
HAL Id: hal-03320556
https://hal.inria.fr/hal-03320556

Submitted on 16 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A grounded theory of Community Package Maintenance
Organizations-Registered Report

Théo Zimmermann, Jean-Rémy Falleri

To cite this version:
Théo Zimmermann, Jean-Rémy Falleri. A grounded theory of Community Package Maintenance
Organizations-Registered Report. ICSME 2021 - 37th International Conference on Software Mainte-
nance and Evolution, Sep 2021, Luxembourg City / Virtual, Luxembourg. �hal-03320556�

https://hal.inria.fr/hal-03320556
https://hal.archives-ouvertes.fr


A grounded theory of Community Package
Maintenance Organizations—Registered Report

Théo Zimmermann
Inria, Université de Paris, CNRS

IRIF, UMR 8243, F-75013 Paris, France
theo@irif.fr

Jean-Rémy Falleri
Univ. Bordeaux, Bordeaux INP, CNRS

LaBRI, UMR 5800, F-33400 Talence, France
Institut Universitaire de France

falleri@labri.fr

Abstract—
a) Context: In many programming language ecosystems,

developers rely more and more on external open source de-
pendencies, made available through package managers. Key
ecosystem packages that go unmaintained create a health risk
for the projects that depend on them and for the ecosystem as a
whole. Therefore, community initiatives can emerge to alleviate
the problem by adopting packages in need of maintenance.

b) Objective: The goal of our study is to explore such
community initiatives, that we will designate from now on as
Community Package Maintenance Organizations (CPMOs) and
to build a theory of how and why they emerge, how they function
and their impact on the surrounding ecosystems.

c) Method: To achieve this, we plan on using a qualitative
methodology called Grounded Theory. We have begun applying
this methodology, by relying on “extant” documents originating
from several CPMOs. We present our preliminary results and the
research questions that have emerged. We plan to answer these
questions by collecting appropriate data (theoretical sampling),
in particular by contacting CPMO participants and questioning
them by e-mails, questionnaires or semi-structured interviews.

d) Impact: Our theory should inform developers willing to
launch a CPMO in their own ecosystem and help current CPMO
participants to better understand the state of the practice and
what they could do better.

Index Terms—Grounded theory, Package ecosystem, Software
maintenance, Collaborative maintenance, Open source software,
Software libraries

I. INTRODUCTION

The state of the practice in many programming language
ecosystems is for developers to heavily rely on third-party
open source packages [1]. For instance, Decan et al. found
that a majority of packages depend on other packages in
all seven ecosystems they studied [2]. This is made possible
in large part by the advent of package managers, that have
allowed developers to easily add third-party dependencies,
but also to easily share reusable code with others. This
large dependency of many software projects on graciously
provided open source packages can lead to a risk that some of
them will be abandoned and thus stop being maintained [3].
This is especially true for packages with a low truck-factor
[4], [5]. Reliance on an unmaintained software package may
then create problems such as the inability to migrate to a
newer version of the programming language or toolchain and
reported bugs not being fixed. It can even lead to security

issues as it was the case for the infamous event-stream npm
package1.

When an open source package becomes unmaintained, it is
possible for its users to take measures to keep maintaining it,
such as pushing fixes to a fork [6], or vendoring the package
in the project that depends on it, and pushing fixes to this
copy [7]. However, it is only an individual and uncoordinated
measure that will typically lead to inefficiencies, as soon as
several users need to do the same [8].

To avoid this issue, ecosystem participants may decide
to launch community initiatives to alleviate the problem of
key packages being left unmaintained. During his PhD, the
first author has observed an emerging model of “community
organizations for the long-term maintenance of ecosystems’
packages” and he has produced an informal analysis mostly
based on the Elm Community example [7], [9]. His key obser-
vations were that the existence of these organizations could:
facilitate the creation of community forks for unmaintained
packages; provide an exit strategy for authors of popular
packages no longer willing to maintain them.

The goal of the present study is to refine or revise these
initial findings by looking more in depth at several examples
of these Community Package Maintenance Organizations (CP-
MOs) and build an actual theory of how and why they emerge,
what are their objectives and how they function.

To the best of our knowledge, this theory will be the
first formal study of the CPMO model, which has not been
studied by other researchers so far, and which also constitutes
the first known collective model to alleviate the problem of
unmaintained packages in open source ecosystems.

By providing a formal description abstracting over the many
initiatives that have emerged independently from each other,
our theory will highlight key components and processes of
CPMOs, but also what works well and what does not. This
should allow both practioners from ecosystems without a
CPMO to launch such an initiative, by providing a clear model
and justification for the associated processes, but also current
CPMO participants to reflect on their practice and make them
evolve. As a matter of fact, the first author did launch a
CPMO for the Coq ecosystem based on his initial observations

1https://blog.logrocket.com/the-latest-npm-breach-or-is-it-a427617a4185/



and, even if it has already been quite successful, it should
also benefit from a better understanding of CPMOs in other
ecosystems.

We plan on building this theory through a qualitative study
following the principles of Grounded Theory (GT). GT is
appropriate for this setting because it provides us a methodol-
ogy for analyzing both existing data that we retrieve (“extant
documents”) and elicited data (such as through interviews with
CPMO participants).

This study will be of a purely qualitative nature and the
theory that we build will not be used to derive “predictions”
that could be “tested”. It is beyond the scope of this study
to make and test such predictions. However, the generated
theory could inform future research that will make and test
predictions on specific aspects of CPMOs, by means of
quantitative methods.

In the next section, we present the GT methodology and how
we have chosen to apply it to conduct our study. The rest of the
paper then presents our preliminary findings based on extant
documents only, the research questions that have emerged and
how we plan to collect more data to tackle them.

II. METHODOLOGY

Grounded Theory (GT) is a qualitative methodology for
generating theories grounded in data. Several variations of this
methodology exist. We base our work on the constructivist
version of Charmaz [10], complemented by the perspectives
brought by Stol et al. on GT applied to Software Engineer-
ing [11] and of Muller and Kogan on GT applied to Human-
Computer Interactions and Computer-Supported Cooperative
Work [12]. We also inspire from the SAGE Handbook chapter
by Wiener about team work in GT [13] and on the recommen-
dations of Ralph et al. for contextual positioning of extant
documents in GT [14].

One of the core characteristics of GT is that it is an incre-
mental method. Analysis and theory building (using coding
and memoing) start as soon as the researchers have gathered
some initial data and the resulting theory is then refined by
looking at additional data that will help address unanswered
questions. Data are not sampled for representativity (statistical
sampling) but for what they may bring to the theory under
construction (theoretical sampling). Data collection only stops
when the constructed theory is solid enough to fit new col-
lected data (theoretical saturation).

A. Defining the scope of our study

In this paper, we explore a model of community organi-
zations centering on package maintenance (CPMOs) that we
have observed in several ecosystems. However, because this
model is emergent, we have to define the limits of what we
want to study. First, we study community initiatives that are
rooted in an application-specific package ecosystem. There-
fore, we exclude both general initiatives targeted at improving
sustainability of open source projects and general-purpose
package ecosystems (such as Arch Linux, Debian, Homebrew
or Nixpkgs). We make this choice because application-specific

package ecosystems are generally associated to an “upstream”
project, that may become in need of maintenance, and this
leaves the possibility for a CPMO to “adopt” the project.
Second, we exclude organizations that do package mainte-
nance without clearly communicating on their objectives nor
their processes. Third, we exclude organizations that already
encompass all community packages of an ecosystem (as we
have sometimes observed in small ecosystems). If packages
are already gathered like this, this does not leave any possi-
bility to “adopt” an unmaintained package.

B. Initial data gathering

Our plan for this study has been to start with the data that
were the most accessible, that is the documentation provided
by the CPMOs we identified, and to defer contacting CPMO
participants to a later theoretical sampling phase.

The reason for adopting this strategy is both ethical and
practical. We know that open source software developers
are over-sollicited by empirical software engineering re-
searchers [15]. Therefore, contacting them too early would
be both unethical (because we would be wasting their time
with questions to which we could have found an answer
by ourselves) and inefficient (because reaching out more
personally to specific users is more likely to elicit answers
and we should be able to ask questions which we are missing
data to answer).

Our initial list of CPMOs to study comes from the thesis of
the initial author [7], [9]. The list was obtained by a systematic
search of GitHub organizations using GitHub advanced search
feature, starting from 75 keywords like “collective”, “main-
tain”, “participate” but also “library”, “module” or “package”,
and followed by a series of filters regarding number of
repositories, popularity, and presence of repositories predating
the organization (and that were thus transferred to it). These
filters were intended to keep the resulting list to a size that
would be reasonable to explore manually. This list was then
manually browsed for organizations fitting the scope described
above, excluding in particular many organizations that did not
provide sufficient information on their purpose.

To make sure we did not miss any important or newer
CPMO, we completed this initial list by doing a manual
GitHub search for repositories and organizations with the
keywords “package maintenance” and “package community”
and looking at the first 10 pages of results for each query.
This did bring up additional organizations fitting the scope of
our study, confirming that the list previously established was
incomplete. Even if we still cannot claim to have identified
all CPMOs, we have already obtained a list longer than what
we will be able to study in depth, so we will have to select a
subset to focus on.

To start with, we decided to code documents that would
present the CPMO purposes and processes. We first explored
the following four CPMO documents: README from the
manifesto repository of Elm Community, README from
the discussions repository of Dlang-community, README
from the package-maintenance repository of Node.js Package



TABLE I
LIST OF POTENTIAL CPMOS TO STUDY.

CPMO name GitHub name Origin
Dlang-community dlang-community Initial list
Elm Community elm-community Initial list

Flutter Community fluttercommunity Manual search
LM Commons LM-Commons Manual search

Meteor Community Meteor-Community-Packages Manual search
Node.js PMT pkgjs Manual search

React-native-community react-native-community Initial list
ReasonML-community reasonml-community Initial list

Sous Chefs sous-chefs Initial list
Vox Pupuli voxpupuli Initial list

Maintenance Team (PMT), governance document from the
plumbing repository of Vox Pupuli.

We ignored on purpose the coq-community manifesto
(which has been initially drafted by the first author dur-
ing his PhD work) and the ocaml-community meta reposi-
tory README (which has been directly influenced by coq-
community’s). That being said, we do use the experience of
the first author as a comparison point in the analysis process
(when writing memos in particular) and we acknowledge it
wherever it influences the theory under construction.

C. Coding and memoing process

Following Charmaz’s presentation of GT [10], we have
coded these documents in two phases. During the initial line-
by-line coding phase, we devise codes that precisely represent
the content of the document. During the follow-up focused
coding phase, we abstract our initial codes and look for
common patterns through constant comparison between codes
and codes, codes and data, and data and data. The focused
codes that seem to be the most important become the basis
to form our categories. Whenever we observe a recurring
pattern or gain insight throughout the coding process, we write
memos to sketch the precise definition and characteristics of
our categories.

GT is mainly described as a research methodology em-
ployed by individual researchers (e.g., in sociology). Guidance
on how to employ it as a team of researchers is limited and it
is also the role of the researchers to decide how to proceed.
We decided to use a GitHub repository to collaborate, with
issues being used for writing memos, and documents with
codes being committed into the repository.

Data that are collected but not created for the purpose of the
research are called “extant documents” [10]. Extant documents
are harder to code because they do not only contain data that
are relevant to our research (these data are typically burried
under irrelevant ecosystem-specific technical considerations
for instance). To alleviate this difficulty, we decided to code
documents separately and compare our codes.

While such double-coding is generally conducted to obtain
more “objective” results in empirical software engineering
research (by measuring inter-rater reliability), it is typically
not required from a constructivist perspective (where it is

expected that different researchers will have different inter-
pretations). However, this was still very useful to us because
the differences in our codes raised interesting discussions
during our meetings, and frequently led to memo-writing.
This was especially true when comparing focused codes, so
we quickly limited (after two documents) the double-coding
and discussion to the focused coding phase only, or we
adopted a strategy where one researcher would do the initial
coding and another would do the focused coding (of the same
document) then the two would discuss the focused codes. This
strategy aligns with the observations of Wiener [13] that team
meetings can be used to code as a group and may spark new
ideas leading to memos that will be written by individual
researchers.

When coding extant documents, it is important to situate
them with respect to their context, audience, etc. Ralph et al.
call this “contextual positioning” and provide a list of ques-
tions to ask about the document [14]. In order to answer them,
in particular with respect to community documents that are not
attributed to a specific author but were committed to a GitHub
repository, we rely on the git history to better understand who
contributed to writing what parts and when. This is sometimes
helpful to explain how different and apparently contradictory
perspectives coexist in the same document, or how CPMO
processes evolve.

D. Theoretical sampling

After our initial data gathering and analysis, we have already
started theoretical sampling to answer questions that have
emerged. We were especially interested in the package “adop-
tion” process, so we have started coding adoption discussions
in the context of one specific CPMO (Dlang-community) but
we plan to expand this to other CPMOs.

The adoption process was not really discussed in Node.js
PMT’s document and while looking for adoption discussions,
we figured out that it was still undecided if this organization
(or Working Group as they sometimes describe themselves)
would ever adopt packages. Currently, they are more focused
on developing tooling and best practices, and helping projects
outside the organization. While this initiative is also very
interesting and would be worth studying, we have to set limits
to what we include in our study, so we have decided to remove
it from our study and reinspect our preliminary findings based
on this decision.

Finally, when we reach the limits of what we can theorize
from extant documents, we believe that we will need to contact
CPMO participants. Contacting and interviewing participants
is essential, not only to gain a deeper understanding of the
studied processes, but also to get a reliability check [11] of
our (intermediate) conclusions.

One strategy for contacting CPMO participants will be to
e-mail them and ask them specific questions to clarify the data
that we have found and analyzed. An example is asking why
a package adoption did not happen even after it was discussed
and approved, or if they can tell us under what circumstances
the documented decision processes are deviated from.



When sending these e-mails, we will use the opportunity
to ask about conducting an interview with them, but we will
leave it open to have a purely written discussion for those who
would not have time to allocate to a proper interview.

E. Interviewing process

During this study, we expect that we will conduct some
semi-structured interviews. Given the incremental nature of
GT, we plan to conduct interviews one by one, transcribe
and code the interview, and reflect on the knowledge we gain
from an interview before planning the next one. Therefore, the
interview guide will evolve between each interview.

Whereas, as an open science committment we will publish
all our codes for public documents, we will not be able to do
the same for interview transcripts and codes. Indeed, we can
expect participants to answer differently to our questions if
we tell them that the interviews will not be made public. We
plan to quote some interview participants in our paper, but we
will seek consent from each quoted participant for the specific
quotes, to make sure that they are comfortable making these
quotes public (or if they want them sanitized and anonymized)
and also that we interpret them correctly.

F. Expectations for the Registered Report

Registered Reports were initially invented to avoid HARK-
ing (hypothesizing after the results are known). This issue is
not really relevant for qualitative theory-generation studies.
Nonetheless, preregistrations can still be useful in an open sci-
ence perspective to state the plans and intents for a qualitative
study. Revealing these will help future readers understand how
the study was conducted and the theory was built, even though,
in a GT setting, it is expected that there will be variations from
the initial plan.

Furthermore, early reviewer feedback, both on the method-
ology and the theory under construction, is essential to us
before we actually start contacting participants and conduct
interviews. Indeed, as we stated before, the time of open source
maintainers (and thus CPMO participants) is precious and
there is only so much time that they can allocate to researchers
interviewing or surveying them. Therefore, it is important that
we are as prepared as possible before we begin this step in
our study.

III. PRELIMINARY RESULTS

In this section, we describe our preliminary categories,
obtained after our initial and focused coding phases performed
on the manifesto documents of the subjects we gathered.

A. Motivations for CPMOs

Avoiding ending-up with lagging useful packages is the
main driver for the creation of CPMOs. Both the Elm Com-
munity and the Dlang-community manifestos express this idea
(in words that come from the initial version of the documents
by the CPMO founders):

“It sometimes happens that packages which are
widely used need a bit of maintenance—for

instance, to accommodate changes in Elm, or for
other reasons. Normally, package authors will deal
with that themselves, of course, possibly with the
help of pull requests from interested community
members etc. However, sometimes package authors
may not be available, for one reason or another,
and other work can be blocked until the
maintenance is performed.”

“This organization was formed by annoyance of
needing to fork popular repositories to get fixes
merged. [...] However, small bug fixes don’t need
to wait in the queue for months, and in case the
author is completely gone, the DLang community
has one upstream repository instead of ten different
forks containing the same fix.”

The Vox Pupuli webpage also expresses this idea:

“One of the benefits we hope to achieve is that
by a shared ownership of modules we no longer
end up in situations where the original maintainer
has moved on and a forest of disparate forks try to
fill the void.”

B. Package adoption

To avoid ending-up with lagging packages, CPMOs perform
package adoptions, by transferring or forking the project of
interest inside a CPMO-owned repository. However, we have
seldomly encountered clear guidelines on how the packages
to adopt are selected. The more informative description is
perhaps the one found in Dlang-community, as follows.

“These question are intended to give a rough
feeling on what packages might be considered for
adoption. When in doubt, please open an issue!
Popularity
Q: Is there enough interest from the D community,
i.e. is it “worth maintaining”
Competition
Q: Is there a similar library with active
development out there?
Maintainer/sponsor
Q: Is at least one of the DLang community
member competent for the domain covered by the
project? If not, is there anyone willing to join?”

Here we can notice that the dimensions are popularity,
competition and having a volunteer maintainer. Furthermore,
there is an explicit will to ensure that adoption is to be
discussed prior to any decision.

“Please don’t create new packages without
consulting other dlang-community members.”

In the Elm Community CPMO, the guidelines are more
fuzzy. It has a mention in the framing of the manifesto
document:

“packages that are widely used”



Which indicates that popularity could be a criterion simi-
larly to Dlang-community. Additionally, they state:

“If you think there is a package that should be
adopted here, feel free to open an issue in this
repository. (And, to repeat, this is not to
discourage you from adopting a package yourself,
if you want to take that on).”

Which does seem very inclusive as every adoption proposal
can be subjected to discussion.

No criteria for package adoption are explicitly mentioned in
the Vox Pupuli CPMO (they only provide technical adoption
guidelines). However, Vox Pupuli documentation hints that
donations are a way to adopt packages, which could bear
some similarity with the vision of Dlang-community (is there
a volunteer maintainer out there?).

C. Maintenance objectives of CPMOs

The maintenance objectives of CPMOs with respect to
the adopted packages are generally not clearly defined. A
theoretical sensitizing concept here is the staged model of the
software lifecycle by Rajlich and Bennett [16]. Do CPMO
generally plan to do servicing only or do they also accept
projects that are actively evolving or even in their initial
development phase? The Elm Community manifesto is the
most explicit on this aspect, but it is also self-contradicting
as shown by these two excerpts:

“For the most part, we don’t expect to do
innovative work on packages here. That is, to the
extent that innovative new features can be added to
a package, that should mostly be done in people’s
individual accounts. What we’ll do here is mostly
maintenance.”

“Lead the direction of a repository. As a
champion, you will need to make calls on API
design. Don’t let packages come to elm-community
to die.”

This apparent contradiction can be explained by the latter
paragraph having been added by someone else than the orig-
inal author, who probably had slightly differing views.

D. Decision protocols

CPMO processes require frequent decision making. Exam-
ples of important decisions to make are whether to “adopt” a
package or whether to integrate a pull request.

CPMOs often strive to involve the community in the de-
cisions as much as possible. On the other hand, they also
want to be able to make decisions in a reasonable time-frame.
One typical trade-off is the use of a lazy consensus protocol,
as in Vox Pupuli. As written in the Vox Pupuli governance
document:

“Lazy consensus is a very important concept
within the project. It is this process that allows a
large group of people to efficiently reach consensus,

as someone with no objections to a proposal need
not spend time stating their position, and others
need not spend time reading such statements.”

By exploring the file history for this document, we have
found out that this text comes verbatim from a template for
open source project governance provided by OSS Watch [17].

From our preliminary observation, it is not clear at all that
the recommendations of this consensus mechanism are often
followed, or for which type of decision they are applied.

Dlang-community does not explicitly provide a lazy consen-
sus protocol, but does rather provide some criteria for when
it is not required:

“When can I (self)-pull a PR?”

Finally, Elm Community is more explicit on how individual
hosted projects are managed: all projects have a primary
maintainer that can take all decisions with respect to its
projects. However, to ensure the liveliness of the maintenance,
they state that unresponsive maintainers can be overriden (and
even removed).

“if there’s something that really needs to get
merged, and the maintainer has taken more than 7
days to respond, we can merge things without their
involvement.”

“Unresponsive champions will be emailed. Lack
of response will mean a new maintainer will be
assigned to that repo.”

Even if it is not documented as clearly, a question is whether
this principal maintainer model happens to be prevalent in
CPMOs in practice. This may turn out to be true at least
for projects whose original author is still active, as hinted by
Dlang-community:

“projects are still driven by their original
authors if they have the time”

E. CPMO membership

CPMOs generally encourage wide participation.

“How do I become a member of the DLang
community? First of all, by reading this you most
likely are already.”

“Contributors
How to become one: Submit a pull request to a
Vox Pupuli project”

However, they also often have a trust-building process to
get write permissions:

“You are already a well-known member of the D
community, then simply ping us for merge rights.
Otherwise, start contributing to one of the projects
and earn your trust.”

“Collaborators are contributors who have shown
wide dedication to the Vox Pupuli project in



general or deep dedication to one project in
particular, and the ability to work well with
contributors and other users.”

Interestingly, while this last quote also originally comes
from the governance template mentioned above, it was adapted
to the specifics of a CPMO. Indeed, contrary to usual open
source projects, involvement in a CPMO has several dimen-
sions: it can be wide dedication to the CPMO, by helping
maintain all packages or common tools, or it can be deep
dedication to one or a selection of packages hosted by the
CPMO.

Finally, our preliminary observations seem to indicate that
the trust-building process can often be side-stepped when
recruiting a new member to maintain a package being adopted
(as shown by these quotes from Dlang-community, Vox Pupuli
and Elm Community):

“If not, is there anyone willing to join?”

“It is also common to give collaborator status to
an individual who donates code to the project by
migrating a repository to the github namespace”

“this is not to discourage you from adopting a
package yourself, if you want to take that on”

IV. NEXT STEPS

In this section, we describe our planned next iterations
of data collection and coding, relatively to the categories
described previously.

Motivations of CPMOs: The manifestos we coded are
relatively scarce about the rationales and motivations that
led to the creation of CPMOs. Therefore, we plan to collect
more data about the creation context of CPMOs. For several
subjects, we gathered some forum threads where the initial
discussion regarding the CPMO creation was conducted. We
plan to code these documents.

When we cannot find data on the creation context or if
we need additional information, we plan to interview CPMO
founders. In the case of Elm Community, we already have the
recording of the informal interview of the founder conducted
by the first author during his PhD. We will transcribe and code
this interview.

Adoption of packages: As we previously described, CP-
MOs are rarely explicit about the criteria for package adoption.
Even for a CPMO that provides them, these criteria are very
subjective. We feel like we do not have enough data to
construct a comprehensive theory about this topic. During our
inspection of the CPMO repositories, we found out that several
CPMOs discuss package adoptions using GitHub issues or pull
requests (or mailing lists). We think that coding these data is
a great way to better analyze how the decision on a package
adoption is done in practice. We already started coding five
such issues for the Dlang-community CPMO, and we plan to
conduct this coding effort for the other CPMOs where such
data are available. When the data are not available, or when we

need additional information, we will ask questions regarding
the adoption criteria to current CPMO participants.

Maintenance objectives of CPMOs: We uncover contra-
dictory visions inside CPMO manifestos regarding the kind of
maintenance expected in adopted packages. We want to exam-
ine data closer to the projects to build a better understanding.
Therefore, we plan to code commit logs of several adopted
projects inside each CPMO. Because commit messages are
usually quite explicit about the kind of maintenance activity,
we think that this should help understand what kind of
maintenance activities are undertaken in CPMOs, and if they
vary across hosted projects. Contrary to what is commonly
seen in research coding commit messages, we will not do this
with quantitative / statistical objectives, but only to assess the
diversity of undertaken maintenance activities.

Decision protocols: The studied CPMOs have defined
two kinds of decision protocols: lazy consensus or principal
maintainer lock. However, we have not yet examined how
these protocols are used in practice, and for which reasons.
To build a better understanding, we plan to code issues and
pull requests of adopted projects’ repositories as well as issues
and pull requests of central documentation or coordination
CPMO repositories. Additionally, some CPMOs have public
discussion channels that are also used to make decisions. We
plan to also code a subset of these discussions.

CPMO membership: Besides an expressed intent to favor
wide participation, CPMOs generally do not precisely docu-
ment the actual recruitment and trust building process. We will
try to better understand how this happens in practice based on
public data, but this will very likely need to be complemented
by interviewing both recently recruited participants and CPMO
administrators. We will also try to analyze the variety of
(formal or informal) roles taken by CPMO participants, and to
categorize them along the dimensions of involvement defined
above.

REFERENCES

[1] D. Klug and H. Miller, “Open Source Is A-Changin’: How Qualitative
Research Can Help Us Adapt,” May 2018, number: CONF. [Online].
Available: https://infoscience.epfl.ch/record/255139

[2] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, Feb.
2019. [Online]. Available: https://doi.org/10.1007/s10664-017-9589-y

[3] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik, “On
the abandonment and survival of open source projects: An empirical in-
vestigation,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Sep. 2019, pp. 1–12,
iSSN: 1949-3789.

[4] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for
estimating Truck Factors,” in 2016 IEEE 24th International Conference
on Program Comprehension (ICPC), May 2016, pp. 1–10.

[5] G. Avelino, M. T. Valente, and A. Hora, “What is the Truck Factor
of popular GitHub applications? A first assessment,” PeerJ Inc.,
Tech. Rep. e1233v3, Jan. 2017, iSSN: 2167-9843. [Online]. Available:
https://peerj.com/preprints/1233

[6] S. Zhou, B. Vasilescu, and C. Kästner, “How Has Forking Changed in the
Last 20 Years? A Study of Hard Forks on GitHub,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), Oct.
2020, pp. 445–456, iSSN: 1558-1225.



[7] T. Zimmermann, “A first look at an emerging model of community
organizations for the long-term maintenance of ecosystems’ packages,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, ser. ICSEW’20. Association for
Computing Machinery, Jun. 2020, pp. 711–718. [Online]. Available:
https://doi.org/10.1145/3387940.3392209

[8] S. Zhou, B. Vasilescu, and C. Kästner, “What the fork: a study
of inefficient and efficient forking practices in social coding,” in
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY,
USA: Association for Computing Machinery, Aug. 2019, pp. 350–361.
[Online]. Available: https://doi.org/10.1145/3338906.3338918

[9] T. Zimmermann, “Challenges in the collaborative evolution of a proof
language and its ecosystem,” phdthesis, Université de Paris, Dec. 2019.
[Online]. Available: https://hal.inria.fr/tel-02451322

[10] K. Charmaz, Constructing Grounded Theory, 2nd ed. London ;
Thousand Oaks, Calif: SAGE Publications Ltd, Mar. 2014.

[11] K. Stol, P. Ralph, and B. Fitzgerald, “Grounded Theory in Software
Engineering Research: A Critical Review and Guidelines,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), May 2016, pp. 120–131, iSSN: 1558-1225.

[12] M. Muller and S. Kogan, “Grounded Theory Method in Hu-
man–Computer Interaction and Computer-Supported Cooperative
Work,” in Human–Computer Interaction Handbook. CRC Press, May

2012, vol. 20126252, pp. 1003–1024, series Title: Human Factors and
Ergonomics.

[13] C. Wiener, “Making Teams Work in Conducting Grounded Theory,” in
The SAGE Handbook of Grounded Theory. 1 Oliver’s Yard, 55 City
Road, London England EC1Y 1SP United Kingdom: SAGE Publications
Ltd, 2007, pp. 292–310. [Online]. Available: http://methods.sagepub.
com/book/the-sage-handbook-of-grounded-theory/n14.xml

[14] N. Ralph, M. Birks, and Y. Chapman, “Contextual Positioning:
Using Documents as Extant Data in Grounded Theory Research,”
SAGE Open, vol. 4, no. 3, p. 2158244014552425, Jul. 2014,
publisher: SAGE Publications. [Online]. Available: https://doi.org/10.
1177/2158244014552425

[15] S. Baltes and S. Diehl, “Worse Than Spam: Issues In Sampling
Software Developers,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’16. New York, NY, USA: Association
for Computing Machinery, Sep. 2016, pp. 1–6. [Online]. Available:
https://doi.org/10.1145/2961111.2962628

[16] V. Rajlich and K. Bennett, “A staged model for the software life cycle,”
Computer, vol. 33, no. 7, pp. 66–71, Jul. 2000, conference Name:
Computer.

[17] R. Gardler and G. Hanganu, “Meritocratic governance model,” OSS
Watch, University of Oxford, Tech. Rep., 2013. [Online]. Available:
http://oss-watch.ac.uk/resources/meritocraticgovernancemodel


