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Upgrading linear to sliding mode feedback algorithm for a digital
controller

Gabriele Perozzi, Andrey Polyakov, Félix Miranda-Villatoro, Bernard Brogliato

Abstract— The goal of this paper is to investigate if it is
possible to upgrade a given linear controller to a sliding
mode one with an improvement of the control performance.
Starting from a given linear controller, a design procedure
for a sliding mode control having better performance than
the linear one, is proposed. If the system has disturbances,
which is always the case in experiments, the upgraded sliding
mode control brings also a better robustness with respect to
the given linear robust controller. The main idea is to divide
the state-space into two areas, introducing a design parameter
which separates the area of the linear control from the area of
the sliding mode control. Some issues related to the chattering
reduction are discussed. The control scheme’s efficiency is
demonstrated experimentally on a rotary inverted pendulum.
The experimental results demonstrate the effectiveness of the
obtained controls, and show an improvement with respect to
the given linear proportional control.

I. INTRODUCTION

Sliding Mode Control (SMC) is a popular nonlinear set-
valued control law, which is, theoretically, nonsensitive
with respect to the so-called matched perturbations and,
consequently, guarantees better control precision [1],[2], [3].
However, the chattering phenomenon does not allow the ideal
sliding mode to be realized in practice. This may imply a
degradation of the control precision instead of the promised
improvement. Several methods for the chattering analysis and
chattering reduction can be found in the literature, depending
on its origin (unmodelled dynamics, discretization method)
[1], [4], [5], [6], [7], [8]. However, the chattering problem is
still of interest [9], [10].

On the other hand, a linear controller is the most popular
industrial solution. It is supported with many methods of
control parameters tuning in both frequency and time domains
(see, e.g., [11],[12]). The linear control provides a satisfactory
performance in many real applications. In this paper we try
to answer the following question:
Is it possible to upgrade (transform) a well-tuned linear
controller to sliding mode one with a guaranteed improvement
of the control precision?
More precisely, we want to design a sliding mode control
algorithm, which quality can not be worse than the quality
of the linear feedback.

The method presented in this paper assumes that a linear
stabilizing feedback is already designed for the system. It
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is modified only in a certain zone of the state space, and a
sliding mode algorithm is derived. Since the sliding mode
control is obtained from a linear one, it does not need a
selection of all SMC parameters. For the chattering reduction,
the conventional trick which consists of replacing the sign-
function by a linear saturation function is chosen [1]. The
parameter of the saturation function usually is tuned for
the concrete application. In our case, we introduce a one-
parameter family of the nonlinear control laws, which has
sliding mode and linear algorithms as limit cases. Hence,
the procedure of the upgrade can be formulated as follows:
starting from the linear (already well-tuned) feedback we
modify the mentioned scalar parameter and approach the
sliding mode case as long as the control quality is improving.
It is obvious that such a scheme prevents the degradation of
the control quality during the upgrade.

The problem to be discussed is formulated in Section II.
The upgrading procedure to design a SM control starting
from linear controller is presented in Section III. Then, the
Section IV presents the digital implementation procedure and
the consequent chattering reduction of SMC. The experiments
are illustrated in Section V, and the final Section VI concludes
the paper.

II. PROBLEM STATEMENT

Let us consider the problem of stabilization of the linear
plant

ẋ = Ax+Bu+ f (t,x), t ≥ 0, (1)

where x(t) ∈ Rn - the system state, u(t) ∈ R - the control
input, A ∈ Rn×n and B ∈ Rn×1 are system matrices assumed
to be known, and the function f : R×Rn→Rn describes the
system’s uncertainties and disturbances.

The whole state x is assumed to be available (measured or
estimated), the pair {A,B} is controllable. We assume that
the system is already controlled by a linear feedback

ulin = Klinx, Klin ∈ R1×n. (2)

Various schemes are developed for tuning of the control gain
Klin (see e.g. [11]). We assume that Klin is already well-tuned
(e.g. optimally tuned in time or frequency domains) such
that it stabilizes at least the linear (unperturbed, f (t,x) = 0)
system (1) at zero.

Assumption 1: Assume that the matrix of the closed-loop
linear system A+BKlin is Hurwitz and it has at least one real
eigenvalue λ < 0 such that the corresponding eigenvector
ν ∈ R1×n 6= 0 :

ν(A+BKlin) = λν (3)



is not orthogonal to B:

νB 6= 0. (4)
On the one hand, it is well-known (see, e.g. [13]) that the

linear controller is robust with respect to some Lipschitz non-
linearities. For example, the system (1), (2) remains globally
asymptotically stable provided that f satisfies the inequality

‖ f (t,x)‖ ≤ η‖x‖, ∀t ∈ R,∀x ∈ Rn (5)

and η ≥ 0 is sufficiently small. The latter means that f has
to vanish at x = 0.

On the other hand, a SMC steers all solutions of the closed-
loop system to a sliding surface Cx = 0 in a finite time [1],
[3], where C ∈ R1×n. Theoretically, it stabilizes the origin of
the system (1) and completely rejects the so-called matched
perturbations, while the mismatched perturbations satisfy the
same assumption (5). The mentioned condition is formalized
by the following inequality:

‖ f (t,x)−BC f (t,x)‖ ≤ η‖x‖, ∀t ∈ R,∀x ∈ Rn, (6)

where η ≥ 0 is sufficiently small and the row vector C ∈ R1×n

defines a sliding surface Cx = 0 of a SMC system, CB = 1.

The inequality (6) means that the function f may have
non-vanishing components at x = 0, which belong to range B
(matched perturbations). Therefore, the sliding mode control
indeed may reject a larger class of perturbations.

Since, in practice, the function f is usually unknown, the
quality of both controllers can only be validated with real
experiments. In practice, due to the chattering phenomenon,
the implementation of a sliding-mode algorithm may not
guarantee a better quality of regulation than the linear one.
The main goal of this work is to develop a method for
upgrading a linear controller to a sliding mode one with
an improved control quality. If the system has disturbances,
which is always the case in experiments, the upgraded SMC
brings also a better robustness with respect to the given linear
robust controller.

III. SLIDING MODE CONTROL DESIGN FROM A LINEAR
FEEDBACK LAW

The classical concept of the sliding-mode control design
for the linear plant (1) is the two step procedure [1], [2], [3]:

1) select the so-called sliding surface Cx = 0 such that
the motion of the considered system on this surface is
stable (all trajectories converge to zero when time goes
to infinity);

2) define a control law which steers the state of (1) towards
the surface Cx = 0 in a finite time and ensures that this
surface is a positively invariant set of the system (see,
e.g. [1] for the rigorous mathematical definition of the
sliding mode).

The sliding-mode control law is given by

uSM = Knomx+ γ(t,x)sign(Cx), (7)

where γ : R×Rn→ (−∞,0) is such that infγ(t,x)< 0,

Knom =−(CB)−1CA,

the row vector C ∈ R1×n is selected such that CB 6= 0 and the
differential-algebraic equation{

ẋ = (In−B(CB)−1C)Ax,
Cx = 0, (8)

is globally asymptotically stable. Also the signum function is
defined as: sgn(σ) =−1 if σ < 0, sgn(σ) = 1 if σ > 0, and
sgn(0) = [−1,1].

Such a selection of an equivalent-control-based algorithm
together with the above assumptions guarantees that the
differential inclusion

σ̇ ∈ γ(t,x)sgn(σ)+C f (t,x), σ =Cx, (9)

holds, securing that the surface Cx = 0 is a finite-time
attractive invariant manifold of the closed-loop system (1),
(7) provided that γ(t,x)+ |C f (t,x)|< 0 for all t ∈ R and all
x ∈ Rn.

In the case analysed here, a linear feedback (2) is al-
ready well-tuned and provides a good performance for the
closed-loop system. The objective is to make a "minimal"
modification of the linear feedback in order to transform it
to a sliding-mode control algorithm (7) and consequently to
improve the control quality.

Since, by Assumption 1, the matrix of closed-loop linear
system A+BKlin is Hurwitz and has a real eigenvalue λ < 0,
then the corresponding eigenvector ν ∈ R1×n defines an
invariant manifold νx = 0 of the linear closed-loop system.
This manifold is a sort of sliding surface of the linear
unperturbed system, but without the finite-time attraction
property. Therefore, for the sliding-mode control (7) the
sliding surface

Cx = 0, C =
ν

νB
. (10)

is selected.

Fig. 1. The main idea of the upgrade from Linear to SMC.

The main idea of this work is to define the sliding mode
control (7) such that (see Fig. 1)

uSM(x) = Klinx for |Cx| ≥ β ,

and for |Cx|< β the sliding mode algorithm has the form (7),
which steers all trajectories of the closed-loop system to the



surface |Cx|= 0 in a finite-time time. To avoid discontinuity
of (7) on |Cx| = β the function γ is properly selected as
shown below.

Theorem 1: Let the matrix Klin ∈ R1×n be the gain of a
linear stabilizing feedback (2) such that Assumption 1 holds.
If
• the switching surface is given by (10);
• the function f : R×Rn→ Rn satisfies (6) with

0≤ η < ‖P‖−1, (11)

and

|C f (t,x)|≤
{

ρ|λ ||Cx| if |Cx| ≥ β ,
ρ|λ |β if |Cx|< β ,

(12)

where ρ ∈ [0,1) is a scalar parameter and P=P> ∈Rn×n

satisfies the Lyapunov equation

(A+BKlin)
>P+P(A+BKlin) =−2In, P� 0; (13)

• γ is defined as follows

γ(t,x) := γ̃(|Cx|) = λ

{
|Cx| if |Cx| ≥ β ,
β if |Cx|< β ,

(14)

where β > 0 is a scalar parameter;
then

1) uSM = Klinx for |Cx| > β and Cx = 0 is the only
discontinuity surface of uSM;

2) Cx = 0 is the sliding surface of the closed-loop system
(1), (7) with the following reaching-time estimate

T (x(0))≤


ln |Cx(0)|

β
+1

−λ (1−ρ) if |Cx(0)|> β ,
|Cx(0)|
−λ (1−ρ)β if |Cx(0)| ≤ β ,

(15)

3) the closed-loop system (1), (7) is globally asymptotically
stable.
Proof:

1) Notice that the identities (3) and (10) imply that
C (A+BKlin) = λC, CB = 1 and for |Cx| ≥ β we have

uSM =−CAx+λCx =CBKlinx−C(A+BKlin)x+λCx

=CBKlinx−λCx+λCx = Klinx.
(16)

Hence, for |Cx| ≥ β we derive

σ̇ =C(A+BKlin)x+C f (t,x) = λσ +C f (t,x), (17)

where λ < 0 by Assumption 1. The inequality (12) implies
that

d|σ |
dt
≤ λ |σ |+ρ|λ ||σ |= λ (1−ρ)|σ |< 0 (18)

for |σ | ≥ β .
2) For 0 < |Cx|< β we have usm(x) =−CAx+λβ

Cx
|Cx| . and

σ̇ = λβ sign(σ)+C f (t,x).

Hence, using the inequality (12) we derive

d|σ |
dt
≤ λβ +ρ|λ |β = λ (1−ρ)β < 0 (19)

for 0 < |σ |< β .
Combining (18) and (19) we conclude that the sliding

mode in the surface σ = 0 appears in a finite time T (x(0))
estimated by the formula (15).

3) For t ≥ T (x(0)) the dynamics of the closed-loop system
is described by the differential-algebraic equation (see [1])

ẋ = Ax+Bueq(t)+ f (t,x), Cx = 0,

where ueq(t) =−CAx−C f (t,x). Therefore, we have

ẋ = (A−BCA)x+ f (t,x)−BC f (t,x), Cx = 0.

Since C (A+BKlin) = λC and CB = 1 then

A−BCA = A−BC(A+BKlin−BKlin) = A+BKlin−λBC

and the dynamics in the sliding mode is given by

ẋ = (A+BKlin)x+ f (t,x)−BC f (t,x), Cx = 0.

Since A+BKlin is Hurwitz then there exists a symmetric
positive definite solution P ∈Rn×n of the Lyapunov equation
(13). Considering the Lyapunov function candidate

V = x>Px,

we derive

V̇ = 2x>P(A+BKlin)x+2x>P( f (t,x)−BC f (t,x))≤

−2‖x‖2 +2‖x‖‖P( f (t,x)−BC f (t,x))‖ ≤

−2‖x‖(‖x‖−‖P‖ · ‖ f (t,x)−BC f (t,x)‖)< 0

provided that ‖ f (t,x)−BC f (t,x)‖< ‖P‖−1‖x‖. The proof is
complete.

The sliding mode controller (7), (14) can be rewritten as a
linear feedback with the state dependent gain:

uSM = KSM(|Cx|)x for Cx 6= 0,

where KSM : (0,+∞)→ R1×n is defined as follows

KSM(ϕ) = Knom +
γ̃(ϕ)

ϕ
C, ϕ > 0. (20)

Below we use this representation of the sliding mode
controller in order to introduce a chattering reduction scheme.
Notice that the sliding mode control designed by the latter
theorem coincides with the linear feedback for |Cx| ≥ β . For
β tending to zero the original linear feedback is recovered.
From a theoretical point of view, larger the β , larger the
magnitude of the matched perturbations to be rejected (see,
the formula (12)). In practice, large β may invoke large
chattering magnitude, so tuning the parameter β would allow
us to upgrade a linear control to a sliding mode one and
prevent a degradation of the control accuracy due to the
chattering phenomenon.

Remark 1: By Assumption 1, the suggested transformation
of the linear feedback to SMC is possible if the matrix
A+BKlin has a real negative eigenvalue. If this matrix has
only complex pairs of eigenvalues, another scheme of the
upgrade has to be developed. In this case, results similar to
Theorem 1 can be developed for the multi-input system.



Remark 2: Any real negative eigenvalue of the matrix
A+BKlin satisfying Assumption 1 can be selected for the
upgrade. However, in practice this selection may impact the
improvement of the control quality of the obtained SMC.
The best option in this case is to compare the corresponding
sliding mode controllers on the experiments and select the
best one. If such a comparison is not possible the largest
negative eigenvalue should be selected among others.

IV. A SCHEME OF PRACTICAL IMPLEMENTATION

The classical idea for chattering reduction of SMC is to
replace the sign multifunction by a piecewise-linear saturation
function, and, next, to tune its width parameter[1]. This widely
used engineering trick is known, however, it decreases the
closed-loop accuracy since it destroys the sliding-mode phase.
This is what is done below, taking into account the structure
of the proposed SMC.

As shown above the sliding mode controller (7), (14) can
be interpreted as a linear feedback

uSM = KSM(|Cx|)x

with the state-dependent gain KSM(|Cx|) given by (20), which
tends to ∞ as |Cx| → 0. The infinite gain in the linear
controller contributes to the so-called chattering phenomenon
[1], [7]. The simplest approach to reduce the chattering is to
bound the gain KSM(|Cx|) close to singularity points. Let us
introduce the following saturation function

satδ ,β (ϕ) =

 δ if ϕ < δ ,
ϕ if δ ≤ ϕ ≤ β ,
β if ϕ > β .

(21)

To avoid the infinite gain in the explicit discretization of the
sliding mode controller, we re-define it as follows

ũ(x) = KSM(satδ ,β (|Cx|))x, (22)

where β > 0 is defined in the formula (14) and δ ∈ (0,β )
is a tuning parameter. Obviously, δ = 0 corresponds to the
original sliding-mode controller, but for δ = β it follows that

KSM(satβ ,β (|Cxk|)) = Klin,

i.e, the proposed controller becomes the linear feedback in
the limit case.

Therefore, we can upgrade a linear controller to sliding
mode controller. To avoid the degradation of the control
quality, the following procedure can be utilized

1) design the parameters of the sliding mode controller
using Theorem 1 for some β > 0;

2) implement the control law (22) in a digital device with
δ = β (linear feedback);

3) decrease the parameter δ while the control quality is
improving.

The control quality in the latter scheme can be estimated
through numerical simulations or performing experiments on
a setup. It may include various indexes, which correspond to
control precision, energetic optimality, chattering effects, etc.

V. EXPERIMENT: ROTARY INVERTED PENDULUM

The platform QUBE—Servo 2 of Quanser is used for the
experiment, and it is depicted in Fig. 2 together with the
convention of the sign for the angles θ and α , respectively
for the rotary arm and the pendulum arm.

Fig. 2. Schematics and photo of the rotary inverted pendulum.

The platform is supported with both a swing-up controller
and a linear stabilizing controller realized in Matlab, and we
modify only the linear stabilizing controller. The conceptual
scheme of whole controller architecture is depicted in Fig.
3. The switching activity from the energy swing-up and the
stabilizing controllers occurs when |α|< 20 deg. The linear
model of the pendulum system can be expressed in state-space
form as:

ẋ(t) = Ax(t)+Bu(t), (23)

where x(t) =
(
θ(t),α(t), θ̇(t), α̇(t)

)> ∈R4 is the state vector,
u(t) ∈ R is the control signal, A ∈ R4×4,B ∈ R4×1. The
matrices of the linear systems are given by the manufacturer
and they are

A=


0 0 1 0
0 0 0 1
0 149.2751 −0.0104 0
0 261.6091 −0.0103 0

 , B=


0
0

49.7275
49.1493

 .

(24)
The parameters of the experimental platform are also given
by the manufacturer and they are listed in the Table I. The



Fig. 3. Conceptual scheme of the controller for the rotary inverted pendulum.

TABLE I
PARAMETERS OF THE QUBE—SERVO 2

Parameter Value
mp 0.024 Kg
Lp 0.129 m
Jp 3.3×10−5 Kg.m2

Dp 0.0015 N.m.s/rad
Lr 0.085 m
Jr 5.7 ×10−5Kg.m2

Dr 0.0005 N.m.s/rad
g 9.81 m/s2

experiments are carried out with a fixed sampling time T =
0.002s, which is given by the encoder of the device and
cannot be changed, for a total experimental time of 20s. The
gains of the linear proportional controllers are given by the
manufacturer, and they are already optimally tuned:

Klin = [2,−35, 1.5,−3]. (25)

The matrix A+BKlin has the following eigenvalues

λ1 =−48.2522; λ2 =−11.4050+0.4427i;
λ3 =−11.4050−0.4427i; λ4 =−1.8048.

Two of them are real negative and can be utilized for the
upgrade. Table II shows the effect of the two eigenvalues on
the upgraded SMC. The experiments showed that the choice
of λ = λ4 produces a better precision with less control effort.
For this reason, in the subsequent study we use λ = λ4 for
the computation of the SMC and its comparison with the
original linear algorithm.

TABLE II
DEPENDENCE OF THE CONTROL QUALITY ON THE SELECTION OF THE

EIGENVALUE FOR THE SMC DESIGN

‖eθ‖L2 ‖eα‖L2 ‖ėθ‖L2 ‖ėα‖L2 ‖u‖L2

λ1 =−48.2522 0.25045 0.02940 0.37449 0.31906 1.51214
λ4 =−1.8048 0.16965 0.03042 0.32122 0.27482 1.20613

‖eθ‖L∞ ‖eα‖L∞ ‖ėθ‖L∞ ‖ėα‖L∞ ‖u‖L∞

λ1 =−48.2522 0.11074 0.01534 0.37825 0.23308 1.20076
λ4 =−1.8048 0.07878 0.01227 0.24802 0.20245 0.97999

TABLE III
L∞ AND L2 NORMS OF THE CONTROLLERS IN THE FIRST SCENARIO.

‖eθ‖L2 ‖eα‖L2 ‖ėθ‖L2 ‖ėα‖L2 ‖u‖L2

Linear 0.31839 0.03287 0.34711 0.26787 1.19112
SMC 0.16965 0.03042 0.32122 0.27482 1.20613

‖eθ‖L∞ ‖eα‖L∞ ‖ėθ‖L∞ ‖ėα‖L∞ ‖u‖L∞

Linear 0.13929 0.01534 0.40183 0.19115 0.95631
SMC 0.07878 0.01227 0.24802 0.20245 0.97999

TABLE IV
L∞ AND L2 NORMS OF THE CONTROLLERS IN THE SECOND SCENARIO.

‖eθ‖L2 ‖eα‖L2 ‖ėθ‖L2 ‖ėα‖L2 ‖u‖L2

Linear 1.02338 0.06496 1.38133 0.44407 1.43855
SMC 0.95564 0.07315 1.63003 0.52998 1.60226

‖eθ‖L∞ ‖eα‖L∞ ‖ėθ‖L∞ ‖ėα‖L∞ ‖u‖L∞

Linear 1.19282 0.06136 2.01917 1.32961 2.74149
SMC 1.22350 0.06443 2.31936 1.32893 2.86381

Three scenarios are tested: in the first one the reference
signals are given by αre f = 0rad, θre f (t) = 0.3sin(t) rad; in
the second one θre f = 0rad for t ≤ 5s, θre f = 0.6rad for
5 < t ≤ 10s, θre f = −0.6rad for 10 < t ≤ 15s, θre f = 0rad
for t > 15s; in the third one θre f = 0rad for all t. The
derivatives are not available directly from the output, so
a linear differentiator is used, having transfer function F(s) =
50s/(s+50). The observer dynamics should be much faster
than the reaching time of the sliding mode. The aim of
the controllers is to minimize the error in θ . The swing-
up controller is active during approximately 3 sec. Thus a
comparison of the performances of the linear and of the
sliding mode control algorithms is made using the L2 and
L∞ norms of both the input u and of the tracking errors:

eθ = θ −θre f , eα = α−αre f , ėθ = θ̇ − θ̇re f , ėα = α̇− α̇re f

on the time interval [3,20] seconds.
Tables III, IV, V show the performances of the two

controllers, after tuning δ = 0.65, β = 1 for the SMC.
The smaller δ , the smaller the error in θ , but with more
accentuated control effort, and vice-versa. Therefore, the
additional parameter δ must be carefully tuned depending on
the constraints of the application. Figures 4, 5, 6 depict the
transients of the error |θre f −θ | and of the input u for the
linear controller and SMC. The SMC achieves about 40%
better precision in the first scenario than the linear controller
The improvement for the third scenario is about 20%. The
precision for the second scenario is obviously improved in
the steady states (for the time intervals [6,10], [11,15] and
[16,20]), but the response to a change of the set-point (a step
response) is similar for both controllers (see Fig. 5).

VI. CONCLUSION

In this work, a procedure to upgrade the linear controller
to a sliding mode one is introduced. It modifies the linear
feedback in a certain zone of the state space and transforms it
to a sliding mode controller. Based on the structure of the ob-
tained SMC, a special scheme of its practical implementation
preventing a degradation of the control quality is proposed.



TABLE V
L∞ AND L2 NORMS OF THE CONTROLLERS IN THE THIRD SCENARIO.

‖eθ‖L2 ‖eα‖L2 ‖ėθ‖L2 ‖ėα‖L2 ‖u‖L2

Linear 0.18630 0.01442 0.26178 0.20637 0.73179
SMC 0.13160 0.01637 0.26674 0.24158 0.88139

‖eθ‖L∞ ‖eα‖L∞ ‖ėθ‖L∞ ‖ėα‖L∞ ‖u‖L∞

Linear 0.15033 0.01227 0.42319 0.20171 0.68464
SMC 0.08897 0.00921 0.36717 0.23925 0.74092
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Fig. 4. Comparison between Linear and SMC controllers in the first
scenario.
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Fig. 5. Comparison between Linear and SMC controllers in the second
scenario.
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Fig. 6. Comparison between Linear and SMC controllers in the third
scenario.

The theoretical results are supported by experiments with
inverted rotary pendulum. The obtained experimental results
show that the upgrading strategy improves the performance
of the given linear controller, while keeping a comparable
control effort for both inputs.

This approach presents a promising research direction for
further investigations.
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