identified. On the other hand, the width of the detected edge is closely related to the pixel-wise
motion amplitude, measured by the laser sensor.

3.1.2 Averaged brightness ROI signal

For convenience, the brightness time variations of the selected active pixels (as shown by red pixels in Fig. 5)
are arranged in a matrix form IPa

where each column III(xi, yi, ttt) represents the centered brightness time vector
of the ith selected active pixel at the coordinates (xi, yi) in the ROI image.

At this stage, the pixel brightness time variations may bring truncated information in case of motion magni-
tude larger than one pixel, as shown on Fig. 5 (right column). In addition, the brightness time variations have
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Figure 4: Pixels energy calculation based proposed approach prior active pixels selection in case of 4 different
motions amplitude (Bottom), target (Top left), gradient (Gx

2) (Top middle) and steerable filter (Top right).
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Figure 5: Illustration of the pixel selection: (left) Selected active pixels in red circles are superimposed on the
target pattern; (right) Brightness time variations of pixels 1-3 within the boxcar.

the same polarity than the brightness slope at the edges.21 When the ROI includes many different dark-to-light
and light-to-dark transitions, the pixel brightness time variations show various polarity, which tend to cancel
when they are summed up. As shown in,21 phase correction should be performed to achieve a reliable averaged
signal with the full vibrating content.
To this aim, the following polarity correction processing is proposed :

∀i ∈ [2, Pa], III(xi, yi, ttt) = III(xi, yi, ttt)× sign(III(xi−1, yi−1, ttt)
TIII(xi, yi, ttt)). (1)

where Pa is the amount of selected active pixels. The phase correction ensures that brightness of all selected
active pixels are in phase before averaging. For illustration, Fig. 6 represents the processing result on the active
pixels in Fig. 5.
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Figure 6: Averaged brightness time variations (right y-axis) superimposed on the displacements measured by
both the laser and the vision sensors (left y-axis); full time record on the left, zoom on two short time intervals
on the right.

3.2 Conventional video-based motion extraction

Generally, the motion extraction from video images is performed in two steps: pixel shift (∆n,∆p) estimation
using the cross-correlation (CC) and subpixel shift refinement (δx, δy). Let I0 = I(n, p, t0) and I1 = I(n, p, t) be
the reference and a template images, respectively. The pixel shifts can be obtained by maximizing the CC as :

(∆n∗,∆p∗) = arg max
−N≤∆n≤N
−P≤∆p≤P

∑
u,v

F (u, v)G∗(u, v)ei2π( u∆n
N + v∆p

P ), (2)

where F (u, v) , and G(u, v), are the Fourier transforms of I0 and I1 respectively.

Chan et al.28 proposed a simplified version of classical optical flow estimation29 to determine the 2D subpixel
displacements by solving the system of equations given in 3. It is noteworthy that, in case of large displacements,
the reference image must be shifted as I(n+ ∆n, p+ ∆p, t0) to stay in the range of subpixel displacements.

(
δx
δy

)
=

[∑
x,y(∂I0∂x )2

∑
x,y

∂I0
∂x

∂I0
∂y∑

x,y
∂I0
∂x

∂I0
∂y

∑
x,y(∂I0∂y )2

]−1 [∑
x,y(I1 − I0)∂I0∂x∑
x,y(I1 − I0)∂I0∂y

]
, (3)

3.3 Comparison between the two processings

Figure 6, shows and compares the time variations of the average ROI brightness (within the second ROI) and the
displacements measured by both the vision and the reference laser sensors. The results shows a good consistency
between the three signals.

On Fig. 7, the correlation coefficients (CorCoef) between the displacements and the brightness time variations
are computed. It is seen that, the CorCoef varies from 0.996 to 0.9999 and shows the strong relationship between
the intensities and the displacements as expected. It shall be noted, however, that the correlation is slightly lower
for the upper ROIs, in which the structure motion is larger than one pixel. This is likely due to either insufficient
active pixels in the ROI, non-uniform lighting conditions in the upper ROIs or inappropriate threshold.

Figure 8, shows the frequency spectrogram associated to the time signals in Fig. 6. For comparison, the
spectrum computed from the average of 3 adjacent active pixels, represented in Fig. 5, was also superimposed
on that of the average ROI brightness over all active pixels. The peak prominent indicator30 was adopted to
quantify the local signal to noise ratio of each resonance frequency. Figure 9 compares the results. On the one
hand, the peaks, related to the first 4 resonant frequencies, in the laser sensor-derived spectrum, have a larger
prominence compared to those derived from the spectra of the vision sensor and the proposed LI-derived vision
data approach. On the other hand, our approach shows better peaks prominence, related to the fifth and sixth
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Figure 8: FFT spectra of the average LI time history of all active pixels and 3 adjacent active pixels, showing them
on top of each other (right y-axis), FFT spectra of the displacements measured by the laser sensor superimposed
on that obtained by the vision sensor (left y-axis).
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Figure 9: Comparison between the peaks prominence, of the first 6 resonant frequency lines obtained from the
spectra of the laser sensor, the vision sensor and the proposed LI-derived vision data

resonant frequencies. Clearly, averaging all active pixel intensities improves the peaks prominence and thus the
signal to noise ratio.

It is worth to mention that, higher modes of the beam were detected in the spectra. However, The laser
sensor (Model : YP11MGVl80) cut-off frequency was 100Hz. Beyond this value, the frequency content of the
measured displacements may be affected. This is why, the comparison was limited over the [0−100]Hz frequency
range.

4. SYSTEM IDENTIFICATION RESULTS

In this section, the computation of the modal parameters of the beam and their uncertainty bounds is performed
using the covariance-driven subspace identification algorithm.24 With this method, the system matrices of a
linear time-invariant state-space model are identified from each type of the measurements (LIs, displacement
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Figure 10: Stabilization diagrams containing the natural frequencies of the first eight modes with their confidence
intervals.

extracted from video images and laser sensor signal). From their eigenvalues and eigenvectors, the modal pa-
rameters (natural frequencies, damping ratios, mode shapes) are retrieved. Since the model order of the system
(corresponding to twice the number of modes that are present in the data) is unknown in practice, the system
is identified for many successive model orders. The resulting frequencies are plotted against the model order
in a stabilization diagram, which allows to distinguish “true” structural modes (which are stable for successive
orders) from spurious noise modes.

In Fig. 10, the stabilization diagrams are shown together with the spectra, where the ±σ confidence interval
of each frequency is plotted as a horizontal bar. It can be seen that, for the three analysis, real physical poles
clearly manifest as stable poles from low model order (< 40). However, a high order implies the appearance of
spurious modes that may be associated to the noise content of the signals. In addition, the stabilization diagram
of the LI data, in Fig. 10.a, shows a stable mode at 100Hz but it has no physical meaning. In fact, this frequency
is caused by the source light flicker.

From the stabilization diagrams, the modal parameters are chosen. In Table 1, the system identification
results with their standard deviations are summarized. One can observe that between the identification results
from the laser sensor displacements, vision based measurements and the LIs, the maximum error is around 0.6%
of in terms of natural frequency estimation.

5. CONCLUSION

This paper presents a framework for structural modal identification using vision measurements. The key idea lies
in the fact that the intensities at some pixels (titled active pixels) carry the useful information of the structural
vibration. Therefore, an algorithm has been proposed to select such pixels. Modal parameters are then identified
from the collected vision data using the output-only subspace identification method. Experiments concerning
the video of a vertical cantilever beam excited with a shake table is studied and results show that



Table 1: Overview of the first eight modes

Mode
Intensity Displacement measured by Laser sensor Vision-based displacement measurements

f(Hz) σf (Hz) ζ(%) σζ(%) f(Hz) σf (Hz) ζ(%) σζ(%) f(Hz) σf (Hz) ζ(%) σζ(%)

1 0.9944 0.0149 0.4018 1.6236 1.0006 0.0071 0.0145 0.8407 0.9982 0.0092 0.0476 0.9035
2 6.7410 0.0110 0.2561 0.2118 6.7421 0.0099 0.1881 0.1346 6.7419 0.0124 0.2412 0.1644
3 19.0076 0.0359 0.2196 0.1487 19.0173 0.0127 0.1044 0.0537 18.9960 0.0216 0.2620 0.1547
4 37.3424 0.0195 0.1331 0.0482 37.3443 0.0182 0.1537 0.0465 37.3406 0.0185 0.1319 0.0443
5 62.0247 0.0220 0.1379 0.0363 62.0263 0.0272 0.1263 0.0497 62.0245 0.0221 0.1335 0.0391
6 92.5723 0.0224 0.0823 0.0206 92.5681 0.0168 0.0522 0.0159 92.5742 0.0288 0.0858 0.0456
7 129.6552 0.0312 0.0791 0.0255 129.6541 0.0288 0.0737 0.0244 129.6795 0.0220 0.0749 0.0217
8 172.1089 0.0263 0.0465 0.0146 172.1081 0.0255 0.0570 0.0148 172.1133 0.0322 0.0502 0.0164

• Only pixels that exhibit intensity changes relating to the beam vibration are selected. Therefore, the
number of active pixels change with respect to motions amplitude (see Fig. 4).

• Strong relationship exists between the time variation of the intensities and displacements extracted from
Vision sensor with a minimum CorCoef of 99, 6%.

• The beam modal parameters including the natural frequencies and the damping ratios with their uncer-
tainties were identified. A comparison between the SSI results when implemented on the intensity data,
laser and vision data were also studied. The results showed around 2% of maximum error in terms of
natural frequency estimation. The comparison indicates that the proposed approach has the potential to
identify the structure modal parameters with reasonable levels of accuracy.

The proposed approach can estimate the modal properties. However, it is critical to efficiently select the
active pixels. If they are insufficient or over-considered, the intensity time variations will be incomplete or
corrupted by noise. Furthermore, the proposed approach depends highly on the illumination conditions. A
constant illumination during tests is required to obtain reasonable results.

Authors are grateful to Research Fund for Coal and Steel for funding part of this work under grant
agreement No 800687 in the framework of DESDEMONA project, and to Ivan Guéguen, Jean-
Philippe Gourdon and Fabrice Blaineau for the essential assistance provided for the experimental
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[13] Döhler, M. and Mevel, L., “Fast multi-order computation of system matrices in subspace-based system
identification,” Control Engineering Practice 20(9), 882–894 (2012).

[14] James III, G. H., Carne, T. G., and Lauffer, J. P., “The natural excitation technique (next) for modal
parameter extraction from operating wind turbines,” NASA STI/Recon Technical Report N 93, 28603
(1993).

[15] Siringoringo, D. M. and Fujino, Y., “System identification of suspension bridge from ambient vibration
response,” Engineering Structures 30(2), 462–477 (2008).

[16] Fan, W. and Qiao, P., “Vibration-based damage identification methods: a review and comparative study,”
Structural health monitoring 10(1), 83–111 (2011).

[17] Ewins, D. J., [Modal testing: theory, practice and application ], John Wiley & Sons (2009).

[18] Nassif, H. H., Gindy, M., and Davis, J., “Comparison of laser doppler vibrometer with contact sensors for
monitoring bridge deflection and vibration,” Ndt & E International 38(3), 213–218 (2005).

[19] Negulescu, C., Luzi, G., Crosetto, M., Raucoules, D., Roullé, A., Monfort, D., Pujades, L., Colas, B.,
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