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Abstract
Since its 3.3 release, Modelica offers the possibility to
specify models of dynamical systems with multiple modes
having different DAE-based dynamics. However, the han-
dling of mode changes by the current Modelica tools is not
satisfactory. An important difficulty is the occurrence of
impulsive behavior at some mode changes, for some vari-
ables. In this paper, we propose a compile-time algorithm
for identifying such impulsive behaviors and quantifying
them in terms of their magnitude orders. Such algorithm
can be used as an additional step of the structural analysis
of Modelica models.
Keywords: multimode DAE, structural analysis, impulsive
behaviors

1 Introduction
Modelica and other languages supporting object-oriented
modeling of physical systems rely on the formalism of
DAEs. Compilers of such languages perform sophisticated
preprocessing prior to generating simulation code (Casella,
2015). Index analysis and reduction (Mattsson and Söder-
lind, 1993) is one such important processing, where se-
lected equations are differentiated one or more times until
the Jacobian matrix with respect to the leading variables
(i.e., the variables of maximal differentiation degree in the
system) becomes structurally regular.

Since its 3.3 release, Modelica offers the possibility
of specifying multimode dynamics, by describing state
machines with different DAE dynamics in each different
state (Elmqvist et al., 2012). This feature enables describ-
ing large complex cyber-physical systems with different
behaviors in different modes.

While being very valuable, this possibility has been
the source of serious difficulties for non-expert users. Al-
though many large-scale complex Modelica models are
properly handled, some physically meaningful models do
not give rise to correct simulation results—it is actually
not difficult to construct such problematic programs, thus,
chances are significant to produce such bad cases in large
models. In (Benveniste et al., 2020), we propose a struc-
tural analysis that is valid for multimode DAE models, both
within each mode and at mode changes, illustrated in the
companion paper (Benveniste et al., 2021).

One specific problem is due to the existence, in many
physical models, of impulsive behaviors for some variables.
With existing tools, such models give rise to simulations

collapsing at runtime. Impulsive behaviors are already a
problem from a mathematical standpoint, as they do not
fall within the existing concepts of solutions of a DAE
system—the definition used in (Campbell and Gear, 1995)
assumes smoothness of the trajectories.

To cope with this issue, distributions were considered
by some authors. To our knowledge, the most compre-
hensive approach was provided by Stephan Trenn. In his
PhD thesis (Trenn, 2009b) and his article (Trenn, 2009a),
he pointed out the difficulty in defining piecewise smooth
distributions: several mathematically coherent definitions
of the “Dirac part” of such a distribution can be considered,
so that it has no intrinsic definition. This indicates that
distributions are not the ultimate answer to deal with im-
pulsive variables in multimode DAE systems. Still, Trenn
was able in (Liberzon and Trenn, 2012) to define complete
solutions for a class of switched DAE systems in which
each mode is in quasi-linear form and switching conditions
are time-based, not state-based.

Another important step forward was done in (Benveniste
et al., 2019). An interesting subclass of multimode DAE
systems was identified, which possibly exhibit impulsive
variables at mode changes. They extend the “quasi-linear
systems” proposed by Trenn in the sense that switching
conditions are no longer restricted to time-based ones, in-
stead including state-based switching conditions. The anal-
ysis and discretization schemes proposed in (Benveniste
et al., 2019) are mathematically sound. Building on this
work, Martin Otter has developed the ModiaMath1 tool
for semi-linear multimode DAE systems. Since this work,
this approach was refined and extended by the authors of
this paper (Benveniste et al., 2020), and is illustrated on
examples in (Benveniste et al., 2021).

Contribution of this paper: A complete structural anal-
ysis of multimode DAE systems was only recently pro-
posed by the authors of this paper. In particular, this ap-
proach distinguishes between long modes, in which the
dynamics is continuous-time and governed by a DAE sys-
tem for a positive duration, and transient modes, which are
zero duration events at which restarts can occur; note that,
as a result, chattering behavior such as encountered when
applying sliding mode control is not supported.

We develop here another important aspect of our ap-
proach, by focusing on impulsive behaviors. We explain

1https://modiasim.github.io/ModiaMath.jl/stable/man/
Overview.html
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this aspect on the Cup-and-Ball example, a mild variation
of the popular 2D pendulum in which the straight rod is
replaced by a rope. When the rope gets straight, an impulse
typically occurs for the tension if an idealized model is
considered. To analyze this behavior, we propose a general
compile-time analysis, acting as an additional step of the
multimode structural analysis presented in the companion
paper (Benveniste et al., 2021).

Since distributions fail to properly handle impulsive be-
haviors in general, our mathematical tool for this is nonstan-
dard analysis (Robinson, 1996; Cutland, 1988; Lindstrøm,
1988), which allows for a correct use of infinities and in-
finitesimals in mathematical analysis. We use this setting
in two ways:

• First, we discretize the DAE dynamics in each long
mode using an explicit first-order Euler scheme with
an infinitesimal time step ∂ ; this provides us with an
approximation of the DAE solutions up to an infinites-
imal error. Infinitesimal time steps are also used to
capture restarts at mode changes: the values of states
in the new mode are computed, from values before
the change, in one or several infinitesimal time steps.

• Second, we compute impulse orders, i.e., orders of
magnitude of algebraic variables at mode changes,
for both long and transient modes, with reference to
the infinitesimal time step ∂ ; for example, an order
of 1/∂ for an algebraic variable indicates that this
variable is impulsive.

We develop a compile-time calculus that evaluates the im-
pulse order of every algebraic variable, thus revealing its
impulsive/non-impulsive nature. Finite impulse orders can
be used to renormalize impulsive variables when imple-
menting a numerical scheme that approximates the restart
values for each state variable of the system, thus improving
conditioning.

In the next section, we investigate the Cup-and-Ball
example, a two-mode variation of the celebrated pendulum
in Cartesian coordinates. In Section 3, we develop the
impulse analysis in its generality and explain how it can be
mechanized.

2 The Cup-and-Ball example

Figure 1. The Cup-and-Ball game.

We sketch here a multimode extension of the popular
example of the pendulum in Cartesian coordinates (Pan-
telides, 1988), namely the Cup-and-Ball game illustrated
by Figure 1. A ball, modeled by a point mass, is attached to

one end of a rope, while the other end of the rope is fixed,
to the origin of the plane in the model. The ball is subject
to the unilateral constraint set by the rope, but moves freely
while the distance between the ball and the origin is less
than its actual length. The system is assumed closed and
subject to no external interaction.

2.1 The model
The considered model of the two-dimensional Cup-and-
Ball game is:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0≤ L2−(x2+y2) (κ1)
0≤ λ (κ2)
0 =

[
L2−(x2+y2)

]
×λ (κ3)

(1)

where the dependent variables are the position (x,y) of the
ball in Cartesian coordinates and the rope tension λ .

The subsystem (κ1,κ2,κ3) expresses that the distance
of the ball from the origin is less than or equal to L, the
tension is nonnegative, and one cannot have a nonzero
tension and a distance less than L at the same time.
This is known as a complementarity condition, written as
0≤ L2−(x2+y2)⊥ λ ≥ 0 in the nonsmooth systems liter-
ature (Acary and Brogliato, 2008), and is an adequate mod-
eling of ideal valves, diodes (Cellier and Kofman, 2006,
Chapter 9.10), and contact in mechanics.

Note that, not only an impulsive behavior is expected on
the torques, but an other possible difficulty is present, as
subsystem (κ1,κ2,κ3) of (1) leaves the impact law at mode
change insufficiently specified; it could be fully elastic,
fully inelastic, or in between. We expect both of these
aspects to be detected at compile time, using some kind of
structural analysis.

However, before such a structural analysis is possible,
some changes are required in the model. As a matter of fact,
constraints κ1 and κ2 are unilateral, which is not supported
by Modelica and related languages. Therefore, using the
technique presented in (Mattsson et al., 1999), we redefine
the graph of this complementarity condition as a parametric
curve, represented by the following three equations:

s = if γ then−λ else L2−(x2+y2)
0 = if γ then L2−(x2+y2) else λ

γ = [s≤ 0]

which allows us to rewrite model (1) as follows:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(2)

We then observe that the subsystem collecting equations
(k0)–(k4) is a logico-numerical fixpoint equation, with de-
pendent variables x,y,λ ,γ . A possible solution would



consist in performing a relaxation, by iteratively updat-
ing the numerical variables based on the previous value
for the guards, and then re-evaluating the guard based on
the updated values of the numerical variables, hoping for
a fixpoint to occur. Such fixpoint equation, however, can
have zero, one, several, or infinitely many solutions. No
characterization exists that could serve as a basis for a
(graph-based) structural analysis. We thus decided to refuse
solving such mixed logico-numerical systems. As a con-
sequence, we are unable to evaluate guard γ , so that the
mode the system is in cannot be determined: model (2) is
rejected.

To break the fixpoint equation defining γ , we choose
to restrict ourselves to guards defined by left-limits; in
this example, this yields γ = [s− ≤ 0], where s−(t) =def
limu↗t s(u) (the modification is highlighted in red):

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ = [s− ≤ 0] (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(3)

We are now ready to associate a structural analysis to model
(3) that will be valid both in long modes with DAE dynam-
ics, and at mode changes. To achieve this, we will replace
derivatives by their corresponding forward Euler schemes,
which will bring everything to a discrete progress of time
(both continuous dynamics and mode changes).

To avoid introducing approximation errors, we will use
an infinitesimal time step ∂ , which is made mathematically
formal by relying on nonstandard analysis.

2.2 Using nonstandard analysis
Nonstandard analysis (Robinson, 1996; Lindstrøm, 1988;
Benveniste et al., 2012) extends the set R of real numbers
into a superset ?R of hyperreals (also called nonstandard
reals) that includes infinite sets of infinitely large numbers
and infinitely small numbers. Key properties of hyperreals,
needed for the informal discussion of the Cup-and-Ball
example, are the following:

There exist infinitesimals, defined as hyperreals that are
smaller in absolute value than any real number: an infinites-
imal ∂ ∈ ?R is such that |∂ |< a for any positive a ∈R. For
x,y two hyperreals, write x≈ y if x− y is an infinitesimal.

All relations, operators, and propositional formulas
that are valid over R are also valid over ?R. For exam-
ple, ?R is a totally ordered set. The arithmetic operations
+, ×, etc. can be lifted to ?R. We say that a hyperreal x
is finite if there exists some standard finite positive real
number a such that |x|< a.

For every finite hyperreal x∈ ?R, there is a unique stan-
dard real number st(x) ∈ R such that st(x) ≈ x, and
st(x) is called the standard part (or standardization) of x.

Standardizing more complex objects, such as functions or
systems of equations, requires some care (see Theorem 1,
Section 2.5).

Every real function lifts in a systematic way to a hyper-
real function. This allows us to write f (x) where f is a
real function (regardless of its continuity properties) and x
is a nonstandard number.

Continuity and derivatives. Let t 7→ x(t) be an R-
valued (standard) signal (t ∈ R). Then:

x is continuous at instant t ∈R if and only if, for
any infinitesimal ∂ ∈ ?R, one has x(t+∂ )≈ x(t); (4)

x is differentiable at instant t ∈ R if and only if
there exists a∈R such that, for any infinitesimal
∂ ∈ ?R, x(t+∂ )−x(t)

∂
≈ a. In this case, a = x′(t).

(5)

We can then consider the time index set T⊆ ?R:

T= 0,∂ ,2∂ ,3∂ , · · ·= {n∂ | n ∈ ?N} (6)

where ∂ is a positive infinitesimal, and ?N denotes the
set of hyperintegers, consisting of all integers augmented
with additional infinite numbers called nonstandard. The
important features of T are:

(1) Any finite real time t∈R+, where R+ denotes the
set of nonnegative real numbers, is infinitesimally close to
some element of T (informally, T covers R+ and can be
used to index continuous-time dynamics); and

(2) T is “discrete”: every instant n∂ has a predecessor
(n−1)∂ (except for n = 0) and a successor (n+1)∂ .

Let x be a nonstandard signal indexed by T. We de-
fine the forward- and backward-shifted signals x• and •x
through

x•(n∂ ) =def x((n+1)∂ ) and •x((n+1)∂ ) =def x(n∂ ) ,

implying that an initial value for •x(0) must be pro-
vided. For f a function of the tuple X of signals, we set
( f (X))• =def f (X•) where the forward shift X 7→ X• ap-
plies pointwise to all the components of the tuple. For
example, f •(x,y)(t) = f (x(t+∂ ),y(t+∂ )).

By (5), this allows us to represent, up to an infinitesimal,
the derivative x′ of a signal by its first-order explicit Euler
approximation 1

∂
(x•− x). Solutions of multi-mode DAE

systems may, however, be non-differentiable and even non-
continuous at events of mode change. To give a meaning
to x′ at any instant, we decide to define it everywhere as
the nonstandard first-order Euler increment.

Hence, we implicitly add to every system the following
two equations, for each state variable x:

x′ =
x•− x

∂
; x′′ =

x•2−2x•+ x
∂ 2 , (7)

where

x•(t) =def x(t +∂ ) ,

x•2(t) =def x(t +2∂ ) and, generally
x•n(t) =def x(t +n∂ ) .



Equation (7) means that the derivatives x′,y′,x′′,y′′ are in-
terpreted using the explicit first-order Euler scheme with
an infinitesimal time step ∂ . Note that (7) implies

x′′ =
x′•− x′

∂
. (8)

This yields the nonstandard expansion of the corrected
model (3):

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(9)

This model is understood in the nonstandard setting, mean-
ing that the derivatives are expanded using (7). Therefore,
the leading variables in all modes are λ ,s,x•2,y•2.

We are ready to concentrate on structural analysis and
we will focus on the main difficulty with this Cup-and-
Ball model, namely the mode change γ:F→T, when the
rope gets straight. The reader is referred to the companion
paper (Benveniste et al., 2021) for omitted details.

2.3 Structural analysis of mode change γ:F→T

Due to equation (k1), the mode γ = T (where the rope
is straight) requires index reduction. We thus augment
model (9) with the two latent equations shown in red:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
γ• = [s≤ 0];γ(0) = F (k0)

if γ do 0 = L2−(x2+y2) (k1)
and 0 = L2−(x2+y2)• (k•1)
and 0 = L2−(x2+y2)•2 (k•21 )
and 0 = λ + s (k2)

if not γ do 0 = λ (k3)
and 0 = (L2−(x2+y2))− s (k4)

(10)

Note that the two latent equations (k•1) and (k•21 ) were ob-
tained by shifting (k1) forward, not by differentiating it as
usually performed—the two, however, are equivalent from
the structural analysis standpoint, because of equalities (7).

To perform structural analysis at the considered mode
change, we first unfold model (10) at the successive instants

•2t =def t−2∂ , •t =def t−∂ , and t ,

where t denotes the current instant. In the following, equa-
tion (e1) at the instant t−2∂ (respectively, t−∂ ) will be
denoted by (•2e1) (resp., (•e1)).

In this unfolding, the two equations (k1) and (k•1) are in
structural conflict with selected equations from the previous
two instants, shown in blue in the following subsystem,

whose dependent variables are the leading variables at
instants t−2∂ and t−∂ , namely x,y,•2λ ;x•,y•,•λ :

0 = x−2•x+•2x
∂ 2 + •2λ •2x (•2e1)

0 = y−2•y+•2y
∂ 2 + •2λ •2y+g (•2e2)

0 = x•−2x+•x
∂ 2 + •λ •x (•e1)

0 = y•−2y+•y
∂ 2 + •λ •y+g (•e2)

0 = L2−(x2+y2) (k1)

0 = L2−(x2+y2)• (k•1)

This conflict can be detected from structural information
only, using the Dulmage-Mendelsohn decomposition (Dul-
mage and Mendelsohn, 1958). We propose to resolve this
conflict by applying the following causality principle:

Principle 1 (Causality) What was done at the previous
instant cannot be undone at the current instant.

Applying Principle 1 leads to erasing, in model (10),
equations (k1) and (k•1) at the instant of mode change
•γ=F,γ=T. This yields the following system:

at
[ •γ=F

γ=T

]
:


0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)•2 (k•21 )
0 = λ + s (k2)

(11)

It uniquely determines all the leading variables from the
state variables x,y and x•,y•. In turn, equations (k1) and
(k•1), which were erased from this model, are not satisfied.

At the next instant, i.e., when •2γ=F,•γ=T,γ=T, the
same argument is used. We thus erase, in model (10),
the only equation (k1) at the next instant. This yields the
following system:

at

 •2γ=F
•γ=T
γ=T

 :


0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21 )
0 = λ + s (k2)

(12)

Note that (k•1) is a consistency equation that is satisfied
by the state variables x•,y•. In turn, equation (k1), which
was erased from this model, is not satisfied. At subsequent
instants, equation erasure is no longer needed: the process
amounted to delaying by a few nonstandard instants the
satisfaction of some of the constraints in the new mode,
which actually took zero standard time. This completes
the nonstandard structural analysis of the mode change
γ : F→T, i.e., when the rope gets straight.

2.4 Impulse analysis at mode change γ : F→ T

We now focus on identifying possible impulsive behaviors
at this mode change. This is achieved by analyzing nonstan-
dard systems (11) and (12) defining the values for restart.
The intent is that the former will set the restart positions,
whereas the latter will set the restart velocities.



Our impulse analysis not only identifies impulsive vari-
ables but also quantifies their order of magnitude, thanks
to the following notion of impulse order:

Definition 1 (Impulse order and analysis)

1. Given a nonstandard system of equations E defining
the values for restart, say that a dependent variable
x has impulse order o ∈ R in E, if the solution of sys-
tem E is such that x∂−o is provably a finite non-zero
(standard) real number. Let [[x]] denote the impulse
order of x. By convention, the constant 0 has impulse
order −∞.

2. Say that x is impulsive if [[x]]> 0.

3. The impulse analysis of a system of equations S is the
system of constraints satisfied by the impulse orders
of the dependent variables of S.

Impulse analysis relies on the following generic assump-
tion, which expresses that DAE within long modes must
be reinitialized with finite values for the state variables:

Assumption 1 State variables are not impulsive; that is,
for any state variable v, one has [[v]]≤ 0.

As an example, if, in the new mode, a variable x is differen-
tiated up to order n, then its (n−1)-th derivative is a state
variable and thus subject to Assumption 1. Consequently,
its k-th order derivatives for k = 0, . . . ,n−2 are continuous
at the considered mode change.

We are now ready to successively analyze System (11)
and System (12).

System (11): The state variables are x,y,x′,y′. By As-
sumption 1, we get the following prior information, which
expresses that velocities are not impulsive:

[[x′•− x′]]≤ 0 ; [[y′•− y′]]≤ 0 . (13)

Conditions (13) imply that positions should be continuous.
While performing our impulse analysis, we include equa-
tion (8) relating second derivatives and first derivatives.
System (11) involves equation (e1) : x′′+λx=0, which, by
using (8), rewrites

x′•− x′+∂λx = 0 . (14)

By (13), equation (14) implies [[λ ]] ≤ 1. Exploiting all
equations of System (11) yields the following information

[[λ ]] = [[s]]≤ 1 , (15)

whereas other dependent variables have impulse order zero.
System (12) is handled similarly, with the same conclusion.
In Section 3, we mechanize the impulse analysis for an
arbitrary restart system. Prior to doing this, we now explain
how this impulse analysis can be exploited for generating
effective code for restart.

2.5 Using impulse analysis in code generation
Code generation for restarts consists in standardizing non-
standard systems (11) and (12). See the introduction of
Section 2.2 for the meaning of “standardization”; note,
however, that standardizing systems of equations requires
more care than standardizing numbers, due to impulsive
behaviors and singularity issues that result.

We can exploit the impulse analysis through the follow-
ing three different approaches. The method of Section 2.5.1
is mostly described for didactic purposes, as it requires the
symbolic elimination of variables, which can be very costly
or even impossible in nonlinear systems. In practice, the
methods of Sections 2.5.2 and 2.5.3 shall be used; both of
these sections briefly address this topic.

2.5.1 Eliminating impulsive variables
When this is practical, the simplest method from a concep-
tual point of view is to eliminate impulsive variables from
the restart system, as they are of no use for restarting the
new mode.

We still focus here on the standardization of the mode
change γ : F→ T, i.e., when the rope gets straight. Our
task is to standardize systems (11) and (12), by targeting
discrete-time dynamics, for the two successive instants
composing the restart phase. This will provide us with
restart values for positions and velocities.

By (15), tensions λ and λ • are both candidates to be
impulsive, hence so are s and s• by (k2,k•2). We eliminate
the impulsive variables by ignoring (k2,k•2), combining
(e1) and (e2) to eliminate λ , and (e•1) and (e•2) to eliminate
λ •. This yields:

at
[ •γ=F

γ=T

]
:
{

0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•2

(16)

at

 •2γ=F
•γ=T
γ=T

 :


0 = y′′x+gx− x′′y
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(17)

In System (16), we expand second derivatives using (7),
whereas, in System (17), we expand them using (8). Con-
sequently, System (16) has dependent variables x•2,y•2,
whereas System (17) has dependent variables x′•,y′•. We
are now ready to standardize the two systems.

System (16) to define restart positions: We expand sec-
ond derivatives using (7):{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y+∂ 2gx
0 = L2−(x2+y2)•2

(18)

Setting ∂ = 0 in System (18) yields a structurally regular
system, so that we can invoke the following result, proved
in (Benveniste et al., 2020):

Theorem 1 (standardizing systems of equations) For
H : Rn+1 → Rn a C 1 (standard) function, consider the
nonstandard system of equations H(∂ ,X) = 0 where X is a
n-vector of variables. If system H(0,X) = 0 is structurally



nonsingular, then setting ∂ = 0 in system H(∂ ,X) = 0
yields the correct standardization of it, meaning that the
solution x∗(∂ ) of H(∂ ,X) = 0 standardizes as the solution
x∗ of H(0,X) = 0.

By this theorem, setting ∂ = 0 in System (18) yields the
correct standardization of it:{

0 = (y•2−2y•+ y)x− (x•2−2x•+ x)y
0 = L2−(x2+y2)•2

Then, in the resulting system, we interpret x and x• as the
left-limit x− of state variable x in previous mode, and x•2

as the restart value x+ for the new mode. This yields{
0 = (y+− y−)x−− (x+− x−)y−

0 = L2−(x2+y2)+
(19)

which determines the restart values for positions. Note that
the constraint that the rope is straight is satisfied. Further-
more, as 0 = L2−(x2+y2)− also holds (the rope is straight
at the mode change), x+ = x−,y+ = y− is the unique solu-
tion of (19): positions are continuous.

System (17) to define restart velocities: We expand sec-
ond derivatives using (8):

0 = (y′•− y′)x− (x′•− x′)y+∂ .gx
0 = L2−(x2+y2)•

0 = L2−(x2+y2)•2
(20)

By expanding x•2 = x•+ ∂x′•, the right-hand side of the
last equation rewrites

L2−(x2+y2)•2 = L2−(x2+y2)•

+ 2∂ (x•x′•+ y•y′•)
+ ∂ 2

(
(x′•)2 +(y′•)2

)
= 0 (using (20))

+ 2∂ (x•x′•+ y•y′•)
+ O(∂ 2)

(21)

Using this expansion of L2−(x2+y2)•2, setting ∂ = 0 in
(20) yields{

0 = (y′•− y′)x− (x′•− x′)y
0 = x•x′•+ y•y′• (22)

where the dependent variables are now x′•,y′•, whereas
other variables are state variables whose values are de-
termined by previous time steps. Note that System (22)
is structurally regular, so that we can invoke Theorem 1,
showing that System (22) is the correct standardization
of System (20). We are now ready to get effective code
for the restart. In System (22), we perform the following
substitutions, where superscripts − and + denote left- and
right-limits, and the continuity of positions is used:

x = x− ; x• = x+ and x′ = x′− ; x′+ = x′• (23)

and similarly for y. This finally yields{
0 = (y′+− y′−)x−− (x′+− x′−)y−

0 = x+x′++ y+y′+
(24)

System (24) determines x′+ and y′+, which are the veloc-
ities for restart. The second equation guarantees that the
velocity will be tangent to the constraint. With (19) and
(24), we determine the restart conditions for positions and
velocities. Invariants from the physics are satisfied.

This is a satisfactory solution when the elimination of
impulsive variables is practical. In our example, they en-
tered linearly in the restart system, so that elimination was
straightforward. When this is not the case, elimination be-
comes costly or even impossible. Moreover, generalizing
and mechanizing this elimination process appears to be a
very difficult task. We thus need to look for alternatives for
computing the velocities for restart.

2.5.2 Rescaling impulsive variables
Focus again on System (12). Impulse analysis told us that
λ ,s both have impulse order ≤ 1. We thus rescale them
accordingly:

λ̂ =def ∂
1×λ and ŝ =def ∂

1×s (25)

Using this rescaling together with expansion (8), Sys-
tem (12) rewrites

0 = x′•− x′+ λ̂x (e1)

0 = y′•− y′+ λ̂y+∂g (e2)
0 = L2−(x2+y2)• (k•1)
0 = L2−(x2+y2)•2 (k•21 )

0 = λ̂ + ŝ (k2)

(26)

In System (26), (k•1) is a consistency equation satisfied as
a result of performing System (11) at the previous instant.
We can also discard equation (k2), which only serves to
determine the auxiliary variable s. Thus, we are left with
the sub-system collecting equations (e1),(e2),(k•21 ). We
can again expand the right-hand side of (k•21 ) by using (21).
In the resulting system, we can safely set ∂ ← 0 since it
yields the following structurally regular system:

0 = x′+− x′−+ λ̂x− (e1)

0 = y′+− y′−+ λ̂y− (e2)

0 = 0 = x+x′++ y+y′+ (k•21 )

(27)

System 27 determines x′+ = x′•,y′+ = x′•, and the rescaled
impulsive tension λ̂ , as functions of state variables
x′,y′,x,y, which were identified with the left-limits of ve-
locities and positions at previous mode. Note that elimi-
nating the rescaled tension λ̂ from System (27) yields Sys-
tem (24).

Rescaling impulsive variables is simpler than eliminat-
ing them. This method is also promising in terms of design-
ing and implementing algorithms for its mechanization, as



the computation of the impulse orders amounts to finding
a minimal solution to a system of linear unilateral con-
straints. Unfortunately, it does not work in full generality
since impulse orders can be infinite, as the following exam-
ple shows:

x = exp(y/∂ ) ,

where y is known to have impulse order zero. Indeed,
the impulse order of (y/∂ )n is n. Since the exponential
expands as a power series of infinite support, we deduce
that the impulse order of exp(y/∂ ) is the maximum of
all impulse orders of (y/∂ )n, hence it is infinite. Thus,
impulsive variable x cannot be rescaled.

The last method addresses such cases, at the price of a
possibly poor numerical conditioning.

2.5.3 Bruteforce solving of the restart system
When none of the above methods apply, it is still possible
to solve system (26) with ∂ = δ (a small positive time step)
for the original variables λ and s, without rescaling them.

Then, it is proved in (Benveniste et al., 2020), see
also (Benveniste et al., 2021) that solving these systems
for their dependent variables and then discarding the val-
ues found for the impulsive variables yields a converging
approximation for the states and velocities at restart. More-
over, first numerical experiments on toy examples showed
no issue as long as the time step δ was kept reasonably
high. Of course, without rescaling, the numerical condi-
tioning is likely to be less favorable, so that rescaling is
recommended when impulse orders are finite. Works are
in progress for the implementation of this method, coupled
with the rescaling of impulsive variables of finite order.

2.6 Handling transient modes: elastic impact
Our reasoning so far produces a behavior in which the two
modes (free motion and straight rope) gently alternate; the
system always stays in one mode for some positive period
of time before switching to the other mode.

This indeed amounts to assuming that the impact is
totally inelastic at mode change, an assumption that was
not explicit at all in (9). So, what happened? In fact,
the straight rope mode was implicitly assumed to last for
at least three nonstandard successive instants, since we
allowed ourselves to shift (k1) forward twice.

Now, let us instead assume elastic impact, represented by
the cascade of mode changes γ : F→ T→ F, reflecting that
the straight rope mode is transient (it is left immediately
after being reached).

We address transient modes in (Benveniste et al., 2020),
see also (Benveniste et al., 2021). We show that a structural
analysis for elastic impact can still be proposed, by suitably
adapting the notion of differentiation array proposed by
Campbell and Gear (Campbell and Gear, 1995). The so
obtained structural analysis proves that our original model
(1) for the Cup-and-Ball is underspecified at mode change
γ : F→ T, when the rope gets straight. This underdetermi-
nation implies that the model is ill-defined, as it admits an
infinite number of solutions. Completing it by adding an

impact law, which makes sense from a physicist’s point
of view, is also appropriate from the point of view of our
structural analysis.

One possible choice is to complete the model with an
elastic impact law. This indeed corrects the restart system
at γ = T in the cascade of mode changes γ : F→ T→ F,
yielding 

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = L2−(x2+y2) (k1)
0 = λ + s (k2)

(28)

where 0 < α < 1 is a damping factor. We proceed again
with the structural analysis. Variables x,y are the states,
so that their values are set by the previous instants. Cur-
rent equation (k1) creates a conflict with the past. Hence,
we discard it from System (28), which leaves us with the
following system:

0 = x′′+λx (e1)
0 = y′′+λy+g (e2)
0 = y′•+(1−α)y′ (τ1)
0 = λ + s (k2)

(29)

Model (29) is structurally nonsingular, recalling that y′′ and
y′• can be interchanged for the structural analysis. This re-
fined model is therefore accepted by the structural analysis.

The impulse analysis proceeds as for the previous case
of inelastic impact and effective code for restart can be
generated.

Note that any impact law could be used instead of the
one added in System (28), as long as it ensures uniqueness
of the solution for a fixed state before the impact.

In (Benveniste et al., 2021), we also discuss the conse-
quences, for modeling languages such as Modelica, of the
need for stating as a side specification whether a mode is
transient or not.

3 General Impulse Analysis
In this section, we explain how the reasoning used for the
Cup-and-Ball example can be mechanized as a compilation
stage following multimode structural analysis. Prior to
developing this, we provide a simplified overview of said
multimode structural analysis.

3.1 Overview of multimode structural analysis
We consider multimode DAE systems possessing long
modes (having DAE-based dynamics for a positive du-
ration) alternating with finite cascades of transient modes
(having a zero duration, such as the straight rope mode in
the Cup-and-Ball model with elastic impact).

We assume that the information regarding the type of a
mode (long vs. transient) is known by the compiler—the
two different Modelica primitives if and when should be
used to declare long and transient modes, respectively.



In addition, we require that the current mode is defined
by the left-limits of some predicates, see the reasoning
leading to the corrected model (9) for the Cup-and-Ball.

For such models, the structural analysis proceeds ac-
cording to the following steps:

1. The multimode model is mapped to its nonstandard
expansion by using a first-order explicit Euler expan-
sion for derivatives, with infinitesimal time step ∂ ,
and mapping left-limits to values at the previous in-
stant. In particular, the mode at each nonstandard
instant is known at the end of the previous instant.

2. The structural analysis for each specific mode is per-
formed, depending on its long/transient type:

• If the mode is long, then classical structural
analysis applies: by, e.g., using Pryce’s Σ-
method (Pryce, 2001), latent equations are
added for the DAE system associated to each
long mode;

• Alternatively, if the mode is transient, a struc-
tural analysis of the difference array associated
to the considered cascade of transient modes is
performed.

3. Having done this, given the mode at the current in-
stant:

• If no mode change occurs, then the (classical)
mode-specific structural analysis applies;

• Otherwise, the conflict that may possibly ex-
ist between consistency equations of the cur-
rent mode and leading equations of the pre-
vious mode is analyzed, using the Dulmage-
Mendelsohn decomposition; conflicting subsys-
tems are identified and the equations from the
current instant that cause conflicts are erased.

Implementing the multimode structural analysis in the
above described form would be very inefficient. Fortu-
nately, (Caillaud et al., 2020) proposed a very efficient
algorithm for handling all the long modes simultaneously
without enumerating them, and extended the Σ-method
in this “all-modes-at-once” framework. A similar exten-
sion of the Dulmage-Mendelsohn decomposition is being
implemented.

3.2 General Rules of Impulse Analysis
3.2.1 Problem setting
Restart systems of equations, as resulting from the struc-
tural analysis at mode changes, are nonstandard systems of
equations of the following generic form:

expand X ′ as X•−X
∂

in 0 = H(X ′,X•,V,X) (30)

where V collects the algebraic variables, X collects the
state variables, and X•−X

∂
is the nonstandard semantics

of X ′. H(·, ·, ·, ·), seen as a vector function in its dotted
arguments, is by itself standard, since the equations of
system 0 = H are obtained by shifting or differentiating
equations specified by the user. The reason for (30) being
nonstandard is indeed twofold:

1. Since X• is involved, the infinitesimal ∂ occurs in
time; and

2. Since X ′ is involved, the infinitesimal ∂ occurs both
in time and space, due to the expansion X ′← X•−X

∂
.

The occurrence of ∂ in time is not an issue: shifted
state variables will correspond to restart values for states,
whereas non-shifted ones correspond to values prior to the
change. In contrast, the occurrence of ∂ in space is the root
cause of possible impulsive behaviors. Identifying them is
the subject of impulse analysis.

3.2.2 The rules of impulse analysis
We now develop the impulse analysis introduced in Def-
inition 1. This analysis is useful as a postprocessing of
structural analysis, prior to generating effective code for
restarts. Note that Assumption 1 is still enforced in what
follows.

Figures 2 and 3 display the rules defining the translation
of a system of equations of the form (30) into its impulse
analysis, for the restricted class where only rational expres-
sions are involved.

Figure 2 describes the syntax of a mini-language specify-
ing such systems of equations. The left column of Figure 3
gives the rules for mapping expressions to their correspond-
ing impulse orders. The reason for the inequality in (R6) is
that in the sum e1+e2, the dominant terms in the expansion
of ei as a series over ∂ may cancel each other. For an exam-
ple of this, see equation (e2) in System (12): rewriting this
equation as−g = y′′+λy, we see a case of strict inequality
for (R6) since gravity g has order zero, whereas it is equal
to the difference of two terms of order one.

We will use Rule (R6) in the following way, thereby
reinforcing it. Consider an equation

e : z = x+ y .

We can rewrite e in the following equivalent ways: 0 =
x + y− z , x = z− y, or y = z− x. To each of them we
apply the max rule. This yields the following system of
constraints, called the impulse analysis of equation e:

[[z]]≤max{[[x]], [[y]]}
[[0]]≤max{[[x]], [[y]], [[z]]}
[[x]]≤max{[[z]], [[y]]}
[[y]]≤max{[[x]], [[z]]}

(31)

Note that the constraint [[0]] ≤ . . . is vacuously satisfied
since [[0]] =−∞. Then, among the three nontrivial inequal-
ities of (31), at least two of them must be saturated. We
will use impulse analysis (31) for handling sums of terms.
This reinforcement of the max rule is formalized by Rule



e ::= 0 | c | ∂ | x | ec | e+ e | e× e
E ::= e = e | E and E

Figure 2. Syntax: E is a system of one or several equations e = e. An expression e is 0, a nonzero (standard) real constant c, the
infinitesimal ∂ , a variable x, the monomial ec, a sum, or a product.

(R1) [[0]] = −∞

(R2) [[c]] = 0
(R3) [[∂ ]] = −1
(R4) [[ec]] = c[[e]]
(R5) [[e1× e2]] = [[e1]]+ [[e2]]

(R6) [[e1 + e2]] ≤ max{[[e1]], [[e2]]}

E ` e = e′

[[E]] ` [[e]] = [[e′]]
(R7)

E ` x = y+ e or
E ` 0 = y− x+ e

}
and E 0 y = x− e

E ` E and y = x− e
(R8)

Figure 3. Rules: The left column displays the impulse order of the primitive expressions. Rule (R7) indicates that [[e]] = [[e′]] is an
equation of the impulse analysis [[E]] if e = e′ is an equation of E; rule (R8) indicates that, if E involves the equation x = y+ e but
not the equation y = x− e, then we augment E with the latter, i.e., we saturate E with the rule x = y+ e =⇒ y = x− e.

(R8) of Figure 3, which mechanizes the association, to any
equation, of its different rewritings.

Using the rules of Figures 2 and 3 in the numerical
expressions, we map any system of rational equations of
the form (30) into a system of constraints over impulse
orders.

To cover functions beyond polynomials, we need to ex-
tend R∪{−∞}with +∞. In this extension, we take the con-
vention that−∞+∞=−∞, justified by both Rules (R1,R5)
and the equality 0×x = 0 for any nonstandard x. For func-
tions f (x) = ∑

∞
k=0 akxk that can be represented as abso-

lutely converging power series, we then get

[[ f (x)]] = [[
∞

∑
k=0

akxk ]] = [[x]].sup(A) , (32)

where A={k | ak 6=0} is the support of the series and sup(A)
is the supremum of set A. In particular, if [[x]] > 0 and if
the support of the series is infinite, we get [[ f (x)]] = +∞.

3.2.3 Particularizing the impulse analysis to systems
of equations for restarts

So far, Rules (R1)–(R8) of the impulse analysis apply to
any system of nonstandard equations. Here we particular-
ize the impulse analysis to systems of equations of the form
(30), where the only reason for ∂ to occur is the expansion
of derivatives using the Euler scheme:

0 = H
(

X•−X
∂

,X•,V,X
)

The dependent variables are X•,V . It will be convenient to
introduce the auxiliary variables

U =def X•−X ,

so that the systems we consider take the following form,
where X•,V,U are the dependent variables:{

0 = H
(U

∂
,X•,V,X

)
U = X•−X

(33)

The following condition for System (33) can be assumed,
based on physical considerations (restart values for an ODE
or a DAE cannot be impulsive):

Assumption 2 Since X is a state, both X (a known value)
and X• must be finite.

First, the impulse orders [[X ]] are all known, from previous
nonstandard instants. Next, from Assumption 2 we deduce
the inequalities:

[[X•]]≤ 0 and [[U ]]≤ 0 . (34)

The impulse orders [[V ]] are a priori unknown. We have,
however, more prior information, thanks to the structural
analysis. From the structural analysis at the considered
mode change, we know which consistency equations of the
new mode were conflicting with the dynamics of previous
mode. Formally, call G=0 the subsystem collecting all the
equations that were erased while solving this conflict—for
the Cup-and-Ball model (10), at the instant of mode change
•γ=F,γ=T, G collects the bodies of the two violated con-
sistency constraints (k1) and (k•1).

As a result, G=0 no longer holds at the considered mode
change, and thus, G defines a tuple R of variables (one per
entry of G) called residuals, by setting

R = G , (35)

which are all finite and nonzero. An example of residual in
the Cup-and-Ball is r = L− (x2 + y2), which is both finite
and nonzero at mode change •γ=F,γ=T. The residuals are
found by the structural analysis.

Finally, the system of equations that we need to solve
collects all the above items, namely:

0 = H
(U

∂
,X•,V,X

)
U = X•−X
R = G

(36)



with dependent variables X•,V,U,R, and the following
prior information on impulse orders is known:

[[
1
∂
]] = 1 ; [[X•]]≤ 0 ; [[U ]]≤ 0 ; [[R]] = 0 . (37)

System (36) is then mapped to its impulse analysis by using
Rules (R1–R8) of Figures 2 and 3. A suitable constraint
solver is then used to solve the resulting set of constraints
on impulse orders, by using side information (37). The
choice of an appropriate constraint solver remains to be
done.

4 Conclusion
The correct handling of truly multimode Modelica models
(in which index and structure may vary with the mode)
requires significant add-ons to the existing structural analy-
ses. In the companion paper (Benveniste et al., 2021), we
introduce, by means of two small but representative exam-
ples, a truly multimode structural analysis that applies both
in modes and at mode changes. One important difficulty
is the correct handling of impulsive behaviors for some
variables.

In this paper, we introduced the impulse analysis of
multimode DAE systems, a complement to multimode
structural analysis for Modelica models. Impulse analysis
is performed at compile time, prior to generating simula-
tion code. It allows to identify impulsive variables, along
with the mode changes at which impulsive behavior oc-
curs. When impulsive behaviors occur in a model, then
the conditions for restart at the impulsive mode change are
generally known implicitly, not explicitly. Generating sim-
ulation code for restarts can thus be problematic. Using our
approach based on impulse analysis, impulsive variables
can be properly rescaled, so that correct explicit code for
restarts can be generated.

In this paper, we did not consider the computational
cost of performing true multimode structural analysis at
compile time: unfortunately, the number of modes tends
to be roughly exponential in the size of the model, and the
a priori number of mode changes is at least proportional
to the square of the number of modes. This is a limitation
of a model representation in which one characterizes the
subset of equations and variables active in any given mode.

A possible way of alleviating this issue is by shifting to a
dual representation, that provides predicates characterizing
the set of modes in which each equation and each variable
is active. In practice, not only does this approach lead to
a much more compact representation, but it also allows
for the design of efficient structural analysis methods for
multimode DAE systems, working in an ‘all-modes-at-
once’ fashion. Such a method was implemented in the
IsamDAE tool, and first results are reported in (Caillaud
et al., 2020). The examples coming with this tool already
include thermodynamical, electrical and pneumatic models.
Although only the structural analysis of long modes is
currently performed, the implementation of the structural
analysis of mode changes is in progress.
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