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Abstract—Modern processors raise a challenge for WCET
estimation, since detailed knowledge of the processor micro-
architecture is not available. This paper proposes a novel hybrid
WCET estimation technique, WE-HML, in which the longest
path is estimated using static techniques, whereas machine
learning (ML) is used to determine the WCET of basic blocks.
In contrast to existing literature using ML techniques for WCET
estimation, WE-HML (i) operates on binary code for improved
precision of learning, as compared to the related techniques
operating at source code or intermediate code level; (ii) trains
the ML algorithms on a large set of automatically generated
programs for improved quality of learning; (iii) proposes a
technique to take into account data caches. Experiments on
an ARM Cortex-A53 processor show that for all benchmarks,
WCET estimates obtained by WE-HML are larger than all
possible execution times. Moreover, the cache modeling technique
of WE-HML allows an improvement of 65 percent on average
of WCET estimates compared to its cache-agnostic equivalent.

I. INTRODUCTION

The Worst-Case Execution Time (WCET) of a program is
the longest time the program will take to execute on a given
architecture. Knowing the WCET of a program is crucial in real-
time systems to prove that deadlines will be met. Determining
the exact WCET of a program is not tractable, the WCET
is therefore estimated, seeking for an upper bound of the
exact WCET. The challenge addressed in this paper is to
compute WCET estimates for modern processors, for which
the processor’s micro-architecture is not precisely known.

WCET estimation methods are divided between static
methods, end-to-end measurement-based methods and hybrid
methods [1]. Static methods estimate the WCET without
executing the program. In the first phase, they estimate the
WCET of each basic block in the program thanks to the
knowledge of the architecture, and in the second phase they
calculate the whole program’s WCET estimate from those of the
basic blocks. For the second phase, Implicit Path Enumeration
Technique (IPET) [1] is the most used class of techniques.
IPET relies on solving a linear optimization problem generated
from the program’s Control Flow Graph (CFG). Static methods
provide a safe WCET estimate, which is an upper bound
of any possible execution time, provided that the WCET
estimate of each basic block is itself safe. However, static
methods require extensive knowledge of the micro-architecture
of the processor (caches [2], pipelines [3], branch predictors

[4]). This information is increasingly difficult to obtain with
recent architectures, for intellectual property reasons, or simply
because the micro-architecture is too complex to design a safe
and accurate model of the processor’s timing.

End-to-end measurement-based methods are empirical tech-
niques that do not require detailed knowledge of the hardware.
They launch the program on a series of inputs, and the resulting
execution times are measured and gathered. The WCET is then
estimated, either by taking the highest measurement, or by
extrapolation using statistical techniques (Measurement-Based
Probabilistic Timing Analysis, or MBPTA [5]). By construction,
when using the highest measurement as WCET estimate, these
techniques can only underestimate the WCET, unless the input
and the hardware state resulting in the longest execution path
are used during the tests [6]. Therefore, a safety margin is
often added to the WCET estimate to mitigate the lack of
confidence in the measurements.

Hybrid methods mix static and measurement-based ap-
proaches. In a vast majority of these techniques (e.g. [5], [7]–
[10]), measurements are used to estimate the WCET of basic
blocks. The WCET of the whole program is then estimated
using calculation methods such as IPET. The advantage of
hybrid techniques is that they do not require knowledge of the
architecture, while being able to find the longest path of the
CFG. However, measurement-based hybrid methods are prone
to the problem of measuring the execution time of every basic
block b at least once (code coverage issue) [11]: finding an
input for which b is executed is challenging, as well as finding
an input that exercises the worst-case execution scenario of b.

In this paper we propose a new hybrid WCET estimation
technique named WE-HML (for WCET Estimation using
an Hybrid Machine-Learning based technique) that supports
caches. WE-HML operates in two phases. In the first phase
(learning phase), the timing model of the processor is learnt
through the training of machine learning (ML) algorithms. WE-
HML comes with five ML algorithms that are found to produce
good timing predictions. Learning is performed using extensive
measurements on the binary code of a large set of automatically
generated basic blocks. The WCET of each basic block is
learned for different execution contexts of the basic block. For
the scope of this paper, the considered context for a basic block
is the level of cache pollution coming from the execution of
other code in the same loop nest. One benefit of WE-HML is



that it requires little knowledge on the memory hierarchy. The
training phase is executed only once per architecture.

In the second phase (WCET estimation phase), the WCET of
each basic block of the target program is computed, by applying
the timing model learnt in the first phase for the cache pollution
suffered by the basic block. The cache pollution is calculated
using static analysis. The WCET of the overall program can
finally be computed using a modified version of IPET. This
second phase is executed once for each target program.

We believe that WE-HML can be used for software at
intermediate safety levels (for example DAL B and C in the
aeronautic industry [12]), that may use for obvious cost reasons,
processors that are too complex to have a safe timing model,
and thus for which static WCET estimation methods are not
available. For such systems, WCETs are needed, and thus
some pessimism in WCET estimation is tolerated, but missing
a deadline, if sufficiently rare, can be accepted.

We have evaluated WE-HML on the Cortex-A53 processor
used in the Raspberry Pi 3 B+ platform [13], for which
there is no detailed micro-architecture description available at
the current time. Our experiments evaluate the WCET of 13
programs from the TACLeBench benchmark suite [14]. Since
WE-HML is an empirical technique (the learning phase uses
measurements), there is no formal guarantee that it produces
safe WCET estimates. Still, for the tested programs, estimated
WCETs are always larger than the maximum observed execu-
tion times (MOETs).

WE-HML has two advantages over existing hybrid tech-
niques. First, measurements, which are time-consuming, are
performed only once per architecture, to train the ML algo-
rithms. Estimating the WCET of a target program is fast based
on our experimental evaluation, about thirty seconds for most
programs. Second, since the WCETs of the basic blocks of
a program are estimated using an ML algorithm instead of
measurements, WE-HML eliminates the code coverage issue
that exists in related hybrid techniques.

While machine learning has been used in the past to estimate
WCETs [15]–[17], all methods that we are aware of, operate
at source code or intermediate code level. WE-HML instead
operates on binary code to augment the precision of learning.
In addition, most ML-based WCET estimation techniques apply
training on a small number of benchmarks, whereas WE-HML
relies on a large set of automatically generated basic blocks,
providing a high quality of training. Finally, WE-HML is
unique in its support for caches. The contributions of this
paper are the following:
• A hybrid WCET estimation technique for single-core

processors, based on an ML-derived timing model of the
core.

• A technique to account for processor caches, with little
knowledge of the memory hierarchy.

• A selection of five ML algorithms, based on the learning
scores for basic blocks obtained after experiments (r2
score [18], mean relative error and maximum error):
Random Forests, Neural Networks, Gradient Boosting,
Ridge and Bayesian Ridge. None of these five techniques

consistently outperforms the others for all benchmarks.
• A detailed experimental evaluation of the quality of

predictions and the interest of accounting for caches.
– When evaluating WE-HML on complete programs,

we observe that predicted WCETs are always higher
than any observed execution times, for all benchmarks
and all ML algorithms.

– By comparing WE-HML (that accounts for cache
effects) with a cache-agnostic technique, we observe
that cache modeling decreases WCET estimates by
65% on average.

– Finally, our experimental evaluation provides a com-
parison with a cache-agnostic measurement-based
hybrid approach. Experimental results show, on a
representative benchmark, that WE-HML calculates
WCET estimates that are 2.5 times smaller than the
baseline hybrid technique.

For the sake of reproducibility of results, the source code
of WE-HML is available (https://gitlab.inria.fr/puaut/we-hml/).

WE-HML currently targets single-core processors. Extending
our work to multi-core processors will require taking into
account interference delays when accessing shared hardware
resources, which is left for future work.

The rest of this paper is organized as follows. Section II
presents the WE-HML approach. The experimental methodol-
ogy for evaluating WE-HML on an ARM Cortex-A53 processor
is detailed in Section III. Experimental results are given in
Section IV. Section V compares our approach to related
techniques. We finally discuss on the results achieved and
present our future work in Section VI.

II. WE-HML APPROACH

WE-HML operates in two phases. In the first phase, de-
scribed in Section II-A, machine learning algorithms are trained,
using measurements on a large set of automatically generated
basic blocks. In a second phase, presented in Section II-B,
the WCET of programs is estimated using a modified IPET
calculation method. For the sake of clarity, these two phases
are presented in a target-independent manner, and voluntarily
disregard the consideration of the execution context of basic
blocks (for the scope of this paper, caches), which are detailed
in Section II-D. Automatic generation of training data is
presented in Section II-C.

A. Learning the processor timing model (training)

The training phase is executed once per target architecture.
Its purpose is to learn the timing model of the processor, as
depicted in Figure 1. WE-HML comes with five ML algorithms,
that are trained on automatically generated basic blocks. The
automatic generation of basic blocks, detailed in Section II-C
aims at covering a large variety of code structures that exist
in real code. Once trained, each ML algorithm can estimate
the WCET of any basic block in programs, including basic
blocks never encountered during the training phase. The ML
algorithm captures the impact of the contents of a generated
basic block on its WCET.



Fig. 1. WE-HML training phase

The ML algorithm learns from the values of numerical
quantities, called features. The considered features in WE-
HML are a vector of proportions of each type of machine
instruction (e.g. add, sub) to the number of instructions in
the considered basic block (#specific instr

#instrs ). When an instruction
type has different addressing modes that impact the instruction
timing (i.e., memory vs register operands), each variant is a
different entry in the vector. Encoding instruction types as
proportions permits the construction of a timing model that
is independent of the length of basic blocks. For the same
reason, the WCET estimate of a basic block is also encoded as
a proportion of cycles to the number of instructions in the basic
block ( WCET

#instrs ). Features and normalized WCET estimates are
both represented as floating-point values.

B. Estimating the WCET of a target program

The WCET estimation phase for a target program is shown
in Figure 2. First, basic blocks, their associated features, and
the program’s Control Flow Graph (CFG) are extracted from
the program’s binary code. The learned timing model is then
used to compute a WCET estimate for each basic block. The
CFG and the WCET estimates are then fed back to a WCET
estimation tool that implements the IPET [19] for estimating
the WCET of the entire program. In our WE-HML prototype,
we have modified the IPET implementation of the Heptane
open-source software [20].

Fig. 2. WE-HML WCET estimation phase

Listing 1. Example of C code
f o r ( i n t i = 0 ; i < 100 ; i ++)

i f ( t [ i ]>0) s = s + t [ i ] ;
e l s e s = s − t [ i ] ;

We illustrate WCET estimation on a simple program that
computes the sum of the absolute value of 100 elements stored
in an array t. Listing 1 and Figure 3 show respectively the
C source code and the corresponding CFG that is extracted

start for if

then

else

endif end

Fig. 3. Control flow graph for code of Listing 1

nstart = 1
nfor ≤ 101
nfor = nstart→for + nendif→for

nfor = nfor→if + nfor→end

nif = nfor→if

nif = nif→then + nif→else

Fig. 4. IPET formulas for CFG of Figure 3

from the compiled binary code. In Figure 3, nodes correspond
to basic blocks and edges correspond to possible control flow
between them. For example, basic block then contains the code
for s=s+t[i].

First, the WCET wb of a basic block b is estimated
by applying the ML algorithm. Then, the IPET technique
estimates the longest path in the program using integer linear
programming: the goal is to maximize the following quantity:∑
b∈basic blocks

wb×nb, with nb the number of executions of basic

block b.
Constraints on variables nb and nb→b’ (the number of times

the edge b→ b’ is taken, b and b’ being basic blocks) model
the execution flows (a basic block is entered as many times as
it is exited) and the maximum numbers of iterations for loops.
Constraints are generated by the IPET technique, possibly
with annotations for loop bounds when the tool is not able to
infer them automatically. An excerpt of the constraints for the
example program is given in Figure 4. Assuming for the sake
of illustration that the outcome of the learnt timing model is
a WCET of 10 cycles for all basic blocks, except block then
which executes in 20 cycles, the result of the IPET calculation
for the example is then nstart = 1, nfor = 101, nif =
100, nthen = 100, nelse = 0, nendif = 100, nstart = 1 and
the WCET estimate is 5030.

For simplicity reasons, we have assumed for this illustrative
example that each basic block has a single, context-independent
WCET estimate. For architectures with caches, this assumption
is obviously not valid anymore. In Section II-D, we show how
to extend this simple formulation to take caches into account.

C. Automatic generation of training data

Existing works using machine learning algorithms for WCET
estimation [15], [16] rely on a small number of benchmarks to
train the ML algorithms. This may limit the quality of training,
because the amount of training data is too small, and the code
snippets may be too homogeneous. Similar to [21], we address
this issue by using a large set of automatically generated basic
blocks as training data. The WE-HML code generator relies on
a grammar to generate source code (C code) for basic blocks,
that is subsequently compiled into binary.



The basic blocks produced by the WE-HML code generator
have randomly selected numbers of statements and variables.
The generated code uses all the standard basic types, all selected
randomly by the generator, with user-provided parameters
specifying the proportion of each type: char, short, int, long,
in their signed and unsigned variants, as well as arrays of basic
types. The most common C operations (arithmetic and logical
operations, array indexing, shift and rotate operations, binary
and unary operators on booleans, etc.) are covered.

A generated basic block first declares a set of variables and
then applies randomly-selected operations on these variables.
The code is guaranteed by construction to not trigger any
exception at run-time (e.g. no out-of-bound array accesses).
In order to cover branch instructions, the code may contain if
statements. However, the generator ensures that there is no data-
dependent execution, and makes the outcome of conditional
branches always known, i.e., the condition of the test for if
statements is always true. The definition of a basic block in
WE-HML is not the classical definition of a basic blocks as
defined in the compiler domain. A basic block in WE-HML
may contain branches, for the sake of timing estimation of
branch instructions. An example of a generated basic block is
given in Listing 2.

Listing 2. Example of generated basic block
a r r a y 0 [ 2 3 3 ] = ( one > z e r o ) ? va r 5 : va r 4 ;
va r 3 = a r r a y 0 [ a r r a y i n d e x ] − va r 3 ;
a r r a y 0 [ 1 6 4 ] = va r 3 << s m a l l i n t ;
i f ( one > z e r o ) {

var 1 = var 5 % 65497;
va r 6 = var 6 >> 2 ;
a r r a y 0 [ 1 4 6 ] = − a r r a y 0 [ a r r a y i n d e x ] ; }

Since the WE-HML code generator produces C code, it is
not dedicated to a particular architecture, and thus it can be
used for WCET estimation of other targets than the ARM
Cortex-A53 used in this paper.

The experimental conditions used to avoid as much as
possible bias when training the ML algorithms on automatically
generated code (e.g. optimistic timing for branches) will be
detailed in Section III.

D. Supporting processors with caches
The memory hierarchy has a significant impact on the

execution time of a basic block. When the instruction/data
caches contain no information (cold cache), or worse, when
dirty data has to be copied-back in memory, the execution
time of a basic block is much longer than when the cache
contains useful information loaded previously (warm cache).
Therefore, not considering the memory hierarchy during WCET
estimation amounts to evaluating only the cold cache scenario,
which may result in highly pessimistic WCET estimates.

In contrast to static cache analysis techniques that require
precise knowledge of both the cache architecture and the
memory accesses made by the target program, WE-HML takes
cache hierarchies into account by learning the impact of caches
on the WCET of basic blocks.

A basic block executed within a loop nest may experience
different levels of pollution of the cache hierarchy depending

on the other memory accesses performed in the same loop nest.
This is captured by the concept of cache pollution value. For a
given basic block b executed repetitively within a loop nest, the
pollution value models the volume of data that may conflict in
the cache between successive executions of b in the loop nest.
More precisely, if basic block b accesses x bytes of data, a
pollution value of p means that p ∗x bytes are accessed within
the loop nest outside b, and may evict the data loaded by b.
We observed that the larger the pollution value, the higher the
execution time of the basic block.

As part of the training phase, learning is performed for
different pollution values. The WCET of each basic block b
for a pollution value p is estimated by wrapping the code of b
in a function, whose code is given in Listing 3.

Listing 3. Executing a basic block with cache pollution
f l u s h c a c h e s ( ) ;
f o r ( i = 0 ; i < n b i t e r ; i ++) {

/ / Moni tor exec . o f BB ( read c y c l e c o u n t e r )
c n t r e a d (& t b ) ; BB ( ) ; c n t r e a d (& t a ) ;
i n v a l i d a t e i c a c h e ( ) ;
p o l l u t e ( p*x ) ; / / W r i t e randomly p* x b y t e s

}

The basic block is executed multiple times and its execution
time is measured by reading the processor cycle counter (call
to function cnt read). pollution code is inserted between the
successive executions (function pollute). The objective of the
pollution code is to evaluate the performance loss resulting
in the execution of other basic blocks in the same loop nest,
caused by pollution of all the caches in the memory hierarchy.
The timing of the first execution, corresponding to the cold
cache scenario is discarded, and the WCET for the warm cache
scenario is evaluated from the measurements (see details in
Section III-C). In order to minimize the amount of knowledge
on the loop nest inside which the basic block is executed, the
pollution code experimentally explores the memory references
from the enclosing loop nest: for a pollution value p, the
pollution code randomly accesses p ∗ x bytes in an large array
(whose size is the size of the last-level cache) to find the
worst case. The repetitive execution of the basic block serves
two purposes: (i) capturing the inherent timing variability of
the processor; (ii) capturing (with no formal guarantee) the
worst-case pollution from other blocks in loop nests.

The pollution code allows learning the impact of all cache
levels in the memory hierarchy on the execution time of the
basic block under study. This is achieved without precise
knowledge of the different cache levels; WE-HML only requires
the knowledge of the size of the last level cache, which can
be easily determined experimentally. To be on the safe side,
since pollution in the instruction cache is not yet managed,
the instruction cache is flushed between experiments (call to
invalidate icache).

As part of the estimation phase, WE-HML first estimates
for each basic block executing within a loop nest the cache
pollution value p. This is done using a simple static program
analysis (see details of the implementation in Section III-D)
that counts the volume of data accessed within the loop nest.



Two WCET values per basic block are then used during
WCET estimation: one value for the first execution of the
basic block (cold cache scenario), obtained by using the ML
prediction for the largest pollution value, and one value for the
next executions of the basic block within the loop nest (warm
cache scenario), obtained by using the ML prediction for the
pollution value predicted statically. These two values are fed to
the IPET calculation technique, with an extra constraint in the
IPET calculation technique constraining the cold cache value
to be used only for the first iteration of the loop.

III. EXPERIMENTAL SETUP

In this Section, we detail the experimental setup used for the
evaluation of WE-HML for the Raspberry Pi 3 B+ platform.
The hardware and software environments are first introduced
(Section III-A). The programs used for evaluating the quality
of predictions are presented (Section III-B). We then detail the
learning and prediction phases of WE-HML (Sections III-C
and III-D).

A. Hardware and software environments

The Raspberry Pi 3 B+ [13] relies on a Broadcom BCM2837
SoC which is based on a 1.2 GHz 64-bit quad-core ARM
Cortex-A53 processor, a 2-wide superscalar processor. The
architecture features a private L1 cache and a 512 KiB shared
L2 cache. Timing measurements are obtained using the cycle
counter implemented in the processor (function cnt read in
Listing 3). Reading the cycle counter requires one machine
instruction, resulting in negligible measurement overhead.

The Raspberry Pi runs the Raspbian Lite operating system
(Linux kernel version 4.19, light operating system without
user interface to minimize the impact of the operating-system
activity on timing). Similar to Bate et al. in [22], we configure
the Raspbian operating system to force a constant processor
frequency (800 MHz) and thus avoid Dynamic Voltage Scaling
(DVS). To avoid as much as possible timing noise coming
from the operating system, the codes are compiled and run as
Linux kernel modules. The compiled codes are executed on a
specific core (core 3) on which no user task is allowed to run
(isolated core, using the Linux isolcpus facility). A cold cache
is enforced at the beginning of each experiment, by invalidating
the instruction cache and filling the data cache with dirty data.

B. Benchmarks

The quality of WCET predictions of programs was evaluated
on 13 benchmarks from the TACLeBench benchmark suite
[14]. Benchmarks using floating-point numbers were discarded
because execution in kernel mode does not support floating-
point values. We also excluded the benchmarks using emulated
instructions, and the benchmarks reaching the limits of the
prototype (using recursion or having complex call graphs not
yet supported by cache pollution computation, as detailed in
Section III-D). Table I gives the main characteristics of each
benchmark: a brief description, the maximum depth of loop
nesting found in the code, and the number of basic blocks.

TABLE I
PROPERTIES OF BENCHMARKS

Name Description Nest. #BB
binarysearch Binary search in an array 1 24
bsort Bubble sort algorithm 2 33
countnegative Basic counting on arrays 2 34
crc Cyclic redundancy codes 1 30
expint Exponential integral function 2 30
fdct Fast discrete cosine transform. 1 10
fir Finite impulse response filter 2 16
h264 dec H.264 block decoding functions 5 165
insertsort Insertion sort 2 10
jfdctint Discrete-cosine transformation 1 12
matrix1 Generic matrix multiplication 3 35
ns Search in 4-dimension array 4 19
petrinet Petri net simulation 1 170

Each benchmark comes with input values exercising the longest
execution path.

Compiler optimizations were disabled when compiling the
benchmarks, to facilitate the provision of flow information
during WCET analysis (if optimizations were allowed, flow
information, for example, loop bounds would then have to be
transformed manually according to the optimizations applied
by the compiler, which is error-prone [23]–[25]). Consideration
of compiler-optimized code is left for future work.

The original code of benchmarks expint and ns was contain-
ing a long piece of code executed in only one loop iteration.
As Heptane, the tool we have modified does not include
any detection of such an infeasible path [26], it considers
that this path is executed at all iterations, resulting in highly
overestimated WCETs. Since we aim at estimating the quality
of WE-HML and not the quality of Heptane, the code of these
two benchmarks was re-structured to avoid this infeasible path.

C. Training phase

A total of 15000 basic blocks was generated for the training
of the ML algorithmes. We have made sure that the generated
basic blocks cover all the instructions that are produced by
gcc with no optimization for the ARM Cortex-A53 processor.
Because the list of instructions possibly generated by gcc is
not documented, we have checked that all instructions used
in the benchmarks are present in the generated basic blocks.
The training phase was performed on for 10 pollution values,
which are powers of two ranging from 1 to 512, resulting in
10 variants of each tested ML algorithm, one per pollution
value. The highest pollution value of 512 was experimentally
determined by analyzing the impact of pollution on a large
number of basic blocks.

The quality of the timing model depends on the input training
data, which has to be as representative as possible of the real
world it is intended to represent. A lot of attention was paid
to avoid biased training data as much as possible:
• As the timing of basic blocks mainly depends on the

type of instructions executed, the parameters of the code
generator were tuned to have proportions of instructions
similar to real code while avoiding being too close to any



particular benchmark. We also tuned the parameters to
cover varied sizes of basic blocks, from very small basic
blocks to longer ones.

• The execution time of specific instructions should not
be smaller during the training phase than during a real
execution. This could occur for branches, for which the
repetitive execution of basic blocks used to collect training
data could introduce a bias. This bias was eliminated by
flushing the branch prediction tables between each timing
measurement in the measurement loop from Listing 3.
Regarding the effect of caches, the presence of pollution
code aims at maximizing the execution time of a basic
block in presence of cache pollution within loops.

• A foreseen bias in training data is that we only consider
proportions of instructions during training, regardless of
their order of execution in the basic block. This choice
was taken to have fast training and prediction.

We implemented two variants to estimate the WCET of basic
blocks from the set of collected measurements:

• The WCET estimate is set to the largest observed
execution time (MOET). For this technique, each basic
block is executed a sufficiently large number of times
(1000 in our experiments) to cover at best the possible
timings.

• The WCET estimate is estimated using Measurement-
Based Probabilistic Timing analysis [5], [27], with an
exceedance probability of 10−3. Extreme value theory
(EVT), and more precisely GEV (Generalized Extreme
Value theory) was used to obtain the WCET from a set of
measurements. We made sure that the timing samples
respect the three conditions that must hold to apply
EVT: stationery, short-term independence, and long-term
independence [28]. 200 runs were sufficient to make sure
that 10000 basic blocks, out of 15000 generated basic
blocks, respect the three applicability conditions [29] with
a commonly-used significance level of 5%.

For both techniques, 80% of the basic blocks were used for
training and cross-validation, 20% were used for testing.

Executing the 15000 basic blocks to obtain the timing
samples for the 10 pollution values required approximately
36 hours, using a single Raspberry Pi 3B+ board. We do not
consider the duration of the training phase to be an issue, since
it has to be performed only once per architecture and could be
easily executed in parallel on several boards. Training, executed
on a Linux virtual machine running on a DELL Latitude 7400
with 8 core Intel i7 processor, required around 62 minutes in
total for the 5 ML algorithms.

TABLE II
EXPERIMENTED MACHINE LEARNING ALGORITHMS

Algorithm Description
Random Forest (RF) A multitude of decision trees
Neural Network (NN) Multi-Layer Perceptron neural network
Gradient Boosting (GB) Stochastic gradient boosting
Bayesian Ridge (BR) Bayesian ridge regression
Ridge Standard ridge regression

We have evaluated the machine learning algorithms that
provided by the Scikit library [18], [30]. Preliminary experi-
ments made us select the 5 algorithms that gave the best results
among those provided by the Scikit library (see Table II for a
brief description). In the rest of the paper, the acronyms (RF,
NN, GB, Ridge, BR) will be used instead of the full names.

D. WCET estimation phase

WCET estimation is implemented by modifying the open-
source IPET-based static WCET estimation tool Heptane [20] as
follows. Heptane was modified to calculate the pollution value
for each basic block. The current estimation of the pollution
value is conservative, in the sense that it considers all accesses
inside a loop nest: in case there are multiple paths in a loop, the
number of accesses in the different paths are summed, leading
to safe but overestimated pollution values. Another source of
conservatism is that the presence of loops is considered as the
only source of cache reuse: reuse resulting from function calls
is currently ignored. In the current state of the implementation,
cache pollution is computed only for loop nests that contain
a function call tree of depth strictly higher than one, and the
benchmarks that do not meet this condition are discarded.

Then, the IPET calculation step of Heptane is modified to use
the ML-predicted WCET values for basic blocks instead of the
values predicted by static analysis as in the original Heptane.
Two WCET estimates for each basic block are predicted: one
estimate with a cold cache (for the execution of the basic
block within the first loop iteration), and a second with a warm
cache, using the statically-predicted cache pollution value. The
original calculation step of the Heptane is then applied, using
these two WCET estimates.

IV. EXPERIMENTAL RESULTS

The quality of WE-HML is evaluated from different points
of view. First, we evaluate the quality of WCET predictions of
entire programs (Section IV-A). Then, we evaluate the benefit
of accounting for caches (Section IV-B). WE-HML is then
compared with a cache-agnostic measurement-based hybrid
technique in Section IV-C. Finally, a detailed analysis of the
quality of WCET predictions at the basic block level is given
in Section IV-D.

A. Prediction of WCETs of programs

Table III reports the WCET estimated by WE-HML (with
cache modeling) on the benchmarks, using the 5 selected
ML algorithms. The estimated WCETs are compared with the
maximum observed execution time (MOET) of each benchmark,
obtained by taking the maximum timing of 1000 executions,
all using the inputs that trigger the worst-case execution path.
The predicted WCET values in the Table are obtained by the
best-performing variant of WE-HML in terms of quality of
learning for basic blocks: training with pWCET-10−3 values for
basic blocks, see Section IV-D for more details. The rightmost
column gives the overestimation factor, calculated as the ratio
between the estimated WCET and the MOET. The estimated
WCET used to calculate the overestimation factor is the one



depicted in bold face in the Table, calculated by the less
pessimistic ML technique.

We observe that the estimated WCETs are never lower than
MOETs. We also observe that no ML algorithm consistently
outperforms the others on all benchmarks. The lowest estimated
WCETs are most of the times computed by RF (8 times out
of 13) and GB (3 times). The ML algorithm that computes
the largest WCET estimates the most often is Ridge (9 times).
Pertrinet is far the overestimated benchmark, for the rest the
overestimation factor varies between 2.77 and 9.38.

We observe that benchmarks with deeply nested loops suffer
from the most important WCET overestimations. This comes
from the way caches are accounted for in WE-HML, which is
by construction pessimistic: (i) we consider that every memory
access within a loop nest may pollute the cache; (ii) the
referenced addresses within a loop nest are not computed (only
their number), thus the same address may be counted several
times; (iii) the impact of pollution is evaluated by searching
for the references having the largest impact. In comparison,
the overestimation of WCETs for the benchmarks with a loop
nesting level of 1 is moderate.

A more detailed analysis is now given for benchmark
binarysearch. This benchmark is sufficiently simple to make
sure that the pessimism of WCET estimates only comes from
our technique: this example has obvious worst-case input,
constant loop bounds, and no infeasible path. Figure 5 depicts
the MOET and ML-predicted WCET for all selected ML
algorithms.
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Fig. 5. ML-predicted WCETs versus observed execution times for binary-
search

For binarysearch, the smallest WCET estimate is obtained
by GB followed tightly by RF and the highest is obtained
by Ridge. The pessimism for such an application with a loop
nesting level of 1 is moderate.

Although we did not observe any underestimated WCET
estimates using WE-HML, one may wish to change the way the
WCET of basic blocks are estimated during training, by using
a lower exceedance probability. Experiments with a probability
of 10−6 resulted in an augmentation of 35% of estimated
WCETs, on average for all benchmarks.

As far as the duration of WCET estimation is concerned, we

observed WCET prediction durations of around thirty seconds
for most programs. This duration looks very reasonable to
us for our non-optimized code for WCET estimation (call
of a Python script for each basic block, parameter passing
using files, de-serialization of the ML algorithm for each basic
block). We observed that RF is by far the most time-consuming
algorithm. The other algorithms are comparatively much faster.

B. Benefits of cache modeling

One of the benefits of WE-HML is to account for caches, by
predicting two different WCETs per basic block: one for its first
execution (cold cache) and one for the next executions (warm
cache). Table IV gives for all benchmarks the improvement
of WCET estimates obtained by accounting for caches in
WE-HML, compared to the WCET estimation technique that
systematically considers a cold cache (hereafter W nocache).
The improvement, expressed as a percentage, is calculated by
formula W nocache−WEHML

W nocache .
As expected the numbers show a significant improvement

brought by cache management (65% on average for all ML
algorithms and all benchmarks). Benchmark Pertrinet does not
benefit at all from cache management: its code contains a loop,
but the amount of data accessed in the loop is so big that even
when considering caches all the cache is considered as polluted
by our analysis (and is actually polluted at run-time).

C. Comparison with a hybrid WCET estimation technique

In this section, we compare WE-HML with a cache-agnostic
hybrid technique that uses the highest measurement for each
basic block for WCET estimation. We did not compare with
static WCET estimation since there is no publicly available
description of the processor we are targeting, and most
importantly because we are specifically targeting processors
reaching the limits of static WCET estimation.

Comparing WE-HML with measurement-based hybrid ap-
proaches [7], [31] on a large set of benchmarks is difficult,
because such techniques have to automatically introduce
instrumentation code in the benchmark under study to measure
the execution time of small code snippets. Since introducing
instrumentation code is a time-consuming task, as a preliminary
experiment, we performed a comparison on one program only,
using manual instrumentation. The program, given in Listing 4,
implements edge detection in an image. To limit the cost of
insertion of instrumentation, only the main (and longest to
execute) basic block was instrumented.

Listing 4. Edge detection program
void edge ( char i n [ T ] [ T ] , char o u t [ T − 1 ] [ T − 1 ] ) {

f o r ( i =0 ; i<T−1; i ++) {
f o r ( j =0 ; j<T−1; j ++) {

a1= i n [ i ] [ j ] − i n [ i + 1 ] [ j + 1 ] ;
a1 =( a1 +( a1>>31) ) ˆ ( a1>>31) ;
a2= i n [ i ] [ j +1] − i n [ i + 1 ] [ j ] ;
a2 =( a2 +( a2>>31) ) ˆ ( a2>>31) ;
o u t [ i ] [ j ] = a1+a2 ;

}}}

The hybrid technique used as a baseline measures the
execution time of basic blocks and then applies IPET with



TABLE III
ESTIMATED WCET OBTAINED BY WE-HML VERSUS MOET.

Benchmark RF NN GB BR Ridge MOET Overestimation factor
binarysearch 7358 11728 7117 12622 13517 2568 2.77
bsort 3362849 5251155 4463131 9555110 10225058 358380 9.38
countnegative 102506 99415 108291 79818 87545 29720 2.69
crc 277623 329852 298225 289192 302788 66867 4.15
expint 27704 35933 28353 60420 61358 6122 4.52
fdct 26193 40328 29084 34523 37461 8877 2.95
fir 40565 50510 37570 82433 87648 7646 4.91
h264 dec 2941623 3649120 3405644 4126177 4506618 426327 6.9
insertsort 12293 15322 12095 16858 18584 3042 3.98
jfdctint 31969 40103 35706 38910 41611 8070 3.96
matrix1 65679 102079 65911 95697 106144 21380 3.07
ns 190940 183002 185426 367042 370772 22018 8.31
petrinet 77039 175362 92620 157400 167268 3329 23.15

TABLE IV
IMPROVEMENT (DECREASE) OF ESTIMATED WCET RESULTING FROM

CACHE MANAGEMENT

RF NN GB BR Ridge Avg
binarysearch 74% 70% 78% 61% 62% 69%
bsort 69% 69% 64% 27% 32% 52%
countnegative 85% 87% 86% 0% 87% 62%
crc 88% 91% 89% 90% 90% 90%
expint 80% 82% 82% 65% 68% 75%
fdct 76% 79% 77% 77% 78% 78%
fir 51% 69% 65% 37% 41% 53%
h264 dec 72% 81% 73% 73% 74% 75%
insertsort 81% 89% 86% 84% 85% 85%
jfdctint 77% 80% 78% 73% 75% 77%
matrix1 84% 84% 86% 81% 81% 84%
ns 58% 68% 63% 21% 28% 48%
petrinet 0% 0% 0% 0% 0% 0%

the largest observed value, with no attempt to account for the
different execution contexts of basic blocks. This technique
corresponds to the technique described by Kirner et al. in [7]
with instrumentation at the basic block level.

TABLE V
COMPARISON WITH HYBRID METHOD

BB first BB next WCET WCET
MB−Hybrid

(cycles) (cycles) (cycles)
RF 2160 227 76605568 3.10
NN 3247 269 91026704 2.61
GB 2595 263 87089720 2.73
BR 2381 283 114662216 2.07

Ridge 2660 286 112299136 2.11
MB-Hybrid 451 NA 237379792 1.0

Experimental results (see Table V) give for the studied basic
block the WCET estimated for the different ML algorithms
(two values for first and next iterations). The third line gives
the WCET estimated using IPET. The last line in the table
contains the ratio Hybrid

WE-HML . We observe from Table V that cache-
agnostic hybrid methods are as expected more pessimistic than
WE-HML, with WCET estimates 2.5 times higher than WE-
HML on average. Furthermore, as already mentioned before,

TABLE VI
R2 SCORES OF SCIKIT ML ALGORITHMS ON BASIC BLOCKS, DEPENDING

ON TECHNIQUE USED FOR ESTIMATING THE WCET OF BASIC BLOCKS AND
POLLUTION VALUE

MOET pWCET 10−3
Algorithm 1 16 512 1 16 512
RF 0.070 0.484 0.828 0.728 0.431 0.883
NN 0.073 0.461 0.831 0.725 0.410 0.877
GB 0.080 0.482 0.830 0.735 0.426 0.884
BR 0.077 0.467 0.827 0.722 0.415 0.874
Ridge 0.076 0.467 0.827 0.722 0.415 0.874

WE-HML does not need code instrumentation and does not
suffer from the code coverage issue.

D. Prediction of WCETs of basic blocks

WCET prediction at program level obviously depends on
ability of the ML algorithms to predict WCETs at the basic
block level. This ability to predict the WCET of basic blocks
is evaluated in Table VI by analyzing the r2 score of the ML
algorithm (or the coefficient of determination) as provided by
Scikit [18]. The higher the score, the better the prediction,
with a best possible value of 1. The scores are given for
the two different ways of calculating the WCETs of basic
blocks from measurements, that are later used for training
(MOET and pWCETs with exceedance probability of 10−3,
see Section III-C), and then per pollution values (1, 16, 512).

We observe that training the ML algorithms using the MOET
of basic blocks may lead to very low scores. An analysis of the
training data made us attribute this phenomenon to rare but very
high timing outliers in the measurements, probably coming
from the operating system activity. Probabilistic techniques
such as pWCET 10−3, by construction, are more robust to the
presence of such outliers, that they eliminate if rare enough.
We did not notice any significant difference in the learning
scores obtained by the different algorithms in the same scenario.
pWCET 10−6 was observed to have slightly higher R2 scores
than pWCET 10−3, but significantly higher WCETs (35% on
average on the benchmarks).

The best scores are observed for the configurations with a



low pollution value, and for those with the highest pollution
value, which is expected since the execution times in these
situations have low variability. With intermediate pollution
values, the scores are lower. The worst scores are obtained
with pollution values 2, 4 and 8, and then the scores improve
when the pollution value increases. With small pollution values
(2, 4, 8, 16), the high variability of timings, comes from the
fact that it is harder to exercise the worst-case cache collisions
by randomly writing to memory.

V. RELATED WORK

The technique we propose in this paper is a hybrid technique,
in which the longest path is estimated using static techniques,
and the timing of basic blocks is estimated using an empirical
technique. In contrast to most existing hybrid techniques such
as [7]–[10], [31], [32], WE-HML does not use measurements to
estimate the WCET of basic blocks, but instead uses a timing
model learnt using ML techniques. As a consequence, coverage
of basic blocks and timing instrumentation is not an issue in
WE-HML. Among hybrid techniques, to our best knowledge
only the techniques by Stattelmann and Martin [9] and by
Dreyer et al. [10] support the variability of execution duration
induced by caches. However, these two measurement-based
hybrid techniques demand reverse engineering of timing traces
to separate the different execution contexts of basic blocks.

Regarding the definition of timing models of hardware,
Asavoae et al. [33] addresses the issues of formal co-validation
of hardware and software timing models of safety-critical
systems. The approach defines a formal specification of the
timing behavior of hardware for a very simple processor. WE-
HML is targeted for more complex processors, for which
extracting the timing behavior of the processor is out of
reach. For static WCET estimation techniques, static analysis
techniques have been designed to obtain safe timing estimations
of the WCET of basic blocks in the presence of cache
hierarchies [2], [34], [35]. Compared to these techniques, WE-
HML requires little knowledge of the memory hierarchy (size
of last level cache only).

Mendis et al. present in [36] a technique to estimate
the average-case steady-state (i.e. best-case) performance of
the software for x86 architectures, using hierarchical neural
networks. In contrast to their work, we focus on the prediction
worst-case performance instead of average-case.

In the rest of this section, we compare our work to the
existing literature using machine learning techniques for WCET
estimation [15]–[17].

The research presented in [17] estimates WCETs of portions
of code that are larger than basic blocks. This means that the
machine learning algorithms, in addition, to learning the timing
of hardware, have also to learn the longest execution path in
programs. In contrast, we use ML for timing estimation of
basic blocks only and use the safe standard WCET calculation
technique IPET for identifying the longest path.

No research amongst [15]–[17] asked explicitly the ML
algorithms to learn the behavior of architectural elements such
as caches. We propose a first attempt to take into account

the cache hierarchy. Compared to [15]–[17] we perform our
analysis at machine code level while the referenced research
operates on intermediate or source code. As a result, the quality
of predictions is better, as the code analyzed will faithfully
reflect what is actually executed by the hardware.

Lisper and Santos propose in [32] a hybrid approach where,
for a given program, the WCET of basic blocks are estimated
from a set of end-to-end-measurements, using a technique close
to linear regression. Contrary to our work, the method does
not model cache effects, and the learning process is based on
end-to-end measurements on the program under analysis itself,
rather than learning the timing from code snippets like basic
blocks.

Courtaud et al. [37] propose the use of ML to estimate
interference delays in shared memory multi-core architectures.
In contrast to their work, we focus on single-core processors.
Their technique could complement ours for validating timing
on multi-cores. Similarly, the research by Griffin et al. [38],
could complement our work to support multi-cores.

Finally, [15], [17] train their ML algorithms on benchmarks
of the literature, which contain a limited set of programs.
In contrast, WE-HML and [16] use a C code generator to
automatically generate training data. Thus, the variability and
the amount of the data trained on is controlled. Our basic
block generator is inspired by Gene [21] that generates LLVM
IR-code for WCET estimation. The main difference with Gene
and [16] is that the code generator produces basic blocks and
not entire programs.

VI. CONCLUSION

This paper has proposed WE-HML, a hybrid WCET es-
timation technique, for which the WCET of basic blocks
is estimated using ML techniques in order to avoid the
need for precise knowledge of the architecture. Compared
to existing literature using ML for WCET estimation, WE-
HML accounts for data caches, and predictions operate at
the machine code level. Experimental results have shown that
amongst the ML algorithms we have experimented with, none
of them consistently outperforms the others on all benchmarks.
Although WE-HML does not offer safety guarantees, we
observe that predicted WCETs are always higher than any
observed execution times for all benchmarks. Furthermore,
cache modeling allows an average improvement of WCET
estimates of 65% compared to a cache-agnostic equivalent of
WE-HML. Finally, WCET estimates for all benchmarks are
calculated in seconds for most benchmarks.

Although giving encouraging results, the proposed method
could be improved in several directions. The main direction
for future work is to improve our analysis of the impact of
cache pollution, for example by considering instruction caches
or improving the management of loop nests. More generally,
the concept of execution context for the basic block has to be
extended beyond the simple pollution value considered in this
paper, to consider code properties having an impact on timing.
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