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Hankel matrix-based Mahalanobis distance
for fault detection robust towards changes

in process noise covariance

Szymon Greś Michael Döhler Laurent Mevel

Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, Campus de Beaulieu,
35042 Rennes, France (e-mail: szymon.gres@inria.fr)

Abstract: Statistical subspace-based change detection residuals have been developed to infer
a change in the eigenstructure of linear systems. Their statistical properties have been properly
evaluated in the case of a known reference and constant noise properties. Previous residuals have
favored the family of null space-based approaches, whereas the possibility of using other metrics
such as the Mahalanobis distance has been omitted. This paper investigates the development and
study of such a norm under the premise of a varying noise covariance. Its statistical properties
have been studied and tested on a numerical example of a mechanical system.
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1. INTRODUCTION

Damage detection in mechanical or civil structures cor-
responds to detecting changes in the eigenstructure of
a linear system, usually under unknown inputs. Among
the many model-based or data-driven methods for dam-
age detection (Carden and Fanning, 2004; Fan and Qiao,
2011; Dong et al., 2012), methods based on direct model-
data matching are particularly appealing for an automated
damage diagnosis, where current measurement data are
directly confronted to a reference. For instance, such meth-
ods include non-parametric change detection based on
novelty detection (Worden et al., 2000), whiteness tests
on Kalman filter innovations (Bernal, 2013) or null space
tests (Dong et al., 2012). Another method within this cat-
egory, the local asymptotic approach to change detection
(Benveniste et al., 1987) focuses on the detection of small
changes in some chosen system parameters. Note that the
considered changes in the system parameters affect the
observed linear system in a non-additive way, unlike for
example (Dong and Verhaegen, 2009).

Based on Hankel matrices of output covariances, subspace
methods are a large family of system identification meth-
ods that have been developed and extensively studied
for linear systems to identify their eigenstructure. Based
on subspace methods but avoiding the cumbersome and
fine-tuned exercise of identification, a family of residuals
in the local approach framework were proposed for fault
detection (Balmes et al., 2006; Döhler et al., 2016; Döhler
and Mevel, 2013; Döhler et al., 2014; Viefhues et al., 2020).
A particular difficulty for their design is the robustness of
the resulting Generalized Likelihood Ratio (GLR) statis-
tical test towards changing process noise covariance Q. A
change in Q exerts a change in both its sensitivity with
respect to the parameter and its covariance, which then
affects the distribution properties of the GLR, with or
without any change considered in the system, as shown in
Döhler and Mevel (2013). A fault detection residual robust

towards changes of Q was proposed in Döhler and Mevel
(2013), under the assumption that the reference model
is deterministic, while in practice it is evaluated from
measurements and subjected to estimation uncertainty.
For these null-space based residuals, the uncertainty of
the reference model was accounted for in the residual
proposed in Viefhues et al. (2018), and extended to the
problem of robustness to temperature and noise charac-
teristics changes in Viefhues et al. (2020) by a variance
scheme involving recomputation of the residual covariance
for every new tested data set and no proper formulation
of the associated sensitivity. The previously considered
residuals that have been extensively studied in the context
of the local approach framework need to define a reference
null space for the comparison of column spaces of Hankel
matrices. Alternatively, the direct and simple difference
between the two Hankel matrices is also a possible metric
of change that can be favored since it avoids this null
space definition. Including the classic and well adopted
Mahalanobis distance, the notion of features comparison
through a distance metric is a widely spread choice in
change detection. The current paper builds upon the pre-
vious works and extends them such that the Mahalanobis
distance benefits of the good theoretical properties of the
local approach framework.

This paper will explain how the Mahalanobis distance fits
in the local approach framework and how uncertainty in
the reference and robustness to change in the process noise
covariance can be theoretically approached. In Section
2, the modeling and classical Mahalanobis distance will
be recalled. Section 3 will present the new robust resid-
ual, whose asymptotic distribution will be established, as
well as the exact formulation of the necessary sensitivity
and covariance matrices. This will allow to formulate the
asymptotic law of the hypothesis test deciding about a
change in the system under the assumption of a simulta-
neous change in the variance of the process noise. Then,
it will be finally shown that the mean of the test under



the assumption of no system change is independent of the
process noise. In Section 4, this new hypothesis test will
be validated on a simulated numerical system.

2. HANKEL MATRIX DIFFERENCE-BASED FAULT
DETECTION

Hereafter a fault detection residual based on a difference of
Hankel matrices is introduced and its statistical properties
are derived.

2.1 Preliminaries

Consider the discrete time state-space model{
xk+1 = Axk + vk
yk = Cxk + wk

(1)

where xk ∈ Rn are the states, yk ∈ Rr are the outputs,
A ∈ Rn×n, C ∈ Rr×n are respectively the state and
the observation matrices, where n is the known system
order and r is the number of the observed outputs. The
process noise vk is assumed to be a stationary process
with zero mean and covariance matrix Q = E(vkv

T
k ),

wk denotes the zero-mean output noise with covariance
matrix R = E(wkw

T
k ), and the covariance between vk and

wk is S = E(vkw
T
k ), where E(·) denotes the expectation

operator.

Let Ri = E(yky
T
k−i) = CAi−1G be the theoretical output

covariances of the measurements, where G = E(xk+1y
T
k ) =

AΣsCT + S and Σs = E(xkx
T
k ). There have been many

methods to analyse the output covariance matrices, in par-
ticular the system identification techniques where modes
of the system are extracted by subspace methods. They
rely on the construction of Hankel matrices of these output
covariances, i.e.

H =


R1 R2 . . . Rq
R2 R3 . . . Rq+1

...
...

. . .
...

Rp+1 Rp+2 . . . Rp+q

 ∈ R(p+1)r×qr, (2)

where p and q are chosen such that min(pr, qr) ≥ n

with often p + 1 = q. Consistent estimates R̂i and Ĥ
can be computed from the output covariances of the
measurements YN = {y1 . . . yN} of length N . The matrix
H enjoys the factorization property

H = O(C,A) C(A,G) (3)

into observability times the controllability matrix. The
matrices O(C,A) and C(A,G) are classically obtained
from a singular value decomposition (SVD) of H thanks
to the factorization property (3). Then, eigenvalues and
eigenvectors of the system are retrieved from O(C,A)
using numerical algebra operations. Finally, a compari-
son of the resultant eigenstructure for two different data
sets can indicate a possible model change therein. These
approaches are usually cumbersome, hard to automatize
and need engineering expertise. Alternatively, the output
covariance matrices capture the whole dynamics of the
structure. Monitoring changes in the output covariances
will be equivalent to monitoring changes in the eigen-
structure of the linear system. Monitoring changes of the
column space of the Hankel matrix has been an investi-
gated approach that yields change detection tests taking

into account uncertainty information and sensitivity to the
monitored change by means of a χ2 hypothesis test. In the
next section a simple change detection metric based on the
difference between two Hankel matrices is developed.

2.2 Hankel matrix difference for change detection

Analyzing the differences between two different features
is a classical approach in data analysis. Squaring the
difference and taking into account the variance of the
reference variable yields the Mahalanobis distance in many
occasions. The proposed approach here is at the crossroad
between the family of variants of Mahalanobis distances
and the local approach framework developed previously
by Benveniste et al. (1987) and recalled later.

Let θ denote a parameterization of the properties of system
(1), and let θ∗ be its value in the reference state. A
single set of measurements YN is generated from the
system under (unknown) θ, and covariance matrices Q,
R and S. The considered fault detection problem relates
to monitoring the changes of the system from its nominal
behavior characterized by θ∗, based on YN . In this section,
no change in the value of Q between different measurement
sessions is assumed. Hereafter, the statistical context for
detecting changes is defined.

Let Hθ∗ref and Hθtest be exact Hankel matrices of rank n and

let Ĥθ∗ref and Ĥθtest be their estimates obtained respectively
from data sets of lengths M and N . Then,

Hθtest −H
θ∗
ref = 0 iff θ = θ∗, (4)

and
Hθtest −H

θ∗
ref 6= 0 iff θ 6= θ∗. (5)

In this context, a decision about a parameter change needs
to take into account the uncertainty information of the
Hankel matrices and their sensitivity towards the consid-
ered parameterization. A validated approach for evaluat-
ing this change is to define a residual whose properties
can be evaluated properly as the number of samples goes
to infinity. For this, the above hypotheses are rewritten as
the “close hypotheses”

H0 : θ = θ∗ (reference state), (6)

H1 : θ = θ∗ + δ/
√
N (faulty state),

where δ =
√
N(θ − θ∗) is unknown but a fixed change

vector. This is known as the local approach (Benveniste
et al., 1987). Based on both (4) and (5), a change detection
residual can be defined as

ξ̂θ
def
=
√
Nvec(Ĥθtest − Ĥ

θ∗
ref), (7)

The use of the normalization factor
√
N in the residual

is related to the local approach and will become apparent
when analyzing its distribution in the next section.

2.3 Change detection framework

The asymptotic local approach for change detection de-
veloped in Benveniste et al. (1987) is used to characterize
the distribution of the residual (7). Thanks to the close
hypotheses assumption and the Central Limit Theorem
(CLT), the local approach ensures that Ĥθtest is asymptot-
ically Gaussian, and it holds



H0 :
√
N vec(Ĥθtest −H

θ∗
test)

L−→ N (0,Σtest), (8)

H1 :
√
N vec(Ĥθtest −H

θ∗
test)

L−→ N (JHtest

θ∗
δ,Σtest), (9)

where Σtest is the asymptotic covariance of vec(Ĥθtest), and

JHtest

θ∗
= ∂vec(Hθtest)/∂θ (θ∗). Similarly, Ĥθ∗ref is asymptot-

ically Gaussian distributed
√
M vec(Ĥθ∗ref −H

θ∗
ref)

L−→ N (0,Σref), (10)

where Σref is the asymptotic reference Hankel matrix
covariance. The formulation of the Jacobian JHtest

θ∗
can

easily be derived following the ideas of Döhler et al. (2016).

The residual ξ̂θ depends on both Ĥθ∗ref and Ĥθtest, therefore
before inferring its statistical properties the distribution
of joint Ĥθ∗ref and Ĥθtest is derived. Define the joint vectors

ĥ =

[
vec(Ĥθ∗ref)
vec(Ĥθtest)

]
, h =

[
vec(Hθ∗ref)
vec(Hθ∗test)

]
.

Since both Hankel matrices are computed on different data
sets, they are statistically independent, and it follows for
the joint distribution

under H0 :
√
N (ĥ− h)

L−→ N (0,Σh),

under H1 :
√
N (ĥ− h)

L−→ N (J hθ∗δ,Σh),

where

J hθ∗ =

[
0

JHtest

θ∗

]
, Σh =

[
cΣref 0

0 Σtest

]
. (11)

and c = lim N
M such that cov(

√
N
M

√
Mvec(Ĥθ∗ref)) ≈ cΣref.

The estimate of the residual ξ̂θ is asymptotically Gaussian
with the distribution properties

H0 : ξ̂θ∗
L−→ N (0,Σξ), (12)

H1 : ξ̂θ
L−→ N (J ξθ∗δ,Σξ), (13)

where J ξθ∗ = ∂vec
(
Hθ∗ref −Hθtest

)
/∂θ (θ∗) is the residual

sensitivity and Σξ = cΣref + Σtest its covariance.

Let Ĵ and Σ̂ respectively be consistent estimates of J ξθ∗
and Σξ. Then a Generalized Likelihood Ratio (GLR) test
to decide between H0 and H1 writes as

t = (ξ̂θ)T Σ̂−1 Ĵ
(
Ĵ T Σ̂−1 Ĵ

)−1
Ĵ T Σ̂−1ξ̂θ . (14)

Assuming Σξ to be invertible, under H0, t follows a χ2

distribution with rank(J ξθ∗) degrees of freedom. Under H1,

it follows a non-central χ2 distribution with rank(J ξθ∗)
degrees of freedom and noncentrality parameter

λ = δT (J ξθ∗)
T Σ−1ξ J

ξ
θ∗
δ .

Due to the independence between the two data sets, the
distribution of (14) is derived along the same lines as
in Basseville et al. (2000) without any hurdle, under the
assumption that the unknown matrix Q is equal for the
two different data sets. This assumption is now relaxed.

3. NORMALIZED HANKEL MATRIX DIFFERENCE
FOR FAULT DETECTION

In this section, the development of a residual robust to-
wards changes inQ is motivated. Hereafter a normalization
scheme for the metric in (7) is developed and the statistical
properties of the resulting robust residual are derived.

3.1 Motivation

As recalled above, the formulation of the analytical form of
the output covariance matrices depends on G. Then, those
matrices vary with the amplitude or the characteristics of
the noise. In that sense, a simple difference between the
same output covariance features computed for different
data sets would be meaningless if this variability is not
considered in the design of the metric. Any change in
the variance of the noise will lead to a change in mean
and the variance of the designed residual, and an inability
to establish the GLR test as a random variable with a
known χ2 distribution. To avoid the analysis of a possibly
complicated and non-tractable distribution of the GLR
test under changes in the noise properties, a different
residual can be formulated that takes into account changes
in the noise statistics in its design. In the following, such
a residual is derived and its distribution properties are
studied under the local approach framework.

3.2 Normalization scheme

Let Hθ∗ref and Hθ∗test be two exact Hankel matrices of rank n
for a system in the reference state θ∗, subjected to process
noise with unknown, possibly different covariances Qref

and Qtest. An SVD of the juxtaposed matrices Href and
Htest writes[

Hθ∗ref H
θ∗
test

]
= [Us Uker]

[
Ds 0
0 0

] [
V Ts
V Tker

]
, (15)

where rank
([
Hθ∗ref H

θ∗
test

])
= n, Us ∈ R(p+1)r×n contains

the left singular vectors, Ds ∈ Rn×n contains the non-
zero singular values and Vs ∈ R2qr×n contains the right
singular vectors, which are split into V Ts =

[
V Ts,ref V

T
s,test

]
corresponding to Hθ∗ref and Hθ∗test respectively. Now define

Zref = DsV
T
s,ref, Ztest = DsV

T
s,test, (16)

where both Zref and Ztest are full row rank. The exact
Hankel matrices share the same image in the reference
state [

Hθ∗ref H
θ∗
test

]
= Us [Zref Ztest] . (17)

To compare Hθ∗ref with Hθ∗test an appropriate normalization
is given by

Htest = Hθ∗testZ
†
testZref, (18)

where Htest now shares the same C(A,G) as Hθ∗ref.

3.3 Normalized residual

Let Ĥθ∗ref → H
θ∗
ref be obtained from a data set of length M

generated under a process noise covariance Qref. Similarly,
assume Ĥθtest → Hθtest obtained from a data set of length
N generated under the process noise covariance Qtest, with
Qref possibly different from Qtest. Then, (17) yields

HθtestZ
†
testZref −Hθ∗ref = 0 iff θ = θ∗, (19)

and
HθtestZ

†
testZref −Hθ∗ref 6= 0 iff θ 6= θ∗, (20)

where Zref and Ztest are obtained from an SVD of
[Hθ∗ref Hθtest] analogous to (15) that is truncated at order n.
Based on both (19) and (20), the change detection residual
is defined as

ζ̂θ
def
=
√
Nvec(ĤθtestẐ

†
testẐref − Ĥθ∗ref), (21)



where Ẑref and Ẑtest are defined from the SVD of the
juxtaposed Hankel matrix estimates partitioned at system
order n[
Ĥθ∗ref Ĥθtest

]
=
[
Û s Ûker

] [D̂s 0

0 D̂ker

][
V̂ Ts,ref V̂ Ts,test
V̂ Tker,ref V̂

T
ker,test

]
,

as Ẑref = D̂sV̂
T
s,ref, Ẑtest = D̂sV̂

T
s,test.

3.4 Residual distribution

Hereafter, the asymptotic distribution of the new residual
in (21) is derived.

Theorem 1. The residual in (21) is asymptotically Gaus-
sian with the following properties

H0 : ζ̂θ∗
L−→ N (0,Σζ), (22)

H1 : ζ̂θ
L−→ N (J ζθ∗δ,Σζ) , (23)

where Σζ = J ζhΣhJ ζh T is the residual covariance, whose
exact formulation is derived in Appendix A, which boils
down to

Σζ = J ζHref
cΣref(J ζHref

)T + J ζHtest
Σtest(J ζHtest

)T , (24)

where J ζHref
= I(p+1)r⊗UkerU

T
ker and J ζHtest

= (Z†testZref)
T⊗

UkerU
T
ker, and J ζθ∗ is the residual sensitivity with respect

to the chosen parameterization defined as

J ζθ∗ =
(

(Z†refZref)
T
⊗ UkerU

T
ker

)
JHref

θ∗
, (25)

where JHref

θ∗
= ∂vec (Href)/∂θ (θ∗).

Proof: Due to the involvement of two different model
states, the Jacobian is a function of two variables corre-
sponding to both the reference and the possibly changed
parameter values. Let θ′ and θ′′ be the corresponding
values in the parameter space. Let the related Hankel
matrices be Hθ′ref and Hθ′′test, then along the lines of (15)
define

Zθ
′,θ′′

ref = Dθ′,θ′′

s V θ
′,θ′′

s,ref

T

Zθ
′,θ′′

test = Dθ′,θ′′

s V θ
′,θ′′

s,test

T

Those two variables are depending on both parameters.
This is a technical difficulty not present in the study of the
previous null space residuals, where all involved matrices
were statistically decoupled. Notice that the asymptotic
residual can be defined as a function of θ′ and θ′′ as

ζθ
′,θ′′ = vec

(
H̃θ
′,θ′′

test −Hθ
′

ref

)
where H̃θ

′,θ′′

test = Hθ′′test(Z
θ′,θ′′

test )†Zθ
′,θ′′

ref

The derivative of ζθ
′,θ′′ with respect to θ′′ evaluated at the

point (θ∗, θ∗) coincides with the Jacobian matrix J ζθ∗ and

writes ∂ζ
∂θ′′ (θ∗, θ∗) = J̆ ζHtest

J̆Htest

θ∗
, where

J̆ ζHtest
=
∂vec

(
Hθ′′test(Z

θ′,θ′′

test )†Zθ
′,θ′′

ref

)
∂vec

(
Hθ′′test

) (θ∗, θ∗),

J̆Htest

θ∗
=
∂vec

(
Hθ′′test

)
∂θ′′

(θ∗).

Derivatives J̆ ζHtest
and J̆Htest

θ∗
coincide respectively with

J ζHtest
and JHtest

θ∗
since the derivative of the singular

vectors are continuous in θ′′, see Appendix B. After
dropping θ∗, the expression for Jθ∗ writes as

J ζθ∗ =
(

(Z†testZref)
T ⊗ UkerU

T
ker

)
JHtest

θ∗
(26)

Notice that Hθ∗ref = Hθ∗testZ
†
testZref, Hθ∗test = Hθ∗refZ

†
refZtest.

Subsequently, since UTkerH
θ∗
ref = 0, J ζθ∗ in (26) writes as

J ζθ∗ =
(

(Z†testZref)
T
⊗ UkerU

T
ker

)
vec

(
∂Href

∂θ
(θ∗)Z†refZtest

)
+
(

(Z†testZref)
T
⊗ UkerU

T
ker

)
vec

(
Hθ∗ref

∂Z†ref
∂θ

(θ∗)Ztest

)
︸ ︷︷ ︸

=0

+
(

(Z†testZref)
T
⊗ UkerU

T
ker

)
vec

(
Hθ∗refZ

†
ref

∂Ztest

∂θ
(θ∗)

)
︸ ︷︷ ︸

=0

=
(

(Z†refZref)
T ⊗ UkerU

T
ker

)
JHref

θ∗

By Slutsky’s theorem, the asymptotic true values can be
replaced by their estimates in the CLT.

Theorem 2. J ζθ∗ in (25) is invariant towards change in Q.

Proof: Let Hθ∗ref and Hθ∗test be the Hankel matrices
corresponding to the same model under different process
noise covariance. Their joint SVD yields the matrices Us,
Zref and Ztest (17), which thus depend on the process
noise properties of both matrices. It is now shown that the

factors UkerU
T
ker and Z†refZref in (25) can both be linked to

the properties of Hθ∗ref only, independently from potentially

different noise properties of the tested matrix Hθ∗test.

Let the SVD of Hθ∗ref be Hθ∗ref = ŨsD̃sṼ
T
s . From (17), it

follows Hθ∗ref = UsZref. Since both Us and Ũs define an

orthogonal basis of the column space of Hθ∗ref, there exists

a matrix T with Us = ŨsT . It holds

In = UTs Us = (ŨsT )
T
ŨsT = TTT,

hence T is orthogonal. Then, UkerU
T
ker = I − UsU

T
s = I −

ŨsŨ
T
s and thus only related to Hθ∗ref. Furthermore, from

the SVD of Hθ∗ref and (15) follows

Hθ∗ref = ŨsTT
T D̃sṼ

T
s , Zref = TT D̃sṼ

T
s .

Then, Z†refZref simplifies to

Z†refZref = ṼsD̃
−1
s TTT D̃sṼ

T
s = ṼsṼ

T
s

which only depends on Hθ∗ref (the reference matrix).

As a consequence of Theorem 2 Jacobian J ζθ∗ is invariant
for different values of the process noise variance Q. Hence,

rank(J ζθ∗) is constant, and the resultant mean test value is
not affected by different values of Q under H0. It implies
the robustness of the test (14) to false alarms under H0

when the residual (21) is used.

4. NUMERICAL APPLICATION

In this section, the proposed change detection residual is
applied in a numerical experiment on a 6 DOF mechanical
chain-like system that, for any consistent set of units, is
modeled with spring stiffness k1 = k3 = k5 = 100 and



k2 = k4 = k6 = 200, mass mi = 1/20 and a proportional
damping matrix such that all modes have a damping ratio
of 3%. It is illustrated in Figure 1. The system is excited
by a white noise signal acting at all DOFs. Two cases
for Q are considered, namely first a base-case, where Q is
the identity matrix I6, and second where Q is a positive
definite matrix that is randomly computed as Q = bbT

where b ∈ R6×6 is a matrix whose entries are drawn from a
standard normal distribution. The structural accelerations
are simulated at DOFs 1, 3 and 5 at a sampling frequency
of 50 Hz, and white measurement noise with 5% of the
standard deviation of the output is added to each response
measurement.

m1 m2 m3 m4 m5 m6

k1 k2 k3 k4 k5 k6

sensor 1 sensor 2 sensor 3

Fig. 1. 6 DOF chain system sketch

The simulation campaign consists of a reference built with
data length N0 = 2,000,000, and tested data sets each
simulated with data length N = 100,000. In total 1000
tested states for each case of Q are realized. The damage
is modeled as a gradual stiffness reduction of the second
spring by 5% and 10%. First, the simple residual (7) and
the corresponding GLR test (14) are evaluated for the case
where Q is changing randomly between each simulated
data set. Figure 2 illustrates that the distributions of the
test evaluated for different damage levels are mixed and
inseparable due to the changes in the value of Q.

Fig. 2. Histograms of the GLR test (14) with the classic
residual (7), for multiple Q at the reference state and
two different damage extents.

Next, the normalized residual (21) and the corresponding
GLR test are computed. In Figure 3 the distributions
of the test for Monte Carlo simulations are shown for
three different values of Q. In the reference case, all three
distributions are superposed, confirming the robustness of
the test. The test values due to model change are well sep-
arated from the ones corresponding to the reference state.
They show some fluctuations due to Q in the changed
states, which does not impair the overall damage detection.
In Figure 4, Q is changed randomly for each simulated
data set. There, one can observe that the different test
conditions are well separated, even when Q changes for
each data realization. Note that for the results in both
Figure 3 and Figure 4 the mean of the test in the reference
state is stable and very close to the theoretical value.

Fig. 3. Histograms of the GLR test (14) with the robust
residual (21) in healthy and two damaged states.
Three different values of Q in the tested data sets.

Fig. 4. Histograms of the GLR test (14) with the robust
residual (21). Q changing for each tested data set.

5. CONCLUSIONS

This paper proposed a new hypothesis test coupling the
Mahalanobis distance and the local approach to detect a
change in the LTI system eigenstructure. The residual and
thus the test has been shown to be independent of a change
in the process noise in the reference state. The proposed
change detection method has been validated numerically
on a simple mechanical model.

Appendix A. RESIDUAL COVARIANCE

The covariance of the residual (24) is developed from the

first order perturbation of (21), assuming θ = θ∗ + δ/
√
N ,

∆ζ̂θ/
√
N = ∆

(
vec
(
ĤθtestẐtest

†
Ẑref − Ĥθ

∗

ref

))
(A.1)

= ∆
(

vec
(
ĤθtestẐtest

†
Ẑref

))
− vec

(
∆Ĥθ

∗

ref

)
.

Since (Ẑ†testẐref)
T Ẑ†test is bounded and

√
N∆Ẑtest is ap-

prox. Gaussian, with bounded moments too, then the
sensitivity w.r.t.∆Ẑtest and its cross-terms with ∆Ĥθ∗ref and

∆Ĥθtest can be neglected and ∆ζ̂θ/
√
N resolves to

≈
(
Vker,refV

T
ker,ref + Vs,refV

†
s,testVker,testV

T
ker,test

)
⊗HθtestZ

†
testU

T
s vec(∆Ĥθ

∗

ref)

+
(
Vker,refV

T
ker,test − Vs,refV

†
s,testVker,testV

T
ker,test

)
⊗HθtestZ

†
testU

T
s vec(∆Ĥθtest)− vec

(
∆Ĥθ

∗

ref

)
+
(

(Z†testZref)
T
⊗ I(p+1)r

)
vec
(

∆Ĥθtest
)

Since rank(
[
Hθ∗ref H

θ∗
test

]
) = n



[
Vs,ref
Vs,test

] [
V Ts,ref V

T
s,test

]
+

[
Vker,ref
Vker,test

] [
V Tker,ref V

T
ker,test

]
= I2n

Consequently,(
Vker,refV

T
ker,ref + V̂s,refV̂

†
s,testV̂ker,testV̂

T
ker,test

)
⊗Hθ∗testZ

†
testU

T
s =

(
In ⊗Hθ∗testZ

†
testU

T
s

)
and(

Vker,refV
T
ker,test − Vs,refV

†
s,testVker,testV

T
ker,test

)
⊗Hθ∗testZ

†
testU

T
s =

(
−Vs,refV †s,test

)
⊗Hθ∗testZ

†
testU

T
s .

Approximation of (A.1) writes

∆ζ̂θ/
√
N ≈

(
I(p+1)r ⊗ UkerU

T
ker

)
vec(∆Ĥθ∗ref)

+
(

(Z†testZref)
T ⊗ UkerU

T
ker

)
vec(∆Ĥθtest).

After squaring and going to the limit with N , it yields

Σζ = lim
N→∞

∆ζ̂θ∆ζ̂θ
T

=
[
J ζHref

J ζHtest

]
Σh

[
(J ζHref

)T

(J ζHtest
)T

]
Appendix B. CONTINUITY OF THE SINGULAR

VECTOR DERIVATIVE

For a given set of continuous matrices Xθ, where θ −→ θ∗,
rank(Xθ) = 2n for θ 6= θ∗, and rank(Xθ∗) = n. The
sensitivity of the first n left singular vectors of an estimate
of Xθ is examined during convergence, i.e. for D̃1 → 0 in
the SVD of Xθ

Xθ =
[
U1 Ũ1 Ǔ2

] D1 0 0

0 D̃1 0
0 0 0

V T1Ṽ T1
V̌ T2

 ,
where U1 and V1 denote the first n left and right singular
vectors. D1 = diag(d1, . . . , dn) contains the first n non-

zero singular values. Matrices Ũ1 and Ṽ1 denote the left
and right singular vectors corresponding to the last n non-
zero singular values in D̃1 = diag(dn+1, . . . , d2n). Matrices
Ǔ2 and V̌2 define the left and right null spaces of Xθ

respectively. Let uf be the f -th column of U1, where
f = 1 . . . n. A first order perturbation of uf , developed
in Liu et al. (2008), writes

∆uf =
[
U1 Ũ1

] [Df 0

0 D̃f

] [
UT1
ŨT1

]
∆Xvfdf

+
[
U1 Ũ1

] [Df 0

0 D̃f

] [
D1 0

0 D̃1

] [
V T1
Ṽ T1

]
∆XTuf

+ Ǔ2Ǔ
T
2 ∆Xvfd

−1
f , (B.1)

where Df ∈ Rn×n is a diagonal matrix with entries
Df (g, g) = 1/(d2f−d2g) for g 6= f , and Df (f, f) = 0. Matrix

D̃f ∈ Rn×n is diagonal with entries D̃f (g, g) = 1/(d2f −
d2g+n), analogously. Suppose now Xθ → Xθ∗ , so the non-

zero singular values dn+1 . . . d2n converge to zero, D̃1 −→ 0.

Then D̃f −→ Ind
2
f , and Ũ1 converge to vectors in the left

null space of Xθ∗ , which becomes U2 =
[
Ũ1 Ǔ2

]
. Thus, the

first order perturbation of uf follows from (B.1) as

∆uf = U1DfU
T
1 ∆Xvfdf + U1DfD1V

T
1 ∆XTuf

+ U2U
T
2 ∆Xvfd

−1
f

which coincides with the sensitivity of the f -th left singular
vector of the matrix Xθ∗ with rank(Xθ∗) = n. Hence, the

derivatives of the first n singular vectors of matrix Xθ are
continuous in θ∗.
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Döhler, M., Mevel, L., and Zhang, Q. (2016). Fault detec-
tion, isolation and quantification from Gaussian resid-
uals with application to structural damage diagnosis.
Annual Reviews in Control, 42, 244–256.

Dong, J., Verhaegen, M., and Gustafsson, F. (2012). Ro-
bust fault detection with statistical uncertainty in iden-
tified parameters. IEEE Transactions on Signal Pro-
cessing, 60(10), 5064–5076.

Dong, J. and Verhaegen, M. (2009). Subspace based fault
detection and identification for LTI systems. IFAC
Proceedings Volumes, 42(8), 330–335.

Fan, W. and Qiao, P. (2011). Vibration-based damage
identification methods: a review and comparative study.
Structural Health Monitoring, 10(1), 83–111.

Liu, J., Liu, X., and Ma, X. (2008). First-order pertur-
bation analysis of singular vectors in singular value de-
composition. IEEE Transactions on Signal Processing,
56(7), 3044–3049.
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