
HAL Id: hal-03284824
https://hal.inria.fr/hal-03284824

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Case for Partial Co-Allocation Constraints in
Compressed Caches

Daniel Rodrigues Carvalho, André Seznec

To cite this version:
Daniel Rodrigues Carvalho, André Seznec. A Case for Partial Co-Allocation Constraints in Com-
pressed Caches. SAMOS XXI 2021 - International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, Jul 2021, Samos, Greece. pp.1-13. �hal-03284824�

https://hal.inria.fr/hal-03284824
https://hal.archives-ouvertes.fr

A Case for Partial Co-Allocation Constraints in
Compressed Caches

Daniel Rodrigues Carvalho1[0000−0001−7919−9347] and
André Seznec2[0000−0002−3058−6503]

Univ Rennes, Inria, CNRS, IRISA, Rennes, France
1odanrc@yahoo.com.br

2andre.seznec@inria.fr

Abstract. Compressed cache layouts require adding the block’s size in-
formation to the metadata array. This field can be either constrained —
in which case compressed blocks must fit in predetermined sizes; thus,
it reduces co-allocation opportunities but has easier management — or
unconstrained — in which case compressed blocks can compress to any
size; thus, it increases co-allocation opportunities, at the cost of more
metadata and latency overheads. This paper introduces the concept of
partial constraint, which explores multiple layers of constraint to re-
duce the overheads of unconstrained sizes, while still allowing a high
co-allocation flexibility. Finally, Pairwise Space Sharing (PSS) is pro-
posed, which leverages a special case of a partially constrained system.
PSS can be applied orthogonally to compaction methods at no extra
latency penalty to increase the cost-effectiveness of their metadata over-
head. This concept is compression-algorithm independent, and results in
an increase of the effective compression ratios achieved while making the
most of the metadata bits. When normalized against compressed systems
not using PSS, a compressed system extended with PSS further enhances
the average cache capacity of nearly every workload.

Keywords: Cache · Hardware Compression · Cache Organization.

1 Introduction

Cache compressors process data in uncompressed format to generate compressed
output. Typically, compressors focus on reaching good compression factors or fast
decompression latencies to improve system performance or cache capacity [17].
However, compression by itself is not enough to achieve these goals; a compaction
scheme (or cache organization, or compactor) must be used to determine what
to do with the compressed data. That is, compaction schemes expand the ca-
pabilities of conventional tag-data mapping methods to account for compressed
blocks and their ability to share data entries.

Some compaction techniques limit compression to fixed sizes (e.g., 25% and
50% of the line size), adding padding to lines smaller than these sizes [18, 19].
These constrained methods have low metadata overhead, but limit co-allocation

2 D. Rodrigues Carvalho and A. Seznec

by removing opportunities. Moreover, while cache compressors may be successful
in some workload regions, there is still plenty of data that fails to attain favorable
compressed sizes for compaction; the average compressed size in SPEC 2017 for
multiple state-of-the-art compressors [1, 3, 4, 6, 11, 12, 15], is still far above 50%
of the uncompressed size (Figure 1), making it hard to effectively co-allocate
blocks with such limitations.

0.4

0.5

0.6

0.7

0.8

0.9

1

502.gcc

503.bwaves

505.m
cf

507.cactuBSSN

510.parest

519.lbm

520.om
netpp

521.wrf

523.xalancbm
k

526.blender

527.cam
4

541.leela

549.fotonik3d

554.rom
s

Mean

Compression Ratio (L3)

BDI BPC CPack FPC FPCD Hu�man XMatch XRL

Fig. 1. Average compression ratio of SPEC 2017 workloads for multiple state-of-the-art
cache compression methods applied to the Last-Level Cache (L3). Lower is better.

Other proposals remove these limits, allowing blocks to be compressed to
any size [2,6] — a concept we will refer to as unconstrained methods. Although
these methods allow compression to reach its full potential, they significantly
increase metadata overhead due to the number of bits needed to represent the
compressed size. Besides, locating lines becomes non-trivial: they can be found
anywhere in the data entry. This results in a few more cycles being added to the
access path.

We have come up with Pairwise Space Sharing (PSS), a technique that
achieves the best trade-off between limiting the number of possible sizes and hav-
ing an unconstrained representation. PSS introduces the notion of a partially-
constrained representation: blocks are stored in groups of two — block pairs —
and although each pair must fit in a fixed-size entry, the blocks within a pair have
less restrictions. As a result, PSS keeps line location trivial, and requires
far less metadata bits than conventional unconstrained methods, while
still making the most out of co-allocation opportunities. Moreover, Pair-
wise Space Sharing can be applied in conjunction with most state-of-the-art
cache compaction proposals.

This paper makes the following contributions:

– We show a particular case of size constraints that significantly reduce meta-
data and latency overheads of existing methods.

– We demonstrate that having a fully unconstrained representation is sub-
optimal when the compression design is focused on neighbor-block co-allocation.

– We group these benefits to propose Pairwise Space Sharing, an expansion to
compaction layouts which allows the benefits of unconstrained compaction
with minimal tag overhead and no extra latency.

The following terms will be used throughout this paper: compression ratio
is the ratio between the compressed size and the cache line size [16]; and com-
paction ratio — also referred to in the literature as effective cache capacity —

A Case for Partial Co-Allocation Constraints in Compressed Caches 3

is the number of valid blocks in a data entry. The former measures how efficient
a compressor is, while the latter exposes the efficacy of the compressed system
(compression + compaction).

2 Size Constraints of Compressed Blocks

After a block is compressed, a compaction method is used to determine if it
can be co-allocated with other block(s). These techniques may use different ap-
proaches to decide how to co-allocate, but they must always rely on one piece
of information: the block size. Co-allocated blocks must fit in their designated
space, which means that each block’s size must always be retrievable; thus, a
compressed block’s size is an inherent metadata overhead. Sizes are typically
represented at a byte granularity to slightly reduce this overhead [2, 6].

The size field can be either unconstrained — i.e., all sizes are possible —
or constrained — i.e., compressed blocks are padded to fit in predetermined
sizes. While unconstrained sizes are theoretically ideal to make the most out of
compression, they come at a high cost: large metadata overhead. Furthermore,
its placement process is fairly complex due to varying available sizes and higher
number of location possibilities, which may require a few extra cycles to process.

Constrained sizes use larger granularities to ease these drawbacks — e.g., at
half-line granularities a compressed block can either be compressed to half or be
left uncompressed, which would require a single-bit size field, and generate only
two possible block locations — but add a penalty to the compression efficiency:
data entries routinely end up wasting many bits with padding [18,19].

2.1 Partial Constraint

We hereby define a third possibility: partially constrained sizes. A partially
constrained entry is split into multiple constrained segments, and each of those
segments uses an unconstrained layer. For example, a 512-bit data entry can be
divided into four 128-bit segments. Each segment can co-allocate blocks without
constraints, as long as they fit in its 16-byte space, as depicted in Figure 2.

Fig. 2. Example of a data entry split into four constrained segments. Each segment
co-allocates blocks in an unconstrained fashion: blocks can be compressed to any size,
as long as their sum fits in their segment’s 128 bits.

One possible goal of smaller constrained entries is to allow restricting place-
ment. If a rule is applied so that, for example, a given block B can only be

assigned to S specific segments, then
P − S

P
of the P placement locations are

4 D. Rodrigues Carvalho and A. Seznec

removed from the possibilities. This reduces the number of size bits by blog2(P−
S)c. Nonetheless, this restriction is not enough to satisfy latency requirements,
because B can still be stored anywhere within its allowed segments, which may
still be a large gamma of placement possibilities.

2.2 A Case for Latency-Efficient Partial Constraint

There are, however, two special cases of partial constraint that deserve distinct
attention: when the number of blocks allowed per segment are, respectively, 1 and
2. When only one block can be allocated per segment, there are two possibilities:
either it is an uncompressed cache (the segment size matches the cache line’s
size); or it is a general constrained method — the segment size is smaller than
the cache line’s, and compressed blocks must fit in fixed-sized entries.

The other case, when there are up to two blocks per segment, has a peculiarity
that can be exploited to greatly simplify locating blocks. Within a constrained
segment, no matter its size, there are two invariable locations: its leftmost bit,
and its rightmost bit (i.e., the extremities). These can be used as markers that
define the beginning of a sub-block, with one of the sub-blocks being stored in
reverse order (the MSB becomes the LSB and vice-versa) (Figure 3a). Since
these locations are statically defined, there is no latency overhead to locate blocks
within a segment. We will refer to segments that contain up to two blocks as a
block pair (BP).

(a) Block placement in an entry containing
a single BP. E is stored conventionally, and
F is stored with its bits reversed.

(b) A data entry with two segments sup-
ports up to four sub-blocks — there are
two BPs. R and S are paired up in a BP
1, and Q is in BP 0. Q’s companion is not
present. Q and S are stored reversed.

Fig. 3. Overview of the sub-block placement in BPs. Each sub-block is stored relative
to an extremity of its BP.

Another advantage of having fixed extreme locations is that, since the bits in
between the sub-blocks are unused, data contractions and expansions that still
fit in the pair do not need recompaction.

3 Pairwise Space Sharing

We herewith introduce Pairwise Space Sharing (PSS): a partially constrained
co-allocation technique that uses block pairs (BPs). Contrary to previous ap-
proaches, Pairwise Space Sharing stores metadata implicitly, and reduces the

A Case for Partial Co-Allocation Constraints in Compressed Caches 5

likelihood of data expansions — i.e., it reduces the metadata overhead, yet yields
better results. PSS is independent of the space available; thus, it can be applied
to compressed cache layouts that allow more than two blocks per data entry.

For instance, in YACC [19] a superblock’s compression factor (CF) defines
the minimum size a sub-block must attain to be compressed: a quarter (CF = 4),
and half of the data entry (CF = 2). If, for example, PSS is applied on top of
YACC, this limitation is lessened, and the pair’s size must fit in a half or a
whole data entry instead, respectively. No further modifications are needed, and
sub-blocks are paired like in YACC: when CF = 2 there is only one BP, and
any of its four sub-blocks can be paired in it (Figure 3a); when CF = 4, there
are at most two pairs, and each sub-block’s position in the data entry is fixed —
sub-block 0 can only be paired with 1, and sub-block 2 with 3. Figure 3b shows
an example of data entry containing more than one BP.

It is important to notice, however, that PSS is not limited to a YACC-like
design, so it could handle placement differently (e.g., by adding a position field
to the metadata when the CF is 4 too to allow sub-blocks to be placed in any
of the available extremities — see Section 3.4 for more information on that).
In short, PSS decides where and how, not which blocks are allocated in a data
entry; thus, it can be applied to non-superblock-based layouts too.

3.1 Decreasing the Number of Unsuccessful Co-Allocations

A BP’s size is fixed, but dependent on the CF (see Equation 1). For example,
given 64B cache lines, a superblock with CF = 2, has one BP; so, the size
fields of its two blocks would naively require 2 · 6 bits; when CF = 4, two BPs
can reside in the superblock, so 4 · 5 bits would be needed for the size fields,
per tag entry. This naive approach assumes that any size is valid; however, the
probability distribution of compressed sizes follows a non-uniform cumulative
distribution function: barely compressing a block is significantly more frequent
than compressing it to a tiny size (as seen in Figure 1).

BPSizeCF = 2 · cacheLineSize
CF

(1)

Consequently, a large block will likely not co-allocate, and impose an un-
necessary decompression latency fee on hits. This observation is especially true
for superblock-based compaction methods, since neighbor blocks tend to have
similar compressibility [14], so a large sub-block will probably have a compara-
bly sized counterpart. Hence, one can limit the range of possible sizes within a
segment to increase the likelihood of co-allocating blocks.

Sizes are stored as a number relative to minSizeCF . By limiting the range of
valid compressed sizes ([minSizeCF :maxSizeCF], with values respecting Equa-
tion 2), not only does the likelihood of having non-co-allocated blocks reduce,
but also the size field’s width is also decreased (Equation 3 if 2 ·maxSizeCF 6=
BPSizeCF ; 0 otherwise). This means that sizes are stored as numbers relative
to minSizeCF . As a consequence, blocks whose size is smaller than minSizeCF

are rounded up to minSizeCF .

6 D. Rodrigues Carvalho and A. Seznec

minSizeCF = BPSizeCF −maxSizeCF (2)

sizeBitsCF = log2 (2 ·maxSizeCF −BPSizeCF) (3)

In the previous example, if the size-field range is set so that maxSizeCF =
62.5%·BPSizeCF of the uncompressed line (minSize2 = 24B, maxSize2 =
40B, minSize4 = 12B, maxSize4 = 20B), the width of a size entry is reduced
to sizeBits2 = 4, and sizeBits4 = 3. Therefore, an absolute size of 30B would be
stored as a relative size of 6B (30B−minSize2 = 6B =01102), and an absolute
size of 10B would be stored as 0B.

3.2 Halving the Number of Size Fields

Since the segment’s size and location, and the blocks’ location are always known,
one can further reduce the size-related metadata overhead: only one of the sub-
blocks’ sizes needs to be stored in the tags, in the pair’s respective size field entry,
and the other (e.g., the non-reversed sub-block’s) can be implicitly estimated as
its complement. If only the non-reversed block is present in the pair, the stored
size represents the available space for the reversed sub-block.

This optimization has the drawback that the reversed block must be decom-
pressed and re-compressed to retrieve the real available size in the BP whenever
its companion suffers a data expansion (i.e., a write larger than its current size
occurs). Figure 4 presents how the size field is interpreted under different CFs,
for both non-optimized and optimized configurations. Nonetheless, this event is
rare, not on the critical path, and the re-compression step can be removed by
adding a delimiter code to the end of the companion’s compressed data.

CF=4

1 size per BP

CF=2

1 size per BP
Unused CS

CS

BP0Regular

3 bits

4 bits

2 bits

CF=4

2 sizes per BP

CF=2

2 sizes per BP
Unused CS

CS

BP0Reversed BP0Regular

BP0RegularBP1Regular BP1RegularBP1Reversed BP0RegularBP0Reversed

Fig. 4. A comparison of size-related metadata used at different compression factors
for different configurations. CS is the compressibility state (whether CF is 1, 2, or 4).
When CF=1, only the CS field is used (i.e., the block is not compressed).

3.3 Total Size-Related Overhead

A data entry in a cache layout using Pairwise Space Sharing needs enough size-
field bits to cover the worst-case scenario, in which the maximum amount of
blocks compressed to the best compression factor (maxCF) are co-allocated
(Figure 4). This means that besides the usual tag, replacement state and coher-
ence fields, each data entry must dispose of log2 (maxCF) bits to inform the

A Case for Partial Co-Allocation Constraints in Compressed Caches 7

number of BPs in the data entry (equivalent to a conventional field informing

the compressibility state — CS); and log2 (
maxCF

2
) size field entries to bear

the size of the smallest possible BP entry (sizeBitsmaxCF), taking into account
whether the single-size-per-BP optimization is being used — see Equation 4.

totalentry = log2 (maxCF)+ log2 (
maxCF

2
) ·sizeBitsmaxCF ·numSizesPerBP

(4)
For instance, the case of PSS where the maximum compressed size allowed is

50% is similar to constrained methods allowing three possible sizes — 25%, 50%
and 100% — such as YACC [19] and SCC [18]: maxCF = 4, BPSize2 = 64B,
BPSize4 = 32B, maxSize2 = 32B, maxSize4 = 16B, sizeBits2 = sizeBits4 =
0, thus totalentry = 2 bits.

3.4 Position Bits

It is important to notice that a block’s size may not be the only piece of metadata
needed to locate blocks: starting-position bits may also be necessary. When no
positional information is explicitly provided the sizes are used to deduce the
blocks’ starting position. This means that a size can only be updated along with
a recompaction step (see Figure 3.4). If the design chooses not to update a block’s
size right away on a data contraction or eviction, these bits must be added to
the size of the previous block in the sequence so that the starting positions of
the following blocks are kept correct - i.e., those bits are wasted.

(a) A is stored at position 0, and B is
stored relative to A.

(b) If A’s size changes, and B is not moved,
B can no longer be located.

Fig. 5. Locating blocks without a position field.

Under these circumstances, some layouts may opt to add a position field to
the blocks’ metadata. Assume that C is the number of coherence bits, up to four
blocks can co-allocate in a data entry, and that the number of tag bits is the
same for all methods: an unconstrained layout’s metadata bits would include 1
compression-state (CS) bit per data entry, and 6 size bits and 6 position bits per
block (Equation 5); a constrained layout needs 1/2 CS bits per data entry, and
1/2 index bits per valid sub-block (depends on the CS) (Equation 5); finally,
PSS reduces the size restrictions of the constrained approach, so it adds one or
two 3/4 size bits per valid block pair on top of Tcons (Equation 7).

T (otal)uncons = 1 + 4 · 6 · 6 + 4 · C (5)

8 D. Rodrigues Carvalho and A. Seznec

Tcons = max(TconsCF4, TconsCF2) = max(1 + 4 · (2 + C), 2 + 2 · (2 + C)) (6)

TPSS = max(TconsCF4 + 2 · (1|2) · 3, TconsCF2 + 1 · (1|2) · 4) (7)

For example, if C is 3, Tuncons = 157, Tcons = 21, and TPSS = 27|33. As seen,
PSS has a huge metadata advantage over the unconstrained approach,
while not adding much when compared to the constrained technique.

4 Related Work

Dictionary-based compressors use the values in a cache line to fill a dictionary
of previously seen values. While parsing a line, the dictionary entries are com-
pared against patterns for full or partial matches, which are referred to by the
compressed data, along with the discrepant bits in case of a partial match.

C-Pack [6] applies the basic ideas of dictionary-based compressors; X-Match
and X-RL reorder the dictionary to apply Huffman code on the most-recently
seen value [12]; BDI [15] limits the dictionary to two entries, which are matched
through delta comparisons to achieve 1-cycle decompression; DISH [14] improves
BDI’s low compression efficiency by sharing dictionaries between multiple lines.

COCO [21] applies BDI’s idea to objects, instead of cache lines; FPC-D [1]
uses a 2-entry FIFO as its dictionary to reduce decompression latency. FPC [3]
has no dictionary (i.e., a pattern-only scheme); BPC [11] further compresses
base-delta-like compressed data with bit-plane transformations; and SC2 [4] uses
probabilistic models to build a global dictionary.

Compressors must be associated with a compaction scheme to increase the
effective cache capacity. Some compacted layouts allow any pair of lines to co-
allocate by doubling the number of tags and informing the compressed sizes in
the metadata [2,6,13]. This overhead is cumbersome, so modern proposals tend
to focus on using superblock tags, which associate multiple neighbor blocks to
a single shared tag [18, 19]. Recent proposals move the tag information to the
data entry [9]. Other approaches redesign the cache, with ideas ranging from
adding extra caches holding the compressed data [8] to a full overhaul of the
cache organization [21]. PSS is orthogonal to these design decisions.

Chen et al. introduced pair-matching [6], which co-allocates blocks in pairs
as long as the sum of their compressed sizes’ fits in a data entry, requiring
one size field per sub-block. Pairwise Space Sharing has up to 73% less size-
related metadata overhead due to its insights on the probabilities of co-allocation,
and removal of the partially redundant companion’s size information. Besides,
since sub-block location is fixed, and unused bits are located in-between blocks,
PSS greatly simplifies data insertion, removes the need for recompaction, and
minimizes the likelihood of data expansions.

5 Methodology

Our simulations have been performed using gem5 [5]. Compression-related statis-
tics are averaged across all (de)compressions. Compaction-related statistics are

A Case for Partial Co-Allocation Constraints in Compressed Caches 9

averages of snapshots (taken every 100K ticks) of the cache’s contents. We took
multiple checkpoints per benchmark of the SPEC 2017 benchmark suite [7] us-
ing SimPoints [20]. Workloads were warmed up for 100M instructions, and then
executed for 200M instructions. The average of each benchmark’s statistics has
been calculated with the arithmetic mean of its checkpoints, and the total ge-
ometric mean of the benchmarks was normalized to a baseline system without
compression. Benchmarks whose number of Misses Per Kilo-Instruction (MPKI)
was lower than 1 were discarded from the analysis — as they barely benefit from
having larger caches, compression is not useful.

The baseline model executes out-of-order (OOO), and is detailed in Table 1.
All compression and compaction algorithms are applied to the L3 on top of this
common configuration.

Cache line size 64B

L1 I/D 32KB, 4-ways, 4 cycles,
LRU

L2 256KB, 8-ways, 12 cycles,
RRIP [10]

Shared L3 1MB, 8-ways, 34 cycles,
RRIP

MSHRs and
write buffers

64

DRAM DDR4 2400MHz 17-17-17,
tRFC=350ns, 4GB

Processor 1 core, OOO, 8-issue

Architecture ARM 64 bits

Clock 4GHz

Image Ubuntu Trusty, Little En-
dian

Table 1. Baseline system configuration.

6 Results

In this section we analyse which size range provides the most cost-effective re-
sults. We also compare the efficiency and effectiveness of PSS when applied on
top of multiple state-of-the-art compressors. Finally, we provide an area estimate
comparison.

6.1 Selecting the Size-Field Range

As stated previously, neighbor blocks tend to have similar data contents, and
thus similar compressibility. If a line compresses to a size greater than 50% of the
BP’s size, its companion has a high likelihood of compressing to a size greater
than 50% too; consequently, there is lower co-allocation chance. This means that
reducing size constraints may actually degrade performance.

To find out the best number of bits to be used in the size field, we have
analysed the different compaction ratios achieved, as well as the proportion of
blocks that co-allocated with another block at the moment it was compressed.
The highest ratio of successful co-allocations is achieved when block sizes are
within the absolute range [37.5%: 62.5%] of the BP’s size (Figure 6, left). This
is reflected in compaction ratio improvements (Figure 6, right). Unless stated
otherwise, future references to PSS use the [37.5%: 62.5%] range.

10 D. Rodrigues Carvalho and A. Seznec

51.5% 53.1% 56.2% 62.5% 75% 100%

Compaction Ratio Improvement (%) (Normalized on a 50% PSS)

8DI
BPC

CPack

FPC
FPCD

Hu
�m

an

XMatch

XRL

0.99

1

1.01

1.02

1.03

1.04

0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

8DI
BPC

CPack

FPC
FPCD

Hu
�m

an

XMatch

XRL

Proportion of Successful Co-allocations (%) (Normalized on a 50% PSS)

Fig. 6. Comparison of the best range choice for multiple state of the art compression
methods under a YACC layout with PSS. Values for each compressor are normalized
to the respective compressor using a PSS of 50%. Left plot is the ratio of successful

co-allocations (
numCoAllocations

numCompressions
). Right plot is the compaction ratio.

6.2 Compaction Ratio

Figure 7 shows the difference in compaction ratio for various state-of-the-art
compressors while coupling YACC [19] to PSS. All PSS configurations outdo their
non-PSS counterpart because of the better ratio of successful co-allocations.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

502.gcc

503.bwaves

505.m
cf

507.cactuBSSN

510.parest

519.lbm

520.om
netpp

521.wrf

523.xalancbm
k

526.blender

527.cam
4

541.leela

549.fotonik3d

554.rom
s

Mean

2.02 2.05

Compaction Ratio (L3)

BDI
BDI+PSS

BPC
BPC+PSS

CPack
CPack+PSS

FPC
FPC+PSS

FPCD
FPCD+PSS

Hu�man
Hu�man+PSS

XMatch
XMatch+PSS

Fig. 7. Compaction ratio of multiple state of the art compression methods under a
YACC layout without and with PSS applied to them. X-RL’s results are similar to
X-Match’s, and are not shown due to space constraints.

6.3 Number of Size Fields per BP

Having a single size per BP has a drawback in case the block whose size is stored
expands: the exact size of its companion is unknown, so the companion’s data
must be read, decompressed and re-compressed to check if evictions are needed.
We simulated a worst case scenario where the latency of a read was added to
every block overwrite, and the differences in IPC and compaction ratio were far
below 1% because these steps could often be done off the critical path; hence,
halving the number of size fields has marginal negative impact.

6.4 Effects on Data Expansions

Although rare, data expansions can be inconvenient. We compare the number
of data expansions of YACC using PSS with 1) a conventional 50% constrained

A Case for Partial Co-Allocation Constraints in Compressed Caches 11

design (Con50), and 2) a PSS design that co-allocates at non-extremities loca-
tions (i.e., blocks are allocated sequentially, at the first available bit), at a byte
granularity (PSSNE). PSS generates a much smaller data-expansion footprint,
as seen in Figure 8.

80

100

120

140

160

180

200

Mean

Number of Data Expansions (%) (Normalized on a 62.5% PSS)

BDI+Con50
BDI+PSSNE

BPC+Con50
BPC+PSSNE

CPack+Con50
CPack+PSSNE

FPC+Con50
FPC+PSSNE

FPCD+Con50
FPCD+PSSNE

Hu�man+Con50
Hu�man+PSSNE

XMatch+Con50
XMatch+PSSNE

XRL+Con50
XRL+PSSNE

49400

Fig. 8. Number of data expansions with Con50 and PSSNE (normalized on PSS —
e.g., there are 15% more data expansions in BDI+Con50 than in PSS). Only the means
of the benchmarks are shown due to space constraints. The number of data expansions
is normalized on top of the selected PSS configuration, so any value above the horizontal
line signifies that its respective configuration has more data expansions than PSS. All
other configurations are above the horizontal line; thus, PSS has significantly less data
expansions than any other compared configuration.

6.5 Area Overhead

We have implemented the placement decisioning logic under a generic uncon-
strained, a generic constrained, and the PSS approaches using Quartus II Web
Edition v21.1 and assuming that the metadata contains a position field. Con-
strained and PSS require, respectively, 4% and 14% of the area of the uncon-
strained method. These two techniques also manage to always calculate new po-
sitions in a single cycle, while the unconstrained approach needs multiple cycles
at a much slower clock rate.

7 Conclusion

This paper explores Pairwise Space Sharing (PSS), a special case of pairwise
block compression which uses implicit information to reduce compression-size
metadata, increase co-allocation opportunities, and remove re-compaction needs.
This concept is layout-independent, but highly advantageous for spatially close
block co-allocation techniques (e.g., superblocks). PSS reaches an effective metadata-
bits usage, and improves the compaction ratio of nearly every compressed-system
configuration, while still being simple enough to handle compressed-line place-
ment decision in a single cycle.

References

1. Alameldeen, A.R., Agarwal, R.: Opportunistic compression for direct-mapped
dram caches. In: Proceedings of the International Symposium on Memory Systems.

12 D. Rodrigues Carvalho and A. Seznec

p. 129–136. MEMSYS ’18, Association for Computing Machinery, Alexandria, Vir-
ginia, USA (2018). https://doi.org/10.1145/3240302.3240429, https://doi.org/
10.1145/3240302.3240429

2. Alameldeen, A.R., Wood, D.A.: Adaptive cache compression for high-performance
processors. SIGARCH Comput. Archit. News 32(2), 212 (Mar 2004).
https://doi.org/10.1145/1028176.1006719, https://doi.org/10.1145/1028176.

1006719

3. Alameldeen, A.R., Wood, D.A.: Frequent pattern compression: A significance-
based compression scheme for l2 caches. Dept. Comp. Scie., Univ. Wisconsin-
Madison, Tech. Rep 1500 (2004)

4. Arelakis, A., Stenstrom, P.: Sc2: A statistical compression cache scheme. In:
Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture. p. 145–156. ISCA ’14, IEEE Press, Minneapolis, Minnesota, USA
(2014). https://doi.org/10.1109/ISCA.2014.6853231, https://doi.org/10.1109/
ISCA.2014.6853231

5. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hes-
tness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput.
Archit. News 39(2), 1–7 (Aug 2011). https://doi.org/10.1145/2024716.2024718,
https://doi.org/10.1145/2024716.2024718

6. Chen, X., Yang, L., Dick, R.P., Shang, L., Lekatsas, H.: C-pack: A high-
performance microprocessor cache compression algorithm. Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on 18(8), 1196–1208 (2010).
https://doi.org/10.1109/TVLSI.2009.2020989, https://doi.org/10.1109/TVLSI.
2009.2020989

7. Corporation, S.P.E.: Spec cpu 2017. https://www.spec.org/cpu2017/ (2017), ac-
cessed: 2019-10-10

8. Dusser, J., Piquet, T., Seznec, A.: Zero-content augmented caches. In: Pro-
ceedings of the 23rd International Conference on Supercomputing. p. 46–55.
ICS ’09, Association for Computing Machinery, Yorktown Heights, NY,
USA (2009). https://doi.org/10.1145/1542275.1542288, https://doi.org/10.

1145/1542275.1542288

9. Hong, S., Abali, B., Buyuktosunoglu, A., Healy, M.B., Nair, P.J.: Touché: To-
wards ideal and efficient cache compression by mitigating tag area overheads. In:
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. p. 453–465. MICRO ’52, Association for Computing Machinery,
Columbus, OH, USA (2019). https://doi.org/10.1145/3352460.3358281, https:

//doi.org/10.1145/3352460.3358281

10. Jaleel, A., Theobald, K.B., Steely, S.C., Emer, J.: High performance
cache replacement using re-reference interval prediction (rrip). In: Proceed-
ings of the 37th Annual International Symposium on Computer Architec-
ture. p. 60–71. ISCA ’10, Association for Computing Machinery, Saint-Malo,
France (2010). https://doi.org/10.1145/1815961.1815971, https://doi.org/10.

1145/1815961.1815971

11. Kim, J., Sullivan, M., Choukse, E., Erez, M.: Bit-plane compression: Transforming
data for better compression in many-core architectures. SIGARCH Comput. Ar-
chit. News 44(3), 329–340 (Jun 2016). https://doi.org/10.1145/3007787.3001172,
http://doi.acm.org/10.1145/3007787.3001172

12. Kjelso, M., Gooch, M., Jones, S.: Design and performance of a main mem-
ory hardware data compressor. In: EUROMICRO 96. Beyond 2000: Hardware

https://doi.org/10.1145/3240302.3240429
https://doi.org/10.1145/3240302.3240429
https://doi.org/10.1145/3240302.3240429
https://doi.org/10.1145/1028176.1006719
https://doi.org/10.1145/1028176.1006719
https://doi.org/10.1145/1028176.1006719
https://doi.org/10.1109/ISCA.2014.6853231
https://doi.org/10.1109/ISCA.2014.6853231
https://doi.org/10.1109/ISCA.2014.6853231
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1109/TVLSI.2009.2020989
https://www.spec.org/cpu2017/
https://doi.org/10.1145/1542275.1542288
https://doi.org/10.1145/1542275.1542288
https://doi.org/10.1145/1542275.1542288
https://doi.org/10.1145/3352460.3358281
https://doi.org/10.1145/3352460.3358281
https://doi.org/10.1145/3352460.3358281
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/3007787.3001172
http://doi.acm.org/10.1145/3007787.3001172

A Case for Partial Co-Allocation Constraints in Compressed Caches 13

and Software Design Strategies., Proceedings of the 22nd EUROMICRO Con-
ference. pp. 423–430. IEEE, IEEE Computer Society, Prague, Czech Repub-
lic (1996). https://doi.org/10.1109/EURMIC.1996.546466, https://doi.org/10.
1109/EURMIC.1996.546466

13. Lee, J.S., Hong, W.K., Kim, S.D.: Design and evaluation of a selective com-
pressed memory system. In: Computer Design, 1999.(ICCD’99) International Con-
ference on. pp. 184–191. IEEE, IEEE Computer Society, Austin, Texas, USA
(1999). https://doi.org/10.1109/ICCD.1999.808424, https://doi.org/10.1109/

ICCD.1999.808424

14. Panda, B., Seznec, A.: Dictionary sharing: An efficient cache compression
scheme for compressed caches. In: The 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. MICRO-49, IEEE Press, Taipei, Tai-
wan (2016). https://doi.org/10.1109/MICRO.2016.7783704, https://doi.org/

10.1109/MICRO.2016.7783704

15. Pekhimenko, G., Seshadri, V., Mutlu, O., Gibbons, P.B., Kozuch, M.A.,
Mowry, T.C.: Base-delta-immediate compression: Practical data compres-
sion for on-chip caches. In: Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Techniques. p. 377–388.
PACT ’12, Association for Computing Machinery, Minneapolis, Minnesota,
USA (2012). https://doi.org/10.1145/2370816.2370870, https://doi.org/10.

1145/2370816.2370870

16. Salomon, D.: Data Compression: The Complete Reference, 3rd Edition. Springer
(2004), http://www.davidsalomon.name/DC3advertis/DComp3Ad.html

17. Sardashti, S., Arelakis, A., Stenström, P., Wood, D.A.: A primer on compression
in the memory hierarchy. Synthesis Lectures on Computer Architecture 10(5),
1–86 (2015). https://doi.org/10.2200/S00683ED1V01Y201511CAC036, https://

doi.org/10.2200/S00683ED1V01Y201511CAC036

18. Sardashti, S., Seznec, A., Wood, D.A.: Skewed compressed caches. In: Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. p. 331–342. MICRO-47, IEEE Computer Society, Cambridge, United
Kingdom (2014). https://doi.org/10.1109/MICRO.2014.41, https://doi.org/10.
1109/MICRO.2014.41

19. Sardashti, S., Seznec, A., Wood, D.A.: Yet another compressed cache: A low-cost
yet effective compressed cache. ACM Trans. Archit. Code Optim. 13(3) (Sep 2016).
https://doi.org/10.1145/2976740, https://doi.org/10.1145/2976740

20. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing
large scale program behavior. In: Proceedings of the 10th International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems. p. 45–57. ASPLOS X, Association for Computing Machinery, San Jose,
California (2002). https://doi.org/10.1145/605397.605403, https://doi.org/10.
1145/605397.605403

21. Tsai, P.A., Sanchez, D.: Compress objects, not cache lines: An object-based
compressed memory hierarchy. In: Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 229–242. ASPLOS ’19, ACM, Providence, RI, USA
(2019). https://doi.org/10.1145/3297858.3304006, http://doi.acm.org/10.1145/
3297858.3304006

https://doi.org/10.1109/EURMIC.1996.546466
https://doi.org/10.1109/EURMIC.1996.546466
https://doi.org/10.1109/EURMIC.1996.546466
https://doi.org/10.1109/ICCD.1999.808424
https://doi.org/10.1109/ICCD.1999.808424
https://doi.org/10.1109/ICCD.1999.808424
https://doi.org/10.1109/MICRO.2016.7783704
https://doi.org/10.1109/MICRO.2016.7783704
https://doi.org/10.1109/MICRO.2016.7783704
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1145/2370816.2370870
http://www.davidsalomon.name/DC3advertis/DComp3Ad.html
https://doi.org/10.2200/S00683ED1V01Y201511CAC036
https://doi.org/10.2200/S00683ED1V01Y201511CAC036
https://doi.org/10.2200/S00683ED1V01Y201511CAC036
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1145/2976740
https://doi.org/10.1145/2976740
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/3297858.3304006
http://doi.acm.org/10.1145/3297858.3304006
http://doi.acm.org/10.1145/3297858.3304006

	A Case for Partial Co-Allocation Constraints in Compressed Caches

