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Abstract We investigate the isogeny graphs of supersingular elliptic curves over F?2 equipped with a 3-isogeny

to their Galois conjugate. These curves are interesting because they are, in a sense, a generalization of curves

defined over F?, and there is an action of the ideal class group of Q(
√
−3?) on the isogeny graphs. We investigate

constructive and destructive aspects of these graphs in isogeny-based cryptography, including generalizations of

the CSIDH cryptosystem and the Delfs–Galbraith algorithm.
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1 INTRODUCTION

Supersingular isogeny graphs of elliptic curves over F?2 , with their rich number-theoretic and combinatorial
properties, are at the heart of an increasing number of pre- and post-quantum cryptosystems. Identifying and
exploiting special subgraphs of supersingular isogeny graphs is key to understanding their mathematical properties,
and their cryptographic potential.

Isogeny-based cryptosystems roughly fall into two families. On one hand, we have the cryptosystems that
work in the full ℓ-isogeny graph for various ℓ, including the Charles–Goren–Lauter hash [13], SIDH [30, 23,
17], SIKE [31], OSIDH [16], SQISign [24], and many more. These systems take advantage of the fact that the
supersingular ℓ-isogeny graph is a large regular graph with large diameter and excellent expansion and mixing
properties (indeed, it is a Ramanujan graph).

On the other hand, we have cryptosystems that work in the F?-subgraph supported on vertices defined over F?
(or with 9-invariants in F?), such as CSIDH [11], CSI-FiSh [7], and CSURF [10]. These cryptosystems, many of
which represent optimizations and extensions of pioneering work with ordinary curves due to Stolbunov [43, 46]
and Couveignes [18], take advantage of the fact that the F?-endomorphism rings of these curves are an imaginary
quadratic ring, and the ideal class group of this ring has a convenient and efficiently-computable commutative
action on the F?-subgraph. This group action allows us to define many simple and useful cryptosystems, but it
also explains the structure of the F?-subgraph, allowing us to use it as a cryptanalytic tool [21] and as a convenient
point-of-reference when exploring structures in the full supersingular isogeny graph [1].

This paper investigates a family of generalizations of the F?-subgraph, one for each squarefree integer 3. The
key is to recognise that a curve E/F?2 has its 9-invariant in F? precisely when E is isomorphic to the conjugate

curve E (?)/F?2 defined by ?-th powering the coefficients of E, and the edges of the F?-subgraph correspond to
isogenies that are compatible with these isomorphisms. In this paper, we relax the isomorphisms to 3-isogenies,
and consider the cryptographic consequences. We obtain a series of distinguished subgraphs of the supersingular
isogeny graph, each equipped with a free and transitive action by an ideal class group.

We define (3, n)-structures—essentially, curves with a 3-isogeny to their conjugate—and the isogenies between
them in §2. While (3, n)-structures are defined over F?2 , in §3 we show that they have modular invariants in F?,
and give useful parameterizations for 3 = 2 and 3. We narrow our focus to supersingular curves in §4, using the
theory of orientations to set up the class group action on (3, n)-structures. We give some illustrative examples of
isogeny graphs of supersingular (3, n)-structures in §5, before turning to cryptographic applications in §6.

Isogeny graphs of (3, n)-structures are a natural setting for variants of CSIDH (and closely related cryptosys-
tems). We give arguments for the security of such cryptosystems in §6.1. We outline a non-interactive key exchange
in §6.2, generalizing CSIDH (which is the special case 3 = 1), and highlight some of the subtleties that appear
when we move to 3 > 1. Optimized implementation techniques are beyond the scope of this article.

The isogeny graphs formed by (3, n)-structures form interesting geographical features in the full supersingular
isogeny graph. Charles, Goren, and Lauter investigated random walks that happen to hit (3,±1)-structures in the
security analysis of their hash function [13, §7]; random walks into (ℓ,±1)-structures are also key in the path-finding
algorithm of [22]. Further heuristics in this direction appear in [1]. Here, we consider these vertices not in isolation,
but within their own isogeny graphs; thus, we obtain a series of generalizations of the “spine” of [1], and a broad
generalization of the Delfs–Galbraith isogeny-finding algorithm [21] in §6.4.

*Corresponding Author: mathilde.chenu@inria.fr ; benjamin.smith@inria.fr
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Notation and conventions. If E is an elliptic curve, then End(E) denotes its endomorphism ring and End0 (E)
denotes End(E) ⊗ Q. Each elliptic curve E/F?2 has a Galois-conjugate curve E (?) , defined by ?-th powering
all of the coefficients in the defining equation of E. The curve and its conjugate are connected by inseparable
“Frobenius” ?-isogenies c? : E → E (?) and c? : E (?) → E, defined by ?-th powering the coordinates (abusing

notation, all inseparable ?-isogenies will be denoted by c?). Observe that (E (?) ) (?) = E, and the composition of
c? : E → E (?) and c? : E (?) → E is the ?2-power Frobenius endomorphism cE of E. Conjugation also operates

on isogenies: each isogeny q : E → E ′ defined over F?2 has a Galois conjugate isogeny q (?) : E (?) → E ′ (?) ,
defined by ?-th powering all of the coefficients in a rational map defining q. We always have

(q (?) ) (?) = q and c? ◦ q = q (?) ◦ c? ,

and conjugation thus gives an isomorphism of rings between End(E) and End(E (?) ).

2 CURVES WITH A 3-ISOGENY TO THEIR CONJUGATE

Let ? > 3 be a prime, and 3 a squarefree integer prime to ?. Typically, ? is very large and 3 is very small.
We are interested in elliptic curves E/F?2 equipped with a 3-isogeny k : E → E (?) . Given any such 3-isogeny

k, we have two returning 3-isogenies:

k (?) : E (?) → E and k̂ : E (?) → E .

Definition 1. Let E/F?2 be an elliptic curve equipped with a 3-isogeny k : E → E (?) to its conjugate. We say

that (E, k) is a (3, n)-structure if

k̂ = nk (?) with n ∈ {1,−1} .
Each (3, n)-structure (E, k) has an associated endomorphism

` := c? ◦ k ∈ End(E) .

We say that (E, k) is ordinary resp. supersingular if E is ordinary resp. supersingular.1

Proposition 1. If (E, k) is a (3, n)-structure and ` is its associated endomorphism, then

`2 = [n3]cE .

If cE is the Frobenius endomorphism of E and CE is its trace, then there exists an integer A such that [A]` = [?]+ncE
in End(E), 3A2 = 2? + nCE in Z, and the characteristic polynomial of ` is %` ()) = )2 − A3) + 3?.

Proof. We have kc? = c?k
(?) , so `2 = c?kc?k = c? (c?k (?) )k = cE (k (?)k). Now k (?) = nk̂ (because

(E, k) is a (3, n)-structure), so k (?)k = [n3], and therefore `2 = [n3]cE . For the rest: ` has degree 3?, so
it satisfies a quadratic polynomial %` ()) = )2 − 0) + 3? for some integer 0. The first assertion then implies
[0]` = `2 + [3?] = [n3]cE + [3?]. Squaring, we obtain

( [0]`)2 = [3]2(c2
E + ?2) + 2[3?] [n3]cE = [3]2(CEcE) + 2[3?] [n3]cE = [n3]cE ( [n3]CE + 23?) ,

so 02 = n3CE + 23?, hence 3 | 02. But 3 is squarefree, so 3 | 0, and then A = 0/3 satisfies the given conditions. �

Remark 1. In the situation of Proposition 1: if E is ordinary, then Z[`] and Z[cE] are orders in Q(cE) of

discriminant 32A2 − 43? and C2E − 4?2 = A2(32A2 − 43?), respectively, so |A | is the conductor of Z[cE] in Z[`].
(The supersingular case is treated in detail in §4.)

Definition 2. Let (E, k) and (E ′, k′) be (3, n)-structures. We say an isogeny (resp. isomorphism) q : E → E ′ is

an isogeny (resp. isomorphism) of (3, n)-structures if k′q = q (?)k, that is, if the following diagram commutes:

E E (?)

E ′ (E ′) (?)

k

q q (?)

k′

1We focus on curves defined over F
?2 because our applications involve supersingular curves, and every supersingular curve is isomorphic

to a curve over F?2 . One might consider isogenies to conjugates over higher-degree extensions, but then in general we do not have the relation

k̂ = ±k (?) , which is fundamental to our results.
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It is easily verified that isogenies of (3, n)-structures follow the usual rules obeyed by isogenies: the composition
of two isogenies of (3, n)-structures is an isogeny of (3, n)-structures, the dual of an isogeny of (3, n)-structures is
an isogeny of (3, n)-structures, and every (3, n)-structure has an isogeny to itself (the identity map, for example).
Isogeny therefore forms an equivalence relation on (3, n)-structures.

If (E, k) is a (3, n)-structure with associated endomorphism `, then

−(E, k) := (E,−k) and (E, k) (?) := (E (?) , k (?) )

are (3, n)-structures with associated endomorphisms −` and ` (?) , respectively. If q : (E, k) → (E ′, k′) is an
isogeny of (3, n)-structures, then q : −(E, k) → −(E ′, k′) and q (?) : (E, k) (?) → (E ′, k′) (?) are also isogenies
of (3, n)-structures. We thus have two involutions, negation and conjugation, on the category of (3, n)-structures
and their isogenies.

Remark 2. The isogenies k and c? : E → E (?) are both in fact isogenies of (3, n)-structures (E, k) → (E, k) (?) .

Twisting. Let U be an element of F? \ {0}. For each elliptic curve E : H2 = G3 + 0G + 1, there is a curve

EU/F?2 (U2) : H2 = G3 + U40G + U61

and an F?2 (U)-isomorphism gU : E → EU defined by (G, H) ↦→ (U2G, U3H). Abusing notation, we write gU for

this map on every elliptic curve; with this convention, gV ◦ gU = gUV . If X is a nonsquare in F?2 then E
√
X is the

quadratic twist (which, up to F?2 -isomorphism, is independent of the choice of nonsquare X) and g√
X

is the twisting

isomorphism. For each isogeny q : E → E ′ defined over F?2 , there is an F?2 (U2)-isogeny

qU := (gU ◦ q ◦ g1/U) : EU −→ (E ′)U .

Now let (E, k) be a (3, n)-structure with associated endomorphism `. If again we choose a nonsquare X in F?2 ,

and a square root
√
X of X in F?4 , then in general (E

√
X , k

√
X) is not a (3,±1)-structure (because conjugation and

twisting generally do not commute); but (E, k)
√
X := (E

√
X , g(

√
X) (?−1) ◦k

√
X) is a (3,−n)-structure with associated

endomorphism `
√
X . The F?2 -isomorphism class of (E, k)

√
X is independent of the choice of X; we call (E, k)

√
X

the quadratic twist of (E, k). Note that ((E, k)
√
X)

√
X
� (E, k). If q : (E, k) → (E ′, k′) is an isogeny of (3, n)-

structures, then q
√
X induces an isogeny of (3,−n)-structures q

√
X : (E, k)

√
X → (E ′, k′)

√
X . Twisting therefore

takes us from the category of (3, n)-structures into the category of (3,−n)-structures and back again.

Example 1. Consider the case 3 = 1. Each (1, 1)-structure is F?2-isomorphic to the base-extension to F?2 of a

curve defined over F? (with the 1-isogeny being [±1]); the associated endomorphism is the ?-power Frobenius

endomorphism on the base-extended curve, and the integer A of Proposition 1 is the trace of the ?-power Frobenius.

Each (1,−1)-structure is the quadratic twist of a (1, 1)-structure: essentially, an ordinary (1,−1)-structure is

isomorphic to a GLS curve [26]. This discussion should be compared with the remark at the end of [44, §3].

3 PARAMETRIZATIONS AND MODULAR CURVES

For our computations, we can represent a (3, n)-structure (E, k) as (E, 5k , U), where 5k is the kernel polynomial
of k (that is, the monic polynomial whose roots are the G-coordinates of the nonzero points in kerk) and U is the
element such that k = gU ◦ k̃, where k̃ : E → E/kerk is the normalized “Vélu” isogeny.

We want a more space-efficient encoding of isomorphism classes of (3, n)-structures, both as a canonical
encoding for vertices in isogeny graphs, and for transmission of (3, n)-structures used as cryptographic values.

While (3, n)-structures may seem to be relatively complicated objects over F?2 , their isomorphism classes
can be encoded to little more than a single element of F? . Briefly: the key is to take the quotient by negation,
which maps the set (3,n of isomorphism classes of (3, n)-structures over F?2 into -0(3) (F?2 ), where -0(3) is
the level-3 modular curve. Then, the Atkin–Lehner involution l3, which maps a modular point onto its “dual”,
acts as conjugation on the image of (3,n . Writing -+

0 (3) = -0(3)/〈l3〉, we have a four-to-one map from (3,n

onto -+
0 (3) (F?), identifying the isomorphism class of (E, k) with −(E, k), (E, k) (?) , and −(E, k) (?) . We can

therefore represent an element of (3,n as a point in -+
0 (3) (F?) plus two bits (one to determine the sign, the other

the conjugate). Since -+
0 (3) is a curve, we can further compress the representative point in -+

0 (3) (F?) to one
element of F? plus a few bits. This step depends strongly on the geometry of -+

0 (3) (F?): for example, if -+
0 (3)

has genus 0 then we can rationally parametrize it, giving a simple compression of points in -+
0 (3) (F?) to single

elements of F? ; if -+
0 (3) is hyperelliptic, then we can compress points in -+

0 (3) (F?) to a single element of F? plus
a “sign” bit in the usual way; and as the gonality of -+

0 (3) increases, so does the number of auxiliary bits required.
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A full development of these representations and the algorithms that operate on them is beyond the scope
of this short article, but we will give useful explicit constructions for 3 = 2 and 3 here, derived from explicit
parametrizations of Q-curves due to Hasegawa [29]. The associated endomorphisms for ordinary curves in these
families have been used to accelerate scalar multiplication algorithms (see [44], where we also find related families
for 3 = 5 and 7, and [28]) and as inputs for specialized point-counting algorithms [37].

3.1 REPRESENTING (2, n)-STRUCTURES

Let Δ be a nonsquare in F? , and fix a square root
√
Δ in F?2 . For each D in F? , the curve

E2,D/F?2 : H2 = G3 − 6(5 − 3D
√
Δ)G + 8(7 − 9D

√
Δ)

has a rational 2-torsion point (4, 0), which generates the kernel of a 2-isogeny k2,D : E2,D → E2,D
(?) defined

over F?2 . If we use Vélu’s formulae to compute the (normalized) quotient isogeny E2,D → E2,D/〈(4, 0)〉, then the

isomorphism E2,D/〈(4, 0)〉 → E2,D
(?) is g1/

√
−2. Composing, we obtain an expression for k2,D as a rational map:

k2,D : (G, H) ↦−→
(
−G
2

− 9(1 + D
√
Δ)

G − 4
,
H

√
−2

(
−1

2
+ 9(1 + D

√
Δ)

(G − 4)2

))
.

Computing the dual isogeny k̂2,D and comparing it with k2,D
(?) , we find that (E2,D , k2,D) is a (2, 1)-structure if

? ≡ 5, 7 (mod 8), or a (2,−1)-structure if ? ≡ 1, 3 (mod 8). (To obtain a family of (2,−1)-structures when
? ≡ 5, 7 (mod 8) or (2, 1)-structures if ? ≡ 1, 3 (mod 8), it suffices to take the quadratic twist.)

3.2 REPRESENTING (3, n)-STRUCTURES

Let Δ be a nonsquare in F? , and fix a square root
√
Δ in F?2 . For each D in F? , the elliptic curve

E3,D/F?2 : H2 = G3 − 3
(
5 + 4D

√
Δ
)
G + 2

(
2D2Δ + 14D

√
Δ + 11

)

has an order-3 subgroup {O, (3,±2(1 − D
√
Δ))} defined by the polynomial G − 3. Taking the quotient with

Vélu’s formulae and composing with g1/
√
−3 yields an explicit 3-isogeny k3,D : E3,D → E3,D

(?) , and we find that
(E3,D , k3,D) is a (3, 1)-structure if ? ≡ 2 (mod 3), or a (3,−1)-structure if ? ≡ 1 (mod 3). (To obtain a family of
(3,−1)-structures when ? ≡ 2 (mod 3) or (3, 1)-structures if ? ≡ 1 (mod 3), take the quadratic twist.)

4 SUPERSINGULAR (3, n)-STRUCTURES

We now come to the main focus of our investigation: supersingular (3, n)-structures and their isogeny graphs.

Definition 3. We write D3,n (?) for the set of supersingular (3, n)-structures over F?2 up to F?2 -isomorphism, and

Γ(D3,n (?)) for the graph on D3,n (?) whose edges are (F?2-isomorphism classes of) isogenies of (3, n)-structures.

For each prime ℓ ≠ ?, we write Γℓ (D3,n (?)) for the subgraph of Γ(D3,n (?)) where the edges are ℓ-isogenies.

Observe that the quadratic twist gives an isomorphism of graphs Γ(D3,n (?)) � Γ(D3,−n (?)).

Proposition 2. Let (E, k) be a (3, n)-structure with associated endomorphism `. If E is supersingular, then

1. `2 = [−3?].
2. The trace of Frobenius satisfies CE = −2n ?, and in particular E(F?2) � (Z/(? + n)Z)2.

Proof. With the notation of Proposition 1: The curve E is supersingular if and only if ? | CE . Now ? ∤ 3, so ? | A
by Proposition 1. The characteristic polynomial %` ()) of ` has discriminant (A3)2 −43?; this discriminant cannot

be positive, so |A | ≤ 2
√
?/3. Since ? | A, we have A = 0, so `2 = [−3?], and CE =

−2?
n

= −2n ?. �

Proposition 2 tells us that if (E, k) is a supersingular (3, n)-structure, then n is completely determined by the
F?2-isogeny class of E. Further, CE can only be ±2?: the special supersingular traces −?, 0, and ? (corresponding
to non-quadratic twists of curves of 9-invariant 0 and 1728, if these are supersingular) cannot occur.
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4.1 ORIENTATIONS

Proposition 2 tells us that the associated endomorphism of each supersingular (3, n)-structure acts like a square
root of −3? in the endomorphism ring. We can make this notion more precise using orientations, as described by
Colò and Kohel in [16] and Onuki in [38]. Before going further, we recall some generalities.

Let  be an imaginary quadratic field, O its ring of integers, and O an order in  . A  -orientation on an
elliptic curve E/F?2 is a homomorphism ] :  → End0 (E); we call the pair (E, ]) a  -oriented elliptic curve.
We say ] is an O-orientation, and (E, ]) is an O-oriented elliptic curve, if ](O) ⊆ End(E). An O-orientation
] :  → End0(E) is primitive if ](O) = End(E) ∩ ]( ): that is, if ] is “full” in the sense that it does not extend to
an O′-orientation for any strict super-order O′ ⊃ O.

Let (E, ]) be a  -oriented elliptic curve. If q : E → E ′ is an isogeny, then there is an induced  -orientation

q∗(]) on E ′ defined by

q∗(]) : U ↦−→ 1

deg(q) q ◦ ](U) ◦ q̂ .

Given two oriented curves (E, ]) and (E ′, ]′), an isogeny q : E → E ′ is said to be  -oriented, or an isogeny of
 -oriented elliptic curves, if ]′ = q∗(]). In this case we write q : (E, ]) → (E ′, ]′). If there exists a  -oriented
isogeny q̃ : (E ′, ]′) → (E, ]) such that q̃ ◦ q = [1]E and q ◦ q̃ = [1]E′, then we say that q is a  -oriented
isomorphism, and we write (E, ]) � (E ′, ]′). Note that q : (E, ]) → (E ′, ]′) is an oriented isomorphism if and only
if the underlying isomorphism of curves q satisfies q ◦ ](U) = ]′(U) ◦ q for all U in  .

If q : (E, ]) → (E ′, ]′) is a  -oriented isogeny, then ] resp. ]′ is a primitive O resp. O′-orientation for some
order O resp. O′ in  . If ℓ = deg q is a prime not equal to ?, then one of the following holds:

• O = O′, and q is said to be horizontal; or

• O ⊂ O′ with [O′ : O] = ℓ, and q is said to be ascending; or

• O ⊃ O′ with [O : O′] = ℓ, and q is said to be descending.
Let O be an order in a quadratic field  such that ? does not split in  or divide the conductor of O.

Following [16], we let SSO (?) denote the set of O-oriented supersingular elliptic curves over F? up to  -oriented
isomorphism. The subset of primitive O-oriented curves (up to  -oriented isomorphism) is denoted by SS

pr
O (?).

For any integral invertible ideal a in O and any O-oriented curve (E, ]), we have a finite subgroup

E[a] := {% ∈ E | ](U) (%) = 0 ∀U ∈ a} .

Now suppose a is prime to the conductor of O in O .2 If qa : E → E/E[a] is the quotient isogeny, then
(qa)∗(]) is an O-orientation on E/E[a], and qa is a horizontal isogeny of O-oriented curves. If a is principal then
(E/E[a], (qa)∗(])) � (E, ]), so the map

(a, (E, ])) ↦→ (E/E[a], (qa)∗(]))

extends to fractional ideals and factors through the class group, and as in [16] we get a transitive group action

Cl(O) × SSO (?) −→ SSO (?) .

Onuki [38] shows that if we restrict to a certain subset of the primitive O-oriented curves, then this action is
transitive and free. Let JO denote the set of 9-invariants of elliptic curves E over C (not F?) with End(E) � O. All
elements in JO are algebraic integers, so an elliptic curve whose 9-invariant is in JO has potential good reduction
at any prime ideal. Since JO is finite, we can take a number field ! and a prime ideal p of ! above ? such that for
all 9 ∈ JO , there exists an elliptic curve over ! with good reduction at p and 9-invariant 9 . Fix an injection of the
residue field of ! modulo p into F?. Let Ell(O) be the set of isomorphism classes of elliptic curves E over ! with
good reduction at ? and 9-invariants in JO . For every such E, we let [·]E be the normalized O-orientation: that
is, such that for any invariant differential l on E, ( [U]E )∗l = Ul for all U in O. Then reduction mod p defines a
map d : Ell(O) → SS

pr
O (?) sending E to (Ẽ, [.] Ẽ), where Ẽ is the reduction of E/! at p and [·] Ẽ is the orientation

such that [U] Ẽ = [U]E (mod p) for all U in O.

Theorem 1 (Onuki [38, Theorem 3.4]). With the notation above: Cl(O) acts freely and transitively on d(Ell(O)).

4.2 THE NATURAL ORIENTATION

From now on we let  = Q(
√
−3?), and let O be the maximal order of  .

2Working with the class group, we can always replace ideals that are not prime to the conductor with equivalent integral ideals that are.
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If (E, k) is a supersingular (3, n)-structure and ` is the associated endomorphism, then

]k : Q(
√
−3?) −→ End0(E)
√
−3? ↦−→ `

is a Z[
√
−3?]-orientation by Proposition 2. We call this the natural orientation.

Lemma 1. If E/F?2 is a supersingular elliptic curve with #E(F?2) = (? + n)2 and ] is a Z[
√
−3?]-orientation on

E, then ] is the natural orientation for some (3, n)-structure (E, k).

Proof. Let ` := ](
√
−3?) in End(E). We have deg(`) = 3? and ? ∤ 3, so ` factors over F?2 into the composition of

a 3-isogeny and a ?-isogeny. Since E is supersingular, the ?-isogeny is isomorphic to c?, and so ` = c?k for some
3-isogenyk : E → E (?) . It remains to show that k̂ = nk (?) . Now [−3?] = `2 = c?kc?k = k (?)c2

?k = k (?)kc2
?,

and c2
? = [−n ?] becauseE is supersingular with #E(F?2) = (?+n)2, so [3] = nk (?)k, and therefore k̂ = nk (?) . �

Lemma 2. Let (E, k) and (E ′, k′) be (3, n)-structures with natural orientations ]k and ]k′, respectively. If

q : E → E ′ is an isogeny, then q is an isogeny (resp. isomorphism) of Z[
√
−3?]-oriented elliptic curves

(E, ]) → (E ′, ]′) if and only if it is an isogeny (resp. isomorphism) of (3, n)-structures (E, k) → (E ′, k′).

Proof. Let ` resp. `′ be the associated endomorphisms of (E, k) resp. (E ′, k′); then

q∗(]k) = ]k′ ⇐⇒ q∗(]k) (
√
−3?) = ]k′ (

√
−3?) (

√
−3? generates Q(

√
−3?)

⇐⇒ q ◦ ` ◦ q̂ = `′[deg q] (multiplying by deg q)

⇐⇒ q ◦ ` = `′ ◦ q (cancelling q̂)

⇐⇒ q ◦ c? ◦ k = c? ◦ k′ ◦ q (by definition)

⇐⇒ c? ◦ q (?) ◦ k = c? ◦ k′ ◦ q (c? ◦ q = q (?) ◦ c?)
⇐⇒ q (?) ◦ k = k′ ◦ q (cancelling c?)

and the result follows on comparing definitions. �

Colò and Kohel [16] and Onuki [38] use class-group actions to study the isogeny graphs Γ(SSO (?)) with vertex
set SSO (?) for different orders O. Proposition 3 allows us to transfer their results to our setting of (3, n)-structures.

Proposition 3. The graphs Γ(D3,n (?)) and Γ(SS
Z[
√
−3? ] (?)) are explicitly isomorphic for n = 1 and n = −1.

Proof. This follows from Lemmas 1 and 2, once we can show that the isomorphism class of any Z[
√
−3?]-oriented

supersingular curve (E, ]) over F? contains a representative over F?2 of order (? + n)2. Since 9 (E) is in F?2 , after a

suitable F?-isomorphism we may suppose that E is defined over F?2 and #E(F?2) = (? + n)2; and then ] is defined
over F?2 because for a supersingular elliptic curve over F?2 all of the endomorphisms are defined over F?2 . �

Let  = Q(
√
−3?). The order Z[

√
−3?] has index 2 in O if −3? ≡ 1 (mod 4), and is equal to O otherwise.

If −3? . 1 (mod 4), then, every natural orientation is a primitive O -orientation; if −3? ≡ 1 (mod 4), each
natural orientation is either a primitive Z[

√
−3?]-orientation or a primitive O -orientation.

Proposition 4. Let (E, k) be a supersingular (3, n)-structure with natural orientation ]k.

1. If −3? . 1 (mod 4), then ]k is a primitive O -orientation.

2. If −3? ≡ 1 (mod 4), then ]k is a primitive O -orientation if the associated endomorphism ` fixes E[2]
pointwise, and a primitive Z[

√
−3?]-orientation otherwise.

Proof. By definition, ]k is a Z[
√
−3?]-orientation. To complete Case (2), it suffices to check whether the element

]k ( 1
2 (−1 +

√
−3?)) = 1

2 (` − [1]) of End0(E) ∩ ]k ( ) is in End(E) (because 1
2 (−1 +

√
−3?) generates O , but is

not in Z[
√
−3?]). This is the case if and only if ` − [1] factors over [2], if and only if ` fixes E[2] pointwise. �

In the light of Propositions 3 and 4, we partition D3,n (?) into two subsets:

D3,n (?) = Dmax
3,n (?) ⊔ Dsub

3,n (?) ,

whereDmax
3,n

(?) contains the classes whose natural orientations are primitiveO -orientations, andDsub
3,n

(?) contains
the classes whose natural orientations are primitive orientations by the order of conductor 2 in O . If −3? . 1
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(mod 4), then Dmax
3,n

(?) = D3,n (?) and Dsub
3,n

(?) = ∅. If −3? ≡ 1 (mod 4), then [O : Z[
√
−3?]] = 2, so

Dmax
3,n

(?) resp. Dsub
3,n

(?) consists of the (3, n)-structures where ` acts trivially resp. nontrivially on the 2-torsion.
Given Lemma 2, ℓ-isogenies of (3, n)-structures are “ascending”, “descending”, and “horizontal” with respect

to the natural orientations: we have horizontal ℓ-isogenies between vertices in Dmax
3,n

(?) and between vertices in

Dsub
3,n

(?), while Dmax
3,n

(?) and Dsub
3,n

(?) are connected by ascending and descending 2-isogenies. In the language

of isogeny volcanoes, vertices in Dmax
3,n

(?) form the “craters”, and vertices in Dsub
3,n

(?) the “floors”.

4.3 THE CLASS GROUP ACTION

Proposition 3 translates the action of Cl(Z[
√
−3?]) on SS

Z[
√
−3? ] (?) defined above into an action on D3,n (?).

Theorem 2 makes this precise: it shows that Dmax
3,n

(?) is a principal homogeneous space (or torsor) under Cl(O ),
and that if Dsub

3,n
(?) is not empty then it is a principal homogeneous space under Cl(Z[

√
−3?]).

Theorem 2. Let  = Q(
√
−3?), with maximal order O , and let n = ±1.

• The class group Cl(O ) acts freely and transitively on Dmax
3,n

(?).

• If Dsub
3,n

(?) ≠ 0, then Cl(Z[
√
−3?]) acts freely and transitively on Dsub

3,n
(?).

Proof. Let O = O or Z[
√
−3?]. Since ? does not split in  , Theorem 1 tells us that Cl(O) acts freely and

transitively on d(Ell(O)) ⊆ SS
pr
O (?). Given the isomorphism of Proposition 3, it only remains to prove that

d(Ell(O)) = SS
pr
O (?). For any (E, ]) in SS

pr
O (?), Proposition 3.3 of [38] tells us that (E, ]) or (E, ]) (?) is in

d(Ell(O)). In our case, both are in d(Ell(O)), so the action on SS
pr
O (?) is free: since E[d] = E[3] ∩ ker ` = kerk,

the action of d = (3,
√
−3?) on SS

pr
O (?) maps (E, ]) to (E, ]) (?) , because it maps (E, k) to (E, k) (?) . �

Corollary 1. Let  = Q(
√
−3?), with maximal order O . If ℎ = # Cl(O ), then

#Dmax
3,n (?) = ℎ and #Dsub

3,n (?) =



ℎ if −3? ≡ 1 (mod 8) ,
3ℎ if −3? ≡ 5 (mod 8) ,
0 otherwise .

Proof. By Theorem 2, we have #Dmax
3,n

(?) = # Cl(O ) and either #Dsub
3,n

(?) = 0 (if −3? . 1 (mod 4)) or

#Dsub
3,n

(?) = # Cl(Z[
√
−3?]) (if −3? ≡ 1 (mod 4)). It remains to compute # Cl(Z[

√
−3?]) in the case −3? ≡ 1

(mod 4), where Z[
√
−3?] has conductor 2. In this case, the formula of [19, Theorem 7.24] simplifies to

# Cl(Z[
√
−3?]) = # Cl(O )

[O×
 

: Z[
√
−3?]×]

(
2 −

(
−3?

2

))
,

where the Kronecker symbol (−3?/2) is 0 if 2 | −3?, 1 if −3? ≡ ±1 (mod 8), and −1 if −3? ≡ ±3 (mod 8). The
result follows on noting that [O×

 
: Z[

√
−3?]×] = 1, because −3? is never −3 or −4. �

Remark 3. The Brauer–Siegel theorem states that asymptotically, log2(ℎ ) ∼ 1
2 log2 |Δ |, where Δ = −3? if

−3? ≡ 1 (mod 4), and −43? otherwise. (See e.g. [34, Ch. XVI] for details.)

4.4 COMPUTING THE CLASS GROUP ACTION

Suppose we want to compute the action of (the class of) an ideal l = (ℓ, 0+1
√
−3?) on some (E, k) in D3,n (?).

Following [20], we consider two approaches: “Vélu” and “modular”.
In the “Vélu” approach, we compute a generator  ℓ of the kernel E[l] of q: that is,  ℓ is a point in E[ℓ]

such that [0]`( ℓ) = −[1] ℓ . This point may only be defined over an extension F?2A of F?2 . We then compute
the quotient isogeny q : E → E ′ := E/〈 ℓ〉 using Vélu’s formulæ, at a cost of $ (ℓ) F?2A -operations, or the

algorithm of [6], in $̃(
√
ℓ) F?2A -operations. Finally, we push k through q by computing the image of its kernel

subgroup and choosing the correct “sign”. If we are given an F?2 -rational generator � for kerk, then pushing k
through q essentially costs one isogeny evaluation; otherwise, this amounts to an exercise in symmetric functions,
with a cost on the order of $ (3) isogeny evaluations. Each evaluation costs $ (ℓ) or $̃ (

√
ℓ) F?2-operations. The

total cost is dominated by the cost of the multiplication by the cofactor #� (F?2A )/ℓ needed to find  ℓ : we have

log (#� (F?2A )/ℓ) = 2A log ?, so constructing  ℓ requires$ (A2 log ?) operations in F?2 .
To compute the action of l on (E, k), we compute � = gcd(Φ3 (-, - ?),Φℓ ( 9 (E), -)) (if 3 = 1, then we take

Φ1(-, - ?) = - ? − -). In general � has only two roots in F?2 , corresponding to the two ℓ-neighbours. In a
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non-backtracking walk we can divide by - − 9 (E ′), where (E ′, k′) is the preceding vertex, to find the next step.
Otherwise, we can distinguish between the two neighbours by examining the action of ` on the ℓ-torsion. Care
must be taken to identify, and to appropriately handle, the exceptional case where a neighbouring 9-invariant admits
multiple (3, n)-structures modulo negation (as with the vertices � and � in the example of Figure 2 below).

To compute gcd(Φ3 (-, - ?),Φℓ ( 9 (�), -)), compute � (-) := Φℓ ( 9 (E), -) in $ (ℓ) F?2 -operations, and then
. := - ? mod � (-) using the square-and-multiply algorithm in $ (ℓ log ?) F?2 -operations. We then compute
/ := Φ3 (-,. ) mod �, and then gcd(/, �), in $ (32ℓ2) F?2 -operations. Generally ℓ is polynomial in log ?, but
typically it is even smaller, and then the dominating step is the computation of . .

As in the ordinary case [20], the Vélu approach is more efficient when A2 < ℓ; in particular, when  ℓ is defined
over F?2 . If we are free to choose ?, then we can optimize systems that use the action of a series of small primes ℓ8
by taking ? such that the ℓ8 split in Z[

√
−3?] and ℓ8 | ? + n , that is, ? = 2 · ∏=

8=1 ℓ8 − n with 2 a cofactor making ?
prime. In the case 3 = 1, this is exactly the optimization that is key to making CSIDH practical.

Remark 4. It would be interesting to look for an expression for the group action operating directly on the parameters

in the Hasegawa families of §3.1 and §3.2.

5 THE SUPERSINGULAR ISOGENY GRAPH

We can now describe the structure of the isogeny graph Γ(D3,n (?)). Factoring isogenies, it suffices to describe
Γℓ (D3,n (?)) for prime ℓ. The class group actions of Theorem 2 imply the isogeny counts in Table 1.

Table 1: The number of horizontal, ascending, and descending ℓ-isogenies from each vertex in the ℓ-isogeny graph.
Prime ℓ Conditions on (3, ?) Vertex (sub)set Horizontal Ascending Descending

ℓ = 2

−3? ≡ 1 (mod 8) Dmax
3,n

(?) 2 0 1
Dsub
3,n

(?) 0 1 0

−3? ≡ 3 (mod 8) Dmax
3,n

(?) 0 0 3
Dsub
3,n

(?) 0 1 0
−3? . 1, 3 (mod 8) D3,n (?) 1 0 0

ℓ > 2 — D3,n (?) 1 + (−3?/ℓ) 0 0

Examples. Figures 1, 2, and 3, display ℓ-isogeny graphs on D3,1 (101), D3,−1(97), and D3,1 (83) for various ℓ
generating the class groups. These figures also form examples of the various 2-isogeny structures listed in Table 1.

�

−� �

−�� (?)

−� (?)

�

−� � (?)

−� (?)

�

−�� (?)

−� (?)

�

−�� (?)

−� (?) �

−�

Figure 1: Γ2(D3,1 (101)) for ℓ = 2. The class group ofQ(
√
−303) is isomorphic toZ/10Z, and generated by an ideal

over 2 (we see this in the length-10 cycle). The correspondence between vertex labels and parameters for the degree-3
Hasegawa family of §3.2(withΔ = 2) is � ↔ 0, � ↔ 6,� ↔ 24,� ↔ 25, and � ↔ 42; the special vertex �, which
has no Hasegawa parameter, is (E, k) with E : H2 = G3 + 1 and k : (G, H) ↦→ ((67G3 + 66)/G2, (89G3 + 96)

√
2H/G3).

Note that � (?) = −� and � (?) = −�. The underlying curves of � and � are isomorphic.

Involutions. There are two obvious involutions onΓ(D3,n (?)), negation and conjugation. These are generally not
the only involutions. Every prime ℓ dividing the discriminant ramifies inO (andZ[

√
−3?]); the prime l over ℓ gives

an element of order 2 in Cl(O ) (and Cl(Z[
√
−3?])), and thus an involution on Γ(D3,n (?)). Let d1, . . . , d= be the

primes above the prime factors of 3, and p the prime above ?; note that [d1] · · · [d=] = [p], because d1 · · · d=p = (`).
If −3? ≡ 1 or 2 (mod 4) then Cl(O ) [2] = 〈[d1], . . . , [d=], [p]〉, so Cl(O ) [2] � (Z/2Z)=. If −3? ≡ 3
(mod 4), then Cl(O ) [2] = 〈[a], [d1], . . . , [d=], [p]〉 where a is the ideal above 2, and Cl(O ) [2] � (Z/2Z)=+1.

8



�

−� −� � −� (?)

� (?) � (?) −� (?)

� (?)

−� (?) −� (?) � (?)

−�

� � −�

Figure 2: The isogeny graphs Γ2(D3,−1 (97)) (solid) and Γ5(D3,−1 (97)) (dotted). We have Cl(Q(
√
−3 · 97)) �

Z/4Z, generated by an ideal over 5. The 2-isogenies are ascending/descending up/down the page; the 5-isogenies
are horizontal. The correspondence between vertex labels and parameters for the degree-3 Hasegawa family of §3.2
(with Δ = 5) is � ↔ 47, � ↔ 1, � ↔ 14, and � ↔ 22. The underlying curves of � and � are isomorphic.

� (?)
� −�

−� (?)

��

�

−� −� (?)

−�
� (?)� (?)

Figure 3: Γℓ (D3,1 (83)) for ℓ = 2 (solid), ℓ = 3 (dashed) and ℓ = 5 (dotted). All isogenies are horizontal. We
have Cl(Q(

√
−3 · 83)) � Z/2Z × Z/6Z, with the Z/2Z-factor generated by the ideal above 3, and the Z/6Z-factor

generated by an ideal above 5 (we see this in the length-6 cycles); the ideal above 2 is the cube of an ideal above 5.
The correspondence between vertex labels and parameters for the degree-3 Hasegawa family of §3.2 (with Δ = 2)
is � ↔ 0, � ↔ 32, � ↔ 40; the special vertex �, which has no Hasegawa parameter, is (E : H2 = G3 + 1, k) where
k maps (G, H) to (((72

√
2 + 14)G3 + (39

√
2 + 56))/G2,

√
2(35G3 + 52)H/G3). Note that −� = � (?) .

In each case, the action of the ideal class
∏
8 [d8] = [p] on any (3, n)-structure (E, k) is realised by the isogeny

k : (E, k) → (E (?) , k (?) ), and is therefore equal to the conjugation involution.
Since the group actions are free, each of the involutions that come from nontrivial 2-torsion elements in the

class groups—including conjugation—has no fixed points. Negation, on the other hand, can have fixed points:
for example, if ? ≡ 3 (mod 4) and E is the curve with 9-invariant 1728, and 8 is an automorphism of degree 4,
then (E, 8) is a (1, 1)-structure, and (E, 8) � (E,−8). This is the only fixed point among (1, 1)-structures, and its
existence is implied by the fact that the class number of Cl(√−?) is odd when ? ≡ 3 (mod 4).

Remark 5. If −3? ≡ 5 (mod 8), then there is an order-3 automorphism ) of Dsub
3,n

(?) cycling the triplets of

vertices with ascending 2-isogenies to the same vertex in Dmax
3,n

(?). We will see that ) is induced by the action of an

ideal class in Cl(Z[
√
−3?]). The ideal t = (4,

√
−3? − 1)Z[

√
−3?] has order 3 in Cl(Z[

√
−3?]), but capitulates

to become the principal ideal (2) in O (because
√
−3? − 1 = 2l, where l is the unit 1

2 (
√
−3? − 1)); indeed, t

generates the kernel of the canonical homomorphism Cl(Z[
√
−3?]) → Cl(O ). Since t meets the conductor, its

action on Dsub
3,n

(?) is not well-defined, but we can consider the action of an equivalent ideal in the class group. Let
∏
8 ℓ
48
8

be the prime factorization of (3? + 1)/4 (and note that each ℓ8 is odd); then (
√
−3? − 1) = t · ∏8 l

48
8

where

l8 := (ℓ8 ,
√
−3? − 1); the product

∏
8 l
48
8

is equivalent to t in Cl(Z[
√
−3?]), prime to the conductor, and its action

on Dsub
3,n

(?) induces the automorphism ) . In the case where 3 = 1 (CSIDH), this is explained at length in [39].

Crossroads. The map (E, k) ↦→ E defines a covering from Γ(D3,n (?)) onto a subgraph of the isogeny graph of
all supersingular curves over F?2 . For 31 ≠ 32 the images of Γ(D31 , n (?)) and Γ(D32 , n (?)) can intersect, forming
“crossroads” where we can switch from walking in Γ(D31 , n (?)) into Γ(D32 , n (?)), and vice versa.

Definition 4. Let 31 ≠ 32 be squarefree integers such that 3132 is squarefree. We say that a supersingular curve

E/F?2 with #E(F?2) = (? + n)2 is a (31, 32)-crossroad if there exist isogenies k1 : E → E1 and k2 : E → E2 such

that (E, k1) is a (31, n)-structure and (E, k2) is a (32, n)-structure.

If (E, k) is a (31, n)-structure, then we can easily check whether E is a (31, 32)-crossroad by evaluating
the classical modular polynomial Φ32 at ( 9 (E, ), 9 (E)?). However, (31, 32)-crossroads are generally very rare.
Indeed, if E is a (31, 32)-crossroad, then it has an endomorphism of degree 3132 with cyclic kernel (in particular,
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(31, 32)-crossroads with 3132 <
√
?

2 appear in the isogeny “valleys” described in [35]). We can therefore enumerate
the entire set of (31, 32)-crossroads over a given F?2 by computing the set of roots 9 of Φ3132 (G, G) in F?2 , and
then checking for which 9 we have Φ31 ( 9 , 9 ?) = 0. The polynomial Φ3132 (G, G) has degree

∏
ℓ (ℓ + 1) where ℓ

ranges over the prime factors of 3132, so there are only $ (3132) (31, 32)-crossroads (up to isomorphism) among
the O(

√
3?) vertices in Γ(D31 , n (?)).

But while crossroads are rare, computing the few examples is relatively easy, and computing (31, 32)-crossroads
gives us a useful way of quickly constructing some vertices in Γ(D31 , n (?)) (and in Γ(D32 , n (?))). Suppose we
want to construct a vertex in Γ(D31 , n (?)). Since the vertices in Γ(D31 , n (?)) correspond to curves with an
endomorphism subring isomorphic to Z[

√
−31?], we might try to construct a vertex from a root in F?2 of the

Hilbert class polynomial forQ(
√
−31?); but the degree of this polynomial, which is the order of the class group, is

exponential with respect to log ?, so this approach is infeasible for large ?. Instead, we choose a small squarefree
32 such that ? does not split in the maximal order of Q(

√
−3132). If there exists a (31, 32)-crossroad E/F?2 , then

its 9-invariant is a root in F?2 of a quadratic factor of the Hilbert class polynomial for Q(
√
−3132), because the

composition of the 31-isogeny E → E (?) with the conjugate 32-isogeny E (?) → E is a cyclic endomorphism of
degree 3132. All other vertices in Γ(D31 , n (?)) can then be reached through the class group action.

6 CRYPTOGRAPHIC APPLICATIONS

The action of Cl(O ) onDmax
3,n

(?) and Cl(Z[
√
−3?]) onDsub

3,n
(?) makesΓ(D3,n (?)) a natural candidate setting

for group-action/HHS-based postquantum cryptosystems following Stolbunov [43, 45, 46] and Couveignes [18].
For example, for each 3 > 1, we can define a key exchange algorithm on D3,n (?) generalizing CSIDH [11],
which uses the action of Cl(Z[√−?]) on Dsub

1,1 (?) and CSURF [10], which uses the action of Cl(Q(√−?)) on
Dmax

1,1 (?). Despite the prominence of orientations, the relationship between key exchange in D3,n (?) and the
OSIDH protocol [16] is distant. The O-orientations in OSIDH involve orders O with massive conductors in O 
where O has tiny class number; here, O has tiny conductor and O has massive class number.

6.1 HARD PROBLEMS

The conjectural hard problems for the action of Cl(O ) on D3,n (?) are vectorization (the analogue of the DLP)
and parallelization (the analogue of the CDHP) from Couveigne’s Hard Homogenous Spaces framework [18].

Definition 5 (Vectorization). Given (E, k) and (E ′, k′) in D3,n (?), find a ∈ Cl(O ) such that a· (E, k) = (E ′, k′).
Definition 6 (Parallelization). Given (E0, k0), (E1, k1), and (E2, k2) in D3,n (?), compute the unique (E3, k3) in

D3,n (?) such that (E3, k3) = (a1a2) · (E0, k0) where (E8, k8) = a8 · (E0, k0) for 8 = 1 and 2.

Solving Vectorization immediately solves Parallelization. In the opposite direction, no classical reduction is
known, but the quantum equivalence of these two problems is shown in [25].

An extensive study of the possible classical and quantum attacks on Vectorization for 3 = 1 can be found
in [11]; all of these attacks extend to 3 > 1 with a slowdown at most polynomial in 3 for class groups of the same
size, with that slowdown due to potentially more complicated isogeny evaluation and comparison algorithms. The
best classical attack known on Vectorization is to use random walks in Γ(D3,n (?)), exactly as in the 3 = 1 case
in [21], which gives a solution after an expected $ ((3?)1/4) isogeny steps. Since Vectorization is an instance
of the Abelian Hidden Shift Problem, the best quantum attack is Kuperberg’s algorithm [32, 42, 33] using the
Childs–Jao–Soukharev quantum isogeny-evaluation algorithm as a subroutine [15], adapted to push k through the
ℓ-isogenies. This adaptation may incur a practically significant but asymptotically negligible cost; the result is a
subexponential algorithm running in time !3? [1/2,

√
2]. Even for 3 = 1, there is some debate as to the concrete

cost of this quantum algorithm, and the size of ? required to provide a cryptographically hard problem instance for
common security levels [5, 8, 41]. (If and) when some consensus forms on secure parameter sizes for CSIDH, the
same parameter sizes should make Vectorization and Parallelization in D3,n (?) cryptographically hard, too.

We should also consider the impact of the various involutions on Γ(D3,n (?)). The negation involution already
exists for 3 = 1, where it essentially flips between a curve and its quadratic twist over F? . This involution has
not yet been exploited to give an interesting speedup in solving Vectorization or Parellization in the case 3 = 1; a
speedup for any 3 would be an interesting result. For 3 > 1, however, there is at least one new involution: namely,
conjugation. We note that solving Vectorization modulo conjugation solves Vectorization, because a vertex and
its conjugate are always connected by the action of an ideal of norm 3. Working modulo conjugation allows us
to shrink search spaces by a factor of 2, yielding a speedup by a factor of up to

√
2 analogous to working modulo

negation when solving the classical ECDLP (as in [4]). When 3 has = prime factors, we get more involutions that
would allow us to work with equivalence classes of 2= vertices, shrinking the search spaces by a factor of 2=. Prime
3 therefore seems the simplest and strongest case to us.
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Finally, we note that if a random walk should wander into a crossroad, then we have found an isogeny to a
supersingular curve with much known on its endomorphism ring. In this case, attacks analogous to that of [27]
should apply. But as we have seen, crossroads are vanishingly rare; their existence should not create any weakness
for schemes based on Γ(D3,n (?)), no more than they do for CSIDH.

6.2 NON-INTERACTIVE KEY EXCHANGE

We now describe a non-interactive key-exchange protocol based on the class group action on Γ(D3,n (?)),
generalizing CSIDH (the case 3 = 1). The public parameters are a prime ?, a prime 3, an n in {1,−1}, a set of
primes {ℓ8}=8=1 prime to 3? and splitting in Q(

√
−3?), together with a prime ideal l8 above each ℓ8 , and a “starting”

vertex (E0, k0) in D3,n (?) (constructed using the crossroad technique, for example). We also fix a secret keyspace
K ⊂ Z= of exponent vectors such that #K ≥ 22_ to provide _ bits of security against meet-in-the-middle attacks
(though smaller K may suffice: see [14]). The prime ? must be large enough that Vectorization and Parallelization
cannot be solved in fewer than 2_ classical operations, or a comparable quantum effort.

For key generation, each user randomly samples their private key as a vector (48)1≤8≤= from K, representing
the ideal class [a] = [∏=

8=1 l
48
8
] in Cl(O ). Their public key is a vertex (E, k) representing [a] · (E0, k0), which

we can compute using the methods of §4.4. The public key may be compressed to a single element of F? plus a
few bits using the modular techniques of §3.

For key exchange, suppose Alice and Bob have key pairs ( [a], (E�, k�)) and ( [b], (E�, k�)), respectively.
Alice receives and validates (E�, k�), and computes (�� = (E��, k��) = [a] · (E�, k�); Bob receives and
validates (E�, k�), and computes (�� = (E��, k��) = [b] · (E�, k�). The commutativity of the group action
implies that (�� � (��, so Alice and Bob have a shared secret up to isomorphism. To obtain a unique shared
value for cryptographic key derivation, they can derive a modular “compressed” representation of the shared secret
as in §3 (for example, when 3 = 2 or 3, the parameter D for the family of §3.1 or §3.2 and a sign bit suffice), or
simply take 9 (E��) = 9 (E��) with a minimal security loss.

Remark 6. When ideal classes represent cryptographic secrets, it is important to compute their actions in constant

time. A number of techniques have been proposed for this in the context of CSIDH [36, 40, 12, 9, 3]. Each of these

methods generalizes in a straightforward way to compute class-group actions on (3, n)-structures. The only real

algorithmic difference when evaluating an isogeny q : (E, k) → (E ′, k′) is that the isogeny k must be pushed

through q in constant-time as well. For 3 = 2 and 3, this amounts to pushing the G-coordinate of a single point

through the isogeny, something that is already part of constant-time CSIDH implementations. For 3 > 3 the kernel

polynomial of k can be pushed through q using symmetric functions.

6.3 KEY VALIDATION AND SUPERSINGULARITY TESTING

Public key validation is an important step in many public-key cryptosystems, notably in non-interactive key
exchanges where it is a defence against active attacks. In our situation, this amounts to proving that a pair (E, k)
represents an element of D3,n (?) (or Dmax

3,n
(?), or Dsub

3,n
(?)). The first step is to check that (E, k) is a (3, n)-

structure: specifically, we must check that k is indeed an isogeny from E to E (?) and that k̂ = nk (?) . This can be
done with two 3-isogeny computations, which costs very little when 3 is small.

Verifying supersingularity is more complicated. For 3 = 1 (CSIDH), we just check whether a curve over F? has
order ? + 1, which can be done efficiently by probabilistically generating a point of order < | ? + 1 with < > 4

√
?

(see [11, §5]). But this technique does not extend to 3 > 1, where we must check if E/F?2 has (? + n)2 points: our
valid curves have E(F?2) � (Z/(? + n)Z)2, and therefore no points with the required order > 4?.

Instead, for 3 > 1 we can specialize the deterministic supersingularity test of Sutherland [47]. Let cE be the
Frobenius endomorphism of E/F?2 . The discriminant of Z[cE] is bounded by 4?2, so the conductor of Z[cE] in
O is bounded by 2?; hence, if E is ordinary, then the maximal height of the 2-isogeny volcano containing E is
log2(?) + 1. Sutherland’s supersingularity test takes random non-backtracking 2-isogeny walks starting from each
of the three 2-isogeny neighbours of E. If E is ordinary, then at least one of these walks will descend the 2-isogeny
volcano, and will therefore terminate (with no non-backtracking step defined over F?2) after at most log2(?) + 1
steps. Conversely, if no walk terminates after log2 (?) + 1 steps, then E must be supersingular.

In our case, we know that End(E) ⊃ Z[`] ⊃ Z[cE], and the conductor of Z[cE] in Z[`] is the integer |A | of
Proposition 1, which is bounded by 2

√
?/3. We can therefore reduce the walk length limit from log2(?) + 1 to

1
2 (log2(?) − log2(3)) + 1. We can also use the fact that Z[`] ⊂ End(E) to ensure that we choose a “descending”
path within at most two steps, and omit the other two paths. Thus, we can determine if a (3, n)-structure (E, k) is
supersingular for the cost of computing two 3-isogenies and ( 1

2 (log2(?) − log2 (3)) + 5) 2-isogenies.
We can determine whether (E, k) is in Dmax

3,n
(?) or Dsub

3,n
(?) (if required, and only if −3? ≡ 1 (mod 4)) by

computing the action of ` on the 2-torsion (at the cost of one or two 3-isogeny evaluations) or by computing the
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2-neighbours of (E, k) in Γ2(D3,n (?)).

6.4 GENERALIZED DELFS–GALBRAITH ALGORITHMS

Let (? be the set of supersingular curves over F?2 , up to isomorphism. The general supersingular isogeny
problem is, given E1 and E2 in (?, to compute an isogeny q : E1 → E2.

In [21], Delfs and Galbraith use the subset of supersingular curves defined over F? , which we can identify with
D1,1 (?), to improve classical isogeny-finding algorithms based on random walks. Their algorithm has two phases:

1. Compute a random non-backtracking isogeny walk from E1 resp. E2 until we land on a curve E ′
1 resp. E ′

2
in D1,1 (?). These walks yield isogenies q1 : E1 → E ′

1 and q2 : E2 → E ′
2. The isogeny graph on (? has

excellent mixing properties, and since #(? ≈ ?/12 and #D1,1(?) = $ (√?), this first phase takes an expected
$ (√?) random isogeny steps.

2. Find an isogeny q′ : E ′
1 → E ′

2 using the action of Cl(Q(√−?)) acting on D1,1 (?) (that is, solve Vectorization
with 3 = 1). Under the Generalized Riemann Hypothesis, Cl(Q(√−?)) is generated by the set L of ideals
of prime norm up to 6 log (|Δ|)2, where Δ is the discriminant of Q(√−?) (see [2]) though in practice we do
not need so many primes. The L-isogeny graph on D1,1 (?) is therefore connected, and we can use random
walks in this subgraph to construct q′. By the birthday paradox, this phase takes an expected$ ( 4

√
?) random

steps before finding the collision yielding q′.
The Delfs–Galbraith algorithm exploits the action of Cl(Q(√−?)) on D1,1 (?) to solve the isogeny problem

in (?. We can generalize their algorithm by replacing the distinguished subgraph Γ(D1, n (?)) with a union of
subgraphs ⊔3∈�Γ(D3,n (?)) where � is a set of coprime squarefree integers prime to ?. In Phase 1, we now take
random walks from E1 and E2 into ⊔3∈�D3,n (?).3 In Phase 2, if E ′

1 is in D31 , n (?) and E ′
2 is in D32 , n (?), then we

need to compute a (31, 32)-crossroad E ′
3 and find a path E ′

1 → E ′
3 in D31 , n (?) and a path E ′

2 → E ′
3 in D32 , n (?).

(In particular, we should ensure that there exist supersingular (31, 32)-crossroads before including 31 and 32 in �.)
This is not worthwhile for large 3 or large �. Asymptotically, #D3,n (?) is in $ ((∑3∈�

√
3)√?), so the

expected number of steps in Phase 1 is reduced by a factor of$ (∑3∈�
√
3). However, the individual steps become

more expensive: if we use modular polynomials to check membership of each D3,n (?), then the number of F?2-
operations per step grows linearly with

∑
3∈� 3, overwhelming the benefit of the shorter walks. Asymptotically,

therefore, there is no benefit in taking large 3 or large � in Phase 1. (For more analysis of random walks into
(3,±1)-structures, in different contexts, see [22] and [13].)

Generalized Delfs–Galbraith can become interesting for � consisting of a few small 3, however, precisely
because the asymptotic ^(3, ?) := #D3,n (?)/#D1, n (?) ≈

√
3 no longer holds. For 3 < 10, for example, we

can have ^(3, ?) substantially greater than
√
3 (and also substantially less than 1). For example, if ? is the toy

SIDH-type prime 252 ·333−1, then ^(5, ?) ≈ 4.916. If we can test for an isomorphism or 5-isogeny to the conjugate
faster than we can compute six 2-isogenies, then we can take � = {1, 5} and walk into D1, n (?) ⊔ D5, n (?) faster
than walking into D1, n (?) alone. This speedup is counterbalanced by a slowdown in Phase 2, because walking in
Γ(D5, n (?)) costs more, and because the walks there need to be a square-root of ^(5, ?) longer—though we can
work modulo conjugation to mitigate this cost.

6.5 (3, n)-STRUCTURES AND SIDH GRAPHS

As we noted above, the probability of a random walk in the supersingular ℓ-isogeny graph hitting a vertex that
is the image of a (3, n)-structure is very low. It is even lower when we consider SIDH/SIKE graphs, which cover
only a very small proportion of the full isogeny graph, resembling trees of walks of short, fixed length.

Nevertheless, when we look at specific SIKE graphs, we see that they contain sections of Γ2(D3,n (?)) and
Γ3(D3,n (?)) for various 3. For example, the starting curve in SIKEp434 has a 3-isogeny to its conjugate for
3 ∈ � = {5, 13, 17, 29, 37, 41} (and also for much higher, but less practical values of 3). If we consider the
2-isogeny graph, then we find that Γ2(D3,n (?)) passes through the starting curve and continues down through the
tree towards a public key for 3 = 17 and 41. Hence, if we can find a 2-isogeny path from a SIKEp434 public key
to a vertex in the image of D17, n (?) or D41, n (?), then we have an express route to the starting curve. Such an
attack succeeds in a reasonable time with only a very small probability, but it is still devastatingly effective for a
tiny proportion of SIKEp434 keys.

3To measure the feasability of this attack, we need to estimate the average number of steps from a general supersingular elliptic curve E/F
?2

to a curve in (the image of) D3,n (?). This distance follows a binomial law (<, P) where< is the number of steps and P =
√
3/?. Hence, the

probability P(- > 1) that we reach at least one element in D3,n (?) after < steps from E is P(- > 1) = 1 − P(- = 0) = 1 − (1 −
√
3/?)<.

When 3 = 1, this addresses some of the heuristic observations in [1], notably the distance to the F?-spine.
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