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Abstract—In this paper, we propose READYS, a reinforcement
learning algorithm for the dynamic scheduling of computations
modeled as a Directed Acyclic Graph (DAGs). Our goal is
to develop a scheduling algorithm in which allocation and
scheduling decisions are made at runtime, based on the state
of the system, as performed in runtime systems such as StarPU
or ParSEC. Reinforcement Learning is a natural candidate to
achieve this task, since its general principle is to build step by
step a strategy that, given the state of the system (the state of the
resources and a view of the ready tasks and their successors in our
case), makes a decision to optimize a global criterion. Moreover,
the use of Reinforcement Learning is natural in a context where
the duration of tasks (and communications) is stochastic. We
propose READYS that combines Graph Convolutional Networks
(GCN) with an Actor-Critic Algorithm (A2C): it builds an
adaptive representation of the scheduling problem on the fly and
learns a scheduling strategy, aiming at minimizing the makespan.
A crucial point is that READYS builds a general scheduling
strategy which is neither limited to only one specific application
or task graph nor one particular problem size, and that can
be used to schedule any DAG. We focus on different types of
task graphs originating from linear algebra factorization kernels
(CHOLESKY, LU, QR) and we consider heterogeneous platforms
made of a few CPUs and GPUs. We first propose to analyze the
performance of READYS when learning is performed on a given
(platform, kernel, problem size) combination. Using simulations,
we show that the scheduling agent obtains performances very
similar or even superior to algorithms from the literature, and
that it is especially powerful when the scheduling environment
contains a lot of uncertainty. We additionally demonstrate that
our agent exhibits very promising generalization capabilities. To
the best of our knowledge, this is the first paper which shows
that reinforcement learning can really be used for dynamic DAG
scheduling on heterogeneous resources.

I. INTRODUCTION

Modern computer systems contain a variety of resources,
interconnected in order to support parallel and distributed
computationally intensive applications. Efficiently executing
parallel applications on such systems is of key importance in
many scientific domains and requires to accurately allocate
and schedule the computations onto the available resources.

Directed Acyclic Graph (DAG) is a very useful computa-
tional model for describing parallel applications. In a DAG,
each node represents a computational task and each directed
edge represents a dependency between two tasks. This model
allows a good representation of the parallelism between tasks
and is used in many contexts. In this paper, we investigate

learning algorithms to allocate and schedule tasks dynamically
on a set of computing resources. We focus on task graphs
originating from linear algebra, and in which each task typ-
ically operates on a sub-matrix/tile. The size of the tiles is
chosen to achieve good efficiency on both CPUs and GPUs
and typically lasts a few tens of milliseconds. This constraint
is important because it naturally guides the complexity of the
task allocation and scheduling algorithms to be implemented,
since the allocation and scheduling decisions are made at
runtime.

Task-based runtime systems [8], [16] internally represent
the application as a DAG in order to process it on a parallel
machine and the runtime system schedules the different tasks
onto the available computing resources. The DAG scheduling
problem consists in finding the best way of assigning tasks to
processing units, so that the task dependencies are fulfilled and
the makespan is minimized. In this context, the exact compu-
tation duration of tasks and the exact duration of communica-
tions are not exactly known, even though we can have good
prior estimates: the problem to solve is therefore of stochastic
nature. When using static task allocation and scheduling, even
with relatively well-known task and communication durations,
a drift is observed when the problem size becomes large, which
is a source of load imbalance and idle time. This observation
is at the heart of the success of dynamic schedulers such as
StarPU and ParSEC [8], [16], which rely on less sophisticated
scheduling algorithms because decisions are made at runtime
and must be very fast, but benefit from a more accurate
knowledge of the state of computation and communication
resources at the time of making a decision. In practice,
dynamic schedulers make task allocation decisions a little in
advance of the actual processing of the tasks, which makes it
possible to perform the necessary communications as soon as
possible, thus ensuring good overlap of communications with
computations.

We assume that communications can be overlapped with
computations and can therefore be neglected, which is a
reasonable assumption at the scale of the computing node
consisting of a few CPUs and GPUs (see Section III). This
allows to simplify the problem formulation while keeping
its inherent NP-hardness. Linear algebra kernels offer a rich
context in which the combined use of CPUs and GPUs is
relevant. Indeed, the different linear algebra kernels involved



in a factorization exhibit very different acceleration rates on
the GPUs.

To deal with the inherent stochastic nature of the problem,
we propose to investigate the use of Reinforcement Learning
(RL) to design efficient dynamic scheduling strategies. RL
is exactly meant to solve this kind of problems, in which a
series of decisions, based on the current state of the system,
contribute to the achievement of a global objective, the min-
imization of the makespan in our case. However, the use of
RL in an environment with high efficiency and fast decision
making requirements is still a challenge. To apply RL, we have
to express the problem as a Markov Decision Problem (MDP)
in which the objective is to minimize the makespan.

Dealing with graphs in Reinforcement Learning (and ma-
chine learning more generally) largely remains an open issue.
Here, we represent only a part of the DAG of tasks to be
scheduled: this part is a window w sliding over the DAG,
so that at any time, the algorithm considers only a relevant
part of the DAG, consisting in the tasks that are ready for
processing (whose all predecessors have been processed) and
their descendants at distance w (w being 1, 2 or 3), in order to
efficiently schedule the next tasks. Moreover, it is reasonable
to consider that in practice, the whole DAG is not known
in advance. Indeed, numerical tests might typically modify
dynamically at runtime the shape of the DAG. Moreover, in
practice, scheduling and allocation decisions must be fast with
respect to the typical duration of tasks, so that it is necessary
to restrict the size of the state on which decisions are based.

In [28], we proposed such an RL approach to deal with
tiled CHOLESKY factorization in simple homogeneous envi-
ronments; we showed that in this context an RL approach is
competitive with the ASAP heuristic in terms of the makespan,
and that it is possible to transfer the knowledge acquired while
solving a problem of size T to solving another problem of
size T ′, hence saving the learning time. In this paper, we go
much further in our investigation: we apply this RL approach
to a set of factorization algorithms, namely CHOLESKY, LU,
and QR, which are very common in numerical linear algebra
routines, and we extend our results to heterogeneous platforms
consisting of both CPUs and GPUs. In this context, we
consider a scheduling problem in which resource performances
are unrelated [32], i.e. the ratio between the processing time
of a task on a GPU and on a CPU depends on the type of the
task itself.

Our contributions are as follows. After discussing the re-
lated works in Section II, we model dynamic scheduling on
heterogeneous platforms as a reinforcement learning problem
in Section III and design a suitable RL agent in Section IV, an
agent we name READYS. Then, we perform an experimental
study considering standard linear algebra kernels in Section V.
We compare the performance of READYS with those of
classical heuristics in the heterogeneous case, namely the static
HEFT [48] and the dynamic MCT [46] heuristics. We show
that READYS is competitive with respect to HEFT even when
the prediction of task lengths is accurate. When task durations
are not exactly known in advance, we show that READYS

performs much better. It is worth noting that HEFT relies
on complete and accurate knowledge of the DAG, unlike
READYS which grounds its decisions on much less informa-
tion. In Section V-F, we investigate the possibility to transfer
the knowledge acquired while solving the problem on a given
(matrix) size to another size. Overall, this paper is the first
to demonstrate that reinforcement learning is an interesting
approach to dynamically schedule tasks, in particular when
the characteristics of the tasks and computing resources are
not perfectly known or are changing along time. We emphasize
that this lack of exact knowledge, though often neglected, is
actually the situation faced on real HPC systems.

II. RELATED WORKS

Among combinatorial problems, task scheduling has at-
tracted a lot of research and offers a rich taxonomy [33].
Task scheduling consists in assigning a set of tasks, whose
dependencies are represented by a DAG onto a set of comput-
ing resources while fulfilling various constraints: a resource
cannot execute several tasks at the same time, a task cannot
start before its predecessors have been completed, etc. This
problem is known to be NP-hard in the strong sense [25]. In
the literature, several classes of scheduling problems have been
studied [17], [26]. In static problems, the DAG is assumed to
be completely known in advance while in dynamic problems,
part of the DAG is unveiled as the scheduling algorithm pro-
gresses. In the homogeneous setting, all resources are assumed
to be identical while in the heterogeneous case, resources
are different and the same task can have different durations,
depending on the resource it is allocated to. Resources are
said to be unrelated [17] if the ratio between the processing
times for a given task on two different resources depends not
only on the resources but also on the task itself. Scheduling
problems are often NP-Complete [17] and even simple cases
(e.g. tasks with no dependencies and two resources) turn out
to be NP-Complete [25].

Recently, the use of Reinforcement Learning (RL) to combi-
natorial optimization has been considered in many papers [1],
[21], [34], [40], [51] and a survey has been proposed in [13].
The performance of RL algorithms for combinatorial opti-
mization remains very far from the performance of dedicated
heuristics. The main ingredients in these strategies are the
graph representation model, the reinforcement algorithm, and
the possible use of additional heuristics to help the agent. (e.g.
graph pruning in [34]). The problems studied are classical NP-
Complete problems, such as the Traveling Salesman Problem
(TSP), Minimum Vertex Cover (MVC), and the Max-Cut
problem. A few works focus on the possible use of RL for
task scheduling, such as Placeto, GDP and others [2], [9], [24],
[35], [37], [38], [43], [52]. Most of them consider a stochastic
context in which tasks arrive sequentially and randomly [9],
[31], [36], without using DAG structure. Recently, [43] uses
reinforcement learning to guide a genetic algorithm. However,
the scheduling strategy is static, and the environment is
completely deterministic, which are two important limitations
with respect to practical constraints in our target environ-



ment. In [35] the authors present a reinforcement learning
approach to map independent parallel jobs onto a parallel
machine. Contrary to our context, there are no dependencies
between parallel jobs and the goal is rather to minimize the
job slowdown. In [38], the authors concentrate on the task
mapping task of Deep Neural Network Graphs. Their approach
is based on the policy gradient algorithm. [24] tackles the
same problem as [38] by modeling it as a Markov decision
process and using a reinforcement learning approach called
proximate policy optimization [47]. However, both approaches
are not suited for transfer learning as the proposed solutions
can only improve the mapping of the input problem. In [2], the
authors provide a general approach for mapping a task graph,
using a graph embedding approach called Placeto. In [52],
the authors introduce GDP that uses the same approach as
Placeto but outperforms it in their experiments. These two
approaches allow transfer learning for new graphs but not for
new machines, since the target platform must be the same as
the training one. They also compute a fully static schedule,
which is not suitable in the case when the duration of the
tasks are imperfectly known. In [37], a dynamic scheduling
strategy is learned on top of Spark considering online DAG
job arrivals. Contrary to our approach, scheduling decision are
made at stage level (a stage being a set of independent tasks
operating on different input data), leaving fine-grained task-
level decision to Spark. This eliminates the burden of dealing
with large DAG, but restricts the approach to jobs with high
inherent parallelism.

Three papers close to our work are [39], [42], and [50].
In [39], the authors consider a very realistic environment
(communication time, storage capacity of the nodes, etc),
while [42] tackles the problem of heterogeneous distributed
systems. But contrarily to us, both approaches rely on a hard-
coded pre-processing of the DAG into a look-up table, which
prevents scalability and generalization. Moreover, [42] uses
simple q-learning reinforcement algorithms unable to scale to
complex environments nor generalize to unseen instances. As
in our approach, deep reinforcement learning is used in [50].
Nevertheless, dynamic online scheduling is not discussed
in [50], whereas it is a crucial feature in an environment where
the number of tasks and the complex interactions between
their processing on different resources make it unrealistic to
rely on purely static strategies. Moreover, [50] and [39] pre-
process the DAG in a way that is incompatible with a dynamic
scheduling setting.

Overall, there is still no generic RL approach that addresses
the dynamic scheduling of task graphs to cope with the
stochasticity of tasks and allows the transfer of results to new
problem sizes.

From the scheduling point of view, a lot of work has
been done to efficiently perform linear algebra factoriza-
tions in parallel on heterogeneous platforms, because of the
practical importance of these kernels. We focus here on
works using dynamic runtime scheduling strategies. For in-
stance, the CHOLESKY factorization has been implemented in
DAGuE [15], StarPU [7], [20], OmpSs [22], and SuperMa-

trix [45]. The basic task scheduling strategy consists in (i) an-
alyzing the list of ready tasks (i.e. all tasks whose predecessors
have already been processed), (ii) taking the most important
task (using a priority system typically based on heuristics such
as HEFT [48]), and (iii) placing it on the resource that is
likely to complete it as early as possible using estimations
as in MCT heuristic [46], given the task cost models on the
different resources (and the input data transfer times). HEFT
and its variants are the de facto heuristics for static scheduling,
while MCT is popular for dynamic scheduling: we will use
them as reference algorithms to evaluate the performance of
READYS in Section V.

III. MODELS

A. Problem Definition

The scheduling problem can be formalized as follows. We
are given a DAG that models the set of tasks to be scheduled.
Each vertex corresponds to one task, and each directed edge
expresses a dependency between the result of one task and
its use by a subsequent task. The target machine is composed
of heterogeneous computing units (i.e. CPUs and GPUs). In
this paper, we focus on applications in linear algebra; in such
applications, a matrix is processing and the set of tasks to
be performed is made of a small number (typically 4 in
this paper) of kernels. One kernel corresponds to a certain
processing performed on a sub-matrix/tile of a given size.
The execution time of a kernel depends on the computing
unit executing it, so that the acceleration factor on a GPU can
be larger for a kernel than for another. This is typically the
case in practice, due to the suitability of a given kernel on one
particular computing unit, or another. Nevertheless, in practice,
due to heating conditions or NUMA effects, the duration of the
execution of a given task on a given resource is not constant
and the variability in the processing time also depends on the
resource on which they are performed [11].

In what follows, we assume that it is possible to overlap
communications with computations, so that we can neglect
communication costs. This assumption is justified by the
possibility to choose the granularity of the tasks, i.e. the size of
the tiles. In the case of tiles of order N , the amount of data to
transfer is O(N2) while the complexity of the different kernels
is O(N3), so that one generally chooses N large enough
to overlap computations and communications, while allowing
an efficient use of computation resources (cache, etc). For a
matrix of size M×M , there are T 2 tiles where T = M/N . In
the numerical linear algebra applications considered here, each
tile is processed several times so that the number of tasks of the
DAG is n = O(T 3). Moreover, dynamic schedulers generally
make task allocation decisions on the different resources (i)
by minimizing data exchanges by taking into account the
placement of input data in the allocation and (ii) by making
allocation decisions a little bit in advance, maintaining a queue
of tasks on each resource, which allows to start transfers as
soon as possible and thus to have all data available on the
chosen node at the time of launching the task. For a given
allocation and a given schedule, the makespan is defined as the



completion time of the last task of the DAG to be processed:
it is the quantity that we aim at minimizing in this paper. It
is noteworthy that in the heterogeneous case there is neither
a notion of a critical path (since we do not know in advance
where the different tasks will be allocated) nor of total work
(since we do not know in advance the fraction of each task type
allocated on each type of resource). Extensions of critical path
relying on probabilistic estimates have been proposed in [48]
and a generalization of the overall work relying on rational
number linear programming has been proposed in [6].

Furthermore, since we are interested in learning a dynamic
scheduling strategy, we do not assume that the reinforcement
learning-based scheduler knows in advance the entire DAG
to be scheduled, nor that it is capable of computing global
statistics such as task critical path or overall work. The
scheduler is myopic, considering only the tasks ready to be
processed and their descendants up to a certain depth (see
Section III-B for the precise definition).

B. Reinforcement Learning Formulation

We model the dynamic scheduling problem as a Markov
Decision Process which is defined by a quadruple (S,A, P,R)
where:

1) S is the set of states,
2) A is the set of actions,
3) P is the transition function: Pa(s, s′) = P(st+1 = s′ |

st = s, at = a) is the probability of the transition from
state s to state s′ under the action a,

4) R is the return function: Ra(s, s′) is the expectation of
the immediate return obtained while transiting from s to
s′ with the action a.

Then, solving a Markov decision problem (MDP) consists in
finding a policy that optimizes a certain objective function
defined on a Markov decision process. Reinforcement learning
solves an MDP without any knowledge about neither P nor
R.

Let us now define S, A, P , R, the objective function,
and the policy used to model and solve the DAG scheduling
problem. A state contains the necessary information about the
system to be able to decide which action is best to perform
to optimize the objective function. It is precisely the aim of
the algorithm to learn a policy, that is a matching between
the state and the optimal action that leads to the optimization
of the objective function. Hence, the definition of the state is
of paramount importance in reinforcement learning: it should
contain all necessary information but not more, so that the
mapping is accurate and to keep the decision process fast
enough. In a real problem, finding a good definition of the state
is part of the problem modeling. Moreover, in a real problem,
the “necessary” information may be too cumbersome to deal
with efficiently, in which case we need to use an approximate
definition of the state which may not contain all the necessary
information, but enough information so that the algorithm can
learn an accurate mapping between the states and the actions,
and do that within a reasonnable amount of time. In our
context, the state should contain information about the status

of the ready tasks and their descendants up to a certain depth
in the DAG, and the status of the computational resources so
that the agent can decide which task to schedule next on which
resource. This simple formalism can be difficult to handle be-
cause a lot of task-processor pairs can be considered. Instead,
each time a decision has to be made, we choose at random one
available processor, named the “current processor”. Regarding
the DAG, computing the optimal solution requires exponential
time and the knowledge of the whole DAG. For the reasons
mentioned above, we consider an approximate representation,
where we restrict the information represented in a state to
the information about running tasks, ready tasks, and some
of their descendants (see Fig. 1): running tasks are those that
are currently being processed, ready tasks are those that could
be processed but have not yet been assigned to a computing
resource and descending tasks are those that are dependent
on at least one running or one ready task. The depth of a
descending task is defined as the minimum length of any path
from a ready or running task to it. The set of descending
tasks kept in the state is made of all tasks which depth is less
than a given window size w. The choice of the parameter w
results from a trade-off between computing time and available
information within the state. The state of the resources is
represented by a vector containing the type of each computing
resource (CPU or GPU) and the estimated time at which it will
be available, given the task already running on it.

Window

Figure 1. A state contains information about running tasks (orange), ready
tasks (green) and their descendants (blue). This plot illustrate these notions:
nodes are tasks, edges are dependencies between tasks: a task/node cannot
start its execution before all its ancestors have run to completion. In this
example, the window w is set to 3.

Each vertex of the DAG, i.e. each task, is represented by
a set of raw features: these features are expected to encode
and summarize the DAG information at this vertex level. We
use normalized quantities in order to facilitate policy transfer
between graphs of different sizes. The representation X̂i of
Task i can be written as

X̂i = [|S(i)|, |P(i)|, type(i), ready(i), F (i)],

where S(i) is the set of immediate successors of vertex i (and
|S(i)| is hence the number of successors of i), P(i) is the set
of immediate predecessors of i (hence |P(i)| is the number
of predecessors of i), type(i) is the type of the task encoded,
ready(i) is a binary variable indicating if the task i is ready.
F (i) summarizes the information about the descendants of



task i: it is a vector containing the number of descendants of
each type normalized by the total number of tasks of each
type. More formally, if we denote by 0 the root of the DAG,
we can define the unnormalized form F̄ of F recursively by

F̄ (i) =

type(i) +
∑
c∈S(i)

F̄ (c)

|P (c)|

 and F (i) =
F̄ (i)

F̄ (0)
.

A state is represented by such a vector X̂ . To produce a
good schedule for a DAG of tasks, one has to consider not
only the current task to schedule, but also the dependencies of
the tasks to schedule in the (near) future. Therefore, the state
has to combine information about a set of nodes, taking into
account the dependencies between them. Obtaining a compact
and reliable representation of this information has been a major
challenge in machine learning for decades. Recent advances
have led to graph convolutional networks (GCN) that, if not
perfect, provide a mechanism to obtain such a representation
of a graph [30]. GCN is an analog of the convolutional neural
networks (CNN) that are applied to images: as CNNs combine
the information of neighbouring pixels of an image, GCNs
combine the information of neighbouring nodes of a graph.
To be more precise, given a representation of the nodes H(l)

of a graph G, a GCN layer computes the embedding H(l+1)

of each node using local information, according to the formula

H(l+1) = ϕ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
.

Here, ϕ is an activation function, Ã is the adjacency matrix
of the DAG with self-connections added, D̃i,i =

∑
j Ãi,j ,

and W (l) is a layer-specific trainable weight matrix. The raw
features are used as the starting vector for each node, such
that H(0) = [X̂1, X̂2, . . . , X̂n].

Stacking such GCN layers give rise to a richer representa-
tion of the DAG by combining the properties of neighboring
vertices [30].

Each time a computational resource becomes available, an
action consists in selecting an available task to be run on this
computational resource, or in staying idle (action ∅). This ∅
action makes it possible to implement more complex schedules
than list schedules, where for example slow processors are kept
idle. The set of possible actions makes A.

The transition function P does not need to be explicitly
defined and it is not used by the RL algorithm: by itself, the
computer system transits from one state to another.

At each instant t, the return rt should provide useful
information about the performance of the RL agent with
regards to the optimization of its objective, here the makespan.
However, it is very difficult to provide relevant information
that could be used as an immediate return whereas the whole
DAG has not been scheduled yet. Consequently, there is no
return (i.e. rt = 0) except once the whole DAG has been
scheduled. Hence, we define it as

Ra(s, s′) =

{
0 if s′ is non terminal,
R(makespan) otherwise. (1)

When reaching the terminal state, the return Ra(s, s′) is
defined by the makespan of the schedule performed by the
RL algorithm normalized by the makespan computed by a
baseline algorithm. Here, we use the HEFT heuristic [48] as
a baseline. HEFT is a scheduling strategy that assigns the
highest priority task (priorities being computed as explained
in Section V-C) to the next available resource. If we denote
by makespan the makespan achieved by the RL agent and by
makespan(HEFT) the makespan achieved by HEFT heuristic,
the return is defined as:
R(makespan) =

makespan(HEFT)−makespan
makespan(HEFT)

.

R is thus positive whenever the reinforcement algorithm is
performing better than HEFT.

As already said, an RL agent learns a policy, usually denoted
π. π can be represented in various ways, but in any cases,
it maps a state to an action. For instance π(s) may be a
distribution of probability over A, that is the probability to emit
each action a ∈ A in state s; we denote π(a|s) the probability
to perform action a in state s. As the RL agent learns, π
is updated. Though we hope that an optimal policy will be
learned eventually (asymptotically), in complex problems like
the one we consider in this paper, we can only do our best to
design the algorithm and the representation of the problem so
that it finds an as good as possible policy. While we can not
expect to prove anything about the quality of the policy that
will be learned, it may be assessed experimentally.

Learning starts with an arbitrary policy, and the algorithm
interacts with the problem to be solved by performing actions
according to the states being visited and its current policy.
Gradually, the RL agent adapts its policy to optimize the
objective function, i.e. to minimize the makespan in this
paper. Learning is done using the algorithm described in
Section IV-A.

IV. ALGORITHM

A. Actor-Critic

Among the various RL algorithms that may cope with the
problem at hand, we choose an “actor-critic” algorithm, known
as A2C [41], a very popular RL algorithm. The policy is
represented by a neural network. The neural network takes
a state as input and produces a probability distribution on
the set of possible actions as output, which should reflect
their expected performance when performed in the input state.
Since it is impossible to exhaustively visit all states within a
reasonable amount of time, we take advantage of the ability of
a neural network to generalize from its observations. The RL
agent learns to maximize the objective function R(makespan).
To do so, it modifies the current policy to obtain a better
one. At any moment, the agent follows its current policy
π. To assess its quality, the RL agent performs steps until
a terminal state is reached: at each step t, the quadruple
(st, at, rt, st+1) is collected. After a batch of such quadruples
has been collected, the weights of the network are corrected in
order that the poicy is improved. This correction is performed
with a stochastic gradient descent, as customary in neural



networks. This improvement step is repeated many times
until a local optimum is reached (local optimality is the only
guarantee we can expect.)

Though it is impossible to fully describe how an actor-
critic algorithm works within the required length of this paper,
we provide a few details about A2C. A2C uses two neural
networks: i) a policy network (the “actor”) πθ(at | st) with
weights θ which computes a distribution of probability over
the actions; ii) a value network (the “critic”) with weights θv
which estimates the value of a state Vθv (st). To simplify nota-
tions, we drop the θ subscripts in the following. Both networks
have to be optimized so that the resulting policy performed by
the agent optimizes the objective function R(makespan). For
that purpose, each network has its own objective function to
optimize. The value of a state V (s) quantifies how good it is
to be in a state s in order to optimize the objective function:
this value is not known: it is learned along with the policy. The
estimation of V is improved by minimizing the mean square
error of Bellman’s function.

The optimization of π relies on the policy gradient theorem
that relates the gradient of the objective function and a certain
function of π, namely: ∇θ log π(a | s)A(s, a). Here, A(s, a)
denotes the advantage function which measures how action a
is better than the average in state s. A is estimated empirically
with the quadruples (st, at, rt, st+1) and the current estimate
of V . We also add the entropy of the policy to the objective
function minimized by the policy network, yet an other trick
known to improve exploration [49]. We end-up with the prob-
lem of minimizing ∇θ log π(a | s)A(s, a) + β ∇θH(π(s)),
where H denotes the entropy function of a probability distri-
bution and β a hyper-parameter which controls the influence
of the entropy regularization.

B. Architecture of the RL agent

In this paragraph, we very briefly outline the architecture of
READYS. The neural network architecture is kept as simple
as possible in order to minimize the scheduling computation
overhead (see Fig. 2). The input of the neural network(s) is
made of the DAG information and the state of the computing
resources. As explained earlier, a stack of graph convolution
layers mixes the information of the nodes of the DAG, up
to a certain depth from the current node. The output of the
last convolution layer is used as an internal representation of
the DAG. The number of GCN layers is a parameter of the
algorithm; it should be related to the size of the window w
as at least w layers are needed to allow information to flow
between the nodes of the sub-DAG to the available tasks.
Empirically, we found that using w layers is enough. Between
these layers, we use ReLU functions as non-linear activations.
This representation of the DAG is stacked together with the
embedding of the computing resources described in III-B and
used to compute final action probabilities. We then sample
an action according to this output probability, and schedule
the corresponding task on the current processor (or do not
schedule anything if it is the ∅ action). This architecture being
quite complex and impossible to present with all the details

source to target graph convolution
ReLU

feature-wise
mean pooling FC(128, 1)

feature-wise
max pooling

21

Task graph state Processor state

current processor

FC(128, 1) softmax

∅1 2

FC(128, 1)

Figure 2. Overview of the architecture of READYS, the RL agent. At the
bottom, a sub-DAG enriched with the computing resource state information
is fed into a stack of several graph convolution layers and output an internal
representation. It is used to estimate the state value V via mean-pooling and
one-dimensional projection. The embeddings of available tasks (here 1 and
2 are aggregated into a batch and projected onto a one-dimensional vector,
which can be seen as the score of each task. This vector is concatenated with
a single real number, the score of the ∅ action, computed from a projection of
the processor state and the max-pooling of the internal DAG representation,
and normalized with a softmax to output probabilities π. FC(128, 1) denotes
a fully connected layer with an input size of 128 and an output size of 1.
We represent each type of processor (eg CPU and GPU) by a different shape.
Idle processors are in green, running processors are in orange, and the current
processor is in light green.

needed to re-implement it, we provide our own implementation
in [27].

V. EXPERIMENTS

In this section, we report experiments in which we compare
READYS with other well-known and efficient heuristics.

A. Task Graphs

We consider three types of DAGs corresponding to
CHOLESKY [6], LU [3], and QR factorizations [4]. These
applications are used in many real-life applications and are
considered as a good testbed for the evaluation of runtime
systems [18], [19]. For instance in [10] the authors use a
Cholesky factorization to solve an electromagnetic problem
; in [14] authors use an dense QR factorization for solving an



eigenvalue problem that can be applied in quantum chemistry,
finite element modeling or multi-variate statistics. From a
computer-science point of view, These factorizations involve
(i) a large number of tasks, (ii) complex dependencies and (iii)
a small number (4) of different kernels. Therefore they con-
stitute a very good benchmark for scheduling algorithms [5],
[29] and designing good scheduling policies in this context
is both very meaningful theoretically and of extreme practical
importance.

B. Simulation Model

For a task-processor pair (i, p), we denote by E(i, p) the
expected duration of task i executed on p, and d(i, p) its actual
duration. d is a stochastic variable. In the experiments, d is
obtained by adding a Gaussian noise to the expected duration
E. More formally, we model d as follows:

d(i, p) = max
[
0,N

(
E
(
i, p
)
, σE

(
i, p
))]

,

where σ is a parameter of the simulated environment control-
ling the noise level: the greater σ, the larger the uncertainty
on the duration of each task. We are aware of the limits and
drawbacks of this duration model. There does not exist any
good model in the literature that would fit the setting under
study, but the model proposed here enables us to model some
uncertainty on task duration, which is an essential feature of
the systems we are considering. We leave to future work either
to come up with a good model, or to study the sensitivity of
our analysis to various noise models. In our experiments, the
expected durations of each kernel of each type of graph for
each type of resource (CPU and GPU) are taken from real
measurements of the literature [3], [4], [6].

C. Baselines

Our goal is to analyze the performance of a reinforce-
ment learning based algorithm for the dynamic scheduling
of Cholesky, LU and QR factorizations. In practice, it is
very difficult to accurately predict the computational costs
and the communication durations in an HPC environment in
which the various running processes unpredictably influence
the execution times of each others. This explains the success
of dynamic schedulers [8], [16], [22]. Indeed, since it is not
possible to schedule and allocate tasks long in advance, in
practice, dynamic runtimes rely solely on the description of
the machine state and on the tasks already performed, using a
task priority mechanism to define which tasks to perform in
the event that the number of available resources is less than
the number of available tasks. In these dynamic systems, task
placement decisions are made a little in advance, taking into
account the placement of input data, and this delay is used to
transfer task input data if necessary to overlap communication
and computation. We have already discussed in Section III-A
how to overlap communications and computations in both the
CPU multicore and the GPU cases.

We have chosen HEFT [48] as a reference static algorithm.
It is a static list-scheduling heuristic that contrary to READYS
uses the whole DAG to compute a schedule. This consists in

never leaving a resource inactive if there exists a ready to be
processed task and breaking ties among candidate tasks by
choosing the one that is farthest from the end of the com-
putation. In the homogeneous case, it corresponds to the one
with the longest critical path. It has been demonstrated in [12]
that despite its simplicity, this strategy gives excellent results
for CHOLESKY factorization, especially when execution times
are similar to what is observed in practice on GPUs. We also
compare READYS to MCT (minimum completion time). MCT
is a dynamic heuristic that, similarly to our approach, considers
tasks one after the other without considering the whole DAG.
Each time a task becomes ready it is assigned to the resource
where it is expected to complete the soonest [46].

D. Training

We perform a random search on several hyper-parameters
of our model: the window w ∈ [0, 2], and the number g ∈
[1, 3] of GCN layers. The networks are trained using the Adam
optimizer with a learning rate of 0.01, while leaving the over
hyper-parameters default in PyTorch [44].

Regarding the actor-critic algorithm, we chose a discount
factor γ = 0.99, a baseline loss scaling of 0.5, and grid-
searched the unroll length in [20, 40, 60, 80] and the entropy
loss ratio in [10−3, 5× 10−3, 10−2]. Informally, we noted that
training an agent would take approximately 20 minutes on a
standard laptop with no GPU.

E. Results

The performance of several models trained on the three
types of DAGs, for different number of tiles, CPUs and GPUs
are summarized in Figure 3. We recall that T is the number of
tiles in each dimension of the matrix, hence T 2 tiles in total,
and that there are O(T 3) tasks in the considered DAGs [3], [4],
[6]. We compute the improvement over HEFT (static heuristic)
and MCT (dynamic heuristic). As soon as σ > 0, durations are
stochastic and reported figures are obtained by averaging the
performance over 5 runs/seeds. We see that when σ is small,
READYS performs similarly to HEFT (red boxes). One must
keep in mind that HEFT makes use of the complete DAG
to compute a schedule whereas READYS does not as it is
fully dynamic and discovers the graph on-line. As soon as σ
increases, READYS outperforms HEFT taking advantage of
the fact that it discovers task durations by itself. Compared
to MCT (blue boxes) which is a fully dynamic heuristic like
READYS, we see that our approach is much more efficient
even for low noise, exhibiting more than 35% of improvement
in some cases. Moreover, the relative performance of MCT
compared to READYS is roughly constant when σ varies when
the task graph is sufficiently large (T = 6 or more). Indeed,
they are both insensitive to uncertainty about the duration of
tasks (unlike HEFT), because they schedule tasks taking into
account the actual state of the system and the unexpected
duration of the tasks. On the opposite, HEFT computes the
schedule before the execution and is less able to cope with
duration variability. It also means that in order to deal with
uncertainty, as soon as the input graph is large enough, it is
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Figure 3. Makespan improvement over HEFT and MCT according to T ∈ {2, 4, 8} (rows), the noise level σ, and for each of the 3 tasks we consider (3
columns), when the computing platform is made of 2 CPUs and 2 GPUs. The larger the bars above 1, the better READYS performs w.r.t. to competitors.
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Figure 4. Transfer learning experiments: Makespan improvement over HEFT for the CHOLESKY task graph for several noise levels σ. On the left, the testing
DAG is the tiled CHOLESKY with T = 10 tiles, and on the right the tiled CHOLESKY with T = 12 tiles. The computing platform is made of 4 CPUs.
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Figure 5. Transfer learning experiments: Makespan improvement over HEFT for the CHOLESKY task graph for several noise levels σ. On the left, the testing
DAG is the tiled CHOLESKY with T = 10 tiles, and on the right the tiled CHOLESKY with T = 12 tiles. The computing platform is made of 2 CPUs and 2
GPUs.
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Figure 6. Transfer learning experiments: Makespan improvement over HEFT for the CHOLESKY task graph for several noise levels σ. On the left, the testing
DAG is the tiled CHOLESKY with T = 10 tiles, and on the right the tiled CHOLESKY with T = 12 tiles. The computing platform is made of 4 GPUs.
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Figure 7. Mean inference time for the CHOLESKY DAG with 99% confidence interval.

better to make dynamic decisions than to have a complete view
of the topology of the graph.

F. Transfer learning

Training an RL agent is well-known to be time consuming.
To overcome this difficulty, we investigate whether an agent
trained to schedule a specific DAG is able to schedule other
DAGs of different sizes, which is an example of transfer learn-
ing. Reducing learning time is crucial to make reinforcement
learning usable in practice. In particular, it is crucial that
a scheduling policy learned on a small size graph may be
transferred to a larger size graph, that would require too much
learning time to train from scratch.

We consider the CHOLESKY task graph and apply directly
READYS trained on either T = 4, 6 or 8 tiles (that is
respectively 20, 56 and 120 tasks) to DAGs of size 10 and 12
tiles (220 and 364 tasks). Results are summarized in Figure
4, Figure 5 and Figure 6. As previously, figures are averaged
over 5 runs/seeds when stochastic. These experiments exhibit
very promising transfer capacities for all three considered
computing platform architectures. Models trained for T = 6
and T = 8 obtain roughly similar performances when used to
schedule problems of size 10 or 12, losing by only a few
percents against HEFT when σ = 0, and becoming again
competitive as soon as σ > 0.2. The results are even better
when compared to MCT where the improvement is always
positive.

We can notice that the performance of READYS varies
according to computing platforms, which is not surprising as
the optimal scheduling strategy may change a lot. In the case
of 4 GPUs for example, scheduling tasks on the critical path is
crucial, which can be difficult for baselines like MCT, hence
the large improvements of READYS.

As expected, models trained for T = 4 obtain weaker
performances: the environment used for their training is too
different from the testing environment. For instance, the ratio
between the different types of kernels is too different in this
case. When dealing with large task graphs, this may suggest an
alternative strategy to a costly training from scratch: finding an

intermediate instance close enough to the initial DAG, which
size is small enough so that training time remains short; train
on it, and apply the learned policy to the larger instance.

G. Inference Time

We further report wall-clock inference time on standard
hardware (one CPU, no GPU) in Fig. 7 in order to evaluate
the scheduling overhead, since scheduling decisions are made
at runtime. It increases with the number of tasks in the
window (in our experiments, the average number of tasks in
the window is 45), but remains in the order of the milliseconds,
so that the scheduling overhead is reasonable as in the case of
tiled algorithm kernels execution time is much larger.

VI. CONCLUSION AND FUTURE WORK

In this paper we address the following question: can
Reinforcement Learning effectively be used to dynamically
schedule Directed Acyclic Graphs (DAGs) on heterogeneous
systems? This is both a very difficult question as scheduling
is a NP-Hard combinatorial optimization problem and a very
important question as dynamic scheduling is used in many
task-based runtime systems. To the best of our knowledge, we
are the first to positively answer this open question.

To do so, we consider several DAGs arising from linear
algebra. We demonstrate the ability of READYS to be com-
petitive with state-of-the-art static scheduling algorithms such
as HEFT even when there is no noise in the task duration
estimation. This is remarkable as HEFT is a static heuristic that
contrary to our approach, uses a full knowledge of the graph
(topology and tasks durations). As READYS makes very little
use of prior knowledge about the environment, it is particularly
powerful when the uncertainty about the task duration is large
or when the environment is stochastic, improving the results
obtained by HEFT by a large margin. Compared to a dynamic
approach such as MCT, the results are even better as we
are able to outperform MCT in all cases, regardless of the
uncertainty of task durations.

Learning scheduling algorithms for parallel heterogeneous
computing platforms capable of handling stochastic duration is



a key feature of our solution, since real execution environments
do not generally behave in a deterministic way (e.g. regarding
resource availability, the execution time of a given task, the
communication time of a given transfer). In this case, rein-
forcement learning is capable of adapting to current execution
conditions, dealing with unplanned situations. Moreover, and
very importantly, we show that our proposed solution enables
transfer learning. A model trained on a specific DAG of
a (small) given size is able to efficiently apply the learned
strategy to larger graphs.

This work opens several directions for future works. We
use A2C as our reinforcement learning algorithm. Other al-
gorithms that have been recently introduced (e.g. [23]) may
improve our results still further. Future work could include
generalizations of transfer performances, using for example
techniques from few-shot learning or meta-learning. This
ability to generalize and transfer knowledge is crucial: paying
the full price of model training is probably the main practical
obstacle to using these techniques. More broadly, this paper
opens new avenues for the use of reinforcement learning for
scalable and practical dynamic DAG scheduling.

ACKNOWLEDGEMENTS

Experiments presented in this paper were partially carried
out using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations. NG
is recipient of a PhD funding from AMX program, Ecole
polytechnique.

REFERENCES

[1] Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving
np-hard problems on graphs by reinforcement learning without domain
knowledge. CoRR, abs/1905.11623, 2019.

[2] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta,
Hongzi Mao, and Mohammad Alizadeh. Placeto: Learning general-
izable device placement algorithms for distributed machine learning.
arXiv:1906.08879 preprint, 2019.

[3] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge,
Julien Langou, Hatem Ltaief, and Stanimire Tomov. LU factorization
for accelerator-based systems. In 2011 9th IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA), pages
217–224. IEEE, 2011.

[4] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Mathieu Faverge,
Hatem Ltaief, Samuel Thibault, and Stanimire Tomov. QR factorization
on a multicore node enhanced with multiple gpu accelerators. In
IPDPS’11. IEEE, 2011.

[5] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief,
Raymond Namyst, Jean Roman, Samuel Thibault, and Stanimire Tomov.
Dynamically scheduled Cholesky factorization on multicore architec-
tures with GPU accelerators. In Symposium on Application Accelerators
in High Performance Computing (SAAHPC), Knoxville, United States,
July 2010.

[6] Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj
Kumar. Are static schedules so bad? a case study on cholesky factoriza-
tion. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1021–1030. IEEE, 2016.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures. Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, 23:187–198, February 2011.

[8] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
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Martinell, Xavier Martorell, and Judit Planas. Ompss: a proposal for
programming heterogeneous multi-core architectures. Parallel process-
ing letters, 21(02):173–193, 2011.

[23] Yannis Flet-Berliac, Reda Ouhamma, Odalric-Ambrym Maillard, and
Philippe Preux. Learning Value Functions in Deep Policy Gradients
using Residual Variance. In Proc. ICLR, 2021.

[24] Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing
device placement for training deep neural networks. In International
Conference on Machine Learning, pages 1676–1684, 2018.

[25] Michael R Garey and David S Johnson. Computers and intractability,
volume 174. freeman San Francisco, 1979.

[26] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rin-
nooy Kan. Optimization and approximation in deterministic sequencing
and scheduling: a survey. In Annals of discrete mathematics, volume 5,
pages 287–326. Elsevier, 1979.

[27] Nathan Grinsztajn. RL for Dynamic Scheduling https://github.com/
nathangrinsztajn/RL for dynamic scheduling, 2021, [Online].

[28] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jeannot, and Philippe
Preux. Geometric deep reinforcement learning for dynamic DAG
scheduling. In Proc. ADPRL. IEEE Press, 2020.

[29] Emmanuel Jeannot. Symbolic mapping and allocation for the cholesky
factorization on numa machines: Results and optimizations. The Interna-
tional journal of high performance computing applications, 27(3):283–
290, 2013.



[30] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. CoRR, abs/1609.02907, 2016.

[31] Vaibhav Kumar, Siddhant Bhambri, and Prashant Giridhar Shambharkar.
Multiple resource management and burst time prediction using deep
reinforcement learning. In Eighth International Conference on Advances
in Computing, Communication and Information Technology, pages 51–
58, 2019.

[32] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation
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