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Designing 2D and 3D Non-Orthogonal Frame Fields

David Desobry, Yoann Coudert-Osmont, Etienne Corman, Nicolas Ray, Dmitry Sokolov

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract

We present a method for direction field design on surface and volumetric meshes supporting non-orthogonality. Our approach is a
generalization of the representation of 3D cross fields in spherical harmonic basis. As such it induces a geometrically meaningful
measure of smoothness, allows orthogonality control by a simple parameter and enables orientation constraints of a single direction.
To the best of our knowledge this is the first work to propose non-orthogonal 3D frame field design. We demonstrate the applicability
of our method to generate anisotropic quadrangular and hexahedral meshes which are particularly useful for remeshing CAD models.
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Introduction

Designing tangent vector fields is a fundamental component
of geometry processing. If it is predominantly used for surface
remeshing [1] it has also applications in stylized rendering [2],
BRDF modification [3], fabrication [4] and sketch based mod-
eling [5, 6]. Vector field design is often a single step of a more
involved pipeline. Since each application has its own needs it is
important to provide robust and flexible algorithms.

Typical applications like parametrization require to design N-
Directions vector fields: 2D frame fields with 2-directions for
quad-meshes [1] and 3D frame fields with 3-directions on a vol-
umetric domain for hex-meshing [7]. Early works only allowed
the design of orthogonal fields, often called cross fields, to guide
the orientation of the quads or hexes. However, the orthogonal-
ity constraint is often too restrictive and does not offer enough
design freedom.

Meshing of CAD models is a typical example of how limit-
ing orthogonality is. In these models it is common to encounter
chamfers and sharp corners. Cross fields simply cannot meet
these design constraints as demonstrated in Figure 4 and Fig-
ure 11. Many articles propose custom solutions to stray away
from the dull isotropic-right-angled frames, by creating a new
representation [8], by deforming the mesh [9] or by modifying
the metric tensor [10]. When doing so, three challenges must be
overcome.

First they must design a new representation or framework in
which to define their vector fields. This representation is highly
impacted by the dimensionality of the targeted space. In many
cases, representation well-suited for surfaces, like the represen-
tation vector for 2D cross field with complex numbers [11, 12, 8],
cannot be directly extended to volumetric meshes. Instead a com-
pletely different approach was introduced taking advantages of
the symmetries of the spherical harmonic basis [13]. This situ-
ation leads to large body of literature declining vector field de-
sign in various setups: surface or volumetric meshes, isotropic or
anisotropic, orthogonal or non-orthogonal, sometimes cube sym-
metry or higher order symmetry. . . with no or little overlaps in
these methods.

A common design requirement is to find the smoothest vector
field interpolating between constraints. So once the represen-
tation is fixed the second challenge is to build a geometrically
meaningful measure of smoothness of the field. This is of key

importance as a non-geometrically based measure might lead to
non-intuitive vector field design.

The third challenge is to be able to impose user defined con-
straints within the chosen representation. Such constraints may
be as-simple-as a hard constraint on the vector field, more subtle
like fixing one direction of the frame and let the other directions
rotate freely or allow control over the orthogonality of the frame.

Contributions. In this paper, we represent sets of directions (or
direction fields) as a polynomial function on a circle or a sphere
(depending on the dimensionality). This representation is di-
rectly inspired by the spherical harmonic representation of 3D
cross fields introduced in [13]. By designing polynomials, we
can choose the number of symmetries and the shape of the frame
as illustrated in Figures 2 and 8. This representation allows rota-
tion of each direction independently which creates a paramet-
ric space of anisotropic non-orthogonal frames in any dimen-
sion. Unlike previous methods, ours addresses efficiently the
three challenges:

1. The field representation is readily working for surfaces and
volumetric meshes;

2. It offers a geometrically meaningful notion of smoothness;
3. Any type of direction fields can be designed and a simple

parameter allows control over the orthogonality.

The rest of the paper will be organized as follow. Section 1
gives a general “recipe” to design direction fields of any dimen-
sion, thanks to a representation based on a sum of atomic poly-
nomials. This theoretical framework is then applied to 2D frame
field design in Section 2 and to generation of 3D frame fields in
Section 3. In these sections, we will demonstrate the usefulness
of our representation for quad-meshing and hex-meshing.

Related work

Frame fields on surfaces and volumes have a wide range of
applications in computer graphics. In this paper, we will focus
on global parametrization. Cross fields and more generally frame
fields have been largely used in two dimension for quadrangular
remeshing [1], design of 6-symmetry vector fields can produce
highly regular triangular remeshes [14] and 3D frame fields are a
common tool for hexahedral mesh generation [7].
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Although symmetric vector fields of two and three dimensions
share many applications, their representation are vastly diver-
gent. In fact, many well established 2D vector field design meth-
ods cannot be extended to 3D.

Frame field design on surfaces
Cross fields have been explored extensively in the past decade.

They were first introduced in computer graphics to place hatches
in non photorealistic rendering [2]. They were soon generalized
to n-symmetry vector fields [15, 11] by representing a cross as a
nth root of a complex number. The smoothness of a field is simply
obtained by measuring the similarity of pairs of adjacent frames.
This leads to a simple quadratic optimization problem allow-
ing alignment constraints [11, 12] or singularity constraints [16].
Cross field design surveys can be found in [17] and [18].

Liu et al. [19] proposed a generalization of cross fields by al-
lowing them to be non-orthogonal. The goal was to generate
quad meshes with the possibility for each element to stray away
from a perfect square. However, this method requires to com-
pute an explicit matching between the vector set to disambiguate
the symmetry. More recent works generate anisotropic and non-
orthogonal frame fields by deforming the mesh or designing a
new metric [9, 10]. Processing metric tensors is a costly which
implies to solve an intricate optimization problem with multiple
objectives. These methods could be generalized to volumetric
meshes but at great computational cost since symmetric 3-tensors
have twice as much degrees of freedom as 2-tensors.

Closer to our work is the representation of n-symmetry, non-
orthogonal vectors as a root of a complex polynomial [8, 20]. The
authors remarked that a set of 2D directions can be seen as the set
of roots of a complex polynomial. In this setup, a deformation
of the frame amounts for a modification of the polynomial coef-
ficients. Therefore, they use polynomial coefficients to uniquely
represent each frame. Like the representation described in the
present paper, the complex polynomial representation is invari-
ant by reordering of the direction set. However, this choice of
variables blurs the link with the geometry of the frame and cre-
ate two limitations not present in our work. First, in order to find
smooth frame fields, a smoothness energy is applied to the poly-
nomial coefficients. Although the smoothness of the field implies
the smoothness of the coefficients, this notion of smoothness is
not geometrically rooted and may introduce bias. An in depth
discussion is provided in Section 2.5. Second, this representa-
tion does not generalize to higher dimensions.

3D frame fields and volumetric representation
The 3D cross fields, sometimes referred to as octahedral fields,

are commonly used for hexahedral meshing [14]. A single frame
consists of three orthogonal vectors and their opposite, thus a 3D
cross has the same symmetries than a cube. Huang et al. [13] pro-
posed to represent each individual frame by the spherical func-
tion (x, y, z) 7→ x4 + y4 + z4 whose level sets are cube-like. While
seemingly different than the two dimensional case, Ray et al. [21]
noted that it can be understood has a generalization of 2D com-
plex representation vector. In this paper, we will build upon this
observation.

As for the 2D case, generalization to n-symmetry 3D vector
fields [22] and to anisotropic orthogonal frame field [23, 24] have
been proposed by studying the properties of the spherical har-
monic basis. However, to the best of our knowledge, there is no
existing work on non-orthogonal 3D frame field design. More-
over, a representation unifying 2D and 3D direction fields allow-
ing independent direction constraints is still missing.

1. Direction field of any dimension as spherical polynomials

Given a simplicial n-complexF , we consider each facet f ∈ F
as a discrete tangent space. Consequently, in this paper tangent
vector fields will be piecewise constant. To be more specific,
on a triangle mesh our tangent vector fields are defined on faces
of triangles and on a tetrahedral mesh tangent vector fields are
constant per tetrahedron. This is a standard setup for global
parametrization and structured meshing [1, 7]. We denote E the
set of pairs of adjacent facets; namely i, j ∈ F are adjacent if
and only if (i, j) ∈ E. For imposing boundary conditions, we will
need ∂F , the set of boundary facets.

To ease the exposition, we restrict ourselves to flat domains of
Rn. All the concepts introduced in this paper can be transposed
for curved surfaces. One only has to define a notion of parallel
transport as done in previous papers [8, 11].

1.1. Representation of a single frame

We will call a N-Direction set an unordered set
of N unit tangent vectors and their opposite; namely
{u1,−u1, u2,−u2, . . . , uN ,−uN}. A N-Direction field is an
assignment of a direction set per facet. Our goal is to find the
smoothest N-Direction field on a triangle or tetrahedral mesh
satisfying user-defined direction constrains. As a direction set
is unordered, measuring the similarity of two sets can be rather
painful as it requires to correctly match each set. Therefore, we
need a representation of a single direction set that is invariant
to sign change and reordering. Inspired by the 2D and 3D cross
fields representation introduced in [13, 21], we will identify a
direction to a spherical polynomial whose shape and symmetry
is identical.

As a direction is a set of two opposite vectors, it must be repre-
sented by an even degree polynomial in order to match the sym-
metry. Indeed, given a unit vector u, the spherical polynomial
p(s) = ⟨u, s⟩2k for k ≥ 1 integer is independent of the sign of u.
To represent the N-Direction set {ui,−ui | i = 1 . . .N}, we simply
sum over these atomic polynomials:

p(s) =
N∑

i=1

⟨ui, s⟩2k. (1)

Figure 1 illustrates the polynomial representing a unique di-
rection in polar and spherical coordinates. Most interesting to
parametrization applications are the 2D and 3D frames illustrated
in Figures 2 and 8 for k = 2.

Dealing with polar or spherical polynomial may seem difficult
but it is made simple by decomposing it into canonical orthonor-
mal bases.

1.2. Tangent space of a Direction set

Considering a N-Direction set for all possible unit vectors
spans a polynomial subspace denoted P2k,N :

P2k,N :=

 N∑
i=1

⟨ui, s⟩2k | ∀ui ∈ S
n

 .
The function space P2k,N contains only homogeneous polyno-

mials of degree 2k. As such, it is a finite dimensional space and
is spanned by a finite number of orthogonal functions Yℓ. Later,
we will make use of the Fourier basis for 2D direction fields and
the Spherical Harmonic basis for 3D direction fields. Therefore,
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Figure 1: A unique direction (black arrows) represented by a polar (left) and
spherical (right) polynomial of degree 2. The value of the polynomial at each
point of the circle is represented as a variation of the radius in polar coordinates.

any N-Direction set U = {ui,−ui | i = 1 . . .N} is uniquely rep-
resented by the vector of coefficients cℓ(U), ℓ = 1, . . . , L in the
decomposition in the orthogonal basis:

p(s) =
L∑
ℓ=1

cℓ(U)Yℓ(s).

Crucially, the coefficients cℓ(U), like the polynomial p(s), are in-
dependent to reordering and sign changes of the vectors in the
set U. They only depend on the positions of the vectors as a
whole. This representation greatly simplifies the computation of
a distance between two N-Direction sets as it suffices to com-
pute a distance between their polynomial representations. The
representation polynomials have the same shapes as the sets (see
Figures 2 and 8 for an example of frame field) so this distance
has a clear geometrical meaning.

Using the fact that the basis Yℓ is orthogonal, the distance be-
tween a polynomial p1 representing the set of directions U1 and
p2 representing the set of directions U2 is simply the norm of the
difference of the coefficients c:

∥p1 − p2∥
2
2 =

∫
Sn

(p1(s) − p2(s))2 ds

=

L∑
ℓ=1

(cℓ(U1) − cℓ(U2))2 .

1.3. Piecewise constant polynomial PolyVector

A N-Direction field assigns a set Ui per facet i ∈ F . Our
representation replaces the sets Ui by the coefficients cℓ(Ui), ℓ =
1, . . . , L. Our goal is to design smooth N-Direction fields. A
N-Direction field is considered perfectly smooth across an edge
if its polynomial, and thus its coefficients c, are equal. Follow-
ing this intuition, we introduce a smoothness energy, akin to a
discrete Dirichlet energy, by accumulating the distance between
adjacent frames:

Es(U) =
∑

(i j)∈E

L∑
ℓ=1

(
cℓ(Ui) − cℓ(U j)

)2
. (2)

Designing smooth direction fields interpolating constraints
amounts for minimizing the smoothness energy Es with direc-
tion constraints directly imposed on the vector set U. Making
design problems much more accessible than before.

(a) Orthogonal frame (b) Non-orthogonal deformation

Figure 2: A 2-Direction set {u,−u, v,−v} (black arrows) represented by a polar
polynomial of degree four.

1.4. Degree of the representation polynomial

The degree of the polynomial is a parameter that influences
the shape of the frame and the complexity of the optimization
problem. There is a lower bound for the polynomial degree.
In [22], the authors studied spherical polynomial for represent-
ing N-Direction sets evenly distributed in 3D. They remarked
that a polynomial of degree at least 4 was needed to represent
3 orthogonal directions and a 6 degree polynomial was neces-
sary for 6 directions forming the vertices of a regular dodecahe-
dron. Moreover, in order for the N directions of a N-Direction
set to rotate independently the polynomial must be of degree high
enough to represent these variations. However, the complexity of
the coefficients c increases with the polynomial degree thus the
minimization of the smoothness energy in Eq. 2 becomes more
challenging .

In the rest of the paper, we focus on the special case of frame
fields of 2 and 3 dimensions. We will choose the lowest accept-
able polynomial degree, in the present case degree 4 or k = 2 in
Eq.(1). Figures 2b and 8b shows that polynomials of degree 4
are sufficient to catch deformations of a 2D or 3D frame.

2. 2D frame fields

In this section, we focus on frame fields (or 2-Direction fields)
on 2D domains. First introduced in [9], they are extremely useful
for quad-meshing. For 2D domain the representation polynomial
p is defined on a circle and the set of admissible tangent frames
P2k,2 is decomposed on the Fourier basis. We will see that with
this choice of basis, and when the two directions are orthogonal,
our representation is exactly equal to the complex representation
of cross fields used in many articles [15, 11, 12, 8].

2.1. One direction as a polynomial of degree 4

As noted in [21], 2D cross fields can be represented by the
polar polynomial of degree four: p(s) = s4

1+s4
2. In fact, this is the

polynomial of the lowest degree presenting the same symmetry
as a cross. For this reason, we will use degree 4 polynomials to
represent our frame field.

A 2D frame is the set of two directions {u,−u, v,−v}
parametrized respectively by the angles α and β, such that u =
(cosα, sinα) and v = (cos β, sin β). These notations are summa-
rized by Figure 2. Following Eq. (1) our representing polynomial
of degree four reads as the sum:

p(s) = ⟨u, s⟩4 + ⟨v, s⟩4. (3)
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Figure 2 gives an illustration of the shape of an orthogonal
frame (Fig. 2a) and a non-orthogonal frame as represented by
the polar polynomial in Eq. (3).

2.2. Fourier basis
The representing polynomial in Eq. (3) is defined on a unit cir-

cle. It seems natural to use the Fourier basis as an orthogonal
basis to decompose this periodic signal. We will note cℓ,1(α, β)
the coefficients corresponding to the basis functions cos(ℓt) and
cℓ,2(α, β) the coefficients corresponding to the basis functions
sin(ℓt) where ℓ ∈ N is the frequency index.

The sine/cosine basis appears naturally when expressing s =
(cos t, sin t) in the polar coordinate system. The direction poly-
nomial in u simply reads:

⟨u, s⟩4 = |cos t cosα + sin t sinα|4

=
3
4
+

1
2

cos(2t) cos(2α) +
1
2

sin(2t) sin(2α)

+
1
8

cos(4t) cos(4α) +
1
8

sin(4t) sin(4α)

Thus the coefficients of the decomposition of polynomial
frame boils down to:∣∣∣∣∣∣∣∣∣∣∣

c2,1(α, β) = 4 cos(2α) + 4 cos(2β)
c2,2(α, β) = 4 sin(2α) + 4 sin(2β)
c4,1(α, β) = cos(4α) + cos(4β)
c4,2(α, β) = sin(4α) + sin(4β)

(4)

Our frame is represented by only four coefficients in frequen-
cies ℓ = 2 and ℓ = 4. Crucially, the frame is orthogonal (i.e.
β = α + π/2) if and only if the coefficients of second order are
zero. In this case, the frame is solely represented by the vector
(cos(4α), sin(4α)), thus we recover the classic complex represen-
tation of cross fields [15, 11].

2.3. Designing 2D frame fields for quad meshing
In this section, we will set up an optimization problem in or-

der to find the smoothest frame field interpolating between user
prescribed direction constraints. A parameter will allow control
over the orthogonality of the field.

Variables. To ease the resolution of the optimization prob-
lem, we will not directly use the angle α, β or the vector u, v
as variables. Instead, we use the double angle vectors ū =
(cos(2α), sin(2α)) and v̄ = (cos(2β), sin(2β)). The vector ū is
mapped to either u or −u so the change of variables is valid. With
these new variables the coefficients in Eq. (4) now read:∣∣∣∣∣∣∣∣∣∣∣

c2,1(ū, v̄) = 4ū1 + 4v̄1
c2,2(ū, v̄) = 4ū2 + 4v̄2
c4,1(ū, v̄) = 2ū2

1 + 2v̄2
1 − 2

c4,2(ū, v̄) = 2ū1ū2 + 2v̄1v̄2

(5)

Direction constraints. The most common constraint for frame
field design is to impose constant frames at certain faces. In our
framework, setting these constraints is straightforward : one can
compute the angle of each target direction and constraint ū and v̄
to the double angle vectors.

A more interesting constraint, often used for non-orthogonal
quad remeshing (see Fig. 5), is to fix only one direction out of
two. To do so, one can constrain either ū or v̄ to the desired
direction. Note that the choice of ū or v̄ has no impact on the

results as the polynomial representation is invariant by reordering
of the directions. Constraining either ū or v̄ does not affect the
second vector of the frame which can rotate freely.

However, when only one direction is fixed, the second direc-
tion can become degenerate if no unit constraint forces it to be
non-zero. To avoid such phenomenon, we add, for boundary tri-
angles only, a unit norm energy:

Eb(ū, v̄) =
∑
i∈∂F

(
|ūi|

2 − 1
)2
,

where ū is the unconstrained direction. This energy is weighted
by the parameter b.

For our quad meshing results, we constrain the frames at the
boundary to have one direction tangent to the boundary edge. If
a triangle has two boundary edges then the frame is fully con-
strained. In introduction, we emphasis the challenge of remesh-
ing models with sharp corners such as in Figures 4 and 11. To
catch these geometric features, it is important that the directions
are fully constrained where several feature lines meet with acute
or obtuse angles.

Smoothness energy. Following Section 1.3, the smoothness en-
ergy Es on a 2D frame field depends only on the coefficients of
the decomposition Eq. (5). We slightly modify the energy to add
a parameter λ balancing the frequency of order 2:

Es(ū, v̄) = λ
∑

(i j)∈E

∑
m=1,2

(
c2,m(ūi, v̄i) − c2,m(ū j, v̄ j)

)2
+
∑

(i j)∈E

∑
m=1,2

(
c4,m(ūi, v̄i) − c4,m(ū j, v̄ j)

)2
.

Orthogonality parameter. As mentioned in Section 2.2, the or-
thogonality is directly related to second order frequencies. In
the smoothness energy, we weight differently the coefficients
of order 2, thus putting increasing penalty in these frequencies
will lead to frames with constant angle over the entire mesh. If
the field have singularities, due the topology of the domain, the
frames are forced to be orthogonal. Indeed, a non-orthogonal
frame possesses only a π rotation symmetry. So for a singularity
to appear, the field must either rotates and change angle at the
same time or have index 1/2 singularities. Both these solutions
are far more costly in Es than having orthogonal frames. There-
fore, introducing a simple weight λ on second order coefficients
naturally favors orthogonal frames around singularities and by
extension, over the entire shape.

The effect of the orthogonality parameter λ on the frame field
and the quad-meshes is illustrated in Figure 3. The value λ = 1
correspond to the geometric notion of smoothness explained in
Section 1.3. A value greater than one promotes orthogonality and
the frame field becomes increasingly similar to the orthogonal
frame field. A λ lower the one gives more freedom to the frame
field which can be degenerate. As a result, the singularities are
pushed on the boundary of the domain.

The choice of this parameter is dictated by the application and
is often the result of a trade-off. On one hand, orthogonal frames
lead to quad-meshes with elements close to perfect square but can
not deal with sharp corners, omnipresent in CAD models. On
the other hand, non-orthogonal frame fields compensate sharp
features by introducing shearing and on extreme cases removing
singularities from the interior of the domain.
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(a) λ = 0.1 (b) λ = 0.5 (c) λ = 1 (d) λ = 1.5 (e) Orthogonal [25]

Figure 3: Results of our frame field design method for increasing values of the orthogonality parameter λ. Low values (left) push the singularities out of the domain
while high values approaches the cross field obtained by Viertel et al. [25] (right).

(a) Orthogonal (b) λ = 1.5

Figure 4: An orthogonal frame field (4a) cannot be used to generate a quad-mesh
for a model with sharp corners. Our non-orthogonal frame field (4b) provides a
clean solution.

Optimization. Our optimization scheme is based on the MBO
algorithm introduced in [25] to optimize singularity position in
cross fields. The idea is to alleviate the unit norm constraint on ū
and v̄ by alternating between a diffusion step and renormalization
step. Namely, the pair of variables (ū, v̄)n+1 at iteration n + 1
are obtained by minimizing the smoothness energy while staying
close to the iteration n:

(ū, v̄)n+1 = arg min
x,y

Es(x, y)+ bEb(x, y)+ τ∥(x, y)− (ū, v̄)n∥
2
2, (6)

and then renormalizing (ū, v̄)n+1 to unit norm. This scheme
proves to be the most efficient in term of smoothness of the field
and singularity placement. The minimization step is done with
LBFGS [26].

2.4. Results
We assess the usability of our frame field design method in the

context of quad-meshing. All the frame fields are constrained
to have one direction tangent to the boundary of the domain. To
avoid zero norm solutions, the energy promoting unit norm at the
boundary is weighted by b = 10. In all our experiments, the dif-
fusion parameter is set to τ = 1/2. The orthogonality parameter
λ is tuned according to our need but the value 1.5 proves to be a
good compromise in most cases.

(a) (b)

(c) (d)

Figure 5: Our method is able generate nicely shaped quad-meshes by adjusting
the parameter λ = 1.5.

The optimization problem being non-convex, a good initializa-
tion is crucial. We initialize with an orthogonal frame field [11]
to avoid completely degenerate solutions. The choice of the ini-
tial field and its impact on the solution of the optimization are
discussed for the three-dimensional case in Section 3.3 but the
conclusion also applies in 2D. Our optimization typically needs
10 iterations to converge.

The quad-meshes are extracted from a frame field using the
state-of-the-art methods [1, 27].

Quad meshing of CAD models. Generating quad meshing for
CAD models is made challenging by the presence of sharp cor-
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Fig. Faces Init Opti Meshing
3 658 0.017 <1 2
4b 1282 0.026 <1 3
5c 9968 0.177 26 13
5a 18430 0.355 66 30
5d 29000 0.611 120 45
5b 36047 0.775 161 46

Table 1: Computation time in second for each step of our method: initialization
with the orthogonal frame field from [11], solving our non-convex optimization
problem and the quad mesh extraction from [27].

ners: at such places a perfect square cannot fit. Figure 4 illus-
trates this issue. The orthogonal frame field in Fig. 4a is unable to
satisfy the constraints on both side of the sharp angle, thus failing
to produce a valid quad-mesh. Our method generate anisotropic
quad-mesh (Fig. 4b) naturally fitting the sharp corner constraints.
Figure 5 shows a collection of quad-meshes generated from our
non-orthogonal frame fields, see how the boundary constraints
are nicely satisfied with a small number of singularities while
staying away from highly degenerate quads.

Timings. Table 1 shows the timings of each step of our method
for each figure of the paper. The most time consuming step is
the computation of the non-orthogonal frame field as it requires
to solve a non-convex optimization problem. Our algorithm is
implemented in C++ but has not been optimized to reach high
performances. For instance, we remarked that waiting until con-
vergence of the LBFGS step is often unnecessary and the opti-
mization can be stopped earlier. Also, a Newton method could
be used. All the experiments are conducted on a laptop with a
four-core, 2.6 GHz Intel Core i5-10400H and 32 GB of RAM.

2.5. Comparison with PolyVector field [20]
Diamanti et al. [20] uses a representation of frame fields as

coefficients of a complex polynomial. Like ours, their represen-
tation is independent of the direction set ordering. Moreover,
they introduce an energy promoting the integrability of the field,
i.e. such that each direction is the gradient of a function. Like us,
they directly use direction vectors as variables in their numerical
scheme. Thus, their integrability energy could be immediately
added to our optimization.

Distance between frames. Leaving aside numerical optimization
aspects, the main difference resides in the smoothness energy.
The representation used in Diamanti et al. [20] obfuscates the
geometrical meaning of the frame representation, leading the au-
thors to seek smoothness of the coefficients of the complex poly-
nomial instead of the smoothness of the field. In our notation, the
PolyVector representation of a unit frame boils down to replacing
our coefficients c by c̃:∣∣∣∣∣∣∣∣∣∣∣

c̃2,1(α, β) = 2 cos(2α) + 2 cos(2β)
c̃2,2(α, β) = 2 sin(2α) + 2 sin(2β)
c̃4,1(α, β) = 2 cos(2α + 2β)
c̃4,2(α, β) = 2 sin(2α + 2β)

. (7)

If the second order coefficients matches ours in Eq. (4), the
fourth order are significantly different. To compare the distance
defined by our coefficients c and the coefficients c̃ in Eq. (7), we
plot the distance between a frame and all its rotation in Figure 6.
For orthogonal frames, both distances are identical (Fig. 6a). For
non-orthogonal frames the distances differs significantly on two

(a) Crosses (b) Non-orthogonal frames

Figure 6: Polar plot of the distance between two orthogonal frames (Fig. 6a)
and two non-orthogonal frames (Fig. 6b) with respect to the rotation angle. The
distance defined by our representation is plotted in blue and the PolyVector [8]
distance in red. Insets highlights frames positions at local extrama. The PolyVec-
tor distance is not geometrically sound as the maximum distance is reached for
overlapping non-orthogonal frames.

(a) PolyVector field [8] (b) λ = 0.5 (c) λ = 1

Figure 7: The smoothness energy from PolyVector field [20] achieves similar
results than ours for λ = 0.5.

aspects. First, our distance has globally larger values, thus, with
λ = 1 we penalize more the change of angle between frames than
PolyVector. Second, the PolyVector distance does not reach its
maximum at angle π/2 but at an angle where the frames overlap
(Fig. 6b).

Frame field comparison. Using the change of variables (α, β)→
(ū, v̄) in Eq. (7): ∣∣∣∣∣∣∣∣∣∣∣

c̃2,1(ū, v̄) = 2ū1 + 2v̄1
c̃2,2(ū, v̄) = 2ū2 + 2v̄2
c̃4,1(ū, v̄) = 2ū1v̄1 − 2ū2v̄2
c̃4,2(ū, v̄) = 2ū1v̄2 + 2ū2v̄1

,

we can generate PolyVector fields by replacing c by c̃ in our
smoothness energy Es.

Figure 7 compares quad-meshes generated from our non-
orthogonal direction fields with the one obtained from the co-
efficients c̃. We evaluate our method with parameter λ = 0.5
and λ = 1, all other parameters being equal. As expected with
λ = 1, our method leads to a quad-mesh with an additional singu-
larity in the upper right fillet that is not present in the PolyVector
method [20]. We found that both methods leads to similar results
when we set λ to 0.5. Indeed, although the PolyVector frame dis-
tance does not follow a geometric intuition, the difference with
our smoothness energy is most prominent when the the frames
are faraway from each other. Therefore, it does not greatly im-
pact design of smooth fields as adjacent frames are close to each
other.
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(a) Orthogonal frame (b) Non-orthogonal deformation

Figure 8: 3-Direction sets {u,−u, v,−v,w,−w} represented by spherical polyno-
mials of degree 4.

3. 3D frame fields

In the particular case of 3D frame fields, each frame has three
directions noted u, v,w. Instead of the Fourier basis, the space
of polynomial P2k,3 is decomposed with the Spherical Harmonic
basis. We will see that when using polynomial of degree 4 our
representation of 3D cross field only needs fourth order Spherical
Harmonic functions much like the most used representation [13].

As noted in [13, 21], 3D cross fields can be represented by the
spherical polynomial of degree four: p(s) = s4

1 + s4
2 + s4

3. This
is, in fact, the polynomial of lowest degree presenting the same
symmetry as a 3D cross. However, higher order polynomials of
even degree could be consider for frame field generation. In order
to keep the computational complexity as low as possible, we will
use degree 4 polynomials.

In this case, the representation polynomial adapted from
Eq. (1) reads:

p(s) = ⟨u, s⟩4 + ⟨v, s⟩4 + ⟨w, s⟩4, (8)

and is plotted in two configurations in Figure 8.

3.1. Spherical Harmonic decomposition
The Spherical Harmonic functions constitute an orthogonal

basis for spherical functions. In computer graphics, they have
notably been used for BRDFs approximation for real-time ren-
dering [28, 29].

Spherical Harmonics functions Ym
ℓ : S2 → R are identified by

two indices : ℓ the band index, corresponding to the frequency of
the signal, and m spanning all functions within the frequency ℓ.
Any spherical function f : S2 → R is uniquely decomposed as:

f (s) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

fℓ,mYm
ℓ (s).

Zonal harmonics. Decomposing the representation polynomial
of Eq. (8) in the Spherical Harmonics basis is made simple due to
their rotational invariance. In particular, the spherical polynomial
f : s 7→ s4

3, representing the direction z, is invariant by rotation
around the z-axis. Thus, its decomposition in SH only uses the
functions Y0

ℓ
, ℓ ≥ 0:

f (s) = 63Y0
0 + 36Y0

2 (s) + 8Y0
4 (s).

Such functions are called zonal harmonic function and have
one fundamental property: their rotation to an arbitrary unit axis
u is easily computed in the SH basis [30]:

⟨u, s⟩4 = 63Y0
0 Y0

0 + 36
2∑

m=−2

Ym
2 (u)Ym

2 (s) + 8
4∑

m=−4

Ym
4 (u)Ym

4 (s).

Figure 9: Extruded square with curl. The first result uses an orthogonal field, the
second uses our fields. The following two images simply add more curl to the
extrusion. Sharp corners (disk highlights) are better captured with our fields. The
layer of hexahedra inside the volume also remains parallel to the extremities.

Thus, the decomposition of the frame field polynomial in
Eq. (8), is simply the sum of the above decomposition:∣∣∣∣∣∣ c2,m(u, v,w) = Ym

2 (u) + Ym
2 (v) + Ym

2 (w),
c4,m(u, v,w) = Ym

4 (u) + Ym
4 (v) + Ym

4 (w). (9)

Very much like 2D frames, 3D frames only have coefficients
in band ℓ = 2 and ℓ = 4. One can check from the expression of
the SH that a frame with uniform length (i.e. |u| = |v| = |w|) is
orthogonal if and only if all the coefficients c2,m are zero. So, for
orthogonal frames we recover the basic property used when de-
signing 3D cross fields [13, 21]: all rotations of the polynomial∑

i=1,2,3 s4
i are spanned by the SH of band 4. However, Equa-

tion (9) is more precise and gives the exact relation between the
SH coefficients and the frame deformation.

3.2. Designing 3D frame fields with constraints

Unlike the 2D case, there is no obvious change of variables
simplifying the expression of the coefficients in Eq. (9). There-
fore, we keep the three unit vectors u, v,w ∈ S2 as variables.
Like previous works [13, 21, 24], performing computation in the
space of direction fields requires to solve a non-convex optimiza-
tion problem.

Direction constraints. Direction constraints are easily set by di-
rectly constraining u,v or w. We can fix one, two or three direc-
tions at a time. The choice of which of these variables is fixed
does not impact the results as our representation is agnostic to re-
ordering of the direction set. This is very convenient for bound-
ary conditions in global parametrization problems.

In all our experiments, a frame associated to a boundary facet
has its directions constrained by vectors normal to the boundary.
If a tet has one, two or three boundary triangles then the frame
must satisfy one, two or three direction constraints.

Smoothness energy. The smoothness energy is a simple distance
between coefficients of the decomposition of two adjacent frames
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as explained in Section 1.3:

Es(u, v,w) = λ
∑

(i j)∈E

2∑
m=−2

(
c2,m(ui, vi,wi) − c2,m(u j, v j,w j)

)2
+
∑

(i j)∈E

4∑
m=−4

(
c4,m(ui, vi,wi) − c4,m(u j, v j,w j)

)2
.

Orthogonality parameter. As noted in Section 3.1, the orthog-
onality of the frame is related to the coefficients of the second
band. Thus, we penalize the band coefficients ℓ = 2 in the energy
with a weight λ. Increasing λ means that it is harder for the field
to change its angle and favor fields with constant angle between
its directions. As singularities have smaller energy when the field
is orthogonal around singularities, this simple parameter on the
order 2 coefficients forces global orthogonality of the field.

Figure 10 illustrates the effect on parameter λ on hexmeshes
generation. Values lower than one generates polycube like
parametrization with the singularities are at the boundary of the
domain while values greater than one approach the cross field
solution generated by [21].

3.3. Hex-meshing of CAD models
We evaluate the quality of our 3D frame fields by their abil-

ity to generate hex-meshes. In all our experiments, hex-meshes
are extracted from the frame field using the state-of-the-art
method [7, 31]. The orthogonal frames are generated using [21].

The optimization is done the same way as for 2D frame fields.
We iterate between minimizing Eq. (6) with a diffusion parame-
ters τ = 1, b = 100 and renormalization of the vectors u, v and
w.

The presence of sharp corners is a classic challenge for hex-
remeshing methods. This situation occurs frequently for CAD
model and is often badly handled by cross fields which collapses
the hexes at the corner as in Figure 11a. Whereas the direction
field designed by our method introduces a singularity and a valid
hexmesh can be extracted (Figure 11b). To produce such results,
it is primordial that frames at sharp corners are fully constrained.

Figure 9 also highlights the necessity of non-orthogonal frame
fields to capture sharp corners. Cross fields generates hexmeshes
with heavily distorted or missing elements while our method is
able to fit a valid hex element in the corner.

In Figure 12, the presence of shear forces the orthogonal
frames to oscillate to satisfy the boundary constraints while our
frame field can remain constant.

Initialization. The energy Es is non-convex, thus its outcome is
highly dependent of the initialization. Figure 13 compares so-
lutions of our optimization problem for three different starting
points. The initialization with a random orthonormal frame field
always converges to the same solution (Fig. 13b). An initial-
ization with a smooth cross field [21] needs less iterations to
reach convergence but the solution is still the same (Fig. 13a).
As reported in Table 2, this reduces (sometimes considerably)
the computation time. However, our optimization scheme gets
trapped in a local minimum when initiated with a random field
with nearly flat frames (Fig. 13c). At convergence, the total en-
ergy is higher than the optimal solution. Moreover, the field is
corrupted by degenerate frames (circled in red) making it useless
for meshing applications.

In all our experiments, we initialize the optimization with the
smooth orthonormal frame field obtained by [21].

Fig. Tets Init Opti Meshing
13a 862 0.016 22 0.7
13b 862 – 25 0.7
13c 862 – 26 –
9 4420 0.096 31 3.0

10 13225 0.349 454 8.4
12b 10788 0.332 305 7.7

Table 2: Computation time in second for each step of our 3D frame field design
method: initialization with an orthogonal field [21], solving our non-convex op-
timization problem and the hex-mesh extraction using [31].

Timings. Table 2 lists the computation time for generating a non-
orthogonal frame field with our method. Again, the most time
consuming step is the computation of the non-orthogonal frame
field as it requires to solve a non-convex optimization problem.
All the experiments are conducted on a laptop with a four-core,
2.6 GHz Intel Core i5-10400H and 32 GB of RAM. All algo-
rithms are implemented in C++.

4. Conclusion

In this paper, we introduced a representation of direction fields
common to surfaces and volumes, allowing constraints on one,
two or three directions independently with an intuitive control on
the frame orthogonality. We demonstrated that it can be useful
for many geometry processing applications such as anisotropic
planar and volumetric remeshing.

While our optimization is non-convex and more challenging
than standard cross field representation, it allows more flexi-
ble constraints which are better suited for global parametrization
problems.

In the future, we plan to study integrable direction fields, i.e.
fields whose directions are gradients of scalar functions. This
is fundamental to guarantee the existence of a bijective global
parametrization. This work has been conducted for fields on sur-
faces but is still missing for volumetric meshes. With our repre-
sentation we can hope to extend two dimensional results to 3D.
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