
HAL Id: hal-03280889
https://hal.inria.fr/hal-03280889

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding Intentional Semantics into Inquisitive
Semantics

Valentin D. Richard

To cite this version:
Valentin D. Richard. Embedding Intentional Semantics into Inquisitive Semantics. Computation and
Language [cs.CL]. 2021. �hal-03280889�

https://hal.inria.fr/hal-03280889
https://hal.archives-ouvertes.fr

Embedding Intentional Semantics into
Inquisitive Semantics

Valentin D. Richard

Master report
Université de Paris

supervised by Philippe de Groote, Sémagramme team, Loria, Inria Nancy Grand Est, France
July 7, 2021

Résumé

Plongement de la sémantique intentionnelle en sémantique inquisitrice

La sémantique inquisitrice [14] est un modèle de la sémantique de la langue qui représente
uniformément les phrases interrogatives et déclaratives. Les propositions sont représentées
par un ensemble d’ensembles de mondes possibles, non vide et clos par le bas, dont les élé-
ments maximaux sont appelés alternatives. Les questions ont plusieurs alternatives, lesquelles
correspondent à leurs réponses possibles. Dans ce mémoire, on examine le plongement de la
sémantique intentionnelle dans la sémantique inquisitrice. On conçoit une extension conserva-
trice [23] qui à toute représentation sémantique lexicale associe un sens inquisiteur. On prouve
que cette transformation conserve la conséquence logique (et donc l’équivalence logique) et la
composition.

Abstract

Inquisitive semantics [14] is a model of natural language semantics which uniformly rep-
resents interrogative and declarative sentences. Clauses are represented by a nonempty
downward-closed set of sets of possible worlds, the maximal elements of which are called
alternatives. Questions have several alternatives corresponding to their possible answers. In
this thesis, we investigate an embedding of (declarative) intentional semantics into inquisitive
semantics. We provide a conservative extension [23] mapping every lexical meaning to an
inquisitive meaning. We prove that this transformation preserves entailment (and thus logical
equivalence) and composition.

Section I contains reminders about simply typed λ-calculus and its denotational semantics.
Section II is dedicated to the analysis of the syntax of French questions. We model them with
abstract categorial grammars and provide examples. In section III, we build an interface
with Montague-style intentional semantics. Finally, we design the inquisitivation procedure
in section IV and prove our main theorem.

.

2

Contents

Contents 3

I. Preamble 5
I.1 Introduction . 5

I.1.1 State of the art . 5
I.1.2 Goals and method . 5
I.1.3 Contribution and outline . 6

I.2 Formal tools . 6
I.2.1 Deduction system . 7
I.2.2 Relations . 8

I.3 Simply typed λ-calculus . 9
I.3.1 Simple types . 9
I.3.2 λ-terms . 10
I.3.3 Typing derivations . 12
I.3.4 Main properties . 15
I.3.5 Henkin models . 16

II. Syntax of French questions with ACGs 20
II.1 Syntax of French questions . 20

II.1.1 Long-distance dependencies . 20
II.1.2 French interrogatives . 21

II.2 Abstract categorial grammars . 22
II.2.1 Definitions . 22
II.2.2 Order hierarchy . 23
II.2.3 Connection with other formalisms . 24
II.2.4 Additional structures on ACGs . 24
II.2.5 Complexity . 24

II.3 Syntax modelization . 25
II.3.1 Toy fragment of French . 25
II.3.2 Deep syntax . 26
II.3.3 Surface syntax . 28

III. Interface with intentional semantics 30
III.1 Formal logic semantics . 30

III.1.1 Predicate semantics . 30
III.1.2 Montagovian semantics . 31

III.2 Object language . 33
III.2.1 Logical setting . 33
III.2.2 Extensional semantics . 35

III.3 Intentional semantics . 37
III.3.1 Beyond truth-conditions . 37
III.3.2 Logical structure on worlds . 38
III.3.3 Intentional lexical meanings . 40

3

IV. Extending to inquisitive semantics 42
IV.1 Inquisitive semantics . 42

IV.1.1 A representation of interrogative meanings 42
IV.1.2 First-order epistemic inquisitive logic . 43
IV.1.3 Inquisitive models . 45

IV.2 Conservative extensions . 48
IV.2.1 De Groote’s construction . 48
IV.2.2 Entailment-conservative extension . 50

IV.3 Inquisitivation . 51
IV.3.1 Application . 51
IV.3.2 Transformation of logical connectives . 52
IV.3.3 Transformation of linguistic constants . 54

V. Conclusion 56

Bibliography 57

Index 61

4

I.
Preamble

I.1 Introduction

I.1.1 State of the art

Montague semantics [46] is a formalism which represents the meaning of natural language ut-
terances with formulas based on first-order logic and λ-calculus. Montague semantics is truth-
conditional: the meaning of a sentence is the set of conditions under which its formula is true.
These conditions are expressed by Tarskian models.

Intentional semantics [35] improves this setting by considering a setW of possible worlds which
can parameterize functions. The meaning of a sentence is the set S of possible worlds in which
its formula is true. This allows attitude verbs to be modeled, especially epistemic modalities
describing the knowledge of agents.

One main issue of intentional semantics is the inability to represent questions. To bridge this
gap, inquisitive semantics [14] was developed recently. This semantics represents declarative and
interrogative propositions on a same level.

Inquisitive meaning is based on sets of possible worlds S ⊆ W , called states. A formula ϕ is
settled (or supported) by a state S whenever there is enough information in S to resolve ϕ. If
ϕ is an interrogative meaning, settling ϕ amounts to be able to give an answer to ϕ. If ϕ is a
declarative meaning, settling ϕ amounts to entail the intentional meaning of ϕ.

Contrary to previous attempts to model questions [34], inquisitive semantics InqB uses common
set-theoretic and functional operations, e.g. intersection to denote conjunction [17]. A key feature
is entailment, which, like in intentional semantic, is denoted by set inclusion.

Entailment is essential in many theories of natural language semantics [14]. It is the cornerstone
of natural language inferences, the basis of discourse implicatures and is used to compute polarity
items.

I.1.2 Goals and method

The goal of this thesis is to provide a transformation of intentional formulas into inquisitive formulas
which preserved the original logic and composition. Such a transformation is named a conservative
extension between two semantics. In our wase, we call it inquisitivation.

Some cases of conservative extensions have been proven to be instances of a general theorem [23].
The second goal of this thesis is to strengthen this theorem by analyzing the additional conditions
sufficient to let this conservative extension preserve entailment, and see whether inquisitivation is
a special case of it.

We consider formulas based on simply typed λ-calculus augmented with typed constants. Mon-
tague semantics is modeled in a higher-order signature. Abstract categorial grammars (ACGs)
allow us to derive intentional and inquisitive semantics from Montague semantics as lexicons.

The aim of this dissertation is to be clear about the mathematical foundations of intentional
and inquisitive semantics. To set sound basis to these formalisms, we recall the definitions and
main properties of simply typed λ-calculus and its denotation (Henkin models) in detail. This is
used to give complete proofs of the logical properties of inquisitivation.

5

I.1.3 Contribution and outline

The contribution of this thesis is threefold:

• Inquisitivation (section IV.3)

• Extension of the general theorem of conservative extensions to entailment (section IV.2.2)

• Syntactic analysis of a fragment of French questions (section II.3)

The rest of section I is a reminder of the main definitions and properties of the formal tools
we use throughout this dissertation. In section I.2, we recall basic definitions about deduction
systems and relations, which are useful for typing derivations and β-reduction among others.
Then, in section I.3, we present simply typed λ-calculus, some properties and Henkin models.
Henkin models is the formalism chosen to express denotation of λ-calculus, i.e. in order to regard
formulas as set-theoretic objects. This allows us to relate to the notion of issues, as traditional in
inquisitive logic, and to define entailment with the help of partial orders. This setting is developed
in view of section IV.2, but is also used in sections III.3.2 and IV.1.3.

Section II is dedicated to the analysis of French questions. The syntactic phenomena involved
with French interrogative clauses are exposed in section II.1. In section II.2, we present abstract
categorial grammars (ACGs), their definitions and parsing properties. Linear ACGs are used in
section II.3 to model a toy fragment of French sentences, including est-ce que interrogative clauses
and declarative questions with in situ interrogative pronoun. We provide deep and surface syntax
analyses of the example sentences.

In section III we build the higher-order signature of intentional logic. First, we recall first-
order logic and Montagovian semantics in section III.1. Novice readers may begin with this gentle
introduction to typed formal logic before going into the rest of this preamble. In section III.2,
we define a syntax-semantics interface between the deep syntax of section II.3 and Montague
semantics. In section III.3, we show how intentional semantics may be obtained from Montague
semantics by a (non-linear) ACG.

Finally, section IV is the main part of this dissertation. Section IV.1 presents inquisitive
semantics, the complete framework of first-order epistemic inquisitive logic and how we can simulate
this logic in a higher-order signature. Conservative extensions, the theorem mentioned above and
its extension to entailment are studied in section IV.2. Last but not least, section IV.3 exposes the
special case of inquisitivation. We use our French fragment to exemplify our transformation. A
special care is given to logical connectives, and how the inquisitivation of intentional connectives
behave compared to their inquisitive correspondent.

I.2 Formal tools

The reader is assumed to be familiar with basic notions and notation of set theory.
Given a set X, we write X∗ the set of words (i.e. finite lists) on X, ε the empty word and ·

word concatenation. N is the set of natural number.
First, we need a formal notion of trees to define simple types and derivation trees.

Definition 1 (Labeled tree). A finite rooted labeled tree t = (τ, L, `) is given by a set τ ⊆ N∗ of
elements called nodes, a set L and a labeling function ` : τ → L, verifying

1. If ν ∈ τ , then all prefixes of ν belong to τ

6

2. If ν · i ∈ τ and j ≤ i, then ν · j ∈ τ

The empty word ε is called the root. A node ν ∈ τ is called a leaf if ν · 0 6∈ τ , otherwise it is called
an internal node. The daughters of a node ν ∈ τ is the set of ν · i which belong to τ for some
i ∈ N. We call arity of ν the cardinal of this set.

A subtree of (τ, L, `) is a tree (τ ′, L, `′) such that there exists µ ∈ N∗ such that τ ′ = {ν | µ·ν ∈ τ}
and `′(ν) = `(µ · ν). A subtree is direct if µ is of length 1.

Definition 2. A partial map f from a set E to a set X is a pair (E ′, f ′) where E ′ ⊆ E and f
is a map from E ′ to X.

E ′ is called the definition domain of f and is noted dom f .

I.2.1 Deduction system

We assume we have a formal language F of mathematical formulas. In the following, we suppose
this language is first-order logic (FOL) with some fixed predicate symbols (membership, other rela-
tions,...) and function symbols. A deduction system (or rule system) is a way of easily representing
a set of dependent rules about properties on formula denotations.

Definition 3 (Deduction system). A rule instance of arity n ∈ N is an ordered pair r =
(A1...An, A) ∈ Fn ×F .

A rule R of arity n is a set of rule instances of arity n. A rule is a rule of some arity n.
A deduction system K is a finite set of rules.

We usually represent a deduction system by the help of rule schemes. To do so, we assume we
have a countably infinite set M of meta-variables.

Remark 1. We usually specify the rules of term deduction systems with rule schemes. We use a
distinct infinite set of meta-variables. A formula A containing meta-variables intuitively denotes
the set of formulas Aσ for any closing meta-variable substitution σ. We write a rule scheme
R = (A1...An, A) with the hypotheses A1,..., An above a bar, the conclusion A below it and the
name of the rule on the right of it.

Example 1. Take the set L = {a, b}. We consider the set T of binary trees (i.e. trees of arity
2) labeled by L. If t, t′ ∈ T and d ∈ L, we write d(t, t′) the tree of root labeled by d and which
direct subtrees are t and t′. The following deduction system KBa defines the predicate Ba(t) “t has
a branch of all a’s”.

Leaf
Ba(a)

Ba(t) t′ ∈ T
Left

Ba(a(t, t′))

t ∈ T Ba(t
′)

Right
Ba(a(t, t′))

(I.1)

Here, the meta-variables are t and t′.1 Rule Leaf is of arity 0, so it is called an axiom.

Definition 4 (Derivation). A derivation (or proof tree) of a deduction system K is a tree
(π, L×K, `) such that

• for every node ν ∈ π, by noting `(ν) = (A,R) and `(ν · i) = (Ai, Ri) for ν · i ∈ π, we have
(A0...An−1, A) ∈ R

1Here, premises t ∈ T and t′ ∈ T are taken as formulas of an unspecified FOL. However, it can be more common
to see them as side conditions.

7

We say that a formula A is derivable if there exists a derivation which root formula is A.

Example 2. We have that Ba(a(a(b, a), b(a, b))) is derivable, and the proof of it is:

b ∈ T
Leaf

Ba(a)
Right

Ba(a(b, a)) b(a, b) ∈ T
Left

Ba(a(a(b, a), b(a, b)))

However, the formulas Ba(b(a(a, a), b)) and Ba(a(a, c)) are not derivable because the root is a
b and c 6∈ T respectively.

Definition 5 (Subproof, proof-section). A (resp. direct) subproof of a proof tree D is a (resp.
direct) subtree of D (see definition 1).

A proof-section D = (π′, L, `) of a proof tree D = (π, L, `) is a connected subset of π, i.e.

1. π′ ⊆ π

2. If µ ∈ π′ and µ · ν ∈ π′, then for all prefixes ν ′ of ν, µ · ν ′ ∈ π′

3. `′ is ` restricted to π′

Remark 2. It is common to use vertical dots to declare some proof-section of a proof π. For
example, the derivation of example 2 is of the form

Leaf
Ba(a)

... π′ b(a, b) ∈ T
Left

Ba(a(a(b, a), b(a, b)))

where π′ is a proof-section.

I.2.2 Relations

Definition 6. A relation R on a set E is a subset of the cartesian product E × E. The notation
a R b stands for (a, b) ∈ R.

We define common properties a relation can have.

Definition 7. A relation R on E is

reflexive if for all a ∈ E, a R a

symmetric if for all a, b ∈ E, if a R b then b R a

antisymmetric if for all a, b ∈ E, if a R b and b R a, then a = b

transitive if for all a, b, c ∈ E, if a R b and b R c, then a R c

Definition 8. Set R,R′ two relations on E. The composition of R and R′ defined by a RR′ b iff
there exists c ∈ E such that a R c and c R′ b.

The composition of relations is associative, and we write Rn for R...R︸ ︷︷ ︸
n

.

8

Definition 9. Set R a relation on E.
The opposite relation of R is R−1 =̂ {(b, a) | (a, b) ∈ R}.
The reflexive transitive closure of R is the relation R∗ defined by the following deduction system:

Refl.
a R∗ a

a R b Incl.
a R∗ b

a R∗ b b R∗ c Trans.
a R∗ c

(I.2)

The equivalence relation =R generated by R is =R =̂ (R ∪R−1)∗.

I.3 Simply typed λ-calculus

λ-calculus is a useful compact notation to write functions. It was invented in the 1930s by Alonzo
Church. Simply typed λ-calculus is a well-behaved fragment of λ which is sufficient to express
simple functions with no recursion. We refer to [4] for more details on λ-calculus.

We begin by defining simple types in section I.3.1. Then we define λ-calculus and linear λ-
calculus in section I.3 and typing derivations in section I.3.3. After some recap of main properties
of β- and η-reduction in section I.3.4, we finally give a formal setting of Henkin models in section
I.3.5.

I.3.1 Simple types

Definition 10 (Ranked alphabet). A ranked alphabet is a finite set Σ of elements called symbols
together with an arity function ar : Σ→ N.

For n ∈ N, we write Σn the subset of Σ containing the symbols of arity n.

To talk about uniform substitution, we require a (countably) infinite set V of elements called
type type variables.

Definition 11 (Term). A term t on a set V and a ranked alphabet Σ is a nonempty finite rooted
labeled tree (τ,Σ, `) satisfying, for all node ν ∈ τ ,

• ν has n daughters iff ar(`(ν)) = n

• if `(ν) ∈ V, then ν is a leaf

When a term contains no type variable, we call it a ground term. We write T (Σ,V) the set
of terms on Σ and T (Σ) the set of ground terms.

Remark 3. We usually define terms by the following induction scheme:

A ::= δ ∈ V | f(A1, ..., An), f ∈ Σn (I.3)

Definition 12 (Uniform substitution). Set Σ a ranked alphabet. A uniform substitution is a partial
map σ from type variables V to terms T (Σ,V).

Applying a uniform substitution σ to a term A gives Aσ ∈ T (Σ) constructed by replacing
simultaneously every δ ∈ V occurring in A by σ(δ) if it is defined. Equivalently, we have by
induction

δσ = σ(b) if δ ∈ domσ
δσ = b if δ 6∈ domσ

f(A1, ..., An)σ = f(A1σ, ..., Anσ)
(I.4)

We say that σ is grounding if for any δ ∈ domσ, σ(δ) ∈ T (Σ).

9

For example, set B = {b, f} with ar(a) = ar(b) = 0 and ar(f) = 2. Then σ = [δ 7→ f(γ, b)] is a
substitution, and f(γ, f(f(b, δ), δ))σ = f(γ, f(f(b, f(a, γ)), f(a, γ))).

Definition 13 (Simple types). Let B be a finite set, the elements of which are called atomic types.
The set T (B,V) of simple types is the set of terms build on the ranked alphabet {→} ∪ B and
type variables V, with ar(→) = 2 and ar(b) = 0 if b ∈ B. In other words:

T (B) 3 A,B ::= δ ∈ V | b ∈ B | A→ B (I.5)

We commonly put the arrow between its two arguments (infix notation).
We write T (B) the set of ground types, i.e. simple types with no type variable.

By abuse of language, we often write “type” instead of “ground type” in the rest of this disser-
tation. Non ground types are only used in sections I.3.3 and I.3.5.

Instead of writing all parentheses, we use the conventional notation A → B → C to mean
A→ (B → C).

Remark 4. As types may be very long, to gain space we may omit the arrow on types. For
example, A(AB)B stands for A→ ((A→ B)→ B)

I.3.2 λ-terms

Definition 14 (Higher-order signature). A higher-order signature (HOS) is a triplet Σ = (B, C, t)
where

• B is a finite set of atomic types

• C is a finite set of constants

• t : C → T (B) assigns a ground type to every constant

Remark 5. Here, the word “constant” does not refer to first-order symbols of arity 0, but to any
symbol of any type.

Let X be a countably infinite set. We call the elements of X λ-variables x, y, z, We fix this
set for the rest of the paper and we assume that it is disjoint with every set of constants considered
here.

A λ-term can be constructed with constants, variables and two rules: 1. application f a applies
a function f to its argument a; 2. λ-abstraction λa. f(a) creates a function a 7→ f(a) out of an
expression f(a).

Definition 15 (λ-term). The set of λ-terms Λ(Σ) on a HOS Σ = (B, C, t) is defined inductively
by the following deduction system:

c ∈ C Const.
c ∈ Λ(Σ)

x ∈ X Var.
x ∈ Λ(Σ)

M ∈ Λ(Σ) x ∈ X
λ-abs.

λx.M ∈ Λ(Σ)

M ∈ Λ(Σ) N ∈ Λ(Σ)
App.

M N ∈ Λ(Σ)

(I.6)

Remark 6. We give priority to application over λ-abstraction, e.g. λx. y x means λx. (y x). Sim-
ilarly to types, we conventionally write M N1N2 for (M N1)N2. The intuition behind that is that
M acts like a function of two argument N1 and N2.

It is also common to group λ-abstracted variables like this λx, y.M instead of λx. λy.M .

10

For example,M = λx. x (c y) andN = λx. λx. x are λ-terms. Like functions, we intuitively want
to be able to substitute a λ-abstracted variable by another one if we also change the occurrences
of this variable in the rest of the λ-term. For instance, M would be equivalent to λz. z (c y).
However, replacing variables naively could fail to implement what we actually mean: N should
not be equivalent to λz. λx. z. A solution to this issue was given by Church. Here, we give the
formulation of [33].

Definition 16 (Free and bound variables). The set of free variables FV(M) and bound vari-
ables BV(M) of a λ-term M is defined inductively on M by:

FV(c) =̂ ∅ FV(x) =̂ {x} FV(λx.M) =̂FV(M) \ {x} FV(M N) =̂FV(M) ∪ FV(N)
BV(c) =̂ ∅ BV(x) =̂ ∅ BV(λx.M) =̂BV(M) ∪ {x} BV(M N) =̂BV(M) ∪ BV(N)

(I.7)

M is closed when FV(M) = ∅.

Definition 17 (Substitution). A variable x is substitutable by N in M if x 6∈ BV(M) and FV(N)∩
BV(M) = ∅. In this case, we define the substitution M [x := N] by induction on M :

x[x := N] =̂ N
y[x := N] =̂ y if x 6= y
c[x := N] =̂ c

(M1M2)[x := N] =̂ (M1[x := N]) (M2[x := N])
(λy.M)[x := N] =̂ λy. (M [x := N])

(I.8)

For example, (λx. c (y y))[y := λz. c] = λx. c ((λz. c) (λz. c)).

Definition 18 (Contextualization). Given a relation R on Λ(Σ), the contextualization R′ of R is
defined by the following deduction system:

M1 R M2

M1 R
′ M2

M1 R
′ M2

M1N R′ M2N
N1 R

′ N2

M N1 R
′ M N2

M1 R
′ M2

λx.M1 R
′ λx.M2

(I.9)

Definition 19 (α-equivalence). α-renaming is the contextualized relation obtained from

λx.M α λy. (M [x := y]) (I.10)

for every y such that x is subtitutable by y in M and y is not free in M (i.e. y 6∈ FV(M)).
α-equivalence is the equivalence relation =α generated by α-renaming.

For example, λx. (λy. x y) c =α λz. (λx. z x) c.

Remark 7. In the following, we always assume that for every M , FV(M) ∩ BV(M) = ∅, or that
we automatically α-rename M to obtain these property in order to substitute correctly. By fresh
variable, we mean a variable x which does not occur freely in the considered λ-terms or typing
judgments.

11

Linear λ-terms

We write T ◦(B) the set of simple types with the different arrow(and call them linear types.

Definition 20. The set of linear λ-terms Λ◦(Σ) on a linear HOS Σ (i.e. t : C → T ◦(B)) is
defined as the subset of Λ(Σ) satisfying the additional constraints:

• for every constant c ∈ C, c ∈ Λ◦(Σ)

• for every variable x ∈ X , x ∈ Λ◦(Σ)

• for every M ∈ Λ◦(Σ) and variable x ∈ X such that x occurs freely exactly once in M ,
λ◦x.M ∈ Λ◦(Σ)

• for every M,N ∈ Λ◦(Σ) such that FV(M) ∩ FV(N) = ∅, M N ∈ Λ◦(Σ)

The notation λ◦ is just there to distinguish linear λ-terms from regular λ-terms.

For example, λ◦x, y. c (c (x y)) is linear, but x (λc. x) is not linear.

Lemma 1. If M,N ∈ Λ◦(Σ) and (FV(M) ∪ BV(M)) ∩ FV(N) = ∅, then M [x := N] ∈ Λ◦(Σ).

Linear λ-terms are closed under α-equivalence, i.e. if M is linear and N =α M , then N is
linear.

I.3.3 Typing derivations

We can associate one or several simple types to some λ-terms [32]. The proof that a λ-term has a
certain type is formalized as a typing derivation. In this subsection, we fix a HOS Σ.

Definition 21 (Typing judgment). A (resp. linear) typing declaration x : A is formally a couple
(x,A) where x ∈ X and A ∈ T (B) (resp. A ∈ T ◦(B)).

A (resp. linear) typing environment is a list Γ of (resp. linear) typing declarations. The empty
typing environment is represented by an blank space.

A (resp. linear) typing judgment is a triplet (Γ,M,A) written Γ ` M : A, where Γ is a (resp.
linear) typing context, M ∈ Λ(Σ) (resp. M ∈ Λ◦(Σ)) and A ∈ T (B) (resp. A ∈ T ◦(B)).

We define DV(Γ) as the set of variables involved in the typing declarations of Γ.

Note that here, the turnstile ` is a mere notation.

Definition 22 (Typing derivation). A typing derivation (or proof) is a derivation of the fol-
lowing deduction system:

t(c) = A
Const.

Γ ` c : A
x : A ∈ Γ Var.
Γ ` x : A

Γ, x : A `M : B
λ-abs.

Γ ` λx.M : A→ B
Γ `M : A→ B Γ ` N : A App.

Γ `M N : B

Γ, x : C, y : B,∆ `M : A
Exch.

Γ, y : B, x : C,∆ `M : A

(I.11)

Where a comma denotes concatenation of typing environments.

12

Definition 23 (Linear typing derivation). A linear typing derivation is a derivation of the following
deduction systems on linear typing judgments:

t(c) = A
Const.` c : A

Var.
x : A ` x : A

Γ, x : A `M : B
λ-abs.

Γ ` λ◦x.M : A(B
Γ `M : A(B ∆ ` N : A App.

Γ,∆ `M N : B

Γ, x : C, y : B,∆ `M : A
Exch.

Γ, y : B, x : C,∆ `M : A

(I.12)

Where a comma denotes concatenation of typing environments. Note that with the conditions on
linear typing judgments, in the App. rule we must have DV(Γ) ∩ DV(∆) = ∅.

Remark 8. In the system we present here, declaring a variable multiple times (even with different
types) is forbidden so that rule Var. stays consistent. Such a situation can be avoided by applying
remark 7 on every sub-λ-term of the λ-term to type.

Example 3. With atomic types B = {a, b} and the following constants

c1 : b→ b→ b c2 : ((a→ b)→ b)→ b
c3 : a(a(b c4 : (a(b)(b c5 : a

(I.13)

we can derive the regular λ-term M = λx. c2 (λy. c1 (z y) (y x)) and the closed linear λ-term
c4 (λ◦x. c3 x c5). We set Γ = z : (ab)b, x : a, y : ab. We omit exchange rules and axioms, as usual.

z : (ab)b, x : a ` c2 : ((ab)b)b

Γ ` c1 : bbb

Γ ` z : (ab)b Γ ` y : ab
App.

Γ ` z y : b App.
Γ ` c1 (z y) : bb

Γ ` y : ab Γ ` x : a App.
Γ ` y x : b

App.
Γ ` c1 (z y) (y x) : b

λ-abs.
z : (ab)b, x : a ` λy. c1 (z y) (y x) : (ab)b

App.
z : (ab)b, x : a ` c2 (λy. c1 (z y) (y x)) : b

λ-abs.
z : (ab)b `M : ab

` c4 : (ab)b

` c3 : aab x : a ` x : a App.
x : a ` c3 x : ab ` c5 : a App.

x : a ` c3 x c5 : b
λ-abs.` λ◦x. c3 x c5 : ab
App.

` c4 (λ◦x. c3 x c5) : b

In the following, we write Γ `Σ M : A to say that Γ `M : A is derivable, or linearly derivable
if Σ is linear (i.e. has a linear typing derivation). If Γ `Σ M : A, we say that A is a type of M (in
the typing environment Γ).

We say that M is (resp. linearly) typable is there exists a (resp. linear) type A and a (resp.
linear) typing environment Γ such that Γ `Σ M : A.

Proposition 1. M is closed and Γ `Σ M : A iff `Σ M : A.

13

Proof. Suppose M is closed and π is a derivation of Γ ` M : A. We can α-rename M to get
DV(Γ)∩BV(M) = ∅. Thus, no axiom of π involves a typing declaration of Γ, because FV(M) = ∅.
Therefore we could globally remove the typing declarations of Γ in all typing judgment of π to get
a proof of `M : A.

The converse implication is straightforward.

Definition 24. We write Λ(Σ)AΓ the subset of Λ(Σ) of λ-terms of ground type A in the typing
context Γ.

Proposition 2. If M is linear and derivable iff M is linearly derivable.

Proof. Suppose M is linear and has a derivation π of root typing judgment Γ ` M : A. Let us
build a linear derivation π′ of M by induction on π.

Case Var. We have M = x. As x : A ∈ Γ, x : a ` x : A is derivable.

Case Const. Taking π′ = π works.

Case λ-abs. By induction hypothesis, the direct subproof π0 of root typing judgment Γ, x : A `
M ′ : B admits a linear proof π′0 because M ′ is linear. So λ-abs.(π′0) is a linear proof of M

Case App. We have M = M ′N ′. Take Γ′ (resp. ∆′) the sublist of Γ such that DV(Γ′) = FV(M ′)
(resp. DV(∆′) = FV(N ′)). By linearity, Γ′ and ∆′ do not share any typing declaration. By
using the induction hypothesis on Γ′ ` M ′ : C (A (resp. ∆′ ` N ′ : C) (M ′ and N ′ are
also linear), we get a linear derivation π1 (reps. π2). Then, π′ = App.(π1, π2) is a linear
derivation of M .

Case Exch. By straightforwardly using the induction hypothesis on the direct subproof of π.

The reverse implication follows from the definition of linear derivations.

Remark 9. When declaring closed λ-terms, we use Church notation and specify one type of λ-
abstracted variables, e.g. λfaab, xa. f x x means `Σ λf, x. f x x : (a→ a→ b)→ a→ b.

Principal derivation

Here we use non ground types to define principal derivations. This notion will be useful to prove
properties about denotation of typing derivations in the following subsection.

The following results are extracted from [37] and [49].

Definition 25 (Typing derivation scheme). A typing derivation scheme is a typing derivation on
a signature Σ but where in every judgment x1 : A1, ..., xn : An `M : A, we can have A1, ..., An, A ∈
T (B,V) instead of being ground types. The rules are the same.

We write Γ M : A to indicate that the typing judgment may contain type variables, and
Γ Σ M : A if it is derivable.

Definition 26 (Principal type). A principal type of M is a type A ∈ T (B,V) such that

• there exists Γ such that Γ Σ M : A

• if Γ′ Σ M : B, there exists a uniform substitution σ such that B = Aσ and Γ′ = ΓΣ

14

Definition 27 (Global substitution). If π is a typing derivation scheme and σ a uniform substi-
tution of types, then applying σ to π is πσ, defined as the derivation where every typing context
x1 : A1, ..., xn : An M : A is replaced by x1 : A1σ, ..., xn : Anσ M : Aσ.

πσ is still a typing derivation scheme, and is a typing derivation if σ is grounding.

Definition 28 (Principal derivation). A principal derivation of M is a typing derivation scheme
π of root Γ M : A such that every other typing derivation scheme of M is obtained by globally
applying a uniform substitution σ and adding no or some exchange rules.

Proposition 3. If M is typable, then M admits a principal derivation and a principal type (the
type of M in its principal derivation).

I.3.4 Main properties

λ-terms can sometimes be simplified and have a normal form. This is formalized by β-reduction.

Definition 29 (β-reduction). β-reduction →β is the contextualized relation obtained from

(λx.M)N β M [x := N] (I.14)

We write →∗β its reflexive transitive closure, and =β its equivalence relation.

Proposition 4 (Subject reduction). If M →β N and Γ `Σ M : A, then Γ `Σ N : A.

A well-known result about (untyped) λ-calculus is the following.

Theorem 1 (Confluence). If M →∗β M1 and M →∗β M2, then there exists N such that M1 →∗β N
and M2 →∗β N .

Definition 30 (Strong normalization). A λ-term M is β-normal if for every N , it is false that
M →β N .

M is strongly normalizing if there exists no infinite sequence (Mn)n∈N such that M0 = M and
for all n ∈ N, Mn →β Mn+1.

The following theorem was proved by Tait in 1967.

Theorem 2 (Strong normalization). If M is typable, then M is strongly normalizing.

η-reduction is another common relation on λ-terms which characterizes extentionallity of de-
notations.

Definition 31 (η-reduction). η-reduction →η is the contextualized relation obtained from

λx.M x η M if x 6∈ FV(M) (I.15)

We write =η its equivalence relation and =βη =̂ =β ∪ =η. η-expansion is the relation →η
−1

Straightforwardly, η-reduction is strongly normalizing on every λ-term. Subject reduction also
holds for η-reduction.

Note that these properties naturally extend to non ground typed λ-terms.

15

I.3.5 Henkin models

Henkin models [36] are a class of sound and complete models for λ-calculus. Here we give an
adapted version of [19].

Definition 32 (Domain family). Set Σ = (B, C, t) a higher-order signature. An extensional
domain family on Σ is a family of sets (DA)A∈T (B) such that for every types A,B, DA→B is a
subset of the set DDA

B all the functions from DA to DB.

Definition 33 (Assignment). Given a domain family (DA)A∈T (B) an assignment g is a partial
function mapping some typing declaration x : A to an element of DA such that if x : A, x : B ∈
dom g, then A = B.

We write g[x : A 7→ a] the assignment g but with adding (or changing) g(x : A) to equal a, viz.

g[x : A 7→ a](y : B) =

{
a if y : B = x : A

g(y : B) if y : B ∈ dom g and y : B 6= x : A
(I.16)

Definition 34 (Henkin model). An extensional applicative structureM of a higher-order signature
Σ is an extensional domain family (DA)A∈T (B) equipped with

1. a denotation cM ∈ Dt(c) of every constant c ∈ C

2. a denotation function J·KM,g mapping a derivation π of root typing judgment x1 : A1, ..., xn :
An `M : A such that {x1 : A1, ..., xn : An} ⊆ dom g to an element of DA.

A extensional Henkin model is an extensional applicative structureM such that

1. JΓ ` x : AKM,g = g(x : A)

2. JΓ ` c : AKM,g = cM

3. JΓ `M N : BKM,g = JΓ `M : A→ BKM,g(JΓ ` N : AKM,g) if

π =

... π1

Γ `M : A→ B

... π2

Γ ` N : A App.
Γ `M N : B

4. JΓ ` λx.M : A→ BKM,g(a) = JΓ, x : A `M : BKM,g[x:A 7→a] for every a ∈ DA

5. JΓ, x : C, y : B,∆ `M : AKM,g = JΓ, y : B, x : C,∆ `M : AKM,g

Key properties

The following propositions establish the soundness of β-reduction and η-reduction. Proofs can be
found in [2].

Proposition 5. If M →∗β N and Γ `Σ M : A, then JΓ ` M : AKM,g = JΓ ` N : AKM,g for every
M, g.

Proposition 6. IfM =βη N , Γ `Σ N : A and Γ `Σ M : A, then JΓ `M : AKM,g = JΓ ` N : AKM,g

for everyM, g.

16

In the definition of Henkin models, by abuse of notation we only put the root typing judgment
inside the J·KM,g brackets instead of π, by convenience. This notation turns out to be relevant
because the denotation of a derivation is entirely determined by its root. We prove it in proposition
7.

Definition 35. We define the denotation of a typing derivation scheme π in a global substitution
σ as JπKM,g

σ = JπσKM,g.

If π is a typing derivation, this definition coincides with the previous one because for every
global substitution σ, πσ = π.

Lemma 2. If σ is a uniform substitution and π, π′ tying derivation schemes such that π′ = πσ, then
for any global substitution µ andM, g, Jπ′KM,g

µ = JπKM,g
σµ , where (σµ)(δ) = σ(δ)µ iff δ ∈ domσ.

Proof. We have Jπ′KM,g
µ = J(πσ)µKM,g. Moreover, for any A ∈ T (B,V), it is straightforward to

prove by a quick induction that (Aσ)µ = A(σµ). So (πσ)µ = π(σµ) and so Jπ′KM,g
µ = JπKM,g

σµ

Lemma 3. Let π1 and π2 be typing derivation schemes of root Γ1 M1 : A1 and Γ2 M2 : A2

respectively.
For any common global substitution µ such that (Γ1 M1 : A1)µ = (Γ M : A)µ, we have

Jπ1KM,g
µ = Jπ2KM,g

µ

Proof. Using the notation of the lemma, note Γ M : A = (Γ1 M1 : A1)µ. By proposition 3,
Γ M : A admits a principal derivation π, such that π1 = πσ1 and π2 = πσ2 up to exchange rules.
We proceed by induction on the typing derivation scheme π.

Exchange rules do not change the denotation.
By lemma 2 we have Jπ1KM,g

µ = JπKM,g
σµ and Jπ2KM,g

µ = JπKM,g
σµ .

What remains is to prove that

JπKM,g
σ = JπKM,g

σ′ (∗)

for any global substitutions σ, σ′ agreeing on the root, andM, g.
First, we take M ′ the β-normal term such that M →∗β M ′ by theorem 2. By proposition 5, we

have JΓ M : AKM,g
σ = JΓ M ′ : AKM,g

σ and JΓ M : AKM,g
σ′ = JΓ M ′ : AKM,g

σ′ .

Case Var. If π = Γ ` x : A, then πσ = πσ′ and so (∗) holds.

Case Const. If π = Γ ` c : A, then πσ = πσ′ and so (∗) holds.

Case λ-abs. If M ′ = λx.M ′′ and A = B → C, then by applying the induction hypothesis on the
direct subproof π′ of π allows us to deduce, for any b ∈ DB,

JΓ ` λx.M ′′ : AKM,g
σ (b) = JΓ, x : B `M ′′ : CKM,g[x 7→b]

σ by cond. 4 of def. 34
= JΓ, x : B `M ′′ : CKM,g[x 7→b]

σ′ by IH on π′

= JΓ ` λx.M ′′ : AKM,g
σ′ (b) by cond. 4 of def. 34

(I.17)

Hence (∗) by functionality.

17

Case App. As M ′ is β-normal, we can decompose it as M ′ = M ′′N1 ... Nn with M ′′ = x or
M ′′ = c and

JΓ M : AKM,g
σ = JΓ M ′′ : B1 → ...→ Bn → AKM,g

σ (JΓ N1 : B1KM,g
σ)...(JΓ Nn : BnKM,g

σ)

If M ′′ = c, then, by calling C = B1 → ... → Bn → A, Cσ = t(c) = Cσ′. If M ′′ = x, then
x : Cσ ∈ dom g and x : Cσ′ ∈ dom g, so Cσ = Cσ′ by hypothesis on g. In both cases we
conclude that for any i ≤ n, Biσ = Biσ

′. Therefore we can apply the induction hypothesis
on the subproof of Γ M ′′ : C and every Γ Ni : Bi. This yields JΓ M : AKM,g

σ = JΓ
M : AKM,g

σ′

Case Exch. Applying the induction hypothesis straightforwardly works.

Proposition 7. The denotation of a derivation only depends on its root typing judgment.

Proof. Set Γ ` M : A a valid typing judgment and π1 and π2 two proofs of it. By proposition 3,
Γ `M : A admits a principal derivation π.

As π1 is a typing derivation, we have Jπ1KM,g = Jπ1KM,g
∅ , where ∅ stands for the global substi-

tution of empty definition domain. And similarly Jπ2KM,g = JπKM,g
σ′ .

Thus, we can apply lemma 3 and get Jπ1KM,g = Jπ2KM,g.

Remark 10. According to proposition 1, if M is closed we may write JMKM instead of J`MKM,∅

to gain clarity. We might also drop the variable type in typing declarations inside typing contexts.

Relations on class of models

Here we define some key notions about entailment and logical equivalence we will use extensively
throughout this thesis.

Definition 36 (Class of models). A class of models k is a subset of extensional Henkin models on
a given signature.

We make the assumption that in every class of models, every base domain Da (a atomic) is a
poset (Da,≤a). For most atomic types, ≤a is taken to be the equality on Da.

Definition 37 (Order on domains). Set f, g ∈ DB→C. We define the order ≤B→C on DB→C by
induction:

f ≤B→C g if for all b ∈ DB, f(b) ≤C g(b) (I.18)

Definition 38 (Entailment). Set a class of models k on Σ, Γ `Σ M : A and ∆ `Σ N : A. We say
that M entails N and we write M |=A

k N if for all k-modelM and assignment g,

JΓ `M : AKM,g ≤A J∆ ` N : AKM,g

18

Definition 39 (Logical equivalence). We define logical equivalence in a class of models k by

M ∼=k N if M |=A
k N and N |=A

k M for some A (I.19)

We can prove, that

M ∼=k N iff for everyM∈ k and g, JΓ `M : AKM,g = J∆ ` N : AKM,g (I.20)

Even if βη-equivalence is included in logical equivalence, we aim at only using that symbol to
refer to special properties of class k.

Definition 40 (Upward monotonicity). Set Γ `Σ M : A. We say that M is upward monotonic
in z : B ∈ Γ if for all k-modelM and g,

for all b, b′ ∈ DB such that b ≤B b′ we have JΓ `M : AKM,g[z 7→b] ≤A JΓ `M : AKM,g[z 7→b′] (I.21)

We say that M is upward monotonic in its argument if A = B → C and Γ, z : B ` M z : C is
upward monotonic in the fresh variable z : B.

Proposition 8. Suppose Γ `Σ M : B → C is upward monotonic in its argument.
If N |=B

k N ′, then M N |=C
k M N ′.

Proof. Suppose N |=B
k N ′. SetM a k-model and g an assignment. Applying the definition of the

upward monotonicity of M in its argument to JNKM,g ≤B JN ′KM,g gives us

JΓ, z : B `M z : CKM,g[z 7→JNKM,g] ≤C JΓ, z : B `M z : CKM,g[z 7→JN ′KM,g]

which implies, as z is a fresh variable

JΓ `M : B → CKM,g(Jz : B ` z : BKM,g[z 7→JNKM,g]) ≤C JΓ `M : B → CKM,g(Jz : B ` z : BKM,g[z 7→JN ′KM,g])

which is nothing else but

JΓ `M : B → CKM,g(J∆ ` N : BKM,g) ≤C JΓ `M : B → CKM,g(J∆ ` N ′ : BKM,g)

So
JΓ,∆ `M N : CKM,g ≤C JΓ,∆ `M N ′ : CKM,g

We proved that M N |=C
k M N ′.

19

II.
Syntax of French questions with ACGs

II.1 Syntax of French questions

We use contemporary French to illustrate our study. We mostly take simple examples, so that
the behavior of French speakers regarding them should be univocal. If not specified explicitly,
standard French is assumed. For convenience, we will mainly cover written sentences, as string of
units called words.

II.1.1 Long-distance dependencies

Relative clauses and questions exhibit some long-distance dependencies in a lot of languages. Let
us talk about relative clauses first.

A relative clause is an embedded clause that modifies noun. A relative clause is an adjunct and
they stand alone as a sentence. Relative clauses are introduced by a pronoun or pro-expression
(e.g. (II-1)). Here we semantically coindex anaphors with their referents.

(1) a. Marie aime le [dessini [quei [j’ai fait hier]]].
b. Marie aime la [régioni [oùi [elle a grandi]]].
c. Marie aime une [personnei [[pour laquellei][elle ferait tout]]].

It turns out that there is a systematic way of creating a relative clause from a declarative sentence:
we replace the element we want to relativize and put it in first position of the clause. In transfor-
mational grammars [10] , this operations is viewed as an extraction (wh-movement). We put the
coindexed symbol ti (for trace) to indicate the initial place of the moved wh-phrase indexed by i.
This relationship between a vacant place and a word can take place through different intermediary
clauses, like in (II-2-a).

(2) a. C’est le peintre [à quii Mariej sait [qu’ellej achetera un tableau ti].

Questions with an interrogative pronoun (wh-questions) behave similarly.

(3) a. Quei [veut cet homme ti] ?
b. Quii [penses-tu [qu’ilj invitera ti]] ?

However, some extractions are not allowed. We call phrases inside which it is not possible to
extract strict subconstituents extraction islands. Relative clauses and subjects, among others,
are considered extraction islands, as shown in (II-4).

(4) a. Jean connait l’hommei [quii [ti a vu Marie]].
b. *C’est la femmej [quej Jean connait l’hommei [quii [ti a vue tj]]].
c. Le chien de Marie adore le chat de Jean.
d. De quii le chien de Marie adore(-t-il) le chat ti ?
e. *De quii le chien ti adore le chat de Jean ?

20

Currently, there is not consensus in the literature whether all island constraints are strong syntactic
features or whether they are byproducts of mental process complexity [5].

Note that other syntax models do not treat long-distance dependencies as extractions, like
HPSGs [51].

II.1.2 French interrogatives

In French, there are 4 main ways to build an interrogative sentence [31].
The first one consists in inverting the subject and the object, e.g. (II-5-a). This also happens

with an interrogative pronoun, e.g. (II-5-b). However, contrary to English, this inversion is not
systematic. When the subject of a yes/no question is not a clitic pronoun (je, tu, il, elle, on,
nous, vous, ils, elles), a pleonastic clitic pronoun must be added after the verb to maintain the
interrogation, like in (II-5-c). This formation is called retrograde versational interrogation [20,
§.1390].

(5) a. Vient-il ?
b. D’où vient Jean ?
c. Jean vient-il ?
d. *Vient Jean ?

The second method uses the interrogative particle est-ce que (literally meaning “is it that”) at the
beginning of the sentence, e.g. (II-6-a). If there is an interrogative pronoun, it is placed before
est-ce que, e.g. (II-6-b). This marker changes to est-ce qui when the subject is extracted, e.g.
(II-6-c).

(6) a. Est-ce que Jean vient ?
b. D’où est-ce que Jean vient ?
c. Quii est-ce qui [ti vient] ?

In colloquial and regional French, est-ce que has variants, pronouncing only est-ce (II-7-a), que
(II-7-b) or nothing at all (sometimes present with a right dislocation, like in (II-7-c)) [31].

(7) a. Qu’est-ce tu fais ?
b. Où qu’il va ?
c. Où ili va, çuii-là ?

French also allows declarative questions, i.e. where only final intonation indicates interrogation.
Raising (resp. falling) intonation is written with an up arrow (resp. down arrow), e.g. (II-
8-a). Contrary to English, where such question types are only used to ask for checking (e.g.
by misunderstanding), they are quite widespread in colloquial French. Complex NP might be
dislocated on the left, and disjunctive help ou pas might be added at the end, see (II-8-b).

This construction is very similar to a total absence of est-ce que in an est-ce que question.
However, contrary to the latter, interrogative pronouns may stay in situ, i.e. at their original place
according to transformational grammars [9], e.g. (II-8-c).

(8) a. Il vient-↑?
b. Ili vient-↑, Jeani, ou pas-↓?
c. Il vient d’où-↑?

21

Generalized uses of ...t − il (and euphonic t for verbs of the first group, e.g. Que mange-t-il ?)
combined with a muting of the final l lead to a fixed interrogative particle -ti, like in (II-9-a). In
Québecois French, this particle evolved into -tu [58], and is now widespread in colloquial speech,
e.g. (II-9-b), (II-9-c). However, it is only possible to create yes/no questions with -tu, and this
particle does not behave properly with negation [50].

(9) a. C’est-ti pas fini ?
b. Ah, on mange-tu un petit peu ?
c. T’as-tu vu mon parapluie ?

II.2 Abstract categorial grammars

Abstract categorial grammars (ACGs) are built on simply-typed λ-calculus. After the formal defi-
nitions in section II.2.1, we remind main properties of ACGs: order hierarchy in II.2.2, relationship
with context-free formalisms in II.2.3, common additional extensions in II.2.4 and complexity re-
sults in II.2.5.

II.2.1 Definitions

Definition 41 (Morphism of HSO). A (resp. linear) morphism of higher-order signatures L :
Σ1 → Σ2 is a couple L = (F,G) (Σi = (Bi, Ci, ti)) such that

• F : B1 → T (B2) (resp. F : B1 → T ◦(B2))

• G : C1 → Λ(Σ2) (resp. G : C1 → Λ◦(Σ2))

• for all c ∈ C1, `Σ2 G(c) : F (t1(c))

F extends to a morphism from T (B1) to T (B2) by induction: F (A→ B) = F (A)→ F (B).
G extends to a morphism from Λ(Σ1) to Λ(Σ2). To compute G(M), assume M ∈ Λ(Σ1) is

α-renamed to ensure: for every constant c ∈ C1 occurring in M , we have (FV(M) ∪ BV(M)) ∩
FV(G(c)) = ∅. Then we can define:

G(x) = x G(M ′N) = G(M ′)G(N) G(λx.N) = λx.G(N) (II.1)

By abuse of notation, we write L instead of F or G or their extensions.

Definition 42 (ACG). An abstract categorial grammar (ACG) is a tuple G = (Σ1,Σ2,L, S),
where L is a morphism between the higher-order signatures Σ1 and Σ2, and S is a distinguished
type of Σ1.

Higher-order signatures are also called vocabularies and morphisms are called lexicons. If
L2

1 : Σ1 → Σ2, we usually call Σ1 the abstract vocabulary and Σ2 the object vocabulary.

Remark 11. Traditional ACGs are linear lexicons between linear signatures. The properties stated
in sections II.2.2, II.2.3 and II.2.5 only concern linear ACGs.

Definition 43 (Lexicalized ACG). A lexicon L is lexicalized if for every abstract constant c1 ∈ C1,
L(c1) contains at least one object constant of C2.

22

Definition 44 (Languages). The abstract language A(G) of an ACG G = (Σ1,Σ2,L, S) is Λ(Σ1)S∅ ,
the set of closed λ-terms of type S.

The object language O(G) of G is L(Λ(Σ1)S∅). We usually consider λ-terms up to βη-equivalence.

The traditional ACG framework is the one of Fig. II.1 . A deep structure λ-term M can
be mapped to its surface structure Y(M) (its yield) or its semantic representation Le(M). The
distinguished type of ΣD is usually s (sentence), Y(s) = str (string) Le(s) = o (truth value). The
language of this framework is the object language of Y .

ΣD

ΣS Σe

Y Le

Figure II.1 – Traditional ACG for NLP

In practice, using an ACG for natural language processing (NLP) follows this procedure: Given
a surface string w of words belonging to ΣS, we parse it, i.e. we find all antecedents M of w by Y .
Then, we can compute the semantic interpretations of these M by applying Le.

II.2.2 Order hierarchy

Definition 45 (Order of a type). The order of a simple type ord(A) is defined inductively by:

ord(a) = 1 if a ∈ B ord(A→ B) = max(ord(A) + 1, ord(B)) (II.2)

The order of a type indicates how much “intricate” the objects of that type can be. Constants
have order 1, simple functions have order 2, function of functions have order 3, and so on.

Definition 46 (Order of an ACG). The order of a vocabulary Σ is the maximal order of the types
t(c) among constants c ∈ C.

The order of a lexicon L : Σ1 → Σ2 is the maximal order of image types L(a1) among abstract
atomic types a1 ∈ C1.

The class G(m,n) is the set of ACGs which abstract vocabulary is of order at most m and
which lexicon is of order at most n. The class of languages L(m,n) is the set of object languages
of G(m,n) ACGs.

We call mth-order ACGs the elements of G(m,n) for some n.

Here, we only focus on ACG which object language is made of strings of words (and not on
derivation trees), as in section II.3.3.

Theorem 3. For every m,n ≥ 1, L(m,n+ 1) ⊆ L(m+ 1, n) and L(m+ 3, n) ⊆ L(m+ 2, n).

Therefore there are only three linear hierarchies of interest : first-order, second-order and third-
order ACGs. In practice, we usually consider second-order ACGs because they have interesting
complexity properties. Moreover, only second order ACGs can be parsed with ACGtk, the toolkit
designed for ACGs [52].

23

II.2.3 Connection with other formalisms

ACGs are rather general, in the sense that they are able to simulate other models of natural
language syntax.

Theorem 4. Context-free grammars can be encoded in G(2, 2) ACGs, i.e. if G is a context-free
grammar, there exists a second-order ACG G ′ such that the object language of G and G ′ are equal.

Theorem 5. Tree-adjoining grammars can be encoded in G(2, 3) ACGs.

The proofs are given in [28] and [22] respectively. Moreover, this equivalence is strong, i.e. the
derivations of the created ACG are the same as the one of the original CFG / TAG.

Lambek grammars can also be encoded in ACGs [24]. The translation exposed uses CFGs as
intermediary system. It has the drawback to create a lot of redundant constants, which increases
the number ambiguities (and thus drops the efficiency) when parsing.

Another translation, given in [54] exploits typing derivations to build a second-order ACG
generating the same derivations as a large enough fragment of a given Lambek grammar. This
construction is claimed to be sufficient to parse almost all natural language sentences given the
universal constraints on extractions ([53], see section II.1.1).

Theorem 6. Every linear context-free rewriting system can be encoded in a ACG of G(2, 4) [28].
Every second order ACG can be transformed into a linear context-free rewriting system [56].

Corollary 1 (Second order hierarchy collapse). If G is a second-order ACG, then there exists an
ACG G ′ of G(2, 4) such that O(G) = O(G ′).

II.2.4 Additional structures on ACGs

The set of traditional categorial types is very coarse and thus fails to capture dependencies inside
argument relations. A solution is to add feature structures to types, similarly to HPSGs.

An extension of simple types to dependent products, unit type and disjoint union has been
suggested [26]. This solution can simulate feature structures and account for agreement (in person,
number, gender, case,...). This construction creates a bridge between ACGs and natural language
models using dependent record type theory [18].

These extensions can also be used to add restrictions on derivations, e.g. to model island
constraints [53].

II.2.5 Complexity

Natural language processing (NLP) is also interested in the efficiency. This can be measured by
the complexity of elementary computation or decision problems.

Definition 47 (Membership problems). The membership problem of a class C of ACGs is, given
an ACG G ∈ C, the following:{

input : M ∈ Λ(Σ2)
question : Do we have M ∈ O(G)? (II.3)

The universal membership problem of a class C of ACGs is the following:{
input : G ∈ C,M ∈ Λ(Σ2)

question : Do we have M ∈ O(G)? (II.4)

24

Theorem 7. The membership problem of lexicalized second-order ACGs is polynomial [57].
Given a second-order ACG, a term of size n can be parsed in time O(n6) and in space O(n5)

[40].

Theorem 8 (Salvati [57]). The universal membership problem of lexicalizedG(2, 2) is NP-complete.
There exists a lexicalized ACG G of G(3, 1) such that the membership problem on G is NP-

complete.

Theorem 9. ACGs with cartesian product are Turing-complete [27].

To sum it up, second-order ACGs are tractable and can be efficiently used to parse natural
language sentences. Wide-coverage grammars can be retrieved from other models, such as TAGs.
Other methods [45] have also been developed to constitute large digital lexicons for ACGtk from
raw text data.

II.3 Syntax modelization

II.3.1 Toy fragment of French

In this section, we analyze the syntax of toy fragment of French. This fragment is constituted
to exhibit simple interesting phenomena about intentions and questions. In this thesis, we only
study questions built with est-ce que and declarative interrogations (see section II.1.2), because
their syntactic behaviors are easier to model. The syntax of other question forms are left for future
work. Note that at the semantic level, though, there is no more distinction between these forms.

The first set (II-10) contains our basis of declarative sentences. We select an intransitive verb
for simplicity. Transitive verbs and object extraction do not raise other difficulties.

(10) a. Marie dort.
b. Marie dort chez Camille.

The second set (II-11) contains modalities to explore intentional semantics (more in section III.3).

(11) a. Marie dort peut-être.
b. Jean sait que Marie dort.

The third set (II-12) contains declarative interrogatives and in situ interrogative pronouns like in
(II-12-b) and (II-12-c). Note that (II-12-b) turns out to have the same surface form as a subject
retrograde versational interrogative.

(12) a. Marie dort-↑?
b. Qui-↑ dort ?
c. Marie dort où-↑?

The fourth set (II-13) contains questions with the particle est-ce que.

(13) a. Est-ce que Marie dort ?
b. Qui est-ce qui dort ?
c. Où est-ce que Marie dort ?

Finally, set (II-14) contains est-ce que interrogative clauses embedded under a responsive veridical
verb [43].

25

(14) a. Jean sait si Marie dort.
b. Jean sait qui est-ce qui dort.
c. Jean sait où est-ce que Marie dort.

II.3.2 Deep syntax

Following the tradition of categorial grammars, we use the syntactic type s for a (possibly em-
bedded) clause, np for a noun phrase and n for a noun. To differentiate declarative clauses from
interrogative ones, we add a type s?.

As both declarative and interrogative clauses may be full sentences, we add another type sp into
which s and s? can be transformed. We analyze written forms here, so these transformations can
be lexicalized by the final period or interrogation mark, so that sp stands for punctuated sentence.
Similarly, we distinguish declarative and interrogative complementizer phrases cp and cp?.

An ontology of types could better capture syntactic phenomena. However, the focus of this
work is not on syntax, so we leave this for future work. We also do not provide feature structures
to account for agreement.

The basic types of the deep syntax linear signature ΣD are BD =̂ {sp, s, s?, np, n, cp, cp?}. We
could have also added pp for argument prepositional phrases, but we only consider adjunct PP
here. The table of types constants of ΣD is displayed in Tab. II.1.

decl : s(sp dort : np(s
int : s? (sp sait1 : cp(np(s

decl-int : s? (sp sait2 : cp? (np(s
peut-être : s(s chez : np((np(s)((np(s)

proper name : np que : s(cp
si : s(cp? ECQ1 : s(s?

qui : (np(s)(s? ECQ2.1 : (np(s)(((np(s)(s?)(s?

ECQ2.2 : (np(s)(((np(s)(s?)(cp?

où : AD ECQ3.1 : (AD(s?)(AD(s?

where AD =̂ (np(s)((np(s?) ECQ3.2 : (AD(s?)(AD(cp?

Table II.1 – Constants of the deep syntax vocabulary ΣD

ECQ stands for est-ce que. Versions 1 form yes/no questions, versions 2.x form subject ques-
tions and version 3.x form adjunct questions. peut-être is taken here as a clause modifier for
simplicity, and not as a VP modifier, like où or chezCamille. sait1 takes declarative comple-
mentizer phrases as complement, whereas sait2 taken interrogative ones.

Distinguishing complementizer phrases from clause types allows to reject sentences like
*Que Marie dort. or *Si Marie dort ?. However, this has the drawback to ask clauses with no
complementizer to still generate a cp or cp? type to be able to be embedded. The transformational
approach, i.e. a silent interrogative complementizer s? (cp?, would produce a non-lexicalized
term, what is unwanted in ACGs. Not only does this increase parsing difficulty, but this would
also allow declarative interrogative clauses to be embedded, like *Je sais Marie dort où.

Similarly, setting ECQ’s to have cp? as target type only plus adding non-lexicalized cp? (s?

operator to allow stand-alone est-ce que questions would lose the interest of separating s? from
cp?, as stated above.

The solution we propose is to split ECQ’s into one kind (x.1) producing s? to stand alone, and
one other (x.2) producing cp? to be embedded. This may not be elegant and optimal. Nevertheless,

26

this split has the advantage to be lexically specifiable. In particular, ECQ1 should not be split, in
order to reject Je sais est-ce que Marie dort in aid of (II-14-a).

The parse terms of set 1 are:

(15) a. decl (dortMarie)
b. decl (chezCamille dortMarie)

The parse terms of set 2 are:

(16) a. decl (peut-être (dortMarie))
b. decl (sait1 (que (dortMarie)) Jean)

The parse terms of declarative questions are:

(17) a. decl-int (dortMarie)
b. int (qui dort)
c. int (oùdortMarie)

Only polar declarative questions use decl-int. Reasoning with phonological forms, this analysis
would still be relevant. Indeed, decl-int would carry a intonation morpheme of tone raising as
lexical anchor (corresponding to the interrogation mark), as suggested by [9]. The tone raising
morpheme would already be part of the lexical anchors for constants où and qui.

The parse terms of est-ce que questions are:

(18) a. int (ECQ1 (dortMarie))
b. int (ECQ2.1 dortqui)
c. int (ECQ3.1 (λ◦fAD . f dortMarie) où)

The parse terms of embedded questions are:

(19) a. decl (sait2 (si (dortMarie)) Jean)
b. decl (sait2 (ECQ2.2 dortqui) Jean)
c. decl (sait2 (ECQ3.2 (λ◦fAD . f dortMarie) où) Jean)

Our analysis is far from perfect. The absence of directionality in types are practical to treat
verb objects similarly to subjects. Unfortunately, this behavior is sometimes problematic. Any
constant selecting a VP type np(s is bound to also allow non-continuous constituents “subject
+ transitive verb lacking a direct object”, as [49] explains. This can cause overgeneration.

To see this, take the transitive verb voit : np(np(s. We can make Jean voit Camille (II-
20-a) and question the object: Jean voit qui ? (II-20-b). However, we have no way to force ECQ2.1

to select the subject, which let the sentence *Qui est-ce qui Jean voit ? (II-20-c) be derivable (see
LS(ECQ2.1) in Tab. II.2).

(20) a. decl (voitCamille Jean)
b. decl-int (qui (λ◦xnp.voitx Jean))
c. int (ECQ2.1 (λ◦xnp.voitx Jean) qui)

The most simple way of recovering grammatical functions is by refining types. Having a subject
NP type npsubj and an object one npobj, we could solve the issue by taking voit : npobj(npsubj(s.
We do not implement this for the sake of legibility.

27

II.3.3 Surface syntax

The surface syntax linear signature ΣS is based on strings. The easy way to define strings in
λ-calculus is to let BS =̂ {∗} and define str =̂ ∗(∗. Given a variable x : ∗, the composition of
functions f, g : str as f (g x) is interpreted as the sequence of symbols f g.

We define the identity on a type A ∈ T (BS) as idA =̂ λxA. x. The empty string is ε =̂
id∗ : str. The concatenation operation can be defined by + =̂ λ◦f str, gstr, x∗. f (g x). Thanks to
confluence and strong normalization of β-reduction, we know that + (written as an infix operator)
is associative, i.e. f + (g + h) =β (f + g) + h =β λ

◦x∗. f (g (hx)).
The yield lexicon Y : ΣD → ΣS maps every basic type to str. For every lexical item concerned,

we create a corresponding constant of type str in ΣS, e.g. dort : str. The surface interpretation of
constants is given in Tab. II.2. For an transitive verb, we would have Y(voit) = λ◦ystr, xstr. x +
voit + y.

Y(decl) =̂ λ◦xstr. x+ . Y(int) = Y(decl-int) =̂ λ◦xstr. x+?
Y(dort) =̂ λ◦xstr. x+ dort Y(sait1) = Y(sait2) =̂ λ◦ystr, xstr. x+ sait + y

Y(peut-être) =̂ λ◦xstr. x+ peut-être Y(chez) =̂ λ◦ystr, f strstr, xstr. (f x) + chez + y
Y(〈name〉) =̂ 〈name〉 Y(que) =̂ λ◦xstr. que + x

Y(si) =̂ λ◦xstr. si + x Y(ECQ1) =̂ λ◦xstr. est-ce que + x
Y(qui) =̂ λ◦f strstr. f (qui) Y(où) =̂ λ◦f strstr, xstr. (f x) + où
Y(ECQ2.1) = Y(ECQ2.2) =̂ λ◦f strstr, g(strstr)str. (g idstr) + est-ce qui + (f ε)
Y(ECQ3.1) = Y(ECQ3.2) =̂ λ◦gASstr, hAS . (h idstr ε) + est-ce que + (g (λ◦kstrstr, ystr. k y))

where AS =̂ (str(str)(str(str

Table II.2 – Yield lexicon Y from ΣD to ΣS

Technically, there is no space between final period and the last word of a French sentence
according to the norm. However, we suppose for parsing that every sentence is normalized and
tokenized, namely words are lowercased, est-ce que is regrouped in a single unit and the final
period as a separate lexical unit.

We can check that all surface interpretations β-reduce to the target sentences of section II.3.1.
We provide here some of the longest derivations.

Here is derivation of (II-10-b) from interpreting (II-15-b).

Y(decl (chezCamille dortMarie))
= Y(decl) (Y(chez)Y(Camille)Y(dort)Y(Marie))
= (λ◦ystr. y + .) (Y(chez)Camille (λ◦xstr. x+ dort)Marie)
→β (Y(chez)Camille (λ◦xstr. x+ dort)Marie) + .
= ((λ◦ystr, f strstr, zstr. (f z) + chez + y)Camille (λ◦xstr. x+ dort)Marie) + .
→β ((λ◦f strstr, zstr. (f z) + chez + Camille) (λ◦xstr. x+ dort)Marie) + .
→β ((λ◦zstr. ((λ◦xstr. x+ dort) z) + chez + Camille)Marie) + .
→β ((λ◦xstr. x+ dort)Marie + chez + Camille) + .
→β Marie + dort + chez + Camille + .

(II.5)

Here is derivation of (II-13-c) from interpreting (II-18-c):

28

Y(int (ECQ3.1 (λ◦fAD . f dortMarie) où))
→β (Y(ECQ3.1) (λ◦fAS . f Y(dort)Marie)Y(où))+?
→2

β (Y(où) idstr ε) + est-ce que + ((λ◦fAS . f Y(dort)Marie) (λ◦kstrstr, ystr. k y))+?
→β (Y(où) idstr ε) + est-ce que + ((λ◦kstrstr, ystr. k y)Y(dort)Marie)+?
→2

β ((λ◦f strstr, xstr. (f x) + où) idstr ε) + est-ce que + (Y(dort)Marie)+?
→3

β (idstr ε+ où) + est-ce que + (Marie + dort)+?
=β où + est-ce que + Marie + dort+?

(II.6)

The ACG (ΣD,ΣS, sp) is in G(5, 2). We could reduce it to G(4, 2) by replacing np(s (resp.
np(s?) by a basic type vp (resp. vp?). This would solve the several issue of symmetry, at the risk
of creating another qui for object extraction. Nevertheless, to get to a G(2, 2) grammar, serious
changes to interrogative pronouns and ECQ’s should be done.

29

III.
Interface with intentional semantics

In this part, we design a syntax-semantics interface with abstract categorial grammars. Section
III.1 recalls basic Montagovian semantics in a historical and introductory fashion. In section III.2,
we build signature Σe of extensional semantics and its class of Henkin models. Finally, we design
an intentional interpretation Σi out of Σe in section III.3 by simulating intentional logic with a
class of Henkin models.

III.1 Formal logic semantics

Some logical inferences (e.g. syllogisms) were already known in ancient Greece. At the end of the
XIXth century, Frege set the basis of what is now known under the name of predicate logic [62]. His
motivation was to formalize logical inferences and give a clean framework to mathematical proofs.

III.1.1 Predicate semantics

In logic, we study statements (aka. propositions) and we want to know under which circumstances
a statement is true. Truth values are true and false. We use variables p, q, ... to denote a proposition.
The excluded middle law says that if p is not true, then it is false. The abbreviation iff stands for
if and only if and expresses equivalence between statements. The common operations on truth
values are

• Conjunction: p ∧ q is true iff p is true and q is true

• Disjunction: p ∧ q is true iff p is true or q is true or both are true

• Negation: ¬p is true iff p is not true

• Implication: p→ q is true iff q is true whenever p is true

• Equivalence: p↔ q is true iff p and q are both true, or p and q are both false.

• Tautology: > (read “top”) is always true

• Contradiction: ⊥ (res. “bottom”) is always false

It is common to use the system of Boole [6] and write 1 for true and 0 for false. We write
B = {0, 1} the set of 0 and 1, called Booleans. With this, logical operation translate to arithmetic
operations, e.g. conjunction become multiplication. In Tab. III.1, example Boolean tables are
displayed for disjunction and implication. On the left we can find every combination of values for
p and q, one per line, and on the right the result of the Boolean operation. The symbol used to
denote a logical operation is called a connective.

For example, no matter the value of p and q, p → q is equivalent to (¬p) ∨ q. Similarly,
p↔ q ≡ (p→ q) ∧ (q → p), and ¬p ≡ p→ ⊥, for all p and q.

A n-place predicate P is a function of n variables which maps its arguments to a truth value.
We assume that there is a set D of all individuals (aka. entities) we want to talk about. This set

30

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1

Table III.1 – Boolean tables for disjunction (on the left) and implication (on the right).

might be infinite. We use variables x, y, ... to refer to elements of D, also called first-order citizens.
With the notation of functions: P : Dn → B with n ∈ N.

For example blue is a predicate, and blue(x) equals true iff x is blue. Equivalently, we can view
blue as a subset of D (written blue ⊆ D), and blue(x) iff x belongs to blue (written x ∈ blue).
Generally speaking, it is conventional to confuse a subset A ⊆ E with its characteristic function
χA : E → B.

Like adjectives, intransitive verbs are one-place predicates. Transitive verbs are two-place
predicates, i.e. they have two arguments: the individual given by the subject and the individual
given by the object. For example, love(x, y) is true iff x loves y.

Formulas are a combination of predicates and connectives. They can represent the semantics
of a sentence. For example, cat(x)→ sleep(x) states that the sentence Chaque chat dort is true
iff for all individual a, if a is a cat, then a sleeps.

In 1967, Davidson [21] suggests a model where the meaning of a sentence is the set of conditions
under which this sentence is true. His system, now known under the name truth-conditional
semantics, was inspired by Tarski’s semantic theory of truth.

III.1.2 Montagovian semantics

In 1970, Montague [47, 46] established what is now known as Montague grammar (or Montagovian
semantics). His insight was to consider natural language (semantics) and formal languages used
in mathematical logic or computer programming as a two cases of a similar framework.

He uses classical first-order logic, an extension of predicate logic, as basis. In first-order logic
(FOL), we allow variables x, y, ... to be bound by a quantifier. We can also have function symbols
f, g, ... of some arity which allow us to create first-order terms u, ... (see definition 11 of terms in
section I.3.1). Now, we consider a n-place predicate P as a pure symbol.

A modelM is a pair (D, I) where D is a set of individuals and I is an interpretation, i.e.

• for any n-place predicate P, I(P) is a subset of the cartesian product Dn

• for any function symbol f of arity n, I(f) is a function from Dn to D

An assignment g is a partial function that maps some variables to individuals. By g[x 7→ a],
we mean the function g with the additional condition that x is mapped to a ∈ D. The Greek
letters ϕ, ψ, ... stand for FOL formulas. The statement g |= ϕ signifies that, under the assignment
g, ϕ is true.

Symbol =̂ is the equality of definition. The semantics of first-order logic is defined as:

• Variable: Ig(x) =̂ g(x)

• Function symbol: Ig(f(u1, ..., un)) =̂ I(f)(Ig(u1), ..., Ig(un))

31

• Predicate: M, g |= P(u1, ..., un) if (Ig(u1), ...Ig(un)) ∈ I(P)

• Logical connectives: M, g |= ψ ∧ ψ if g |= ψ and g |= ϕ

(similar for the other connectives, see previous subsection)

• Universal quantifier: M, g |= ∀x. ϕ if for all a ∈ D, g[x 7→ a] |= ϕ

• Existential quantifier: M, g |= ∃x. ϕ if there exists a ∈ D such that g[x 7→ a] |= ϕ

A formula ϕ is valid in a modelM if for all assignment g,M, g |= ϕ holds. We write |= ϕ if
ϕ is valid in every model, in other words, if ϕ is a tautology. We write ϕ |= ψ if, for everyM, g
such that M, g |= ϕ, we also have M, g |= ψ. This defines the relation of entailment between
formulas.

Example 4. We have P(x) ∧ (P(x)→ Q(x, y)) |= ∃z.Q(z, y).

Proof. Set a modelM and an assignment g such thatM, g |= P(x)∧ (P(x)→ Q(x, y)). It means
thatM, g(x) ∈ I(P), and if g(x) ∈ I(P) then (g(x), g(y)) ∈ I(Q). Given this, we can deduce that
(g(x), g(y)) indeed belongs to I(Q). By taking a = g(x), we found an element of a ∈ D such that
M, g[z 7→ a] |= Q(z, y) because g[z → a](z) = g(x). Therefore,M, g |= ∃z.Q(z, y).

This example illustrates the modus ponens law: if ϕ and ϕ→ ψ, then ψ.

The semantics of a lexical unit is a formula. We commonly use double brackets to express this,
e.g. JaimeK = love. The meaning of a sentence is the set of models and assignments under which
the semantics of this sentence is true.

Montague uses types to categorize elements of the logic. Propositions have type t (truth value)
and individuals have type e (entity). Given to types A and B, the type A→ B denotes the set of
functions from elements of type A to elements of type B. A one-place predicate P has type e→ t.
A two-place predicate Q has type e → (e → t) (just written e → e → t or even eet) because we
can see it as a function from x to the one-place predicates Q(x).

Montague also uses λ-calculus to construct other functions (see section I.3 for a formal intro-
duction to λ-calculus). λ-calculus allows us to see the combination of variables, predicates and
connectives as the sole rule of application forming λ-terms. If u is a λ-term, then λx. u designates
the function that maps x to u.

For example, λx.∃y. love x y is the function of type e→ t that maps an individual x to true iff
there exist some individual y such that x loves y. For any predicate P, we also have λx.P x ∼= P
because they represent the same function of type e→ t.

32

III.2 Object language

In ACGs, the syntax-semantics interface is expressed by a higher-order signature Le between deep
syntax ΣD and the non-linear Montague object semantics signature Σe.

The basic types of Σe are Be =̂ {ι, o}. o is the type of propositions (truth values) and ι is
the type of individuals (aka. entities).

The type morphism Le is given in Tab. III.2. According to Montague [48], noun phrase are not
just interpreted as individuals, but as set of properties on individuals. This type raising allows us
to properly model quantification phenomena, in particular determiners.

Le(s
p) = Le(s) = Le(s

?) = Le(cp) = Le(cp
?) =̂ o

Le(n) =̂ ι→ o
Le(np) =̂ (ι→ o)→ o

Table III.2 – Type interpretation at the syntax-semantics interface

In section III.2.1, we define the class e of Henkin models simulating extensional logic in an
algebraic fashion. Section III.2.2 is dedicated to the definition of Le on λ-terms.

III.2.1 Logical setting

We use the same set of logical connectives as in section III.1, which is:

∧e : o→ o→ o →e: o→ o→ o >e : o
∨e : o→ o→ o ¬e : o→ o ⊥e : o

(III.1)

Binary connectives are written as infix operators. Quantifiers are decomposed so that variable
binding may be done with a λ-abstraction.

∀ιe : (ι→ o)→ o ∃ιe : (ι→ o)→ o (III.2)

We still use the notation ∀xι. ϕ (resp. ∃xι. ϕ) as a substitute for ∀ιe (λxι. ϕ) (resp. ∃ιe (λxι. ϕ)).
Instead of axioms on connectives, we express properties of first-order logic by the denotation

of these constants in a class of Henkin models. This approach has been proven to be equivalent to
an axiomatic setting [36, 2].

See section I.2.2 for an introduction about relations.

Definition 48 (Poset). A partially ordered set (poset) is a set E equipped with a reflexive, anti-
symmetric and transitive relation ≤ on E.

A poset is bounded if there exists a greatest element 1E (i.e. for all a ∈ E, a ≤ 1E) and a lowest
element 0E (i.e. for all a ∈ E, 0E ≤ a).

Definition 49 (Meet and Join). Set (E,≤) a poset and a, b ∈ E.
The greatest lower bound (or meet) of a subset X ⊆ E is an element c ∈ E (if it exists) such

that

1. for all a ∈ X, c ≤ a

2. for all d such that for all a ∈ X, d ≤ a, we have d ≤ c

33

The least upper bound (or join) of a subset X ⊆ E is an element c ∈ E (if it exists) such that

1. for all a ∈ X, a ≤ c

2. for all d such that for all a ∈ X, a ≤ d, we have c ≤ d

Proposition 9. If the meet (resp. join) of a set X exists in E, it is unique and we write it
∧
E X

(resp.
∨
E X), and a∨E b (resp. a∧E b) for a pair X = {a, b}. Meets have the following properties

Commutativity a ∧E b = b ∧E a

Associativity (a ∧E b) ∧E c = a ∧E (b ∧E c)
and same for joins.

If E is bounded, then we also have a ∧E 1E = a, a ∧E 0E = 0E, a ∨E 1E = 1E and a ∨E 0E = a
for all a ∈ E.
Definition 50 (Lattices). A lattice (E,≤,∧E,∨E) is a poset where all meets and joins of two-
element sets exist.

A distributive lattice is a lattice such that for all a, b, c ∈ E, we have

a ∨E (b ∧E c) = (a ∨E b) ∧E (a ∨E c) (III.3)

A complemented lattice is a lattice where for every a ∈ E, there exists a complement c ∈ E
such that

a ∧E c = 0E and a ∨E c = 1E (III.4)
A complete lattice is a lattice where all meets and joins exist.

Proposition 10. In a distributive lattice, for all a, b, c ∈ E, we also have

a ∧E (b ∨E c) = (a ∧E b) ∨E (a ∧E c) (III.5)

If the complement of an element a exist, it is unique and we write it ¬Ea.
Definition 51 (Boolean algebra). A complete Boolean algebra (E,≤, 0E, 1E,∧E,∨E,¬E,→E

,
∧
E,
∨
E) is a bounded complete complemented distributive lattice.

If a, b ∈ E, the pseudocomplement of a relative to b is defined as a→E b =̂ (¬Ea) ∨E b.
Example 5. The set of Booleans B = {0, 1} with truth operations defined in section III.1 is a
Boolean algebra.

Example 6. If E is a set, the set ℘(E) of subsets of E (which is in correspondence with the set
of characteristic functions χ : E → B) is a Boolean algebra with 0℘(E) = ∅ (empty set), 1℘(E) = E
(whole set),

∧
℘(E) =

⋂
(intersection),

∨
℘(E) =

⋃
(union), ¬℘(E)A = E \A (set complement) and

inclusion ⊆ for the order.

Definition 52 (e-models). Set Σ a signature with basic types containing o and ι and closed λ-terms
>Σ, ⊥Σ, ∧Σ, ∨Σ, ¬Σ, →Σ, ∀ιΣ, ∃ιΣ having the expected types ((III.1) and (III.2)).

The class e of Henkin models on Σ is defined to be the Henkin modelsM such that

1. (Do, J>ΣKM, J⊥ΣKM, J∧ΣKM, J∨ΣKM, J¬ΣKM, J→ΣKM,
∧

B,
∨

B) is the complete Boolean alge-
bra of Booleans

2. for every X ∈ Dι→o, J∀ιΣKM(X) =
∧

B{X(a) | a ∈ Dι}

3. for every X ∈ Dι→o, J∃ιΣKM(X) =
∨

B{X(a) | a ∈ Dι}
Note that this definition of e-models based on Boolean algebras is equivalent to the Tarski’s

presentation with a satisfaction relation |= presented in section III.1.2.

34

III.2.2 Extensional semantics

We defined in the previous section logical constants of the object signature Σe and their denotation.
In this section we define linguistic constants of Σe and the semantic lexicon Le in Tab. III.3.

We write semantic constants in boldface. We suppose that every proper noun 〈name〉 present
here corresponds to a defined entity 〈name〉 : ι. To gain space, only the initial letter of these
names are used, e.g. m for Marie. Verbs like dort can be reduce to a predicate sleep : ι → o
instead of applying to a whole generalized individual Ee =̂ Le(np) = (ι → o) → o. The type of
propositions is Te =̂ o.

Le(decl) = Le(int) = Le(que) =̂ λpo. p
Le(ECQ1) = Le(si) = Le(decl-int) =̂ λpo.quest p

Le(peut-être) =̂ λpo.M p Le(dort) =̂ λXEe . X (λxι. sleep x)
Le(ECQ2.1) = Le(ECQ2.2) =̂ λFEeo, H(Eeo)o. H F Le(sait1) =̂ λpo, XEe . X (λxι.K x p)
Le(ECQ3.1) = Le(ECQ3.2) =̂ λHAeo, FAe . H F Le(sait2) =̂ λpo, XEe . X (λxι.K′ x p)

Le(〈name〉) =̂ λP ιo. P 〈name〉

Le(qui) =̂ λFEeo. exquest (λxι. F (λP ιo. P x))
Le(où) =̂ λFEeo, XEe . exquest (λzι. loc F z X)

Le(chez) =̂ λY Ee , FEeo, XEe .∃zι. (house z) ∧e (Y (λyι.own z y)) ∧e (loc F z X)
where Ae =̂ (Ee → o)→ Ee → o

Table III.3 – Lexicon Le from ΣD to Σe

It is not possible to give an interpretation of intentional words, like peut-être or sait. Indeed,
peut-être does not change the truth about whether Marie dort or not, but it gives a degree of
knowledge about Marie’s sleeping. There is no way to model this properly in extensional semantics,
so we just use unspecified constants M : o→ o and K : ι→ o→ o for the moment.

Similarly, we are not able here to interpret interrogative meanings. We leave the constants
quest : o → o (yes/no question), exquest : (ι → o) → o (existential question) and K′ : ι →
o → o (interrogative knowledge) to be detailed later. Nevertheless, it is already possible to tell
the semantic function of est-ce que particles. Contrary to ECQ1 which has actually to add a
question raising quest, the interpretations of ECQ2 and ECQ3 are just structural. They give the
interrogative pronoun to the constituent they modify.

Locative is rendered via the constant loc : (Ee → o)→ ι→ Ee, taking a generalized predicate
F , a place z and a generalized individual X, and expressing that the action F takes place in z and
is performed by X.

In our Montagovian approach, this predicate modifier has some flaw yet. There is no guarantee
that the denotation of loc is monotonic in its arguments. This forbids us, for example, to prove
that Marie [dort bien] chez Camille,
[Marie et Jean] dorment chez Camille and Marie dort chez [Camille et Dominique]1 all respec-
tively entail Marie dort chez Camille, which is however true.

To solve this issue, here is how we can enforce monotonicity of modifiers. Either we add axioms,
like Montague meaning postulates [48], or we ask that in class e, loc is upward monotonic in all
its argument (see 40 in section I.3.5), and same for the later classes i and q.

1In Marie dort chez [Camille et Dominique], it could be understood that the house is owned by the couple
Camille et Dominique and cannot reduce to a proper ownership of each one individually. But this kind of collective
readings are left aside in this thesis.

35

Despite all, this method is not the most elegant because upward monotonicity needs to be
specified for certain lexical units manually, independently from the λ-term. A better approach
to model locative modifiers is to resort to event semantics (aka. (neo-)Davidsonian semantics).
Some proposals to adapt event semantics to ACGs are [60], [29] and [8]. Using a neo-Davidsonian
approach is planed as future work.

We provide the βη-reduced object semantics interpretations of the fragment sentences here.
Set 1:

(1) a. sleepm
b. ∃zι. (house z) ∧e (own z c) ∧e (loc (λXEe . X sleep) z (λQιo. Qm))

Set 2:

(2) a. M (sleepm)
b. K j (sleepm)

Set 3 of declarative questions and set 4 of est-ce que questions give the same semantic represen-
tations:

(3) a. quest (sleepm)
b. exquest (λxι. sleep x)
c. exquest (λzι. loc (λXEe . X sleep) z (λQιo. Qm))

Set 5 of embedded questions:

(4) a. K′ j (quest (sleepm))
b. K′ j (exquest (λxι. sleep x))
c. K′ j (exquest (λzι. loc (λXEe . X sleep) z (λQιo. Qm)))

Let us see some examples of β-reduction.
Sentence (II-12-b) interpreted from (II-17-b) β-reduced into (III-3-b):

Le(int (qui dort))
= (λpo. p) (Le(qui)Le(dort))
→β (λFEeo. exquest (λxι. F (λP ιo. P x))) (λXEe . X (λyι. sleep y))
→β exquest (λxι. (λXEe . X (λyι. sleep y)) (λP ιo. P x))
→β exquest (λxι. (λP ιo. P x) (λyι. sleep y))
→β exquest (λxι. (λyι. sleep y)x)
→β exquest (λxι. sleep x)

(III.6)

Sentence (II-13-c) interpreted from (II-18-c) βη-reduced into (III-3-c):

Le(int (ECQ3.1 (λ◦fAD . f dortMarie) où))
→β (λHAeo, FAe . H F) (λfAe . f Le(dort)Le(Marie))Le(où)
→2

β (λfAe . f Le(dort)Le(Marie))Le(où)
→β (λFEeo, XEe . exquest (λzι. loc F z X))Le(dort)Le(Marie)
→2

β exquest (λzι. loc Le(dort) z Le(Marie))
→η exquest (λzι. loc (λXEe . X sleep) z (λQιo. Qm))

(III.7)

because Le(AD) = Ae.

36

III.3 Intentional semantics

Section III.3.1 introduces to intentional semantics by exposing the need of a more expressive
system. In section III.3.2, we present intentional logic. We show that we can simulate intentional
logic in an object vocabulary of extensional logic by defining intentional connectives as λ-terms
over extensional connectives, and a class i of Henkin models. Finally, we provide the intentional
interpretation Li on λ-terms in section III.3.3.

III.3.1 Beyond truth-conditions

Extensional semantics has the huge drawback to fail to correctly model intentions.
Some adjectives (e.g. Le(blond) : (ι → o) → (ι → o)) are intersective, i.e. they modify

the meaning of the noun they are qualifying by conjoining their separate lexical meaning. For
example, a blond man is a man and a blond person. This may be derived by taking Le(blond) =
λP ιo, xι. P x ∧e blond x.

However, not all adjectives behave so nicely. If Mary is a gifted lawyer, it does not entail that
Mary is a gifted person “in general”. For example, if Mary is a gifted lawyer and a baker, having
“gifted” intersective would entail that Mary is a gifted baker too, which may not be true.

Suppose now that we are in a world where all lawyers are bakers and vice versa. The predicates
lawyer and baker are co-extensive: they have the same truth-conditions. This would mean
that gifted (lawyer) is the same as gifted (baker). This is intuitively wrong, because being
gifted involves skills that are left implicit and do not only depend on the set of people having
the considered position. Such implicit properties are called intentions. The meaning of “gifted”
depends on the intention of the noun it modifies.

Similarly, sentence modifying adverbs cannot just act on a truth value. Indeed, if it were the
case, there would only be |BB| = 4 possible distinct sentence modifier meaning. This is clearly not
enough to model all natural language modalities like “maybe”, “necessarily”, “probably”, “surely”,
“unexpectedly”,...

A last argument in favor of intentional semantics if the following. In our world where earth is
round, the proposition “Earth is round” is co-extensive to “2 + 2 = 4”. However, it could be that
“John knows that 2 + 2 = 4” is true but that “John knows that Earth is round” is false. Therefore,
modal verbs like “know” cannot be properly modeled in extensional semantics.

One way of modeling intentional meanings is to consider several possible worlds [35]. In a world
w and for an individual a, lawyerw x is a truth value. And we want to consider sufficient enough
worlds so that there is at least one w and an x where lawyerw x is not equal to bakerw x.

We define the intentional semantic signature Σi out of the object semantic one. To avoid
confusion, we rename basic types: t for truth values and e for individuals (entities). In typed
semantics, possible worlds are introduced as elements of a special set W , and are characterized by
the atomic type s. Thus, we have lawyer : s→ e→ t.

It turns out it is more convenient to put the s-typed argument just before the target type t for
systematicity, e.g. λxe, ws. lawyerw x : e→ s→ t. This way, we can view Ti =̂ s→ t as the new
proposition type.

Formally, Bi = {s, t, e} and the type morphism of the lexicon Li from Σe to Σi is:

Li(ι) =̂ e Li(o) =̂ s→ t (III.8)

37

III.3.2 Logical structure on worlds

We first introduce intentional logic. Then we define logical constants and their denotation, as we
did for Σe. Theorem 10 proves that the class i indeed simulates intentional logic.

Definition 53. A formula of intentional logic is a term ϕ defined by:

ϕ, ψ ::= Pn(x1, ..., xn) | >i | ⊥i | ϕ∧iψ | ϕ∨iψ | ¬iϕ | ϕ→i ψ | ∀x. ϕ | ∃x. ϕ |Mi ϕ |Ki xϕ (III.9)

where xj an entity variable and Pn a n-place predicate.

Contrary to what we did in FOL, we do not consider function symbols and first-order terms
other than variables because they are not needed.

Modality phenomena are formalized by modal logic. In particular, we are interested here
by personal and general knowledge, so we turn to epistemic logic [38]. Traditional denotational
semantics of epistemic modal logic uses Kripke frames [42]. This framework is specially suited for
typed logic.

Definition 54 (Epistemic Kripke frame). An epistemic Kripke frame (W,R) is a set W and a
relation R on W verifying

T R is reflexive

4 R is transitive

5 R is euclidian: if w R u and w R v, then u R v

Note that the usual axiom written K in the literature is always valid in Kripke frames. Every
relation verifying axioms T, 4 and 5 is an equivalence relation, and vice versa.

The accessibility relation R represents what cannot be distinguished. In other words, if u R v,
then we don’t know whether we are in world u or in world v.

Definition 55 (Intentional logic). A model of intentional logic is M = (W,D, I,R,R◦), where I
maps any Pn to I(Pn) : Dn → ℘(W) and (W,R) and (W,R◦(a)) for every a ∈ D are epistemic
Kripke frames.

Intentional logic is the relation |=i defined by induction on an intentional logic formula ϕ:

M, g, w |=i Pn(x1, ..., xn) if w ∈ I(Pn)(g(x1), ..., g(xn))
M, g, w |=i >i
M, g, w 6|=i ⊥i
M, g, w |=i ϕ ∧i ψ ifM, g, w |=i ϕ andM, g, w |=i ψ
M, g, w |=i ϕ ∨i ψ ifM, g, w |=i ϕ orM, g, w |=i ψ
M, g, w |=i ¬iϕ ifM, g, w 6|=i ϕ
M, g, w |=i ϕ→i ψ ifM, g, w |=i ϕ impliesM, g, w |=i ψ
M, g, w |=i ∀x. ϕ if for all a ∈ D, we haveM, g[x 7→ a], w |=i ϕ
M, g, w |=i ∃x. ϕ if there exists a ∈ D such thatM, g[x 7→ a], w |=i ϕ
M, g, w |=i Mi ϕ if there exists v ∈ W such that w R v andM, g, v |=i ϕ
M, g, w |=i Ki xϕ if for all v ∈ W such that w R◦(g(x)) v we haveM, g, v |=i ϕ

(III.10)

38

Simulating intentional logic in Henkin models

Similarly to Σe, we want a basis of FOL in Σi to define richer structures. We equip Σi with the
following constants.

∧e : t→ t→ t →e : t→ t→ t >e : t ∀ee : (e→ t)→ t ∀se : (s→ t)→ t
∨e : t→ t→ t ¬e : t→ t ⊥e : t ∃ee : (e→ t)→ t ∃se : (s→ t)→ t

(III.11)

We also add to the following constants to Σi:

R : s→ s→ t R◦ : e→ s→ s→ t (III.12)
R is the accessibility relation corresponding to common knowledge based on physical likelihood

and social norms. R◦ x is the accessibility relation associated with the personal knowledge of
individual x.

Definition 56 (Intentional model). Set Σ a signature with basic types containing t, s and e and
closed λ-terms >Σ, ⊥Σ, ∧Σ, ∨Σ, ¬Σ, →Σ, ∀eΣ, ∃eΣ, ∀sΣ, ∃sΣ, R and R◦ having the expected types
((III.11) and (III.12)).

The class i of Henkin models on Σ is defined to be the Henkin modelsM such that

1. (Dt, J>ΣKM, J⊥ΣKM, J∧ΣKM, J∨ΣKM, J¬ΣKM, J→ΣKM,
∧

B,
∨

B) is the complete Boolean alge-
bra of Booleans

2. for every A ∈ {e, s}, X ∈ DA→t, J∀AΣKM(X) =
∧

B{X(a) | a ∈ DA}

3. for every A ∈ {e, s}, X ∈ DA→t, J∃AΣKM(X) =
∨

B{X(a) | a ∈ DA}

4. (Ds, JRKM) and (Ds, JR◦KM(a)) for every a ∈ De are epistemic Kripke frames

We now define the intentional connectives with the help of the extensional ones.

∧i =̂ λpTi , qTi , ws. (pw) ∧e (q w) >i =̂ λws.>e ∀ei =̂ λP eTi , ws.∀xe. P xw
∨i =̂ λpTi , qTi , ws. (pw) ∨e (q w) ⊥i =̂ λws.⊥e ∃ei =̂ λP eTi , ws.∃xe. P xw
¬i =̂ λpTi , ws.¬e (pw) →i=̂ λpTi , qTi , ws. (pw)→e (q w)

(III.13)

The modal operators can be defined as

Mi =̂ λpTi . λws. ∃vs. (R w v) ∧e (p v) : Ti → Ti
Ki =̂ λxe, pTi . λws.∀vs. (R◦ xw v)→e (p v) : e→ Ti → Ti

(III.14)

To exemplify this, let w be the actual world. “Mary maybe sleeps” is represented byMi (sleepm)w,
which means: there exists an accessible world v where Mary sleeps in v. Similarly, “John knows
that Mary sleeps” is Ki j (sleepm)w, which means: for every indistinguishable world v, sleepm
holds in v.

Set Γ `i M : st and a modelM. Saying that M is intentionally true is saying that for every
world w ∈ W =̂ Ds, the value of JΓ `MKM,g(w) is true for every g.

Theorem 10. Set an i-model M of Σi. We consider a λ-term ϕ such that Γ `i ϕ : st and ϕ is
only made up using the λ-terms defined in (III.13) and (III.14), variables of type TE or e and
predicates.

For all g and w ∈ Ds, JΓ ` ϕ : stKM,g(w) = 1 iffM, g, w |=i ϕ

Proof. The proof is straightforward by induction on ϕ. It is sufficient to remark that the λ-terms
of (III.13) and (III.14) implement the left conditions of |=i in definition 55.

39

III.3.3 Intentional lexical meanings

The point of designing a lexicon from Σe to Σi is the following. Intentional semantics is better
than extensional semantics. However, we might already have spent a lot of time building manually
an object semantic vocabulary. Therefore, we would like to embed our vocabulary into intentional
semantics, where we can there add other constants to account for purely intentional phenomena.
We would also like to preserve the properties of the original vocabulary. This transformation is
called a conservative extension.

De Groote and Kanazawa showed [25] that there exists a systematic procedure translating an
extensional λ-term into an intentional λ-term. This procedure is expressed as a family of λ-terms
EA for A ∈ T (Be), following the type interpretation in (III.8).2

This transformation is proven to be a conservative extension: it preserves truth and entailment.

Theorem 11. Set `e ϕ : o and `e ψ : o. If ϕ |=e ψ then Eo ϕ |=Ti
i Eo ψ

Remark 12. In their paper, they perform this transformation at the level of denotations. The
reformulation we present here is closer to [23]. Moreover, we choose to map individuals to indi-
viduals, and not to individual concepts s→ e. So our embedding E is adapted to have EιM = M
if Γ `e M : ι.

It turns out that applying E to logical constants gives λ-terms that are β-equivalent to the ones
in (III.13) and (III.14). We use E to define the intentional interpretation of the other semantic
constants. For example, Li(sleep) uses a new semantic constant sleepi : s → e → t which
denotation now depends on possible worlds. Similarly, loci : s→ ((et)t)t)→ e→ (et)t→ t.

The full lexicon is given in Tab. III.4. We use Ei =̂ (e→ Ti)→ Ti.

Li(>e) =̂ >i Li(sleep) =̂ λxe, ws. sleepiw x
Li(⊥e) =̂ ⊥i Li(house) =̂ λxe, ws.houseiw x
Li(∧e) =̂ ∧i Li(own) =̂ λze, ye, ws.owniw z y
Li(∨e) =̂ ∨i Li(M) =̂ λpTi , ws.Mi pw
Li(¬e) =̂ ¬i Li(K) =̂ λxe, pTi , ws.Ki x pw
Li(→e) =̂ →i Li(〈name〉) =̂ 〈name〉
Li(∀ιe) =̂ ∀ei Li(∃ιe) =̂ ∃ei
Li(loc) =̂ λFEiTi , ze, XEi , ws. lociw (λY (et)t. F (λP est, us. Y (λye. P y u))w) z (λQet. X (λxe, vs. Q x)w)

Table III.4 – Intentionalization lexicon Li : Σe → Σi

Constants related to questions can still not be fully interpreted.
Here are the intentional interpretations of the French examples.
Set 1:

(5) a. λws. sleepiwm
b. λws.∃zι. (houseiw z) ∧e (owniw z c) ∧e (lociw (λY (et)t. Y (sleepiw)) z (λQet. Qm))

Set 2:

(6) a. λvs.Mi (λw. sleepiwm) v

2Note that in the setting of [23] however, the intentionalization operator is a composition T = E ◦ U, with U as
in definition 66 which can be found later in section IV.2.1.

40

b. λvs.Ki j (λw. sleepiwm) v

The other sets cannot be interpreted in Σi.
The complex term Li(loc) is due to the interaction of E and its opposite P on higher-order

types. Let us see with an example that it gives the expected λ-term when further β-reduced. Here
is the interpretation of (III-1-b) into (III-5-b).

Li(loc (λX(ιo)o. X sleep) z (λP ιo. P m))
= Li(loc) (λXEi . X Li(sleep)) z (λP est. P m)
→3

β λw
s. lociw (λY (et)t. (λP est, us. Y (λye. P y u))Li(sleep) w) z (λQet. (λP est. P m) (λxe, vs. Q x)w)

→β λw
s. lociw (λY (et)t. (λP est, us. Y (λye. P y u))Li(sleep) w) z (λQet. (λxe, vs. Q x)mw)

→2
β λw

s. lociw (λY (et)t. (λP est, us. Y (λye. P y u))Li(sleep) w) z (λQet. Qm)

→2
β λw

s. lociw (λY (et)t. Y (λye.Li(sleep) y w)) z (λQet. Qm)

→2
β λw

s. lociw (λY (et)t. Y (λye. sleepiw y)) z (λQet. Qm)

→η λw
s. lociw (λY (et)t. Y (sleepiw)) z (λQet. Qm)

(III.15)

41

IV.
Extending to inquisitive semantics

The last part of this dissertation is dedicated to the semantics of study: inquisitive semantics.
In section IV.1 we present inquisitive semantics and adapt it to our setting. In section IV.2, we
define formally conservative extensions and extend it to entailment preservation. Finally, we apply
the recipe to inquisitive semantics in section IV.3 and discuss the result.

IV.1 Inquisitive semantics

After a quick historical presentation of inquisitive semantics in section IV.1.1, we expose first-order
epistemic inquisitive logic (FOEIL) (or just inquisitive logic) in section IV.1.2. In section IV.1.3,
we design the class of inquisitive models q in order to simulate FOEIL.

IV.1.1 A representation of interrogative meanings

The great gap of intentional semantics is questions. In a speech, questions may not be present,
except rhetorical questions. Nevertheless, they are rampant in dialogues. Erotetics is the philo-
sophical and linguistic study of questions. What questions can we make ? What are the answers
of a questions ? Can we define entailment for questions ?

Wiśniewski [61] proposed in 1998 a model called Inferential erotetic logic, based on predicate
logic. In this system, interrogation is a game between two players, and playing it amounts to
reasoning.

However, representing questions with a different system from statements is questionable. In-
deed, interrogative and declarative clauses can both be embedded in interrogative or declarative
sentences, like in (IV-1).

(1) a. Jean sait où Marie dort.
b. Est-ce que Jean sait où Marie dort ?
c. Est-ce que Jean sait que Marie dort ?

In the system Hamblin proposed in 1973 [34], a question is represented by the set of its answers,
called alternatives. This principle is thus called alternative semantics. Polar questions like
Est-ce que Marie dort ? have two alternatives: λw. sleepiwm and ¬i (λw. sleepiwm). Open
questions have many alternatives. For example, the alternatives of Qui dort ? are all the proposi-
tions λw. sleepiw x where x is a human being, and the possibility that nobody is actually sleeping.

This framework has been exploited for other uses, e.g. to model focus [55, 3], indefinites [41]
and disjunction [1].

Declarative sentences can be represented as questions with just one alternative. However, we
cannot use traditional set-theoretic operations, like application and abstraction, on sets of al-
ternatives. For example, sentential conjunction et is usually intersection on meanings, whereas
alternative semantics fails to provide a categorematic (simple) operation to model conjunction.
Adaptations have been suggested to recover the expected compositionality, e.g. pointwise appli-
cation. But the lack of a clear-cut entailment relation makes it not elegant enough to be widely
used.

42

In front of the many issues of alternative semantics, Ciardelli, Groenedijk, Roelofsen and Mas-
carenhas conjointly created inquisitive semantics [12] in 2009 and improved it to compositional
inquisitive semantics [17] InqB.

Instead of just alternatives, the meaning of a question is taken to be all the propositions
which are entailed by one of the alternatives. This way, abstraction, application and conjunction
keep their traditional denotations. We call state S a set of possible worlds, i.e. an intentional
proposition. An inquisitive proposition P is a downward-closed non-empty set of states. The
alternatives of P are the maximal elements of P , where the order S ≤ S ′ is the intentional
entailment, i.e. the inclusion of possible worlds S ⊆ S ′.

A state S settles (or supports) an inquisitive formula if there is enough information in S to
resolve this formula. If ϕ encodes a question, S settles ϕ whenever being in S (at least) answers
ϕ. The inquisitive meaning P of a formula is the set of states that settle this formula. In the case
of declarative sentences, their inquisitive meaning just have one alternative.

This system also handles entailment. A question P entails a question Q if knowing the answer
of P allows us to know the answer of Q. For example, suppose we are in a set of worlds where
exactly one person sleeps, either Marie, Jean or Camille. Then we have the entailment

Qui dort ? |= Est-ce que Marie dort ?

With InqB, we can also establish entailments between interrogative and declarative sentences,
and this amounts to set inclusion. For example, an answer to a question always entails this
question.

Marie dort. |= Qui dort ?

IV.1.2 First-order epistemic inquisitive logic

Here, we give a formal basis of inquisitive logic [15, 13]. We consider first-order operators ([11]
revised with [17]). For simplicity, we do not consider function symbols here, but adding them does
not raise any further issue. To account for epistemic behaviors, we take the setting of [16], without
their additional E modality.

Definition 57. A formula of first-order epistemic inquisitive logic (FOEIL) is defined by
induction:

ϕ, ψ ::= Pn(x1, ..., xn) | >q | ⊥q | ϕ ∧q ψ | ϕ ∨q ψ | ¬qϕ | ϕ→q ψ | ∀x. ϕ | ∃x. ϕ | Mq ϕ | Kq xϕ
(IV.1)

where xj an entity variable and Pn a n-place predicate.
Inquisitive projections are defined as syntactic sugar:

!ϕ =̂ ¬¬ϕ ?ϕ =̂ ϕ ∨ ¬ϕ (IV.2)

Before model-theoretic semantics, let us recall some basic notation to introduce inquisitive
epistemic frames.

Definition 58 (Powerset and union set). The powerset ℘(X) of a set X is the set of sets Y such
that Y is included in X, viz.

℘(X) =̂ {Y | Y ⊆ X}

43

The union set
⋃
X of a set of sets X is the union of the sets belonging to X, viz.⋃

X =̂
⋃
S∈X

S = {w | ∃S ∈ X, w ∈ S}

Definition 59. Fix a set W , which elements are called (possible) worlds, and P ∈ ℘(℘(W)). We
say that P is downward-closed if for all S ∈ P and R ⊆ S we have R ∈ P.

An element of ℘(W) is called a state. ∅ is called the inconsistent state.
We write ΠW the set of nonempty downward-closed sets of ℘(℘(W)), called issues.

Definition 60 (Inquisitive epistemic frame). An inquisitive epistemic frame (W,Ξ) is a set W
and a function Ξ : W → ΠW from worlds to issues such that, by defining the information state
σ(w) at world w by

σ(w) =̂
⋃

Ξ(w) (IV.3)

we have

factivity for any w ∈ W , w ∈ σ(w)

introspection for any w ∈ W , if v ∈ σ(w) then Ξ(v) = Ξ(w)

Proposition 11. If (W,Ξ) is an inquisitive epistemic frame, then (W,R) is an epistemic Kripke
frame with

w R v if v ∈ σ(w) (IV.4)

Proof. reflexivity For w ∈ W , by factivity w ∈ σ(w) so w R w.

symmetry Suppose w R v. As v ∈ σ(w), we have Ξ(v) = Ξ(w) by introspection, so σ(w) = σ(v)
by definition. Using factivity gives us w ∈ σ(v), so v R w.

euclidianness Suppose w R v and w R u. By the same reasoning, Ξ(v) = Ξ(w), so σ(v) = σ(w).
Therefore, u ∈ σ(v) and v R u.

Definition 61 (First-order epistemic inquisitive logic). A model of FOEIL isM = (W,D, I,Ξ,Ξ◦),
where I maps any Pn to I(Pn) : Dn → ℘(W) and (W,Ξ) and (W,Ξ◦(a)) for every a ∈ D are
inquisitive epistemic frames.

First-order epistemic inquisitive logic is the relation |=q defined by induction on a formula ϕ,
for an assignment g and a state S ⊆ W :

M, g, S |=q Pn(x1, ..., xn) if S ⊆ I(Pn)(g(x1), ..., g(xn))
M, g, S |=q >q
M, g, S |=q ⊥q if S = ∅
M, g, S |=q ϕ ∧q ψ ifM, g, S |=q ϕ andM, g, S |=q ψ
M, g, S |=q ϕ ∨q ψ ifM, g, S |=q ϕ orM, g, S |=q ϕ
M, g, S |=q ¬qϕ if for all R ⊆ W such thatM, g, R |=q ϕ, we have R ∩ S = ∅
M, g, S |=q ϕ→q ψ if for all R ⊆ S such thatM, g, R |=q ϕ, we haveM, g, S |=q ψ
M, g, S |=q ∀x. ϕ if for all a ∈ D, we haveM, g[x 7→ a], S |=q ϕ
M, g, S |=q ∃x. ϕ if there exists a ∈ D such thatM, g[x 7→ a], S |=q ϕ
M, g, S |=q Mq ϕ if for all w ∈ S there exists v ∈ σ(w) such thatM, g, {v} |=q ϕ
M, g, S |=q Kq xϕ if for all w ∈ S, we haveM, g, σg(x)(w) |=q ϕ

(IV.5)

44

The definition of the “diamond” epistemic modality Mq is taken to have Mq ϕ ≡q ¬qKq (¬q ϕ).

Proposition 12 (Persistence). IfM, g, S |=q ϕ, then for all R ⊆ S,M, g, R |=q ϕ

Proof. We proceed by induction. [15] provides the case of logical connectives. The case of atomic
propositions and predicates is obvious. The case of quantifiers follows directly from induction
hypothesis. The case of modal operators is also straightforward.

Here is some vocabulary about inquisitive logic.

Definition 62 (Vocabulary). Set ϕ a FOEIL formula. Set a modelM and an assignment g.
The proposition expressed by ϕ is [ϕ]Mg , the set of states S such thatM, g, S |=q ϕ.
The alternatives of ϕ are the maximal elements of [ϕ]Mg w.r.t. inclusion.
The truth set of ϕ is |ϕ|Mg =̂

⋃
[ϕ]Mg .

ϕ is called

• inquisitive if ϕ has at least two alternatives1 for allM, g

• assertive (or an assertion) if [ϕ]Mg = {|ϕ|Mg } for allM, g, i.e. if ϕ is not inquisitive

• informative if |ϕ|Mg 6= ℘(W) for allM, g

• a question if ϕ is not informative

By proposition 12 and that ∅ is the minimum of ℘(W) we can conclude that for any formula,
[ϕ]Mg is an issue.

Note that the notion of informativeness and inquisitiveness can adapted to public knowledge
to handle properly presuppositions [16]. We leave presupposition treatment for future work.

Proposition 13 (Decomposition between assertion and question). For every ϕ we have

• ϕ is an assertion iff ϕ ≡q!ϕ

• ϕ is a question iff ϕ ≡q?ϕ

• ϕ ≡q !ϕ ∧q ?ϕ

IV.1.3 Inquisitive models

Similarly to intentional logic, we create a signature Σq where we can express inquisitive semantics,
by emulating FOEIL logic with λ-terms.

The basic types of Σq are Bq =̂ {s, t, e} too. We map extensional propositions to inquisitive
propositions, of type Tq = (s → t) → t (set of states). So the lexicon Lq from Σe to Σq maps
types as follows:

Lq(ι) =̂ e Lq(o) =̂ (s→ t)→ t (IV.6)

We equip Σq with basic logical connectives, the same as for intentional semantics (III.11) plus
quantifiers over states:

1Note that in the case W is not finite, it is more accurate to define inquisitiveness as |ϕ|Mg 6∈ [ϕ]Mg for allM, g,
because some inquisitive propositions may not have any maximal elements (see [11, sec. 4].

45

∀ste : ((s→ t)→ t)→ t ∃ste : ((s→ t)→ t)→ t (IV.7)

First, we define set-theoretic connectives in (IV.8).

∩
α

=̂ λAαt, Bαt. λxα. (Ax) ∧e (B x) ∪
α

=̂ λAαt, Bαt. λxα. (Ax) ∨e (B x)

{
α

=̂ λAαt. λxα.¬e(Ax) ∅
α

=̂ λxα.⊥e

⊆
α

=̂ λAαt, Bαt. ∀xα. (Ax)→e (B x) =
α

=̂ λAαt, Bαt. (A ⊆
α
B) ∧e (B ⊆

α
A)

{·}αt =̂ λxαt. λyαt. x =
α
y ℘ =̂ λAst. λBst. B ⊆

s
A⋃

=̂ λP(st)t. λws.∃Sst. (P S) ∧ (S w) for α ∈ {s, st}

(IV.8)

The powerset operator ℘ acts like a downward-closing operator. We also use · 6=
s
∅
s

=̂ λSst.¬e(S =
s
∅
s
)

We define inquisitive connectives (IV.9) as in [7], but we prefer here to give a better intuition
of these λ-terms with the help of set-theoretic connectives, as in [17].

∧q =̂ ∩
st

>q =̂ λSst.>e ∀eq =̂ λP eTq . λSst.∀xe. P x S
∨q =̂ ∪

st
⊥q =̂ {∅

s
}st ∃eq =̂ λP eTq . λSst.∃xe. P x S

¬q =̂ λPTq . ℘ {
s

⋃
P →q=̂ λPTq ,QTq . λSst. ((℘S) ∩

st
P) ⊆

st
Q

(IV.9)

And we set !q =̂ λPTq .¬q¬qP and ?q =̂ λPTq .P ∨q ¬qP .
We add inquisitive accessibility relations as constants to Σq:

Ξ : s→ (s→ t)→ t Ξ◦ : e→ s→ (s→ t)→ t (IV.10)

The knowledge modal operators can be defined as:

Mq =̂ λPTq . ℘ (λws. (
⋃

(Ξw)) ∩
s

(
⋃
P) 6=

s
∅
s
) : Tq → Tq

Kq =̂ λxe,PTq . ℘ (λws.P (
⋃

(Ξ◦ xw))) : e→ Tq → Tq
(IV.11)

Now that we have all the ingredients to simulate FOEIL in Σq, we define q-models to state
and prove our theorem.

Definition 63 (Inquisitive model). Set Σ a signature with basic types containing t, s and e and
closed λ-terms >Σ, ⊥Σ, ∧Σ, ∨Σ, ¬Σ, →Σ, ∀eΣ, ∃eΣ, ∀sΣ, ∃sΣ, ∀stΣ , ∃stΣ , Ξ and Ξ◦ having the expected
types ((III.11), (IV.7) and (IV.10)).

The class q of Henkin models on Σ is defined to be the Henkin modelsM such that

1. (Dt, J>ΣKM, J⊥ΣKM, J∧ΣKM, J∨ΣKM, J¬ΣKM, J→ΣKM,
∧

B,
∨

B) is the complete Boolean alge-
bra of Booleans

2. for every A ∈ {e, s, st}, X ∈ DA→t, J∀AΣKM(X) =
∧

B{X(a) | a ∈ DA}

3. for every A ∈ {e, s, st}, X ∈ DA→t, J∃AΣKM(X) =
∨

B{X(a) | a ∈ DA}

4. (Ds, JΞKM) and (Ds, JΞ◦KM(a)) for every a ∈ De are inquisitive epistemic frames

46

Theorem 12. Set a q-model M of Σq. We consider a λ-term ϕ such that Γ `q ϕ : (st)t and ϕ
is only made up using the λ-terms defined in (IV.9) and (III.14), variables of type Tq or e and
predicates.

For all g and S ∈ Dst, JΓ ` ϕ : (st)tKM,g(S) = 1 iffM, g, S |=q ϕ

Proof. The proof is by induction on ϕ. We just need to prove that the λ-terms M of (IV.9) and
(IV.11) implement the left conditions of |=q in definition 61.

The cases ∧q, ∨q, >q, ⊥q, ∀eq and ∃eq are clear from 61.
The cases ¬q and →q can be found in [17] (equation 30 and footnote 21 respectively).
We only provide the details for Mq and Kq.

Case ϕ = Mq ψ First developing ϕ gives

ϕ→β λS
st.∀ws. (S w)→e ((

⋃
(Ξw)) ∩

s
(
⋃

ψ) 6=
s
∅
s
)

By condition 4 of definition 34, we have

JΓ ` ϕ : (st)tKM,g(S ′) = JΓ, S : st ` ∀ws. (S w)→e ((
⋃

(Ξw)) ∩
s

(
⋃

ψ) 6=
s
∅
s
) : tKM,g[S 7→S′]

We reduce this λ-term ϕ′:

ϕ′ →β ∀ws. (S w)→e ¬e((
⋃

(Ξw)) ∩
s

(
⋃
ψ) =

s
∅
s
)

∼=q ∀ws. (S w)→e ¬e((
⋃

(Ξw)) ∩
s

(
⋃
ψ) ⊆

s
∅
s
)

→2
β ∀ws. (S w)→e ¬e(∀vs. ((

⋃
(Ξw)) ∩

s
(
⋃
ψ)) v →e ⊥e)

∼=q ∀ws. (S w)→e (∃vs. ((
⋃

(Ξw)) ∩
s

(
⋃
ψ)) v)

→4
β ∀ws. (S w)→e (∃vs. (

⋃
(Ξw) v) ∧e (∃Rst. (ψR) ∧e (Rv)))

(IV.12)

Suppose JΓ ` ϕ : (st)tKM,g(S) = 1. Set w′ ∈ S ′. There exists v′ such that v′ ∈ σ(w′) =
JΓ′ `

⋃
(Ξw) : stKM,g′ (where g′ =̂ g[S 7→ S ′, w 7→ w′, v 7→ v′], Γ′ =̂ Γ, S : st, w : s),

and for some R′ such that JΓ′, R : st ` ψ : (st)tKM,g′[R 7→R′](R′) = 1, v′ ∈ R′. As none of
S,w, v or R appears in ψ because ψ is automatically α-renamed by assumption, we have
JΓ ` ψ : (st)tKM,g(R′) = 1. We can apply the induction hypothesis on ψ. It follows that
M, g, {v′} |=q ψ by persistence (proposition 12).

We have proven thatM, g, S ′ |=q ϕ.

Now supposeM, g, S ′ |=q ϕ. Set w′ ∈ S ′. There exists v′ ∈ σ(w′) such thatM, g, {v′} |=q ψ.
By induction hypothesis we have JΓ ` ψ : (st)tKM,g({v′}) = 1. By taking the assignment
R 7→ {v′}, we clearly have JΓ ` ϕ : (st)tKM,g(S ′) = 1.

Case ϕ = Kq xψ We proceed similarly. There is just to see that the following λ-term is the exact
translation of the condition forM, g, S ′ |=q ϕ.

ϕS →β ∀ws. (S w)→e (ψ (
⋃

(Ξ◦ xw))) (IV.13)

47

IV.2 Conservative extensions

We would like to design a procedure which creates the lexicon Lq on constants, so that the image
λ-terms keep the “same” meaning as the intentional ones. Such a procedure is called a conservative
extension.

De Groote [23] showed that it is possible to construct a conservative extension if we have the
right structure, given a transformation on atomic types. This process works from a basic Montague
grammar to intentional semantics [25], dynamic semantics [44] and type raising [23].

In section IV.2.1 we briefly recall this construction and show in section IV.2.2 that, with
additional properties on Henkin models, we can extend it to entailment preservation. This result
builds on insights and reformulations given by extending the setting to symmetric monoidal closed
categories [39].

IV.2.1 De Groote’s construction

Recall that a vocabulary Σ = (B,B, t) is made of basic types B and constants C typed by t :
C → T (B) (definition 14). Recall that a lexicon L : Σ1 → Σ2 is given by a map of basic types
and constants from Σ1 into types and closed λ-terms of Σ2 respectively (definition 41). Finally,
recall that, given a class k of Henkin models (definition 34), ∼=q is the logical equivalence, that is,
equality of denotation in every k-models.

We can see a vocabulary Σk as a symmetric monoidal closed category where objects are types
and morphisms A M−→ B are λ-terms x1 : A1, ..., xn : An `Σk

M : B such that A = A1 ⊗ ... ⊗ An.
We can also refine it to a 2-category, where 2-cells are given by ∼=k. A lexicon is then a monoidal
closed functor.

In the following, we suppose that any vocabulary Σk involved comes with a class k of Henkin
models. In definition 66, this class is written 2 (the same index as) for signature Σ2.

Definition 64 (Lexicon transformation). Set Σ0,Σk two signatures where we consider a class k
of Henkin models on Σk. Set L1,L2 : Σ0 → Σk two lexicons.

A lexicon transformation E : L1 → L2 is a family of closed λ-terms `k EA : L1(A) → L2(A)
for A ∈ T (B2) such that for all Γ `0 M : B,

L2(M) ∼=k EBL1(M) (IV.14)

Σ0

Σk

L1 L2
E
⇒

Lexical transformations are actually natural transformations between lexicons.

Example 7. Let us use type raising as exposed in [23] to exemplify this definition. Take Σ0 =̂ ΣD

(deep syntax) and Σk =̂ Σe (extensional semantics). Before the Proper Treatment of Quantification
[48], Montague first mapped np to extensional type o, i.e. individuals. Thus we would have

L1(np) =̂ o L1(Marie) =̂ m L1(dort) =̂ λxo. sleep x (IV.15)

48

However, it turns out it is better to interpret noun phrases as sets of properties, i.e. type
(o→ ι)→ ι. That is our lexicon L2 =̂ Le.

There exists a lexicon transformation Etr from L1 and Le which is called type raising. On
first-order and predicate constants, this lexicon transformation is

Etr
npM =̂ λP oι. P M Etr

np(sM =̂ λX(oι)ι. X (λxι.M x) (IV.16)

Definition 65 (Conservative extension). A lexicon L2 : Σ0 → Σk is a conservative extension
of a lexicon L1 : Σ0 → Σk if there exists two lexicon transformations E : L1 → L2 and P : L2 → L1

such that for all B ∈ T (B0), PA EA ∼=k λx. x.

In particular, the denotation of the embedding of a conservative extension is injective.
Requiring that the target signature of L1 and L2 are the same ensures that there is no constant

in the wrong signature. Even if this restriction is mainly due to syntactic reasons, it also serves as
a first step to translate entailment between the two object vocabularies of a de Groote’s structure.

Definition 66 (De Groote’s conservative structure). Set Σ0,Σ1,Σ2 three signatures where we
consider a class 1 (resp. 2) of Henkin models on Σ1 (resp. Σ2). Set a lexicon L1 : Σ0 → Σ1 and
a type morphism L2 : B0 → T (B2) with B1 ⊆ B2.

A de Groote’s conservative structure is given by

• a type transformation T : T (B2)→ T (B2) coming with 3 operations

U : A→ TA • : T (A→ B)→ TA→ TB C : (A→ TB)→ T (A→ B) (IV.17)
for all A,B ∈ T (B2), obeying the following laws (• is written as an infix operator):

(U f) • (Ux) ∼=2 U (f x)
C (λx.U (f x)) ∼=2 U f

(IV.18)

• for every atomic type a ∈ B0, two λ-terms: the embedding Ea : TL1(a) → L2(a) and the
projection Pa : L2(a)→ TL1(a), such that

Pa (Ea (UM)) ∼=2 UM (IV.19)
for all M .

For example, type raising is a conservative extension which can be defined by a de Groote’s
conservative structure. Intentionalization (from the identity on Σe to Li : Σe → Σi) is also a
conservative extension which can be described by a de Groote’s conservative structure [23].

Theorem 13. If we have a de Groote’s conservative structure, then we can define lexicon trans-
formations for any type by

EA→BM =̂ λxL2(A).EB (M • (PA x))
PA→BM =̂ C (λxL1(A).PB (M (EA (Ux))))

(IV.20)

By taking C2 =̂ C1 and defining, L2(c) =̂ Et(c) (UL1(c)) : L2(t(c)) for every constant c ∈ C0,
we build a signature Σ2 such that the lexicon L2 is a conservative extension of I ◦ L1, where I is
the injection lexicon from Σ1 to Σ2.

Proposition 14 (Compositionality). If (E,P) is a de Groote’s conservative extension, then for
all right M,N

(E (UM)) (E (UN)) ∼=2 E (U (M N)) (IV.21)

Remark 13. We can see T as a monoidal closed monad. U is the unit, • is the closed natural
transformation and C is a closed strength [30]. The existence of a conservative extension was
generalized to the existence of a forgetful functor between refinement systems by [39].

49

IV.2.2 Entailment-conservative extension

Contrary to [23] where syntactic lexicon transformations are used to prove theorem 13, we bring
here a novel and stronger proof, closer to the idea of [25], but using additional conditions.

Definition 67 (Monotonic de Groote’s conservative structure). A monotonic de Groote’s conser-
vative structure is a de Groote’s conservative structure such that

1. U, C and for every a ∈ B0 Ea and Pa are upward monotonic in their respective arguments.
• is upward monotonic in its first argument.

2. for all M,N , if M |=L1(A)
1 N then I(M) |=I(L1(A))

2 I(N)

The last conditions ensures that the class of 2-models is not “too small” to interpret λ-terms
of Σ1. In this subsection, we assume I might not be the identity on every constant, as it is the
case for inquisitivation.

The following theorem and the application to inquisitivation are the main contribution of this
thesis.

Theorem 14. The conservative extension of a monotonic de Groote’s conservative extension pre-
serves entailment, i.e. for all M,N : A,

if M |=L1(A)
1 N , then EA (U I(M)) |=L2(A)

2 EA (U I(N))

Given a monotonic de Groote’s conservative structure, the theorem is a consequence of the
following lemma.

Lemma 4. Set Γ `2 M : TL1(A), ∆ `2 N : TL1(A), Γ′ `2 M ′ : L2(A), ∆′ `2 N ′ : L2(A). Then

1. if M |=TL1(A)
2 N , then EAM |=

L2(A)
2 EAN

2. if M ′ |=L2(A)
2 N ′, then PAM ′ |=TL1(A)

2 PAN ′

Proof. By induction on A ∈ T (B0).

Case A ∈ B0 :

1. As EA is upward monotonic in its argument, we can deduce that EAM |=
L2(A)
2 EAN by

proposition 8.
2. The case PA is similar.

Case A = B → C :

1. Set b ∈ DL2(B). By monotonicity of • in its first arguments and the one of EC by
induction hypothesis,

JEC (N • (PB x))KM,g[x 7→b] ≤L2(C) JEC (M • (PB x))KM,g[x 7→b]

We proved that JEAMKM,g ≤L2(A) JEANKM,g, so EAM |=A
2 EAN .

2. The PA case works similarly, by upward monotonicity of the application, PC (by induc-
tion hypothesis) and C.

Proof of the theorem. Suppose M |=L1(A)
1 N . We have I(M) |=L1(A)

2 I(N) by item 2 of definition
67. Then by upward monotonicity of U and lemma 4, we have the expected result.

Corollary 2. If M ∼=1 N , then E (U I(M)) ∼=2 E (U I(N)).

50

IV.3 Inquisitivation

We design a de Groote’s conservative structure for inquisitivation in section IV.3.1. In section
IV.3.2, we discuss the relationships between the image of intentional logical connectives and their
inquisitive correspondents. Finally, we provide the interpretation of linguistic constants and on
the French fragment in section IV.3.3.

IV.3.1 Application

We use de Groote’s conservative extension to embed the intentional lexicon into the inquisitive
one Lq : Σe → Σq. The global diagram of this thesis is drawn in Fig. IV.1

Deep syntax
ΣD

Surface syntax
ΣS

Extensional
semantics

Σe

Intensional
semantics

Σi

Inquisitive
semantics

ΣD

Y Le

Li Lq

I

E
⇒

Figure IV.1 – All vocabularies and lexicons considered in this thesis

In inquisitive semantics, a declarative sentence is modeled by an issue P which has a maximum
S, corresponding to the intentional meaning of the sentence. In other words, P = ℘(S), which is
the same as saying

⋃
P = S. That’s why we use these operations to define the embedding and

projection on atomic types.

Proposition 15. We have the adjunction
⋃
a ℘ (i.e.

⋃
P ⊆ S iff P ⊆ ℘(S)).

Proof. Take W a set, S ⊆ W and P ∈ ℘(℘(W)).
Suppose

⋃
P ⊆ S. Set R ∈ P . As R ⊆

⋃
P , R ⊆ S. Therefore, R ∈ ℘(S).

Now suppose P ⊆ ℘(S). Set w ∈
⋃
P . There exists R ∈ P such that w ∈ R. As R ∈ ℘(S), we

conclude that w ∈ S.
We proved that

⋃
P ⊆ S iff P ⊆ ℘(S), that is, the (monotonic) Galois connection

⋃
a ℘.

Corollary 3.
⋃

and ℘ are upward monotonic.

Proposition 16.
⋃
℘ = id

Proof. Take W a set and S ⊆ W .
Set w ∈ S. {w} ∈ ℘(S) so w ∈

⋃
(℘(S)).

Conversely, set w ∈
⋃

(℘(S)). There exists R ∈ ℘(S) such that w ∈ R, so clearly w ∈ S.

Thus, an equivalent λ-term for the assertion projection is !q ∼=q λPTq . ℘
⋃
P . Moreover, J!qKM,g

is the unit of the adjunction.

51

Definition 68 (Inquisitivation). Inquisitivation is the de Groote’s conservative extension defined
by

Tα =̂ α Eι x =̂ x

I(c) =̂

c if c ∈ C1 \ {R,R◦}⋃

Ξ if c = R⋃
Ξ◦ if c = R◦

US =̂ S Pι x =̂ x
f • x =̂ f x Eo S =̂ ℘S
C f ==̂ f PoP =̂

⋃
P

(IV.22)

The conditions are clearly verified.

Simplifying the λ-terms of inquisitivation yields the embedding and projection of Fig. IV.2.

Eι x = x
Pι x = x
Eo S = ℘S
PoP =

⋃
P

EA→BM = λxLq(A).EB (M (PA x))
PA→BM = λxLi(A).PB (M (EA x))

Figure IV.2 – Embedding and projection of inquisitivation

Proposition 17. Inquisitivation is a monotonic de Groote’s conservative extension.

Proof. Upward monotonicity is trivial or consequence of proposition 15. There is just condition 2
to prove.

Suppose M |=L1(A)
i N . Set a q-modelM and g. We have by the definitions of i and q models

and thanks to proposition 11 thatM is also an i model. Therefore JI(M)KM,g ≤L1(A) JI(N)KM,g

because I transforms epistemic relations as in proposition 11. Consequently, I(M) |=L1(A)
q I(N).

IV.3.2 Transformation of logical connectives

The inquisitive lexicon is given by inquisitivation of the intentional lexicon. For every constant
c ∈ C0, we take

Lq(c) =̂ Et(c) Li(c)

For some logical connectives ?, the inquisitivation of the intentional interpretation of ? coincides
with the inquisitive interpretation of ? as defined in section IV.1.3. For some, they only coincide
on the image of the embedding E, i.e. on assertions. Disjunction and existential quantification,
however, do not coincide respectively.

Let us formalize these remarks.

Proposition 18.

E>i
∼=q >q E⊥i

∼=q ⊥q E ¬i ∼=q ¬q EMi
∼=q Mq (IV.23)

Proof. Straightforward by writing the λ-term.

Note that we clearly see on ¬q how E acts by transporting the structure of ¬i from Σi to Σq.

52

Proposition 19. If the denotation of the λ-terms P, Q and P M are assertions in all models for
all Γ `q M : e, then

P (E ∧i)Q ∼=q P ∧q Q P (E →i)Q ∼=q P →q Q
(E ∀i)P ∼=q ∀q P (EKi)xP ∼=q Kq xP

(IV.24)

Proof. First remark that the denotation of P is an assertion iff P ∼=q ℘ (
⋃
P). Suppose the

denotation of P and Q are assertions.
The case of ∧i is due to

℘ (
⋃
P) ∩

st
℘ (
⋃
Q) ∼=q ℘ ((

⋃
P) ∩

s
(
⋃
Q))

The case of ∀i is similar as it is an intersection on all individuals. Indeed, we have for allM, g

J∀q P KM,g = S ′ 7→
∧

B{a ∈ De | JP KM,g(a)(S ′)}
= {S ′ | for all a ∈ De, S

′ ∈ JP KM,g(a)}
=

⋃
a∈De

JP KM,g(a)
(IV.25)

The case of Ki is due to

S ⊆
st

⋃
(℘ (
⋃
P)) ∼=q (℘

⋃
P)S

for any S.
For implication, combining the previous equivalences allows us to derive

P →q Q ∼=q λSst. ℘ S ∩
st
℘ (
⋃
P) ⊆

st

℘ (
⋃
Q)

∼=q λSst. ℘ (S ∩
s

(
⋃
P)) ⊆

st

℘ (
⋃
Q)

∼=q λSst. S ∩
s

⋃
P ⊆

s

⋃
Q

=β λSst.∀ws. (S w ∧e (
⋃
P)w)→e (

⋃
Q)w

∼=q λSst.∀ws. S w →e (¬e(
⋃
P)w ∨e (

⋃
Q)w)

=β λSst. ℘ (({
s

(
⋃
P)) ∪

s

⋃
Q)

=β P (E →i)Q

(IV.26)

To say it with words for the case of conjunction, interpreting and as intentional conjunction is
the same as interpreting it as inquisitive conjunction for declarative sentences. Therefore, we can
redefine the interpretation of these logical connectives to be their inquisitive correspondent, as in
(IV.27). It does not change the behavior of the connectives on declarative meanings but reuses
the connectives of FOEIL.

Lq(∧e) =̂ ∧q Lq(→e) =̂ →q Lq(∀e) =̂ ∀q Lq(K) =̂ Kq (IV.27)

Another special case is for the knowledge operator K. Embedding this intentional modality
gives a modality, which acts as the intentional one on non-inquisitive issues. This proves that the
inquisitive modality defined Kq is indeed a “natural” conservative extension of Ki, as suggested in
[16].

53

On the contrary, intentional disjunction and existential quantification cannot be modeled by
their sole inquisitive equivalent. We have

P (E ∨i)Q =β ℘ ((
⋃
Q) ∪

s
(
⋃
R))

(E ∃i)P =β ℘ (λws.∃xe.
⋃

(P x)w)
(IV.28)

SetM a model and suppose Ds has at least two different elements w and w′. Let’s call I the
issue ℘({w}) = {{w}, ∅} and I ′ the issue ℘({w′}). I and I ′ are assertions, but we have

JE ∨iKM,∅(I)(I ′) = ℘({w,w′}) 6= {{w}, {w′}, ∅} = I ∪ I ′ = J∨qKM,∅(I)(I ′) (IV.29)

A similar counterexample for ∃i works by taking, if De has at least two elements and a ∈ De,

P : b 7→
{
I if b = a
I ′ if b 6= a

(IV.30)

Nevertheless, we can use the the assertion projection !q to express Lq(∨e) with inquisitive
connectives only.

Proposition 20.

E ∨i ∼=q λPTq ,QTq . !q (P ∨q Q) E ∃i ∼=q λP
eTq . !q (∃q P) (IV.31)

Proof. Left to the reader.

IV.3.3 Transformation of linguistic constants

Linguistics constants are interpreted with the help of E in Tab. IV.1. We use Eq =̂ (e→ Tq)→ Tq.
We also define constants to interpret special inquisitive meanings.

In particular, both interpretations of the verb sait are now the same, because Lq(K) = Lq(K′).
The difference of result lies now at the level of the embedded clause, which either gives an assertion
or a question.

Lq(sleep) =β λxe. ℘ (λws. sleepiw x) questq =̂ ?q
Lq(house) =β λxe. ℘ (λws.houseiw x) exquestq =̂ λPeTq . ?q (∃q P)
Lq(own) =β λze, ye. ℘ (λws.houseiw z y) Lq(K′) =̂ Kq

Lq(〈name〉) = 〈name〉
Lq(loc) =β λP

EqTq , ze, XEq . ℘(λws. lociw
(λY (et)t.

⋃
(P (λf eTq . ℘ (λus. Y (λye.

⋃
(f y)u))))w)

z
(λQet.

⋃
(X (λxe. ℘ (λvs. Q x)))w)

)

Table IV.1 – Interpretation Lq of linguistic constants

Adding ?q before ∃q allows answers to be negative, e.g. “Nobody sleeps” or “Marie sleeps
nowhere”. The question closure for location is however debatable, as an event is often supposed to
happen somewhere. Moreover, this interpretation would fail to capturemention-all readings, asking
for a complete specification for each entity. For example, Qui dort ? could also be understood as

54

requiring, for each individual a, whether a sleeps, that is ∀xe. ? (℘ (λws. sleepiw x)) instead of
(IV-4-b).

We give final βη-reduced semantic representations in Σq.
Set 1 and especially loc remarkably simplifies to applying ℘:

(2) a. ℘ (λws. sleepiwm)
b. ℘ (λws.∃zι. (houseiw z)∧e(owniw z c)∧e(lociw (λY (et)t. Y (sleepiw)) z (λQet. Qm)))

Set 2:

(3) a. ℘ (λvs.Mq (℘ (λw. sleepiwm)) v)
b. ℘ (λvs.Kq j (℘ (λw. sleepiwm)) v)

Set 3–4 of simple questions:

(4) a. ?q (℘ (λws. sleepiwm))
b. ?q (∃q (λxe. ℘ (λws. sleepiw x)))
c. ?q (∃q (λze. ℘ (λws. lociw (λXEe . X sleep) z (λQet. Qm))))

Set 5 of embedded questions:

(5) a. Kq j (?q (℘ (λws. sleepiwm)))
b. Kq j (?q (∃q (λxe. ℘ (λws. sleepiw x))))
c. Kq j (?q (∃q (λze. ℘ (λws. lociw (λXEe . X sleep) z (λQet. Qm)))))

55

V.
Conclusion

Inquisitive semantics improves intentional semantics by producing a uniform semantic repre-
sentation for interrogative and declarative sentences. It models clauses by a non-empty downward-
closed set of states, each state being a set of possible worlds. Questions have several maximal
elements called alternatives, corresponding to their possible answers. Assertions have only one
alternative and thus represent the meaning of declarative sentences. Therefore, we can transform
an intentional meaning S into an inquisitive one by taking its powerset ℘(S).

This dissertation investigates a systematic transformation from lexical intentional meanings to
inquisitive ones, which preserves the original logical properties and is compatible with composition.
Such a transformation is named a conservative extension.

After a summary of needed mathematical notions about λ-calculus and its semantics in section
I, we provided in section II a syntactic analysis of French questions. We focused on declarative
questions with in situ interrogative pronouns (subject and locative adjunct) and questions with
the particle est-ce que, either standing alone or embedded in a clause with a main responsive verb.
We built a toy fragment of French and gave a deep syntax analysis with an abstract categorial
grammar.

In section III, we provided a Montagovian semantic interface to our deep syntax. We extended
this extensional semantics to an intentional semantic lexicon.

The goal of section IV was to design a conservative extension from intentional to inquisitive se-
mantics, called inquisitivation. We briefly presented inquisitive semantics and how we can emulate
first-order epistemic inquisitive logic with a class of Henkin models. After recalling de Groote’s
construction [23], we prove that, under certain monotonicity conditions, this construction also pre-
serve entailment. Finally, we define inquisitivation and explore how it acts on logical connectives
and linguistic constants.

The diagram of all vocabularies considered in this dissertation is displayed in Fig. IV.1.
As future prospects, improving the deep syntax to get a second-order ACG and adapting the

object language to neo-Davidsonian semantics are planned. This way, a much larger fragment of
French could be used to test question syntax modeling and inquisitivation. The semantic part can
also be improved by adding presuppositions and a dynamic treatment of anaphors.

The theorem of entailment preservation extends to the other conservative extensions considered
in [23]. However, it would be interesting to investigate whether we can weaken the monotonicity
conditions to obtain it. Using the more abstract reformulation in category theory begun in [39]
could help refine this.

56

Bibliography
[1] Maria Aloni. Free choice, modals, and imperatives. Natural Language Semantics, 15(1):65–94,

March 2007.

[2] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Applied Logic Series. Springer Netherlands, second edition, 2002(1986).

[3] Kata Balogh. Theme with Variations : A Context-Based Analysis of Focus. PhD thesis,
Amsterdam Institute for Logic, Language and Computation, 2009.

[4] Henk Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North Holland, second edition, September 2014.

[5] Cedric Boeckx. Syntactic Islands. Key Topics in Syntax. Cambridge University Press, Cam-
bridge, 2012.

[6] George Boole. An Investigation of the Laws of Thought On Which Are Founded the Mathe-
matical Theories of Logic and Probabilities. Macmillan, 1854.

[7] Maria Boritchev and Philippe de Groote. On dialogue modeling: A dynamic epistemic inquisi-
tive approach. In LENLS17 : Logic & Engineering of Natural Language Semantics, November
2020.

[8] Lucas Champollion. The interaction of compositional semantics and event semantics. Lin-
guistics and Philosophy, 38(1):31–66, February 2015.

[9] Lisa Lai-Shen Cheng and Johan Rooryck. Licensing Wh-in-situ. Syntax, 3(1):1–19, 2000.

[10] Noam Chomsky. A Minimalist Program for Linguistic Theory. The MIT Press, 1993.

[11] Ivano Ciardelli. A first-order inquisitive semantics. In Maria Aloni, Harald Bastiaanse, Tikitu
de Jager, and Katrin Schulz, editors, Logic, Language and Meaning: Revised Selected Papers
from the 17th Amsterdam Colloquium, Lecture Notes in Artificial Intelligence, pages 134–143,
Berlin Heidelberg, 2010. Springer-Verlag.

[12] Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. Inquisitive Semantics: A New
Notion of Meaning. Language and Linguistics Compass, 7(9):459–476, 2013.

[13] Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. On the semantics and logic of
declaratives and interrogatives. Synthese, 192(6):1689–1728, June 2015.

[14] Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. Inquisitive Semantics. Oxford
Surveys in Semantics and Pragmatics. Oxford University Press, Oxford, New York, November
2018.

[15] Ivano Ciardelli and Floris Roelofsen. Inquisitive Logic. Journal of Philosophical Logic,
40(1):55–94, February 2011.

[16] Ivano Ciardelli and Floris Roelofsen. Inquisitive dynamic epistemic logic. Synthese,
192(6):1643–1687, June 2015.

57

[17] Ivano Ciardelli, Floris Roelofsen, and Nadine Theiler. Composing alternatives. Linguistics
and Philosophy, 40(1):1–36, February 2017.

[18] Robin Cooper. Records and Record Types in Semantic Theory. Journal of Logic and Com-
putation, 15(2):99–112, April 2005.

[19] Thierry Coquand. Course Notes in Typed Lambda Calculus. 2008.

[20] Jacques Damourette and Édouard Pichon. Essai de grammaire de la langue française : des
mots à la pensée. Tome 2. 19100 - 1930 : adjectif nominal, adverbe, interjection, phrase.
Paris, edition d’artrey edition, 1968.

[21] Donald Davidson. Truth and Meaning. Synthese, 17(1):304–323, 1967.

[22] Philippe de Groote. Tree-Adjoining Grammars as Abstract Categorial Grammars. In Proceed-
ings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pages 145–150, Universitá di Venezia, May 2002. Association for Computational
Linguistics.

[23] Philippe de Groote. On Logical Relations and Conservativity. In EPiC Series in Computing,
volume 32, pages 1–11. EasyChair, July 2015.

[24] Philippe de Groote. Lambek Categorial Grammars as Abstract Categorial Grammars. In
LENLS 13, October 2016.

[25] Philippe de Groote and Makoto Kanazawa. A Note on Intensionalization. Journal of Logic,
Language and Information, 22(2):173–194, April 2013.

[26] Philippe De Groote and Sarah Maarek. Type-theoretic extensions of abstract categorial gram-
mars. November 2007.

[27] Philippe de Groote, Sarah Maarek, and Ryo Yoshinaka. On Two Extensions of Abstract
Categorial Grammars. In Nachum Dershowitz and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science, pages
273–287, Berlin, Heidelberg, 2007. Springer.

[28] Philippe de Groote and Sylvain Pogodalla. On the Expressive Power of Abstract Categorial
Grammars: Representing Context-Free Formalisms. Journal of Logic, Language and Infor-
mation, 13:421–438, March 2004.

[29] Philippe de Groote and Yoad Winter. A Type-Logical Account of Quantification in Event
Semantics. November 2014.

[30] Samuel Eilenberg and G. Max Kelly. Closed Categories. In S. Eilenberg, D. K. Harrison,
S. MacLane, and H. Röhrl, editors, Proceedings of the Conference on Categorical Algebra,
pages 421–562, Berlin, Heidelberg, 1966. Springer.

[31] Lucien Foulet. Comment ont évolué les formes de l’interrogation. Romania, 47(186):243–348,
1921.

[32] Jean Goubault-Larrecq. Aspects logiques. 2021.

58

[33] Jean Goubault-Larrecq. Lambda-calcul et langages fonctionnels. 2021.

[34] Charles Leonard Hamblin. Questions in Montague English. Foundations of Language,
10(1):41–53, 1973.

[35] Irene Heim and Angelika Kratzer. Semantics in Generative Grammar. Blackwell, 1998.

[36] Leon Henkin. Completeness in the Theory of Types. The Journal of Symbolic Logic, 15(2):81–
91, 1950.

[37] J. Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1997.

[38] Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Studia Logica, 16:119–122, 1962.

[39] Mathieu Huot. Conservative Extensions of Montague Semantics. Master thesis, ENS Cachan,
Université Paris-Saclay, 2017.

[40] Makoto Kanazawa. A Prefix-Correct Earley Recognizer for Multiple Context-Free Gram-
mars. In Proceedings of the Ninth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+9), pages 49–56, Tübingen, Germany, June 2008. Association for
Computational Linguistics.

[41] Angelika Kratzer and Junko Shimoyama. Indeterminate Pronouns: The View from Japanese.
undefined, 2002.

[42] Saul A. Kripke. A Completeness Theorem in Modal Logic. The Journal of Symbolic Logic,
24(1):1–14, 1959.

[43] Utpal Lahiri. Questions and Answers in Embedded Contexts. OUP Oxford, Oxford ; New
York, January 2002.

[44] Ekaterina Lebedeva. Expressing Discourse Dynamics Through Continuations. PhD thesis,
Université de Lorraine, April 2012.

[45] Jiri Marsik. Towards a Wide-Coverage Grammar : Graphical Abstract Categorical Grammars.
Other, Université de Lorraine, June 2013.

[46] Richard Montague. English as a Formal Language. De Gruyter Mouton, 1970.

[47] Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

[48] Richard Montague. The Proper Treatment of Quantification in Ordinary English. In K. J. J.
Hintikka, J. M. E. Moravcsik, and P. Suppes, editors, Approaches to Natural Language: Pro-
ceedings of the 1970 Stanford Workshop on Grammar and Semantics, Synthese Library, pages
221–242. Springer Netherlands, Dordrecht, 1973.

[49] Richard Moot. Hybrid type-logical grammars, first-order linear logic and the descriptive
inadequacy of lambda grammars. Research report, arXiv, 2014.

[50] Annick Morin. Questioning Particles: A Cross-Linguistic Approach to Quebec French Polar
Interrogatives. Thesis, June 2017.

59

[51] Stefan Müller, Anne Abeillé, Robert D. Borley, and Jean-Pierre Koenig. Head-Driven Phrase
Structure Grammar, the Handbook. Empirically Oriented Theoretical Morphology and Syntax.
Language Science Press, Berlin, October 2019.

[52] Sylvain Pogodalla. ACGtk : un outil de développement et de test pour les grammaires caté-
gorielles abstraites. In Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume
5 : Démonstrations, pages 1–2, Paris, France, 2016. AFCP - ATALA.

[53] Sylvain Pogodalla and Florent Pompigne. Controlling Extraction in Abstract Categorial
Grammars. In FG, 2010.

[54] Valentin D. Richard. Traduction des grammaires catégorielles de lambek dans les grammaires
catégorielles abstraites. 2018.

[55] Mats Edwards Rooth. Association with Focus. Phd thesis, University of Massachusetts,
January 1985.

[56] Sylvain Salvati. Encoding second order string ACG with Deterministic Tree Walking Trans-
ducers. In Shuly Wintner, editor, The 11th Conference on Formal Grammar, FG Online
Proceedings, pages 143–156, Malaga, Spain, 2006. CSLI Publications.

[57] Sylvain Salvati. A Note on the Complexity of Abstract Categorial Grammars. In Christian
Ebert, Gerhard Jäger, and Jens Michaelis, editors, The Mathematics of Language, Lecture
Notes in Computer Science, pages 266–271, Berlin, Heidelberg, 2010. Springer.

[58] Félix Tanguay. D’où vient le «-tu» interrogatif, et «c’est-tu» pertinent de l’enseigner? In
Histoire de la grammaire, volume 25. Correspondance, 2020.

[59] Nadine Theiler. A Multitude of Answers: Embedded Questions in Typed Inquisitive Semantics.
MSc. Thesis, August 2014.

[60] Yoad Winter and Joost Zwarts. Event Semantics and Abstract Categorial Grammar. In
Makoto Kanazawa, András Kornai, Marcus Kracht, and Hiroyuki Seki, editors, The Mathe-
matics of Language, Lecture Notes in Computer Science, pages 174–191, Berlin, Heidelberg,
2011. Springer.

[61] Andrzej Wiśniewski. The Posing of Questions: Logical Foundations of Erotetic Inferences.
Studia Logica, 61(2):296–299, 1995.

[62] Edward N. Zalta. Gottlob Frege. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, fall 2020 edition, 2020.

60

Index

α-equivalence, 11
β-reduction, 15
η-expansion, 15
λ-term, 10

linear λ-term, 12

abstract categorial grammar (ACG), 22
alternative, 42, 45
assertive, 45
assignment, 16, 31

bound variable, 11

characteristic function, 31
closed, 11
complete Boolean algebra, 34
connective, 30
conservative extension, 40, 49

deduction system, 7
definition domain, 7
derivable, 13
derivation, 7

embedding, 49, 52
entailment, 18, 32
entity, see individual
extraction, 20
extraction island, 20

first-order logic (FOL), 31
FOEIL : first-order epistemic inquisitive logic,

43
formula, 31
free variable, 11
fresh variable, 11

ground term, 9

Henkin model, 16
higher-order signature (HSO), 10

individual, 30, 33

information state, 44
inquisitivation, 52
inquisitive semantics, 43
intentional logic, 38
issue, 44

lexicon, 22
logical equivalence, 19

meta-variable, 7
model, 31
monotonic, 19

noun phrase, 26

order, 23

partial map, 7
powerset ℘, 43
predicate, 30
projection, 49, 52
proposition, 30, 33

question, 45

rule, 7

substitution, 11

type
linear type, 12
simple type, 10

typing derivation, 12

union set
⋃
, 44

variable
λ-variables, 10
type variable, 9

vocabulary, 22
abstract vocabulary, 22
object vocabulary, 22

61

	Contents
	I. Preamble
	Introduction
	State of the art
	Goals and method
	Contribution and outline

	Formal tools
	Deduction system
	Relations

	Simply typed lambda-calculus
	Simple types
	lambda-terms
	Typing derivations
	Main properties
	Henkin models

	II. Syntax of French questions with ACGs
	Syntax of French questions
	Long-distance dependencies
	French interrogatives

	Abstract categorial grammars
	Definitions
	Order hierarchy
	Connection with other formalisms
	Additional structures on ACGs
	Complexity

	Syntax modelization
	Toy fragment of French
	Deep syntax
	Surface syntax

	III. Interface with intentional semantics
	Formal logic semantics
	Predicate semantics
	Montagovian semantics

	Object language
	Logical setting
	Extensional semantics

	Intentional semantics
	Beyond truth-conditions
	Logical structure on worlds
	Intentional lexical meanings

	IV. Extending to inquisitive semantics
	Inquisitive semantics
	A representation of interrogative meanings
	First-order epistemic inquisitive logic
	Inquisitive models

	Conservative extensions
	De Groote's construction
	Entailment-conservative extension

	Inquisitivation
	Application
	Transformation of logical connectives
	Transformation of linguistic constants

	V. Conclusion
	Bibliography
	Index

