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Abstract

In multi-fidelity optimization, we have access
to biased approximations of varying costs of
the target function. In this work, we study
the setting of optimizing a locally smooth
function with a limited budget Λ, where the
learner has to make a trade-off between the
cost and the bias of these approximations. We
first prove lower bounds for the simple regret
under different assumptions on the fidelities,
based on a cost-to-bias function. We then
present the Kometo algorithm which achieves,
with additional logarithmic factors, the same
rates without any knowledge of the function
smoothness and fidelity assumptions and im-
proving prior results. Finally, we empirically
show that our algorithm outperforms prior
multi-fidelity optimization methods without
the knowledge of problem-dependent parame-
ters.

1 Introduction

In multi-fidelity optimization (Cutler et al., 2014;
Huang et al., 2006; Kandasamy et al., 2016c, 2017), the
learner actively optimizes a function but only observes,
at each of the rounds, biased values of that function.
The learner can pay to reduce the bias of the observed
function values. The smaller the bias the higher the
cost, urging the learner to carefully allocate its total
cost budget Λ on the fly.

We consider the case of derivative-free optimization
where no gradient information is available (Matyas,
1965). This is of great interest for the multiple applica-
tions in which it is either difficult to access, compute,
or even define gradients (Nesterov and Spokoiny, 2017).
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Using only zero-order information, derivative-free op-
timization addresses optimising over functions that
are not differentiable, non-continuous, or non-smooth.
Moreover, there are known methods that work with-
out knowing the smoothness parameters (ν, ρ) of the
function (Auer et al., 2007; Kleinberg et al., 2008; Grill
et al., 2015; Valko et al., 2013; Bartlett et al., 2019).

Derivative-free multi-fidelity optimization is useful in
particular the hyper-parameters tuning of complex ma-
chine learning models, where each evaluation of the
model is costly such as tokamak simulators. How-
ever, the mapping between the hyper-parameter and
performance of the learned model can be highly non-
convex and non-smooth. Moreover, training a model,
given the hyper-parameters can be expensive and time-
consuming (Sen et al., 2018). In a situation, where
computation or time are constrained by a budget, these
constraints prevent us from carefully evaluating the
qualities of all the models generated from a continuous
set of hyper-parameters. Then, given one fixed set of
hyper-parameters, the bias of the estimation of the
quality of fully-trained model is a (decreasing) func-
tion ζ of the amount of computation resource spent
training the model. Ultimately, we would expect this
bias to be zero if the model is trained until conver-
gence. However, the bias function ζ is a function that
depends on the type of trained models and that is in
applications a priori unknown.

The most related approach for the considered setting is
the MFPDOO algorithm of Sen et al. (2018). In order to
provide theoretical guaranties for MFPDOO, ζ is either
assumed to be known or some parametric assumptions
on ζ are made and the parameters are estimated on-
line. However, knowing ζ or its parametric family is
unrealistic.

In this paper, we propose a new method called Kometo
that adapts to the unknown ζ and the unknown smooth-
ness parameters (ν, ρ). Our analysis is more general
than the analysis of Sen et al. (2018) and provides a
broader and finer set of behaviors of the cost-to-bias
function. This allows us to provide a characterisation
of the complexity of the problem by providing the first
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regret lower bounds in multi-fidelity optimization. We
also show that Kometo obtains rates that match the
ones of our lower bounds and improves upon the rates
of MFPDOO while dropping the assumptions of knowing
the bias function ζ in advance.

Related work Among the large work on derivative-
free optimization, we focus on algorithms that per-
form well under minimal assumptions as well as min-
imal knowledge of the function. Under weak/local
smoothness around one global maximum (Auer et al.,
2007; Kleinberg et al., 2008; Bubeck et al., 2011),
some algorithms require the knowledge of the lo-
cal smoothness such as HOO (Bubeck et al., 2011),
Zooming (Kleinberg et al., 2008), or DOO (Munos, 2011).
Among the work relying on an unknown local smooth-
ness, SequOOL (Bartlett et al., 2019) improves on SOO
(Munos, 2011; Kawaguchi et al., 2016) and represents
the state-of-the-art for the deterministic feedback. For
the stochastic feedback, StoSOO (Valko et al., 2013)
extends SOO for a limited class of functions. POO (Grill
et al., 2015) and GPO (Shang et al., 2019) provide more
general results. Finally, StroquOOL (Bartlett et al.,
2019) matches, up to log factors, the guarantees of
SequOOL and GPO for deterministic and stochastic feed-
back respectively, without requiring the knowledge of
the range of the noise b.

Multi-fidelity optimization is a well studied setting.
Here, we address online multi-fidelity optimization.
Many of approaches rely on Bayesian models, e.g.,
Gaussian processes. Zhang et al. (2019) relies on en-
tropic search to find the maximum, while Kandasamy
et al. (2016a) adapts GP-UCB (Srinivas et al., 2010) to
multi-fidelity setting. Most of these methods need an
access to a bias function, while Ghosh et al. (2019)
use the cost of the approximations to estimate its val-
ues. Li et al. (2017) obtains good empirical results
by trying a lot of configurations at low fidelities and
progressively eliminating the less interesting ones while
using higher and higher fidelities. Two prior works
adapted algorithms working under local smoothness
around one global maximum to multi-fidelity settings.
First, Sen et al. (2018) adapted POO (Grill et al., 2015)
to deterministic multi-fidelity settings and later Sen
et al. (2019) made it work under stochastic ones.

Main contributions

• We give more general assumptions on the fidelity
approximations based on their cost while keeping
the smoothness assumption on the target function.

• We prove lower bounds of the simple regret under
these more general and different assumptions.

• We provide Kometo, an algorithm that, in deter-

ministic settings, without any knowledge on the
bias function and the smoothness of the target
function, achieves minimax optimal rates for sim-
ple regret up to logarithmic factors on all consid-
ered assumptions on the fidelities. It improves
the previously proven guaranteed rates under local
smoothness assumptions of Sen et al. (2018), ex-
cept in the case α = 1 of Assumption 2(a),1 where
it has additional logarithmic factors. Our Kometo
comes with important properties:

– It does not assume an access to the target
function, only an access to increasingly better
approximations, unlike previous algorithms
as the ones of Sen et al. (2018).

– It only uses the comparisons of evaluations
at the same fidelity level, and not directly
the values of the evaluations, which leads to
weaker fidelity assumptions and better empir-
ical results.

– It works in stochastic settings by changing
the number of evaluations at higher fidelities.

• We provide synthetic experiments and a hyper-
parameter tuning experiment to demonstrate the
efficiency of Kometo.

2 Problem setting

In this section, we introduce a generalization of the
settings presented by Sen et al. (2018).

We want to optimize a target function f : X → R
under a budget Λ ∈ R+. The evaluation of this target
function is done through its fidelity approximations.
We thus denote by Z = [0, 1] the fidelity space and
by (fz)z∈Z the fidelity approximations. In particular,
z = 0 corresponds to the lowest fidelity, while z = 1
corresponds to the highest one. We also denote by
ζ : Z → R+ the unknown bias function, such that
there exists a family (gz)z∈Z of real-valued strictly
increasing function with ‖f − gz ◦ fz‖∞ ≤ ζ(z) for
z ∈ Z; motivations for this assumption are explained
below. A known cost function λ : Z → R+ indicates
the budget used at each evaluation for a given fidelity.
We also assume that the algorithm can request, for any
c ≥ 1, a fidelity zc such that λ(zc) ≤ c, and we define
Φ : [1,+∞[→ R+ with Φ(c) = ζ(zc), the cost-to-bias
function, which gives for each cost c the minimal bias
that one can can be guaranteed for an observation of f .
Assumptions 2 below are made on this function.

At round t, the algorithm makes an evaluation of the
function of a point xt ∈ X and at a fidelity zt ∈ Z (or
at a cost ct, see above), as long as

∑t
s=1 λ(zs) ≤ Λ.

1hyperbolic decreasing of the cost-to-bias function
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The algorithm observes at round t the value fzt(xt) in
return. The algorithm must finally output a value xΛ.
We then define the simple regret of a policy π for rΛ as

rΛ(π) , E
[
max
x∈X

f(x)− f(xΛ)

]
,

where the expectation is taken over the randomness of
the algorithm. In the rest of this paper, we only aim to
minimize this regret, without any constraint on time
or space complexity.

Problem setting remarks One of the main aspects
our approach is that we do not assume to have an
access to the bias function ζ. This highlights the fact
that our algorithm is fully adaptive, and only needs
the cost of each fidelity as an input. Since the bias
function is usually unknown in practice, prior works
rely on various techniques (e.g., MLE) to guess the
values of this function for implementations, but often
assume it has a specific form. Given the known results
is therefore surprising we get faster rates, and we do it
without relying on any information on the bias function.

Moreover we relax the original assumption of Sen et al.
(2018) that ‖f−fz‖∞ ≤ ζ(z) for z ∈ Z and use instead
‖f−gz◦fz‖∞ ≤ ζ(z) for z ∈ Z. This lets the fz approx-
imations be potentially arbitrarily biased with respect
to f as long as the ordering in f is approximately kept.
Indeed, as gz are increasing functions, we have that
gz ◦ fz(x1) ≥ gz ◦ fz(x2) iif fz(x1) ≥ fz(x2) for any
x1, x2 ∈ X . This more general model for example fits
in cases where evaluating at lower fidelities (with higher
bias) has a great impact on individual feedback, but
a low impact on how each different points compare to
each other at the same fidelity level. This is for example
the case on neural network training, where evaluating
with less iterations (lower fidelity) may increase the
overall error for every set of hyper-parameters at similar
rates. Note that theoretical results will simultaneously
hold under both assumption as long as two conditions
are met. First, the behavior of our algorithms is not
based directly on the (estimated) value of the function
fz but only on comparisons of these estimates of fz.
Second the estimates that are compared are computed
from evaluations coming from the same fidelity. This is
the case of our algorithm Kometo. Indeed Kometo simi-
larly as SOO (as noted by Munos, 2014) or SequOOL,
a rank-based algorithm. This means that its behavior is
based on the rank of the function evaluations, and not
directly on their values. On the contrary the behavior
of MFPDOO relies directly on the values in practice when
estimating the constant of the parametric model, and
would therefore not extend to our general assumption.

Another particularity is that we do not assume that
the cost function λ is bounded. We assume quite

generally that λ : Z → R+ instead of restricting ourself
to having λ : Z → [0, 1] as in Sen et al. (2018). In
our scenario, it can happen that some approximations
of the function f with low bias are simply too costly
for our limited budget. Working under this larger
assumption fits better problems in which we can only
access feedback from imperfect simulators while the real
phenomenon can not be directly evaluated in practice.
In such scenario, the MFPDOO Sen et al. (2018) is
not usable as it assumes that it directly evaluate the
target function f with finite cost during its final cross-
validation phase. Our results can also be extended
to cases where fidelity space is discrete, by using a
piecewise constant cost function.

Finally instead of minimizing the simple regret, the
cumulative regret has been also studied in multi-fidelity
setting (Kandasamy et al., 2016b), rewarding all ac-
curate evaluations of the target function. However in
the present paper we optimize the simple regret as our
initial objective is to find the optimum of the target
function. The simple regret is adapted to the objectives
of Kometo, e.g., hyper-parameter optimization, where
we wish to spend the entire budget on pure exploration.

3 Assumptions

Our algorithm needs two assumptions, one on the target
function (which describes its smoothness) and one on
the fidelity approximations (which characterizes how
well they approximate the function).

Hierarchical partitioning We use the notion of
hierarchical partitioning (Munos, 2011). At every
depth h ≥ 0, X (potentially multi-dimensional) is
partitioned into Kh different cells (Ph,i)0≤i≤Kh−1.
All the cells (Ph,i)h,i form a tree, where the root is
P0,0 = X , and where each cell Ph,i has K children,
(Ph+1,Ki+l)0≤l≤K−1, which form a partition of their
parent cell.

We make an assumption on the target function f and
the hierarchical partitioning P , identical to the settings
of Sen et al. (2018). This following assumption is way
weaker than global Lipschitzness and as explained by
Grill et al. (2015) is simpler and weaker than assump-
tions made in previous works (Auer et al., 2007; Munos,
2011).

Assumption 1. [Assumption on the target function]
For one of the global optimum x? of f , there exists ν > 0
and ρ ∈ ]0, 1[ such that ∀h ∈ N,∀x ∈ Ph,i?h , f(x) ≥
f(x?)−νρh, where Ph,i?h is the cell of depth h containing
x?

We now define a notion of near-optimality dimension
that only depends on the hierarchical partitioning P,
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and not on a metric.

Definition 1. Near-optimality dimension: For
any ν > 0 and ρ ∈ ]0, 1[, we say that d ∈ R+ is a
near optimality dimension of f with respect to the par-
titioning P and the smoothness parameters (ν, ρ) if

∃C > 1,∀h ∈ N, Nh(3νρh) ≤ Cρ−dh,

where Nh(ε) is the number of cells Ph,i such that

sup
x∈Ph,i

f(x) ≥ f(x?)− ε.

We then define

S(P, ν, ρ, d, C) , {f : X → R |f has smoothness

parameters (ν, ρ) for P and d is a

near-optimality dimension with

associated constant C}

Note on the near-optimality dimension defini-
tion: Grill et al. (2015) define the near-optimality
dimension as the infimum of the set of d that satisfies
this definition (with ν and ρ fixed). However, they then
assume that this infimum also satisfies this definition,
which is not necessarily true (the set can be of the
form R>0 for example). Bartlett et al. (2019) solve this
issue by adding an extra dependence on the constant
C to get a closed set (fixed parameters are then ν, ρ
and C, instead of just ν and ρ). To avoid this extra
dependence, we chose to define d as a near-optimality
dimension, rather than the near optimality dimension.

We can notice that a function with smoothness param-
eters (ν, ρ) has necessarily an associated constant

C ≥ Cmin ,

(
K

ρ−d

)⌊ log 3

log 1
ρ

⌋

since all the cells at depth h0 , b(log 3)/(log 1/ρ)c
are near-optimal because of Assumption 1. Indeed,
it guarantees that ∀x ∈ X, f(x) ≥ f(x?) − ν, which
implies that ∀x ∈ X, f(x) ≥ f(x?)− 3νρh0

We also have that dmax , (log K)/(log 1/ρ) is always
a near-optimality dimension of the function, because of
the bound Kh on the number of cell of depth h. This
emphasizes the fact that the near-optimality dimension
of a function is a way to characterize the complexity of
optimizing the function, and not an assumption. The
case d = 0 allows for faster rates the best empirical
results. As explained by Munos (2014), the case d = 0
is the most relevant in practice and covers most of the
real-world setups.

We now state three new different assumptions on the
rate at which the cost-to-bias function Φ is decreasing,
namely polynomially, exponentially, or by a constant.

Assumption 2 (Assumption on the fidelities).

(a) There exist A,α > 0 such that Φ(c) ≤ A/cα.

(b) There exist B, σ, β > 0 such that Φ(c) ≤ Be−c
β

σ .

(c) There exists a ≥ 1 such that Φ(c) = 0 for all c ≥ a.

Definition 2. For Asm being one of the three Assump-
tions 2 (either Assumption 2(a), Assumption 2(b), As-
sumption 2(c), with its specific parameters depending
on the case), we define F (Asm, f, λ)={(fz)z∈Z | there
exists a function ζ such that assumption Asm holds
on f and (fz)z∈Z , with λ as a cost function and ζ as
a bias function}.

The above assumptions describe realistic rates for the
cost-to-bias function. Assumption 2(a) generalizes As-
sumption 3 of Sen et al. (2018) which is equivalent
to the case α ≥ 1. Assumption 2(b) generalizes As-
sumption 2 of Sen et al. (2018) which corresponds to
the case β = 1. Assumption 2(c) is relevant when a
minimal cost to get a perfectly accurate estimation
is needed but unknown. It is also useful to link our
results (especially the theorem below) to works using
single-fidelity optimization, since the settings are then
equivalent to deterministic single-fidelity settings.

4 Lower bound

We provide the first lower bounds for the assumptions
on the fidelities considered. Theorem 1 gives, for as-
sumptions 2(a), 2(b) and 2(c), bounds on the achievable
theoretical performance of an algorithm working under
these assumptions.

Theorem 1 (Lower bounds on simple regret). Let P
a partitioning of a space X , (ν, ρ) some smoothness
parameters, d ∈ [0, dmax] a near-optimality dimension
with associated constant C ≥ Cmin and Asm one of the
three Assumptions 2 with associated parameters. Then,
for any budget Λ large enough, for any (determinis-
tic or random) policy π, there exist a target function
f ∈ S(P, ν, ρ, d, C), a cost function λ, and fidelity ap-
proximations (fz)z∈Z ∈ F (Asm, f, λ) such that:
Under Assumption 2(a) (Φ(c) ≤ A/cα):

rΛ(π) ≥ D1 Λ
−1

d+ 1
α

Under Assumption 2(b) (Φ(c) ≤ Be−c
β

σ ):

rΛ(π) ≥ e−D2Λ
β

1+β
, when d = 0

D3 Λ
−1
d , when d > 0

Under Assumption 2(c) (Φ(c) = 0 for all c ≥ a):

rΛ(π) ≥ e−D4Λ, when d=0

D5 Λ
−1
d , when d > 0,
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where D1, D2, D3, D4, D5 > 0 are constants that do not
depend on Λ and π.

Ideas of the proof The proof is in the appendix. It
is based on the construction of a target function and
its approximations, such that the algorithm π may not
reach a certain depth h and open a near-optimal cell
at depth h. The construction of the target function
is done thanks to a tree, whose leaves are cells of the
partitioning, and which reflects which cells are near-
optimal for the target function. The approximations
are made such that we can lower bound the cost that
π has to invest to get precise enough information.

We thus have to construct this tree, which is the tricky
part of the proof. This implies choosing near-optimal
cells that π is unlikely to open. We then get that
this depth h, which depends on the parameters of the
problem and on the budget, may not be reached by
π with a certain fixed probability. We can use this to
lower bound the regret.

Link with the upper bounds In Section 5 we give
an algorithm that, without any knowledge on ν, ρ, d, C,
and Φ, achieves these rates with additional constants
and logarithmic factors. This means that these lower
bounds are close to the optimal rate for policies work-
ing with these assumptions, both with and without
knowledge of these parameters.

The only previous work using hierarchical partitioning
optimization with multi-fidelity model and determin-
istic feedback worked with narrower assumptions as
said above. It obtained, under Assumption 2(a) with

α ≥ 1, a regret of O(( Λ
log Λ )

−1
d+1 ), which is only optimal

(ignoring constant and log factors) when α=1. Under
Assumption 2(b), MPFDOO gets, assuming β = 1 a

regret of O(( Λ
log Λ )

−1
d+ε ), for any ε > 0, provided the

budget is large enough (with the threshold having a
dependence on ε), which does not show that this lower
bound was reached.

Assumption 2(c) let us extend our results to single-
fidelity algorithm with deterministic feedback. A true
exponential decay for d = 0 (and thus optimal up to a
constant) was first achieved by DOO (Munos, 2011, but
required the knowledge of the smoothness. SequOOL
(Bartlett et al., 2019) then managed to achieve an expo-
nential decay without the knowledge of the smoothness,
but with a logarithmic factor in the exponent. We how-
ever realized it is possible to get a true exponential
decay without the knowledge of the smoothness param-
eters by changing the number of opened cells at each

depth h of SequOOL, to either
⌊
2
√
n/h

⌋
up to depth

n, or
⌊
n/
(
h log(n/h)2

)⌋
up to depth

⌊
n/e2

⌋
.

5 Algorithm

In this section we propose a new algorithm for multi-
fidelity optimization called Kometo. We start with some
helpful notation.

Cell evaluations: Cell evaluations are done through
a single representant of each cell Ph,i, denoted xh,i.
Th,i,j denote the number of evaluation potentially done
for the cell Ph,i at fidelity level j.

For Kometo, the fidelity level j, with j a non-negative
integer, is defined as zej . At each fidelity level, at most
one evaluation can be done for each cell, which means
that Th,i,j is equal to either 0 or 1. We hence denote
as fh,i,j the result of the potential evaluation, when
Th,i,j = 1. We can notice that, for any j, because of
how the cells are opened, {Ph,i, Th,i,j=1} is always a
tree.

We also slightly modify the usual definition of a cell
opening to make it work with our multi-fidelity settings.

Multi-Fidelity Cell Opening: Opening a cell at
fidelity level j means that, for each of its children Ph+1,i,
the Th+1,i,u for 0 ≤ u ≤ j are set to 1.

This means that the values fh+1,i,u, equal to
fzeu (xh+1,i), with xh,i the representative element of
the cell, can be requested and hence the evaluations
can be performed. With this definition, the opening at
fidelity level j of a cell can not induce a total cost of

more that Kej+1

e−1 .

Kometo explanations: Kometo is detailed in Al-
gorithm 1. The algorithm presented is inspired by
StroquOOL (Bartlett et al. (2019)). Its main feature
is that, using Zipf sampling (which means, opening up

to Λ̃ cells at h=1, up to Λ̃/2 cells at h=2 and so on) it
manages to reach the optimal rate up to logarithmic
factor without the knowledge of the smoothness.
This is done, in the exploration part, by opening a
decreasing number of cell at each depth, and at a
given depth, gradually decreasing the fidelity at which
cells are opened. The intuition behind this idea is
that, for each depth h, and each 0 ≤ jh ≤ jmax, the
number of cell opened at fidelity level jh or higher will
decrease with jh. If this jh is too low, the precision
might also be too low for the choices to be relevant,
but if jh is too high, not enough cells will be opened.
Cross-validation is then used by the algorithm in order
to choose the best cell regardless of depth and fidelity
level. It ensures that the choice of a particular jh is
not needed.
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Algorithm 1 KOMETO

1: Parameters: (fz)z∈Z , P, Λ, λ

2: Init:
Λ̃← (e−1)Λ

2Ke(log Λ+1)2
, jmax ←

⌊
log Λ̃

⌋
.

Open with budget Λ̃ the cell P0,0.

For h = 1 to bΛ̃c J Exploration I

For m = 1 to
⌊
Λ̃/h

⌋
j ← blog Λ̃

hmc
Open at fidelity level j the non-opened

cell Ph,i with the highest value fh,i,j ,

given that Th,i,j = 1

For j = 0 to jmax J Cross-validation I
Evaluate at cost Λ̃ the candidates

xcj ← arg max
(h,i)∈T , Th,i,j=1

fh,i,j .

Output xΛ ← arg max
{j∈[0:jmax]}

fzΛ̃
(
xcj
)

Budget optimization: With a given budget Λ, we
can actually initialize the Λ̃ constant with a way higher

value than (e−1)Λ

2Kelog (Λ+1)2
, for multiple reasons:

• The actual cost used for a cell opening is rounded
down to eblog cc.

• The total budget mentioned for a cell opening
assumes that all the evaluation at different
fidelities will be requested for the children, which
is not the case.

• The number of opened cells at each depth is
bounded by Kh

• For some partitioning, it is possible to use the
parent evaluations for one of its children.

Since the budget used can be predicted using only Λ̃
and the partitioning, and increase with Λ̃, it is possible
to quickly calculate the optimal initial value of Λ̃ using
dichotomy. However, these previous optimization can
only increase Λ̃ by a multiplicative constant. Even if
the budget needs to be set in advance for this algorithm,
since we optimize the simple regret, we can obtain any-
time guarantees which only differ by a multiplicative
constant using the doubling trick.

6 Theoretical guarantees

We first state a simple proposition which asserts, with
the initial value of Λ̃, the budget condition is respected.

Proposition 2 (Budget use). The budget used by
Kometo does not exceed Λ.

Our upper bounds use the Lambert function, evaluated
at positive real values. This function is defined as the
inverse of the function f(z) = zez. With the first two
terms of its asymptotic expansion, we get, when z goes
to infinity, that W (x) = log x− log log x+ o(1).

We now state the main results of our analysis, using
the same context as Theorem 1 on lower bounds. The
proof is given in appendix:

Theorem 3 (Upper bounds on the simple regret).
Let P be a partitioning of a space X , (ν, ρ) some
smoothness parameters, d ∈ [0, dmax] a near-optimality
dimension with associated constant C ≥ Cmin and Asm
being one of the three Assumption 2 with its associated
parameters.
Then, for any budget Λ ≥ 1, target function
f ∈ S(P, ν, ρ, d, C), cost function λ, and fidelity
approximations (fz)z∈Z ∈ F (Asm, f, λ) provided to
Kometo,

Under Assumption 2(a) (Φ(c) ≤ A
cα ): We first

define two values, then state the regret

Value of h1

1
(d+ 1

α ) log 1
ρ

W

(
Λ̃ν

1
α (d+ 1

α ) log 1
ρ

4CeA
1
α

)
Value of h2

When d = 0 Λ̃
4C

When d > 0 1
d log 1

ρ

W

(
Λ̃d log 1

ρ

4C

)
Regret

High budget (νρh1 ≤ eαA) rΛ ≤ 3ν
ρ ρ

h1 + 2 A

Λ̃α

Low budget (νρh1 > eαA) rΛ ≤ 3ν
ρ ρ

h2 + 2 A

Λ̃α

Under Assumption 2(b) (Φ(c) ≤ Be
−cβ
σ ): We also

define ab,ν = max
(

1
2σ , log

(
B
ν

))
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Value of h1

When d = 0
(

Λ̃
4Che

) β
β+1
(

1
2σ log 1

ρ

) 1
β+1

When d > 0 β+1
βd log 1

ρ

W ( β
β+1d log 1

ρ

(
Λ̃

4Che

) β
β+1

(
1

2σ log 1
ρ

) 1
β+1

)

Value of h2

When d = 0 Λ̃

4Ce(2σab,ν)
1
β

When d > 0 1
d log 1

ρ

W

(
Λ̃d log 1

ρ

4Ce(2σab,ν)
1
β

)
Regret

High budget (h1 ≥ ab,ν
log 1

ρ

) rΛ ≤ 3ν
ρ ρ

h1 + 2Be
−Λ̃β

σ

Low budget (h1 <
ab,ν
log 1

ρ

) rΛ ≤ 3ν
ρ ρ

h2 + 2Be
−Λ̃β

σ

Under Assumption 2(c) (Φ(c) = 0 for all c ≥ a):

Value of h

When d = 0 Λ̃
4Cae

When d > 0 1
d log 1

ρ

W

(
Λ̃d log 1

ρ

4Cae

) Regret

rΛ ≤ ν
ρρ

h

Corollary 4 (Regret decreasing rates). Following The-
orem 3 (the exact upper bounds used for the rates are
given in appendix):

Assumption 2(a) High budget Low budget

When d = 0 Õ(Λ−α)

When d > 0 Õ(Λ
−1

d+1/α ) Õ(Λ
−1
d + Λ−α)

Assumption 2(b) High budget Low budget

When d = 0 eÕ(−Λ
β

1+β ) eÕ(−Λβ) + eÕ(−Λ)

When d > 0 Õ(Λ
−1
d )

Assumption 2(c)

When d = 0 eÕ(−Λ)

When d > 0 Õ(Λ
−1
d )

As explained in the next paragraph, in practice and
for asymptotic comparisons only the results for high
budget settings are relevant.

We can notice that the rates of decreasing are better
until the threshold for high budget. This is because,

until the threshold, the algorithm does not have to fo-
cus on increasing the fidelity cost to improve the result,
since the improvements in the regret it can make by
exploring more cells is vastly superior to the improve-
ments it can make with more precise analysis (which
involves more precise evaluations: a higher fidelity).
This explains why the rates are close to the one ob-
tained on single-fidelity optimisation (or, similarly, on
Assumption 2(c), which materializes this case). How-
ever, the low budget case actually requires a very low
budget (or very accurate fidelities) so these rates are
not really relevant in practice. This dichotomy was
similarly noticed, by Bartlett et al. (2019) for the Stro-
quOOL algorithm, in a stochastic case: using only one
evaluation was enough as long as the noise did not
exceed the potential regret that could be obtained.

7 Empirical results

We chose to do the same synthetic and practical de-
terministic experiments that the one done in Sen et al.
(2018), and used their code for fair comparisons. The
algorithm to which Kometo is compared are MFPDOO
(Sen et al. (2018)), POO (Grill et al. (2015)) and Se-
quOOL (Bartlett et al. (2019)). We directly used
Kometo without any tweaking. This shows Kometo
adaptability, which only needed the cost function and
the space X in order to work.

Experiments explanation Five of them are syn-
thetic deterministic experiments of different, but always
low, dimensions. The budget is expressed in terms of
the number of multiple of the highest fidelity cost λ(1).
Note that these experiences may easily be unfair toward
non multi-fidelity algorithms, because the results of the
multi-fidelity algorithms heavily depends on how useful
the low fidelities are, which is arbitrary on synthetic
experiments. Therefore, since non multi-fidelity algo-
rithms have no access to low fidelities and thus have less
information, synthetic experiences should not be used
to directly compare the efficiency of a multi-fidelity
and a non multi-fidelity algorithm.

The last experience aims to measure the efficiency of
the algorithms in practical settings. It involves tuning
two hyperparameters for text classification, with the
number of samples used to obtain 5-fold cross-validation
accuracy determined by the fidelity. The budget is, for
this experience, determined by the time used by the
algorithm to return its result, reflecting simultaneously
the actual time used for the algorithm execution and
the cost of computing the accuracies.

Details about the experiments, along with comparisons
to other multi-fidelity algorithms, can be found in Sen
et al. (2018).
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Figure 1: (a) top-left: Curin 2-dimensions, (b) top-right: Branin 2-dimensions (c) top-left: Hartman3d
3-dimensions (d) bottom-right: Hartman6d 6-dimensions (e) bottom-right: Borehole 8-dimensions (f)
bottom-right: SVM 2-dimensions. Experiments are composed of five synthetic experiments, from (a) to (e),
and one real-world, (f). The multi-fidelity algorithms can use all fidelities, while the non multi-fidelity algorithms
only request at fidelity z = 1. The x-axis gives the budget effectively used by the algorithm, to reflect algorithm
which exceed the attributed budget. The y-axis denotes the regret for the synthetic experiments (the lower the
better), and the accuracy for the SVM experiment (the higher the better). For readability, the graph only plot
the regret down to 10−10.

Experiments analysis We can notice that Kometo
largely outperforms MFPDOO on three of the synthetic
experiments (Branin, Curin and Hartman3d) and on
the practical experiment. It however gets beaten by
MFPDOO on Borehole and Hartman6d by a relatively
small margin. For the Hartman3d and Curin experi-
ments, the better results of Kometo could be explained
with its rank-based property, low fidelities may give
highly accurate information on the way close points
compare each other on the target function.

Interestingly, SequOOL outperforms Kometo on the
Branin and Hartman6d experiments. This happens
because, for these experiments, a lot of high-fidelity
evaluations are needed to minimize the regret. Since
Kometo keeps an important portion of its budget for
low-fidelity evaluations, it is late compared to SequOOL
which only does high-fidelity evaluations. This is mate-
rialized in the theoretical guarantees by the fact that
Kometo has additionnal logarithmic factors compared
to SequOOL under Assumption 2(c).

8 Discussion

Possible stochastic settings Our algorithm works
in deterministic settings. However, our hypothesis of a

bounded bias can be replaced with an hypothesis of a
noise (potentially biased), with the same bounds. Our
algorithm can therefore work in stochastic settings, the
guarantees being given instead at high probability with
a cost-to-bias function changed accordingly.

However, in cases where the noise does not naturally
decrease to 0 at higher fidelities, the Φ function will not
decrease to 0 either although required by 2. This issue
can be resolved by gradually increasing the number
of evaluations at higher fidelities, to get a Φ function
that would converges to 0. Indeed using concentration
inequalities, we could then have Assumption 2 true
with high probability, which could bound the regret.

Cumulative regret in adaptive multi-fidelity op-
timization Locatelli and Carpentier (2018) states
that the minimax optimal cumulative regret with the
knowledge of the smoothness cannot be attained by
single-fidelity algorithm without the knowledge of the
smoothness of the function. We wonder if this result
remains true in multi-fidelity settings using adapted
cumulative regret definitions.
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A Proof of Theorem 1

In the following proof, we set λ a bijective cost function, and ζ(z) = Φ(xz), where Φ is the upper bound of the
cost-to-bias function given by the assumptions.

We first give a way to construct target and fidelity function for the lower bounds. Let Ta a truncated tree of P
(more precisely, a tree with the same root as P, and included in P). Ta nodes are therefore sub spaces of X .

We then define:

• For all h ≥ 0, Tha , the union of all the sub spaces associated to nodes of Ta of depth h. We can notice that
(Tha )h≥0 is a decreasing sequence for the inclusion, with T 0

a = P0,0 = X .

• fTa by fTa(x) = suph≥0{−νρh|x ∈ Tha }, the target function

• (fTaz )z∈Z by fTaz (x) = min{fTa(x),−ζ(z)}, the fidelities

We now state Lemma 5, related to the constructions above. It shows that the previous target and fidelity functions
can be used as counter-examples in order to show the lower bounds.

Lemma 5. Let Ta a truncated tree of P such that, for every depth h ≥ 0, Ta has between 1 and
⌊
ρ−dh

⌋
cells of

depth h.

Then:
- fTa ∈ S(P, ν, ρ, d, C)
- (fTaz )z∈Z ∈ F (Asm, fTa , λ)

Proof. We start by showing that fTa ∈ S(P, ν, ρ, d, C).
As Ta has an infinite depth, there exists a sequence (ih)h ∈ N of indexes such that ∀h ∈ N, {Ph,ih} ∈ Ta. By
taking (xh)h∈N, such that for all h ∈ N xh ∈ Ph,ih , we have that sup

h∈N
fTa(xh) = 0, which means sup

x∈X
fTa(x) = 0

Furthermore, we have that, for all h ∈ N, for all x ∈ Ph,ih , fTa(x) ≥ −νρh by definition of fTa , which is
equivalent to fTa(x) ≥ sup

x′∈X
fTa(x′) − νρh. We therefore have that Assumption 1 is true for fTa for the

smoothness parameters (ν, ρ).

We now show that d is a near-optimality dimension of fTa for these smoothness parameters. Let ho =
⌊

log 3
log 1

ρ

⌋
(we defined Cmin with Cmin =

(
K
ρ−d

)ho
). Let h ∈ N, let’s show that the related assumption is true at depth h:

If h ≤ ho, then the number of near-optimal cells at depth h is simply bounded by the number of cells of depth h,
Kh. As

Kh =
Kho

Kho−h
≤ Kho

ρ−d(ho−h)
=

(
K

ρ−d

)ho
ρ−dh ≤ Cmin ρ

−dh,

the hypothesis is true at depth h.
If h ≥ ho, then thanks to hypothesis (2), there are at most

⌊
ρ−d(h−ho)

⌋
cells of height h − ho such that

sup
x∈Ph−ho,i

fTa(x) > −νρh−ho−1. By taking for each of these cells its Kho grandchildren, we get that there are at

most
⌊
Khoρ−d(h−ho)

⌋
cells of depth h such that sup

x∈Ph,i
fTa(x) > −νρh−ho−1.

As ⌊
Khoρ−d(h−ho)

⌋
≤ Cmin ρ

−dh



Côme Fiegel, Victor Gabillon, Michal Valko

and

−νρh−ho−1 = −νρ
h−
⌊

log 3

log 1
ρ

+1

⌋
≥ −νρ

h− log 3

log 1
ρ = −3νρh = sup

x′∈X
fTa(x′)− 3νρh,

there are at most Cminρ
−dh near-optimal cells at depth h, which concludes.

We finally want to show that (fTaz )z∈Z ∈ F (Asm, fTa , λ). As we defined ζ(z) = Φ(xz), where Φ is the upper
bound given by Assumption 1, we just need to show, by taking gz = Id for all z ∈ Z, that ‖fTa − fTaz ‖∞ ≤ ζ(z)
for all z ∈ Z.
Taking x ∈ X, we either have
- fTa(x) ≤ −ζ(z), and thus fTaz (x) = fTa(x), or
- fTa(x) > −ζ(z) which implies |fTa(x)− fTaz (x)| = fTa(x) + ζ(z) ≤ ζ(z) as the function fTa is non-positive by
definition.
The distinction between these two cases gives us that the bound on the infinity norm is true, and thus concludes.

Lemma 6. By choosing appropriate target functions and fidelity approximations, we can get two lower bounds of
the regret with π:

Lower bound a: rΛ ≥ sup

{
r ∈]0, 1

2νρ] | Λ ≤ 1
K

(
2r
νρ

)−d
inf Φ−1

(
[0, 2r

ρ ]
)}

Lower bound b: rΛ ≥ sup
{
r ∈]0, 1

4νρ
6] | Λ ≤

(
log ν4r
4 log 1

ρ

− 2
)

inf Φ−1
([

0, νρ
(

4r
ν

) 1
4

])}

Proof. We will denote by (XTa
l )l∈N the family of random variables equal to the successive points requested by

π which has been given the fidelity approximations
(
fTaz
)

(the values are null when l exceeds the number of

evaluations). We also denote, for a given depth h, by STah the (also random) set of indexes l such that the fidelity

z associated to the request of the point XTa
l respects ζ(z) ≤ νρh.

The key to the following proof is that, for any depth h ≥ 0, for any tree Ta, if T ′a is the tree Ta whom nodes of
depth h′ ≥ h + 1 have been cut, then for any l ≥ 0, XTa

l | (∀m ∈ S
Ta
h ,m < l =⇒ XTa

m 6∈ Th+1
a ) has the same

distribution as X
T ′a
l | (∀m ∈ S

T ′a
h ,m < l =⇒ X

T ′a
m 6∈ Th+1

a ). This is because, in this instance, all the previous
evaluations were either at a fidelity z too low and were equal to −ζ(z) ≤ −νρh, or were evaluated outside of the
sub space of a node of Ta of depth h+1. In both cases, the returned values were unaffected by the cutting of the
nodes of depth h′ ≥ h+ 1 of T ′a, which implies that the behavior of the algorithm will remain the same for the

request of the point X
T ′a
l .

We thus define the idea of opening a cell C as, when C is of depth h, having a l ∈ STah such that XTa
l ∈ C.

This means requesting a point of this cell with a high enough fidelity to differentiate the cells of Th+1
a from the

rest of the cells.

To simplify the proof, we will assume that the output of the algorithm is done with a last free evaluation at the
highest fidelity. This evaluation will thus belong to STah for any h ≥ 0, and the lemma will be proved by showing

that this last evaluation has a certain chance not to belong to Th
′

a for some h′ when
(
fTaz
)

is given to π.

We finally define, for any h ≥ 0, ch = inf Φ−1([0, νρh]) and Nh =
⌊

Λ
ch

⌋
+1. ch is the minimum cost necessary to

get an evaluation of bias b ≤ νρh, while Nh is the maximum number of such evaluations an algorithm can get,
including the last free one. This gives, for any truncated tree Ta and h ≥ 0, #STah ≤ Nh
Reminder: If Ph,i is a cell of X , its children are the K cells Ph+1,Ki, ..., Ph+1,Ki+K−1.

We then prove the two different lower bounds:
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Lower bound a (width limitation):

This lowerbound is based on the idea that, at a given depth h, the algorithm may have the budget to only open a
fraction of the children of the near optimal cells (remember that the idea of opening, previously defined, also
takes into account the fidelity level). As the behavior of the algorithm is potentially random, we choose the cell C
that is the least likely to be opened as the only one potentially containing the optimum (ie Th+1

a = C), and then
bound the probability of its opening.

We first assume that there exists a non-negative integer h such that ρ−dhch
Λ ≥ K. Then, there also exists an integer

s such that Λ
ch
< Ks ≤ ρ−dh. Because ρ−dh ≥ 1, we can assume s to be non-negative. Since Ks is an integer,

we get that Ks ≥
⌊

Λ
ch

⌋
+1 = Nh. We also get that Ks ≤ ρ−dh ≤ Kh because of d ≤ logK

log 1
ρ

, which implies h−s ≥ 0.

We now define the trees we will use, along with Lemma 5, to lower bound the regret:

We start with T =

(
h−s−1⋃
h′=0

{Ph′,0}
) ⋃ ( h⋃

h′=h−s

Kh′−(h−s)−1⋃
i=0

{Ph′,i}

)
We can first notice that T partially satisfies the hypothesis of lemma 5. Indeed, the first h− s depths of T only
have one node. For h− s ≤ h′ ≤ h, there are Kh′−(h−s) nodes of depth h′. Since Ks ≤ ρ−dh ≤ ρ−dh′Kh−h′ , we
indeed have Kh′−(h−s) ≤ ρ−dh′ . However, the theorem also requires at least one node per depth.

We now define, for all integer i such that 0 ≤ i ≤ Ks+1,

Ti = T
⋃( ∞⋃

h′=h+1

{Ph′,Kh′−(h+1)i}

)
We can notice that, for all i, Ti is a truncated tree of P , has at least one node per depth, and the upper bound is
still verified, as only one node was added for each empty depth was added. It thus verifies the hypothesis of the
lemma.

We also define pi = P(∃l ∈ STih , X
Ti
l ∈ Ph+1,i). It corresponds to the probability of the cell Ph′,i being
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opened when the algorithm is given (fTiz )z∈Z . We then try to upper bound one of the pi

Ks+1−1∑
i=0

pi =

Ks+1−1∑
i=0

P

(⋃
l∈N

(
l ∈ STih , X

Ti
l ∈ Ph+1,i

))

=

Ks+1−1∑
i=0

P

(⊔
l∈N

(
l ∈ STih , X

Ti
l ∈ Ph+1,i and

(
∀m ∈ STi

h ,m < l =⇒ XTi
m 6∈ Ph+1,i

)))

=

Ks+1−1∑
i=0

∑
l∈N

P
(
l ∈ STih , X

Ti
l ∈ Ph+1,i and

(
∀m ∈ STi

h ,m < l =⇒ XTi
m 6∈ Ph+1,i

))

=

Ks+1−1∑
i=0

∑
l∈N

P
(
l ∈ STh , XT

l ∈ Ph+1,i and
(
∀m ∈ ST

h ,m < l =⇒ XT
m 6∈ Ph+1,i

))
≤
Ks+1−1∑
i=0

∑
l∈N

P
(
l ∈ STh , XT

l ∈ Ph+1,i

)
=

∑
l∈N

Ks+1−1∑
i=0

P
(
l ∈ STh , XT

l ∈ Ph+1,i

)
≤

∑
l∈N

P
(
l ∈ STh

)
= E

(
#STh

)
≤ Nh

≤ Ks

We therefore have the existence of i ≤ Ks+1 − 1 such that pi ≤ 1
K ≤

1
2 .

By giving π the fidelity approximations (fTiz )z∈Z , since Ti respect the hypothesis of Lemma 5, we can lower
bound the minimax regret with 1

2νρ
h

This result needed that ρ−dhch
Λ ≥ K with h a positive integer, which can be rewrote

ρ−dh inf Φ−1([0,νρh])
K ≥ Λ.

Since this condition remains true if we take instead h′ ≥ h, we can just suppose that h̃ is a positive real number

such that
ρ−dh̃ inf Φ−1

(
[0,νρh̃]

)
K ≥ Λ, and in this case get rΛ ≥ 1

2νρ
bh̃c+1 ≥ 1

2νρ
h̃+1. By replacing h̃ with 1

2νρ
h̃+1,

this is the same thing as assuming that there exists r ∈]0, 1
2νρ] such that

( 2r
νρ )
−d

inf Φ−1([0, 2rρ ])
K ≥ Λ to get rΛ ≥ r,

which concludes.

Lower bound b (depth limitation):

In this second lower bound, the idea is that, after a depth h, the depth an algorithm can consistently reach
when exploring a branch is at most proportional to the number of opening at depth h. We first take h such that
h ≥ Nh. We define recursively for h′ ≥ h, (ph′,i)0≤i≤K−1, ih′ and Th′ with

When h′ = h:


ph,i = 1
ih = 0

Th =
h⋃

hp=0

{Php,0}
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When h′ > h



ph′,i = P
(
∃l ∈ STh′−1

h , X
Th′−1

l ∈ Ph′,Kih′−1+i and
(
∀m ∈ S

Th′−1

h ,m < l =⇒ X
Th′−1
m 6∈ Ph′−1,ih′−1

))
ih′ = Kih′−1 + arg min

i
ph′,i

Th′ = Th′−1

⋃
{Ph′,ih′}

We also define T =
∞⋃
h′=h

Th′

Since T only has one infinite branch, we have that T verifies the hypothesis of Lemma 5.

Because, for every depth h′ ≥ h+ 1, the ph′,i are K probability of disjoint events, we necessarily have that the
probability associated to ih′ is upper bounded by 1

K ≤
1
2 .

We now define, for h′ ≥ h+1 the events Eh′ =
(
∃l ∈ STh , XT

l ∈ Ph′,ih′ and
(
∀m ∈ ST

h ,m < l =⇒ XT
m 6∈ Ph′−1,ih′−1

))
,

and the random variable M =
4h∑

h′=h+1

1Eh′ Let’s first bound M with a certain probability, using Markov

inequality.

E(M) =

4h∑
h′=h+1

E
(
1Eh′

)
=

4h∑
h′=h+1

P
(
∃l ∈ STh , XT

l ∈ Ph′,ih′ and
(
∀m ∈ ST

h ,m < l =⇒ XT
m 6∈ Ph′−1,ih′−1

))

=

4h∑
h′=h+1

P
(
∃l ∈ STh′−1

h , X
Th′−1

l ∈ Ph′,ih′ and
(
∀m ∈ S

Th′−1

h ,m < l =⇒ X
Th′−1
m 6∈ Ph′−1,ih′−1

))

=

4h∑
h′=h+1

ph′,ih′−Kih′−1

≤
4h∑

h′=h+1

1

2

=
3h

2

We then get P(M ≥ 2h) ≤ E(M)
2h ≤ 3

4

We now define the event B =
(
∀l ∈ STh , XT

l 6∈ P4h,i4h

)
and show that (M < 2h) ⊂ B.

We denote by j1, ... , jt the different elements of STh ranked from lowest to highest (with t = #STh ), and we
define the (ar)0≤r≤t with a0 = h and ar = max {h′ ∈ Jh ; 4hK | ∃m ≤ r, XT

jm
∈ Ph′,ih′}

⋃
{h} when r > 0. This

definition ensures that ar is superior or equal to the deepest opened depth after r requests of points at fidelities z
of biais ζ(z) ≤ νρh. We especially have that the sequence (ar)0≤r≤t is non-decreasing. Note that all these values
are random variables, and that (at < 4h) is exactly the event B.

We can then notice that, with these definitions, for any h′ ∈ Jh+ 1 ; 4hK,(
∃r ∈ J0 ; t− 1K, XT

j(r+1)
∈ Ph′,ih′ and

(
∀m < r + 1,XT

jm 6∈ Ph′−1,ih′−1

))
=(

∃l ∈ STh , XT
l ∈ Ph′,ih′ and

(
∀m ∈ ST

h ,m < l =⇒ XT
m 6∈ Ph′−1,ih′−1

))
= Eh′ (1)

Using this equality, we can see that the existence of r ∈ J0 ; t− 1K such that h′ ∈ Jar + 2 ; ar+1K implies Eh′ .
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Counting the h′ then let us get that #
t−1⋃
r=0

Jar + 2 ; ar+1K ≤
4h∑

h′=h+1

1Eh′ .

Since all the sets Jar + 2 ; ar+1K are disjoints (because (ar)0≤r≤t is non-decreasing), we have
t−1∑
r=0

(ar+1 − al − 1) ≤

M , which gives at ≤ a0 + t+M . As h ≥ Nh by hypothesis and a0 = h, we have at ≤ 2h+M Thus, (M < 2h)
implies (at < 4h) , ie (M < 2h) implies B.

Finally, with P(B) ≥ P(M < 2h) ≥ 1
4 , we can bound the regret with rΛ ≥ 1

4νρ
4h by giving π the fidelity

approximations (fTz )z∈Z , since, as mentioned above, T respects the hypothesis of Lemma 5.

To conclude, we do the same thing as for Lower bound a. The hypothesis was the existence of h such that
h ≥ Nh to get a bound νρ4h. It is especially the case when (h+ 1) inf Φ−1

(
[0, νρh+1]

)
≥ Λ. This can similarly

be changed to the existence of a real number h̃ ≥ 1 such that h̃ inf Φ−1
(

[0, νρh̃]
)
≥ Λ to get a bound 1

4νρ
4(h̃+2).

With r = 1
4νρ

(4h̃+2), we need r ≤ 1
4νρ

6 and
(
log ν4r
4 log 1

ρ

− 2
)

inf Φ−1
([

0, νρ
(

4r
ν

) 1
4

])
≥ Λ

Proof of Theorem 1: We now apply Lemma 6 to get the wanted lower bounds in the different cases.

Under Assumption 2(a):

We first try to solve y = Φ(c) for c ≥ 1. We have y = A
cα , which means that c =

(
y
A

)− 1
α when A ≥ y. This

implies that, if r ≤ ρA
2 , inf Φ−1

(
[0, 2r

ρ ]
)

=
(

2r
ρA

)− 1
α

.

We thus try, for r ≤ r1
min , min{ 1

2ρA,
1
2νρ}, to solve the equation Λr = 1

K

(
2r
νρ

)−d
inf Φ−1

(
[0, 2r

ρ ]
)

in order to

apply Lemma 6.a. We have Λr = 1
K

(
2
νρ

)−d(
2
ρA

)− 1
α

r−d−
1
α , which is equivalent to K

(
2
νρ

)d(
2
ρA

) 1
α

Λr = r−d−
1
α .

With D1 , K
−1

d+ 1
α

(
2
νρ

) −d
d+ 1

α

(
2
ρA

) −1
1+dα

, we have D1Λ

−1

d+ 1
α

r = r.

Finally, using Lemma 6.a, if Λ ≥ Λr1
min

, we have the bound rΛ ≥ D1Λ
−1

d+ 1
α . Otherwise, if Λ < Λr1

min
we only get

that rΛ ≥ r1
min.

Under Assumption 2(b)

d = 0 : Similarly, we solve y = Φ(c) for c ≥ 1. Since Φ(c) = Be−
cβ

σ , we get c =
(
σ log

(
B
y

)) 1
β

when B ≥ y. Using

this, we have that if ν
ρ

(
4r
ν

) 1
4 ≤ B, ie r ≤

(
ρB
ν

)4
ν
4 , then inf Φ−1

([
0, νρ

(
4r
ν

) 1
4

])
=
(
σ log

(
ρB
ν

(
ν
4r

) 1
4

)) 1
β

.

To use Lemma 6.b, we then try to solve, for r ≤ min { 1
4νρ

6,
(
ρB
ν

)4
ν
4}, the equation

Λr =
(
log ν4r
4 log 1

ρ

− 2
)

inf Φ−1
([

0, νρ
(

4r
ν

) 1
4

])
. This equation is equivalent to 41+ 1

β log 1
ρ σ

−1
β Λr =(

log ν
4r − 8 log 1

ρ

)(
log
((

B
ν

)4 ν
4r

)) 1
β

. We define L1 , log ν
4 − 8 log 1

ρ , L2 , log
((

B
ν

)4 ν
4

)
, and D , 41+ 1

β log 1
ρ σ

−1
β

to get it in the form DΛr =
(
L1 + log 1

r

)(
L2 + log 1

r

) 1
β . We now also assume L1 ≥ −1

2 log 1
r and L2 ≥ −1

2 log 1
r

(equivalent to r ≤ e2 L1 and r ≤ e2 L2), to get DΛr ≥
(

1
2 log 1

r

)(
1
2 log 1

r

) 1
β , ie 2D

β
1+β Λ

β
1+β
r ≥ log

(
1
r

)
. This gives

e−D2 Λ
β

1+β
r ≤ r with D2 , 2D

β
1+β .

We now conclude like above, this time using Lemma 6.b. If we define r2
min , min{ 1

4νρ
6,
(
ρB
ν

)4
ν
4 , e

2 L1 , e2 L2},
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for all Λ ≥ Λr2
min

, we can get the bound rΛ ≥ e−D2 Λ
β

1+β
, and rΛ ≥ r2

min otherwise.

d > 0 : In this case, we simply use that inf Φ−1
(

[0, 2r
ρ ]
)
≥ 1 by definition of Φ. We try to apply the Lemma

6.a, and solve for r ≤ 1
2νρ, Λr = 1

K

(
2r
νρ

)−d
inf Φ−1

([
0, νρ

(
4r
ν

) 1
4

])
. We here have Λr ≥ 1

K

(
2r
νρ

)−d
, which means

νρ
2 K

−1
d Λ

−1
d
r ≤ r. With D3 = νρ

2 K
−1
d , we have D3 Λ

−1
d
r ≤ r, and we conclude like above with r3

min = 1
2νρ.

Under Assumption 2(c)

d=0: We try to apply the Lemma 6.b, and solve, for r ≤ r4
min = 1

4νρ
6, Λr ≤

(
log ν4r
4 log 1

ρ

− 2
)

inf Φ−1
([

0, νρ
(

4r
ν

) 1
4

])
.

Since the required cost to get any information on the function is a, we have that inf Φ−1
([

0, νρ
(

4r
ν

) 1
4

])
= a, which

means that Λr =
(
log ν4r
4 log 1

ρ

− 2
)
a, ie log 4

ν + 8 log 1
ρ + 4 log 1

ρ
Λr
a = log 1

r . If we assume Λr ≥ a
4 log 1

ρ

(
log 4

ν + 8 log 1
ρ

)
,

we have 8 log 1
ρ

Λr
a ≥ log 1

r , and with D4 = 8 log 1
ρ

1
a , we finally get e−D4 Λr ≤ r.

We then conclude like before by applying the Lemma 6.b, and then, for any Λ ≥
max

{
Λr4

min
, a

4 log 1
ρ

(
log 4

ν + 8 log 1
ρ

)}
, we can get the bound rΛ ≥ e−D4 Λr

d > 0 : The reasoning and the wanted bounds (with D3 = D5) are exactly the same as the case d > 0 of
Assumption 2(b).

B Upper bounds

Proof of Proposition 2. When a cell is opened at fidelity j, the maximum budget used for this opening can not
exceed Kej . We can therefore upper bound the budget used for all of the cell opening, ignoring the initial cell
opening of P0,0

bΛ̃c∑
h=1

⌊
Λ̃
h

⌋∑
m=1

⌊
log Λ̃

hm

⌋∑
j=0

Kej ≤
bΛ̃c∑
h=1

⌊
Λ̃
h

⌋∑
m=1

Ke

⌊
log Λ̃

hm

⌋
+1

e− 1

≤
bΛ̃c∑
h=1

⌊
Λ̃
h

⌋∑
m=1

KeΛ̃

(e− 1)hm

≤
bΛ̃c∑
h=1

KeΛ̃

(e− 1)h

(
log

Λ̃

h
+ 1

)

≤ KeΛ̃

(e− 1)

(
log Λ̃ + 1

)(
log

Λ̃

h
+ 1

)

≤ KeΛ̃

(e− 1)
(log Λ + 1)

2

≤ Λ

2

The budget used for the initial opening and for the cross-validation can be bounded by(
K + log Λ̃

)
Λ̃ ≤ K(log Λ + 1)Λ̃ ≤ Λ

2
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This shows that the total budget can be bounded by Λ.

Lemma 7. Let Ψ a non-increasing function upper bounding Φ, j a non-negative integer and h̃ a positive real
number such that

1. Ψ(ej) ≤ νρh̃, and

2. Λ̃

4h̃ej
≥ Cρ−dh̃.

Then, rΛ ≤ 3ν
ρ ρ

h̃ + 2 Ψ
(

Λ̃
)

.

Proof. We denote by Px?,h′ the cell of depth h’ containing x?, i? the associated index and h = bh̃c.

Case h > 0 : To prove this lemma, we first want to show that the cell Px?, is opened with a cost ch with c ≥ ej .
We do it by induction, and show this is true for any h′ such that h′ ≤ h
When h′ = 0, the proposition is trivial since there is only one cell of depth 0, opened by the algorithm with
c0 = Λ̃ ≥ ej because of (2) and h̃ > 1.
When 0 < h′ ≤ h, we assume that Px?,h′−1 is opened, and ch′−1 ≥ ej . We want to show that at least Cρ−dh

′

cells are opened at a cost superior or equal to ej and strictly inferior to ej+1. This number nh′ of cells is equal to

nh′ = #{m ∈ J1 ; Λ̃
h′ K|e

j+1 > Λ̃
h′m ≥ e

j} = #{m ∈ N?| Λ̃
h′ej+1 < m ≤ Λ̃

h′ej } ≥
Λ̃
h′ej −

Λ̃
h′ej+1 − 1 ≥ Λ̃

2h′ej − 1

Since Λ̃
2h′ej ≥

Λ̃

2h̃ej
≥ 2Cρ−dh̃ ≥ 2, we conclude that nh′ ≥ Λ̃

4h′ej ≥
Λ̃

4h̃ej
≥ Cρ−dh̃ ≥ Cρ−dh′ .

We now suppose that the cell Px?,h′−1 was not opened with ch′ ≥ ej . Then at least nh′ cells of depth h′ were
such that fh′,i,j ≥ fh′,i?,j , with i denoting the index of any of these cells. This means that, using Assumption 1
and hypothesis (1) of the lemma,

supx∈Ph′,i f(x) + νρh
′ ≥ f(xh′,i) + Ψ(ej) ≥ fzej (xh′,i) = fh′,i,j ≥ fh′,i?,j = fzej (xh′,i?) ≥ f(xh′,i?) − Ψ(ej) ≥

f(xh′,i?)− νρh′ ≥ f(x?)− 2νρh
′
(∆)

absurd since Nh′ ≤ Cρ−dh
′ ≤ nh′ . We thus have that Px?,h′−1 was opened with ch′ ≥ ej

We have shown that the cell Px?, has been opened with a cost ch ≥ ej . This means that the cell has

been evaluated at least once for a fidelity of cost ej
′

with j′ ≥ j. Using the same chain of inequality (∆) for h,
and Ψ(ej

′
) ≤ Ψ(ej), we get that the cross-validation candidate xcj

′ is such that f(xcj) ≥ f(x?)− 3νρh. Then, if
xcj” is the returned value, we have that

f(xcj”) + Ψ(Λ̃) ≥ fzΛ̃(xcj”) ≥ fzΛ̃(xcj′) ≥ f(xcj′)−Ψ(Λ̃) ≥ f(x?)−Ψ(Λ̃)− 3νρh

, and we can conclude that rΛ ≤ 3νρρ
−dh̃ since h̃ ≥ h− 1

Case h=0 : Since any returned xc belongs to Px?,0, we have that rΛ ≤ νρ0 ≤ ν
ρρ

h̃ ≤ 3ν
ρ ρ

h̃ + 2 Ψ(Λ̃)

Proof of Theorem 3. The proofs for the first two hypothesis are similar since they use the same techniques to
apply the lemma

Under Assumption 2(a) (Φ(c) ≤ A
cα ):

We first try to solve Λ̃ν
1
α ρ

h
α

4eA
1
α h

= Cρ−dh with h unknown. Since this equality is equivalent to

Λ̃ν
1
α (d+ 1

α ) log 1
ρ

4CeA
1
α h

= (d + 1
α ) log 1

ρh e(d+ 1
α ) log 1

ρh, there exists a single positive real number h, which we will
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name h1, such that the equality is respected, with h1 = 1
(d+ 1

α ) log 1
ρ

W (
Λ̃ν

1
α (d+ 1

α ) log 1
ρ

4CeA
1
α

). We define the same way

h2 as the only solution of the equation Λ̃
4h = Cρ−dh (equal to Λ̃

4C if d = 0 and 1
d log 1

ρ

W (
Λ̃d log 1

ρ

4C ) if d > 0). Note

that h1 and h2 are both increasing with the budget.
We also define Ψ with Ψ(x) = A

xα We then discriminate between the two cases:

First case (High Budget): νρh1 ≤ eαA
We set j1 = blog( eA

1
α

ν
1
α ρ

h1
α

)c. Thanks to the hypothesis, we have that j1 is a positive integer.

We then try to apply Lemma 7 on Ψ, h1 and j1. Since j1 > log( eA
1
α

ν
1
α ρ

h1
α

)− 1 = log( A
1
α

ν
1
α ρ

h1
α

), we have A
eαj1

< νρh1

which means Ψ(ej1) < νρh1 , hypothesis (1).

We also have j1 ≤ log( eA
1
α

ν
1
α ρ

h1
α

), ie 1
ej1
≥ ν

1
α ρ

h1
α

eA
1
α

, which gives Cρ−dh1 = Λ̃ν
1
α ρ

h1
α

4eA
1
α h1

≤ Λ̃
4h1ej1

, hypothesis (2). Applying

the lemma then let us obtain the claimed results.

Second case (low budget): νρh1 > eαA

We set j2 = 0 and here try to apply Lemma 7 on Ψ, h2 and j2. We have h1ρ
−dh1 = Λ̃ν

1
α ρ

h1
α

4eA
1
αC

> Λ̃
4C = h2ρ

−dh2 ,

which means h1 > h2 since h− > hρ−dh is increasing on R+. This gives Ψ(ej2) = A < eαA < νρh1 < νρh2 (1)

The definition of h2 immediately gives Λ̃
4h2ej2

≥ Cρ−dh2 (2), and we conclude with the lemma.

Under Assumption 2(b) (Φ(c) ≤ Be−c
β

σ ):

We first define ab,ν as equal to max( 1
2σ , log(

B
ν )). Similarly to assumption 2.a, we then define h1 as the only

real positive number h such that Λ̃

4he(2σh log 1
ρ )

1
β

= Cρ−dh, and h2 the only real positive number h such that

Λ̃

4he(2σab,ν)
1
β

= Cρ−dh.

Value of h1: We have that Λ̃

4Ce(2σ log 1
ρ )

1
β

= h
1+β
β

1 ρ−dh1 , which gives ( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1 = h1ρ
− β
β+1dh.

When d = 0, we then get h1 = ( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1 . When d > 0, we have β
β+1d log 1

ρ ( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1 =

( β
β+1d log 1

ρ )h1e
β
β+1d log 1

ρh1 . We finally get h1 = β+1
βd log 1

ρ

W ( β
β+1d log 1

ρ ( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1 )

Value of h2: The definition gives Λ̃

4Ce(2σab,ν)
1
β

= h2ρ
−dh2 . If d = 0, we have h2 = Λ̃

4Ce(2σab,ν)
1
β

. If d > 0, we

get, like for a) h2 = 1
d log 1

ρ

W (
Λ̃d log 1

ρ

4Ce(2σab,ν)
1
β

).

We also define Ψ with Ψ(x) = Be
−xβ
σ . We again discriminate between the two cases.

First case (High Budget): h1 ≥ ab,ν
log 1

ρ

We set j1 = b 1
β log(2σh1 log 1

ρ )c+ 1. Since 2σh1 log 1
ρ ≥ 2σab,ν ≥ 1, j1 ≥ 1

We thus try to apply Lemma 7 on Ψ h1 and j1. Thanks to

eβj1 ≥ 2σh1 log
1

ρ
≥ σ(h1 log

1

ρ
+ log

B

ν
)

we have Be
−eβj1
σ ≤ νρh1 , ie Ψ(ej1) ≤ νρh1 , hypothesis (1).

Since ej1 ≤ e(2σh1 log 1
ρ )

1
β , we have

Λ̃

4h1ej1
≥ Λ̃

4h1e(2σh1 log 1
ρ )

1
β

= Cρ−dh1 (2)
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We then get the wanted results by applying the lemma.

Second case (Low Budget): h1 <
ab,ν
log 1

ρ

We set j2 = b 1
β log(2σab,ν)c+ 1 ≥ 1 and apply Lemma 7 on Ψ,h2 and j2.

The proof is really similar to the previous case, but we first need to show that h1 ≥ h2. This is due to

h1ρ
−dh1 =

Λ̃

4Ce(2σh1 log 1
ρ )

1
β

≥ Λ̃

4Ce(2σab,ν)
1
β

= h2ρ
−dh2

which implies h1 ≥ h2 We then use this inequality to show

eβj2 ≥ 2σab,ν ≥ σ(h1 log
1

ρ
+ log

B

ν
) ≥ σ(h2 log

1

ρ
+ log

B

ν
)

and we conclude like before with Ψ(ej2) ≤ νρh2 (1).

Like in the previous case, we have ej2 ≤ e(2σab,ν)
1
β and thus

Λ̃

4h2ej2
≥ Λ̃

4h2e(2σab,ν)
1
β

= Cρ−dh2 (2)

which let us conclude with the lemma.

Under Assumption 2(c) (Φ(c) = 0 for all c ≥ a)

We define h1 as the only real solution to the equation Λ̃
4aeh = Cρ−dh. Similarly to the two previous

cases, we get h1 = Λ̃
4Cae when d=0 and h1 = 1

d log 1
ρ

W (
Λ̃d log 1

ρ

4Cae ) when d > 0.

If Λ̃ ≥ a :

We now define Ψ with Ψ(x)= +∞ if x < a
0 if x ≥ a

, j1 with j1 = blog(ea)c and we try to apply Lemma 7 on

Ψ, h1 and j1.
Since ej1 ≥ a, Ψ(ej1) ≤ νρh1 (1). Using ej1 ≤ ea, we have

Λ̃

4h1ej1
≥ Λ̃

4h1ea
= Cρ−dh1(2)

. We then use the lemma (and Ψ(Λ̃) = 0, but in its proof, since we can upper bound Ψ(ej
′
) by 0 in this specific

case, we can loose a 3 factor in the result and just keep ν
ρρ

h1

If Λ̃ < a :
We then have h1 < 1. Since rΛ ≤ ν, as explained in the lemma proof, we have rΛ ≤ ν

ρρ
h1 which concludes.

Proof of Corollary 4. For the proof of the different bounds, we use that W (x) ≥ log x − log log x for x ≥ e, as
shown in Hoorfar and Hassani (2008). We can also notice that for x ≤ e, we have W (x) ≥ x/e.
We remind that the value of Λ̃ is bounded by

(e− 1)Λ

2Ke(log Λ + 1)
2

Under Assumption 2(a) (Φ(c) ≤ A
cα ):
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High Budget: We define Λ̃c =
Λ̃ν

1
α (d+ 1

α ) log 1
ρ

4CeA
1
α

.

If Λ̃c ≥ e then

rΛ ≤
3ν

ρ
ρh1 + 2

A

Λ̃α

=
3ν

ρ
ρ

1

(d+ 1
α

) log 1
ρ

W (Λ̃c)
+ 2

A

Λ̃α

≤ 3ν

ρ
ρ

1

(d+ 1
α

) log 1
ρ

log
(

Λ̃c
log Λ̃c

)
+ 2

A

Λ̃α

=
3ν

ρ

(
Λ̃c

log Λ̃c

) −1

d+ 1
α

+ 2
A

Λ̃α

If Λ̃c ≤ e, then

rΛ ≤
3ν

ρ
ρh1 + 2

A

Λ̃α

=
3ν

ρ
ρ

1

(d+ 1
α

) log 1
ρ

W (Λ̃c)
+ 2

A

Λ̃α

=
3ν

ρ
ρ

1

(d+ 1
α

) log 1
ρ

Λ̃c
e

+ 2
A

Λ̃α

Low Budget: If d = 0, the exponential upper bound is given by

rΛ ≤
3ν

ρ
ρh2 + 2

A

Λ̃α
≤ 3ν

ρ
ρ

Λ̃
4C + 2

A

Λ̃α

If d > 0, we define Λ̃c =
Λ̃d log 1

ρ

4C

Then, if Λ̃c ≥ e

rΛ ≤
3ν

ρ
ρh1 + 2

A

Λ̃α

=
3ν

ρ
ρ

1

d log 1
ρ

W (Λ̃c)
+ 2

A

Λ̃α

≤ 3ν

ρ
ρ

1

d log 1
ρ

log
(

Λ̃c
log Λ̃c

)
+ 2

A

Λ̃α

=
3ν

ρ

(
Λ̃c

log Λ̃c

)−1
d

+ 2
A

Λ̃α

Else, if Λ̃c < e
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rΛ ≤
3ν

ρ
ρh1 + 2

A

Λ̃α

=
3ν

ρ
ρ

1

d log 1
ρ

W (Λ̃c)
+ 2

A

Λ̃α

≤ 3ν

ρ
ρ

1

d log 1
ρ

Λ̃c
e

+ 2
A

Λ̃α

Under Assumption 2(b) (Φ(c) ≤ Be−c
β

σ ):

High Budget: If d = 0, then we directly get

rΛ ≤
3ν

ρ
ρh1 + 2Be

−Λ̃β

σ ≤ 3ν

ρ
ρ

( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1

+ 2Be
−Λ̃β

σ

If d > 0, we define Λ̃c =

(
β
β+1d log 1

ρ

(
1

2σ log 1
ρ

) 1
β+1

) β+1
β

Λ̃
4Che

Then, if Λ̃c ≥ e
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ρ
ρh1 + 2Be
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σ
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ρ
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β
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β
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ρ

 Λ̃c(
log Λ̃c

) β+1
β


−1
d

+ 2Be
−Λ̃β

σ

Else, if Λ̃c < e

rΛ ≤
3ν

ρ
ρh1 + 2Be

−Λ̃β

σ

=
3ν

ρ
ρ

β+1

βd log 1
ρ

W (Λ̃
β
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c )

+ 2Be
−Λ̃β
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≤ 3ν

ρ
ρ
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βd log 1
ρ
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Low Budget: If d = 0, we get

rΛ ≤
3ν

ρ
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−Λ̃β

σ ≤ 3ν

ρ
ρ

Λ̃

4Ce(2σab,ν )
1
β

+ 2Be
−Λ̃β

σ
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If d > 0, we define Λ̃c = β
β+1d log 1

ρ ( Λ̃
4Che )

β
β+1 ( 1

2σ log 1
ρ

)
1

β+1

Then, if Λ̃c ≥ e

rΛ ≤
3ν

ρ
ρh1 + 2Be

−Λ̃β

σ

=
3ν

ρ
ρ

1

d log 1
ρ
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ρ

1
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ρ
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)
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ρ

(
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)−1
d

+ 2Be
−Λ̃β

σ

Else, if Λ̃c < e

rΛ ≤
3ν

ρ
ρh1 + 2Be

−Λ̃β

σ

=
3ν

ρ
ρ

1

d log 1
ρ

W (Λ̃c)
+ 2Be

−Λ̃β

σ

≤ 3ν

ρ
ρ

1

d log 1
ρ

Λ̃c
e

+ 2Be
−Λ̃β

σ

Under Assumption 2(c) (Φ(c) = 0 for all c ≥ a)

If d = 0, we get

rΛ ≤
ν

ρ
ρh1 ≤ ν

ρ
ρ

Λ̃
4Cae

If d > 0, we define Λ̃c =
Λ̃d log 1

ρ

4Cae

Then, if Λ̃c ≥ e

rΛ ≤
ν

ρ
ρh1

=
ν

ρ
ρ

1

d log 1
ρ

W (Λ̃c)

≤ ν

ρ
ρ

1

d log 1
ρ

log
(
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log Λ̃c

)

=
ν

ρ

(
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log Λ̃c

)−1
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Else, if Λ̃c < e

rΛ ≤
ν

ρ
ρh1

=
ν

ρ
ρ

1

d log 1
ρ

W (Λ̃c)

≤ ν

ρ
ρ

1

d log 1
ρ

Λ̃c
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