
HAL Id: hal-03321368
https://hal.inria.fr/hal-03321368

Submitted on 18 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Decision Forest Evaluation
Slim Bettaieb, Loic Bidoux, Olivier Blazy, Baptiste Cottier, David Pointcheval

To cite this version:
Slim Bettaieb, Loic Bidoux, Olivier Blazy, Baptiste Cottier, David Pointcheval. Secure Decision Forest
Evaluation. ARES 2021 - 16th International Conference on Availability, Reliability and Security, Aug
2021, Vienna, Austria. pp.1-12, �10.1145/3465481.3465763�. �hal-03321368�

https://hal.inria.fr/hal-03321368
https://hal.archives-ouvertes.fr

Secure Decision Forest Evaluation

Slim Bettaieb1, Loic Bidoux1,2, Olivier Blazy3, Baptiste

Cottier1,4,5, and David Pointcheval4,5

1Worldline, France
2Cryptography Research Centre, United Arab Emirates

3XLIM, University of Limoges, France
4DIENS, Ecole Normale Superieure de Paris, France

5INRIA, France

August 19, 2021

Abstract

Decision forests are classical models to efficiently make decision on
complex inputs with multiple features. While the global structure of the
trees or forests is public, sensitive information have to be protected during
the evaluation of some client inputs with respect to some server model.
Indeed, the comparison thresholds on the server side may have economical
value while the client inputs might be critical personal data. In addition,
soundness is also important for the receiver. In our case, we will consider
the server to be interested in the outcome of the model evaluation so
that the client should not be able to bias it. In this paper, we propose a
new offline/online protocol between a client and a server with a constant
number of rounds in the online phase, with both privacy and soundness
against malicious clients.

1 Introduction

Over the past years, companies have tremendously increased the amount of data
they collect from their users. These data are often feed to machine learning al-
gorithms in order to turn them into valuable business insights that are used to
develop innovative services. Applications include user authentication, fraud de-
tection in banking systems, recommendation services as well as spam detection.
However, collecting and processing these data raises privacy concerns since they
generally contain sensitive information regarding users. Besides, the models
used to evaluate these data may contain critical business information that also
need to be protected. In this work, we focus on the secure evaluation of deci-
sion forests which are a commonly used class of machine learning algorithms.
We consider the case where a client who holds sensitive data interacts with a

1

server who holds a decision forest model in order to jointly evaluate the client
inputs with respect to the server model. Our goal is to ensure that the privacy
of both the client and the server is guaranteed on their respective inputs. We
also investigate the scenario where the client is malicious and intends to bias
the outcome of the protocol.

In order to motivate the design rationale of the proposed protocols, we con-
sider continuous user authentication based on decision forests as an application.
In continuous authentication, users are authenticated using a set of features
that strengthen usual authentication credentials such as passwords or security
tokens. When the user’s identity needs to be validated after some time interval
or after some inactivity, continuous authentication offers a user-friendly experi-
ence as it avoids interrupting legitimate users and reduces the number of times
they have to authenticate explicitly. The usual scenario of continuous authenti-
cation consists of a server authenticating users based on behavioural biometrics.
A variety of features such as keystroke patterns, swiping gestures and scrolling
duration are collected on the user’s device and sent to the server. The server
then evaluates the client inputs with respect to its model in order to make an
authentication decision. The model is usually generated during a training step
using a dedicated training dataset.

1.1 Related Work

Several approaches have been proposed in order to securely evaluate decision
trees [BPSW07, BFK+09, BPTG15, WFNL16, TMZC17, DDH+16, TKK19].
However, most of these constructions are either only secure in the honest-but-
curious setting or tailored for decision tree evaluation rather than decision forest
evaluation. As such, with the exception of [WFNL16] and [TMZC17] which we
consider hereafter, the aforementioned works can’t be compared to our protocol
meaningfully. Similarly to our protocol, both [WFNL16] and [TMZC17] rely
on Additive Homomorphic Encryption (AHE) and Oblivious Transfers (OT). In
addition, our protocol also uses Garbled Circuits (GC) in the malicious setting.

A major difference between our protocol and existing constructions is that
we rely on the server sending its encrypted model to the client rather than
the client sending its encrypted data to the server. This strongly impacts the
design of our protocol and allows us to introduce a preprocessing phase that
can be performed offline and leveraged later during the online phrase. This is
advantageous for several use-cases such as the continuous authentication one
as it offers a trade-off between the number of rounds required to execute the
protocol and the required bandwidth.

All existing constructions leak some information with respect to the model
structure (i.e. on the server side) whether it be its total number of nodes M ,
the total number of comparison nodes m or the maximal depth δ of the trees.
In our protocol, the client may also learn which features will be used to evaluate
the trees. We consider this as a privacy leak, but as our protocols will have a
complexity independent of the depth of the trees (or more precisely, the length
of the paths down to the leaves), we will be able to add dummy comparisons

2

Table 1: Comparison to state-of-the-art
Scheme Rounds Tools Bandwidth

Honest-but-Curious model

[WFNL16] 6 AHE+OT O(m)

[TMZC17] 4 AHE+OT O(m)

Section 3 (Offline) 0.5
AHE

O(m · δ · 2ν)
O(m · χ · 2ν)

Section 3 (Online) 0.5 O(P)

Malicious model

[WFNL16] 2 AHE+OT O(M)

[TMZC17] 4 AHE+OT O(m)

Section 4 (Offline) 0.5 AHE
O(m · δ · 2ν)
O(m · χ · 2ν)

Section 4 (Online) 2.5 AHE+GC+OT O(P)

with dummy features, which will completely hide which are the actually used
features. We thus propose two variants of our protocols in Table 1, without or
with dummy comparisons. They only differ during the offline step as the number
of features in the comparisons impacts the communication and the storage: δ is
the number of real features per path, whereas χ is the number of real and dummy
features. We stress that this modification does not impact the online step of
our protocols: communication only depends on the number P of paths, and not
their length. This thus allows us to use as many dummy features as we want to
hide the trees and the forest structure. This will be a crucial property for the
privacy of the model. In addition, our constructions also feature some leakage
on the client side. When used to evaluate decision forests, our protocol leaks
the number of successful paths within the forest which constitutes a tolerated
leakage in our targeted application. Indeed, it corresponds to the number of
accepting trees which allows to compute a confidence level associated to the
result.

One can note half rounds in our constructions, which mean one-way flows,
from the sender to the recipient. Indeed, most of our schemes are actually non-
interactive. Since our goal is to provide the result to the server, in the malicious
setting, we get a 5-flow protocol.

1.2 Contributions

In this paper, we propose several constructions to securely evaluate decision
forests with binary output classes. In our setting, a server evaluates a modelM
with respect to some client inputs x and accept or reject the client according to
the evaluation outcome. We consider the server to be honest-but-curious and
describe two protocols that are respectively tailored for honest-but-curious and
malicious clients. As we target applications where the interactions between the
client and the server should be as low as possible, we design two-step proto-
cols in which some part of the computation can be performed offline, and the
communication performed before knowing the inputs of the client.

3

In the honest-but-curious setting, our protocol only requires one flow from
the client to the server to be executed during the online step which outperforms
previous results from the literature. In the malicious setting, our protocol can
be seen as a trade-off between existing constructions with respect to the num-
ber of rounds required and the bandwidth cost. However, our protocols leak the
number of trees successfully evaluated within the forest to the server. We con-
sider this as a feature rather than a drawback as we want the server to learn the
outcome of the evaluation in our setting. Indeed, this additional information is
generally used as a confidence score with respect to the evaluation outcome and
is expected to be known in some use-cases such as the continuous authentication
one.

Another contribution is the fact that in our context, we use garbled circuit in
a malicious setting, without any additional techniques compared to the honest-
but-curious setting. Thereby, we do not need to use solutions such as Cut &

Choose. Even if this solution has been well studied and optimized [MF06, LP07,
Lin13, LR14, AMPR14, WMK17], this is still an expensive solution requiring ℓ
garbled circuits for statistical security 2−ℓ. In a survey, Dupin et al. [DPB18]
showed that a malicious generator can corrupt a garbled circuit only by adding
NOT-gates or by failure attacks, but we can protect against these attacks in our
context. Indeed, in case of failure attacks, the adversary will likely be rejected,
without learning any information about the thresholds. In the case of wrong
circuit (with additional NOT-gates), we have introduced random inversions of
the outcomes of the paths, and so an attack will reduce to guess all (or most
of) the inversions, which will again likely lead to a reject, without leaking any
information.

1.3 Paper Organization

We present the main tools that will be used to design our secure decision forest
evaluation protocols in Section 2, Then, we describe and analyze our construc-
tion in the honest-but-curious setting in Section 3. Eventually, we move to the
malicious setting in Section 4. Performances and results for several applications
are discussed in Section 5.

2 Preliminaries

2.1 Decision Tree Learning

Decision tree learning is a discipline used to solve multi-criteria problems that
can be modelled using decision trees. In this paper, we focus on binary clas-
sification trees, which are decision trees whose leaves can take two values (the
two output classes). In order to improve the accuracy of the model, one often
considers decision forests (sets of decision trees) where each tree of the forest is
evaluated separately and then aggregated for the final decision.

4

x1 ≤ t1

x2 > t2

0 x4 > t4

0 1

x5 ≤ t5

x6 > t6

0 1

1

x1 > t1

x2 > t2

x4 > t4

1

x1 ≤ t1

x5 > t5

x6 > t6

1

x1 ≤ t1

x5 ≤ t5

1

x1 > t1

x2 ≤ t2

0 < 1

-1 +1

x1 > t1

x2 > t2

x4 > t4

-1 +1

x1 ≤ t1

x5 > t5

x6 > t6

-1 +1

x1 ≤ t1

x5 ≤ t5

1 > 0

-1 +1

Decision binary tree Binary sequences of comparisons
for the Honest-but-Curious set-
ting

Ternary sequences of comparisons for the
Malicious setting

Figure 1: Decision tree, Sequences of comparisons, Binary sequences

A decision forest is thus a list of binary decision trees, as one is shown on
Figure 1, on the left part. They can each be converted into a list of comparison
sequences down to accepting leaves (in the center of Figure 1). Each comparison
is between a feature value xi and the threshold value ti from the model: we
thus denote the modelM = (P, δ, ν, τ, (ti,j , vi,j)i∈[P],j∈[δ]) to represent a binary
decision forest and x = (xi,j)i∈[P],j∈[δ] the inputs of size ν to be evaluated.
The model M represents P paths of maximal depth δ that can be evaluated
to compute a score in order to determine the output of the evaluation with
respect to some threshold τ on the number of accepted paths (which is equal
to the number of accepting trees). Each path is a series of comparisons, where
the (i, j)-th comparison denotes the comparison of depth j in the i-th path:
namely, the comparison of input xi,j and threshold ti,j . In addition, the boolean
values vi,j are used to determine the comparison operator. Lower or equal (≤)
whenever vi,j = 1 or Strictly greater (>) whenever vi,j = 0. A path is considered
to be accepting if all its comparisons yields to TRUE, otherwise it is rejecting.
And then a tree is accepting if one path is accepting. One can note that in the
sequences extracted from a tree, at most one is accepting. Given some input
x = (xi,j)i∈[P],j∈[δ], the number of accepting paths with respect to model M is
denoted byM(x). It then corresponds to the number of accepting trees. Hence,
the outcome of the decision forest evaluation is the Boolean (M(x) ≥ τ).

More concretely, as shown on Figure 1, if we have a forest with T trees, we
extract all the paths down to accepting leaves, with the successive comparisons
(tj , vj)j . On a given input x, each tree has at most one accepting path, and so at
most T accepting paths in total. Then, we can decide to accept x when at least
T/2 among the P paths (the majority of the trees) are accepting: τ = T/2. We
stress that in this scenario, each path will be considered accepting or rejecting.
But we will just expect at least T/2 accepting paths among P . This will be
enough for our protocol in the honest-but-curious setting: we essentially ignore
rejecting paths.

For the malicious setting, we will consider more complex sequences of com-
parisons, with a ternary output: accepting, rejecting, or ignoring. This is the
right part of Figure 1: if the last red comparison is reached, a decision is taken,
as accept (+1) or reject (-1), whereas when the last comparison is not reached,
the path will be ignored (0). This way, most of the paths will be ignored, and
exactly one path will be accepting or rejecting, as the global tree would be. We
stress that some ’always true’ or ’always false’ comparisons will have to be added

5

to make the above technique work properly. This is easy to see that the three
ways of representing and evaluating a binary decision tree are equivalent, with
a final outcome ’accept’ or ’reject’. The last one will allow to prevent malicious
behaviours from the client, in order to falsely get accepted.

2.2 Public-Key Encryption

A public-key encryption scheme PKE is defined by three algorithms (KeyGen, Enc, Dec):

• KeyGen(1κ): with input κ as security parameter, returns a public encryp-
tion key pk and a private decryption key sk.

• Enc(pk, m): returns JmK, an encryption of m under the public encryption
key pk

• Dec(sk, JmK): returns m.

Such an encryption scheme should provide secrecy of the message. But as the
encryption key is public, anybody can encrypt any message of its choice. We
thus talk about indistinguishability against chosen-plaintext attacks (IND-CPA).

2.3 Homomorphic Encryption

An Additively Homomorphic Encryption scheme AHE on plaintexts over an ad-
ditive group of size p (typically, it will be Zp) is a PKE scheme with two more
algorithms (Add, MultScal):

• Add(pk, Jm1K, Jm2K): Given pk and two ciphertexts Jm1K, Jm2K, returns
Jm1K ⊞ Jm2K = Jm1 + m2K an encryption of the sum of the plaintexts
under the same public key pk;

• MultScal(pk, JmK, k): Given pk, a ciphertext JmK, and a scalar k ∈ Zp,
returns k ⊡ JmK = Jk ·mK;

Two randomization properties will also be considered:

• Randomize(pk, JmK): Given pk and a ciphertext JmK, returns a different
ciphertext of m. It can be implemented as Add(pk, JmK, Enc(pk, 0));

• MultRand(pk, JmK): Given pk, a ciphertext JmK, returns a ciphertext of
k ·m, for a non-zero random k.

Lifted ElGamal Encryption Scheme. ElGamal [ElG84] encryption is a
multiplicative homomorphic encryption scheme. To make it additive, we en-
code a message as gm. Also, after decryption, we retrieve gm. No discrete
logarithm computation is required as we only check if m belongs to a given
interval [τmin, τmax], which can be done by checking either gm ∈ {gi}i∈[τmin,τmax]

or not.

6

• KeyGen(1κ): Generates a cyclic group G of order p with |p| = κ, with

generator g; samples x
$
← Zp; returns pk = (G, p, g, h = gx) and sk = x;

• Enc(pk, m): Generates y
$
← Zp; computes c1 = gy and c2 = gm ·hy; returns

JmK = (c1, c2);

• Dec(sk, JmK = (c1, c2)): Computes c2 · c
−x
1 = gm;

• Add(pk, Jm1K = (c1
1, c1

2), Jm2K = (c2
1, c2

2)): Computes c3
1 = c1

1 · c
2
1 and c3

2 =
c1

2 · c
2
2; returns Jm1 + m2K = (c3

1, c3
2);

• MultScal(pk, JmK = (c1, c2), k): Computes c′
1 = (c1)k and c′

2 = (c2)k;
returns Jk ·mK = (c′

1, c′
2);

• Randomize and MultRand are computed thanks to Add and MultScal as
described above.

2.4 Oblivious Transfer

An Oblivious Transfer OT is a two-party protocol between a sender with input
a pair of messages (m0, m1) and a receiver with input a bit b that allows the
receiver to retrieve mb. The receiver should not learn anything about b, while
the receiver should not learn anything about m1−b. A particular family of OT

can be defined as a tuple of algorithms (Encode, Compute, Decode):

• Encode(b): Given a bit b, returns the encoded value b̃;

• Compute((m0, m1), b̃): Given two messages (m0, m1) and an encoded value

b̃, returns the encoding m̃ associated to mb;

• Decode(m̃): Given m̃, returns the message mb.

Security Properties. Two main security notions are expected: the sender-
privacy, which hides m1−b to the receiver, and the receiver-privacy, which hides
b to the sender. We will focus on two different cases: receiver-privacy against
a malicious sender; and sender-privacy against an honest-but-curious receiver.
This will be enough for our application to decision trees, where the server (re-
ceiver) will be considered honest-but-curious while the client will possibly behave
maliciously (sender).

In particular, Even-Goldreich-Lempel [EGL82] proposed such an efficient
oblivious transfer from any IND-CPA public-key encryption scheme PKE, with
an efficient uniform sampling algorithm in the set of the public keys K. It is
secure against a malicious sender and an honest-but-curious receiver.

7

2.5 Garbled Circuits

A Garbled Circuit [Yao86] is a primitive that allows two parties, a generator
and an evaluator, to jointly compute a function over their respective private
inputs. The computation to be performed must be modelled by a Boolean circuit

using logic gates. Hereafter, we only consider AND or XOR logic gates namely
gates with two input bits and one output bit. In the basic form of Garbled
Circuits, for each logic gate, the generator generates a pair of random symmetric
keys (k0, k1) for each input or output bit where k0 and k1 are respectively
associated to the bit values 0 and 1. Each gate can be encoded (or garbled)
using a symmetric encryption scheme by generating four ciphertexts where each
ciphertext encrypts the output key corresponding to one output of the logic
gate under the corresponding input keys. In practice, one can use the point-
and-permute [BMR90], free-XOR [KS08] and half-gate [ZRE15] optimizations in
order to reduce the number of ciphertexts, and even avoid the use of symmetric
encryption with only hash functions. Given all the input keys corresponding to
its input bits, the evaluator can recursively get the output key of the last gate
thus retrieving the Boolean circuit outcome.

While the generator knows the input keys corresponding to its input α, and
can then provide them to the evaluator with all the ciphertexts, it does not
know the input β of the evaluator. The input keys corresponding to that input
β are obtained using Oblivious Transfer, between the generator as the sender,
and the evaluator as the receiver. More details can be found in the appendix.

2.6 Secure Equality Test

Our protocol relies on a secure equality test in the malicious client setting. A
garbled circuit testing the equality between two κ-bit values α and β can be
computed by

(α = β) = (α[ℓ] = β[ℓ], ∀ℓ ∈ [κ]) = (α[ℓ]⊕ β[ℓ] = 0, ∀ℓ ∈ [κ])

=

(
κ∧

ℓ=1

(α[ℓ] ⊕ β[ℓ]) = 1

)

=

(
κ∧

ℓ=1

(α[ℓ] ⊕ β[ℓ]) = 1

)

Each equality test requires κ XOR-gates of arity 2 and a global AND-gate
of arity κ, or κ − 1 AND-gates of arity 2. Using the free-XOR and half-gate
optimizations, such an equality test can be computed using 2(κ−1) ciphertexts.
One may compare hashed values of α and β, of shorter length, at the cost of
possibly false positive cases.

2.7 Zero-Knowledge Proofs

A Zero-Knowledge Proof (ZKP) is a protocol between a prover P , who wants
to prove to a verifier V , that a given statement belongs to a language, with-

8

out leaking any information about the witness. It can be made non-interactive
(NIZK). Such a proof must be sound, which means that no adversary can gen-
erate an acceptable proof when x /∈ L, but with negligible probability; and
zero-knowledge, which guarantees zero-leakage about the witness. More details
can be found in the appendix.

3 Honest-but-Curious Client and Server

In this section, we describe a protocol providing secure decision forests evalua-
tion in the case where both the client and the server are honest-but-curious. In
this setting, participants genuinely follow the protocol but may attempt to learn
information from legitimately received messages. The protocol allows to evalu-
ate the client inputs x = (xi,j)i∈[P],j∈[δ] with respect to the server model repre-
sented as binary sequences of comparisons M = (P, δ, ν, τ, (ti,j , vi,j)i∈[P],j∈[δ]).
The client should not learn anything on the threshold τ or the comparisons per-
formed by the model which are described using ti,j and vi,j respectively. The
server should not learn anything regarding the client inputs xi,j . Ideally, the
server should only learn the outcome of the evaluation but we tolerate the leak-
age of the number of paths successfully evaluated by the model so that the server
can make a decision according to the threshold τ on the number of successful
paths. We have already noted this corresponds to the number of accepting trees,
which helps to get a confidence score for the decision.

3.1 Protocol Description

As illustrated on Figure 2, our protocol can be seen as a tuple of algorithms
(KeyGen, EncodeModel, EvaluatePaths, RandomizeScores, EvaluateModel) where
KeyGen, EncodeModel and EvaluateModel are computed by the server while Eval-

uatePaths and RandomizeScores are computed by the client. The EncodeModel

algorithm is a preprocessing step that returns an encoded model C from the
server secret key sk and the modelM. The encoded model C is used along with
the public key pk and client inputs x by the EvaluatePaths algorithm in order to
compute the encoded scores S of each path of the model. Next, these encoded
scores are randomized and permuted by the RandomizeScores algorithm which
outputs the randomized scores S̃. The server ends the protocol by computing
the EvaluateModel algorithm that takes the secret key sk, the randomized scores
S̃ and the threshold τ as inputs and returns the outcome of the evaluation of x

with respect to M.
During the EncodeModel preprocessing step, a ciphertext Ck

i,j is computed
for each comparison node (i, j) of the model (where i is the index of the path
and j the depth of the node) and each possible input value k ∈ [2ν] as follows:

Ck
i,j =

{
AHE.Enc(pk, 1− vi,j) = J1− vi,jK if k ≤ ti,j

AHE.Enc(pk, vi,j) = Jvi,jK otherwise.
As vi,j = 1 when the expected comparison result is (xi,j ≤ ti,j) and vi,j = 0
otherwise, Ck

i,j is a ciphertext of 0 (respectively a ciphertext of 1) whenever

9

the input value k satisfies (respectively does not satisfy) the comparison. One
can see that the number of Ck

i,j ciphertexts is exponential with respect to ν
but we stress that one only needs a few bits of precision in order to get a
meaningful outcome. This number is thus linear in the number of comparisons
in practice. During the EvaluatePaths step, the client retrieves the ciphertexts
C

xi,j

i,j using its inputs xi,j and uses them to compute the encrypted score JSiK of
each path i. Such scores are ciphertexts of 0 if all the comparisons of the path
are successful and ciphertexts of a non-zero value otherwise. We indeed stress
that the ciphertexts encode the negation of the result of the comparison: 0 if
true and 1 if false. As soon a false comparison happens, the sum Si becomes
non-zero.

The RandomizeScores step guarantees client privacy by randomizing and per-
muting the encrypted scores JSiK without altering the fact that Si = 0 if the
path i is successful. During the EvaluateModel step, the server decrypts the
randomized scores JS̃iK in order to retrieve the number of successful paths and
returns the outcome of the model evaluation with respect to the threshold τ .

Client Server

Offline phase
input: M = (P, δ, ν, τ, (ti,j , vi,j)i∈[P],j∈[δ])

(pk, sk) = AHE.KeyGen(1κ)
(pk, sk) = KeyGen(1κ)

for i ∈ [1 .. P], for j ∈ [1 .. δ], for k ∈ [0 .. 2ν − 1]:

Ck
i,j =

{
AHE.Enc(pk, 1− vi,j) = J1− vi,jK if k ≤ ti,j

AHE.Enc(pk, vi,j) = Jvi,jK otherwise.

C = EncodeModel(pk,M)

pk, C =

(
Ck

i,j

)k∈[2ν]

i∈[P],j∈[δ]

←−−−−−−−−−−−−−−−−

Online phase
input: P, δ, ν, x = (xi,j)i∈[P],j∈[δ]

for i ∈ [1 .. P]:
for j ∈ [1 .. δ] :

JSi,jK = C
xi,j

i,j

JSiK = ⊞jJSi,jK
JSK = EvaluatePaths(pk, x, C)

π
$
← SP

for i ∈ [1 .. P]:

JS̃iK = AHE.MultRand(pk, JSπ(i)K)

JS̃K = RandomizeScores(pk, JSK)

JS̃K =

(
JS̃iK

)
i∈[P]

−−−−−−−−−−−−−−−−→

S =
∑

i
(AHE.Dec(sk, JS̃iK) = 0)

result =

{
accept if S ≥ τ

reject otherwise.

result = EvaluateModel(sk, JS̃K, τ)

Figure 2: Secure decision forest evaluation for Honest-but-Curious Client and
Server

3.2 Protocol Security

Correctness and Soundness. The correctness directly follows from the con-
struction of the ciphertexts. If all the comparisons are correct, each Si,j is equal
to 0 and the sum Si is 0 (correctness), otherwise, at least one Si,j equals 1 and
Si does not equal 0 (soundness). After the client randomizes the Si, zeros are
still zeros, while other Si become random values. When decrypting, the server
counts the zeros. The threshold τ is applied for the final decision.

10

Experiment Exp
client-privacy−b
A

(κ,A):

1. ((x0, x1), (M, ρ))← A.Find()

2. transcript ←

Execute((xb), (M, ρ))

3. b′ ← A.Guess(transcript)

4. if M(x0) = M(x1) return (b′ =
b)
otherwise return a random bit

Experiment Exp
server-privacy−b
A

(κ):

1. ((x, ρ), (M0,M1))← A.Find()

2. transcript ←

Execute((x, ρ), (Mb))

3. b′ ←− A.Guess(transcript)

4. if (M0(x) ≥ τ0) = (M1(x) ≥
τ1) return (b′ = b)
otherwise return a random bit

Figure 3: Client-Privacy Security Game (left) and Server-Privacy Security Game
(right), in the Honest-but-Curious Setting

Client Privacy. An honest-but-curious server should not learn any client
secret information, except what it can learn from the outcome: the number of
successful paths (See Figure 3, on the left).

We thus consider an adversary against the privacy of the client: it first
chooses a model M for the server, and two sets of possible inputs (x0, x1) for
the client. It also provides the random tape ρ of the server. The adversary
sees the transcript between a server using M and ρ, and a client using xb for
a random bit b, and it should guess b. There is the natural restriction that
M(x0) = M(x1). The random tape ρ will be used by the server for encoding
the model M.

For our scheme, the client privacy is provided thanks to the permutation
and randomization of the encrypted scores: from the expected outcome, one
can encrypt the correct number of 0, and the other values are non-zero random
values. One can then randomize and permute them. This is indistinguishable
from the server point of view.

Server Privacy. An honest-but-curious client should not learn any server
secret information, except what it can learn from the outcome namely the accept
or reject decision (See Figure 3, on the right).

Hence, we consider an adversary that chooses some inputs x for the client
and its random tape ρ, but two different models M0 = (P, δ, ν, t0, v0, τ0) and
M1 = (P, δ, ν, t1, v1, τ1), with the constraint that evaluating x with respect to
the two modelsM0 andM1 should produce the same result. The random tape
ρ will be used by the client for randomizing the ciphertexts. The adversary
should then distinguish transcripts involving the two models.

For our scheme, the server’s privacy is provided by the encryption of the
model in C, during the offline phase. The private server’s information are the
thresholds ti,j and the Boolean values vi,j for each comparison as well as the
final threshold τ . One can note that the client learns which feature is used in a
given comparison. This can be avoided by adding dummy comparisons so that
each feature (or many features) is used in every path as discussed previously.

11

For the formal proof, as the scheme leaks the number of accepting paths, this
is used by the simulator for the final outcome, without needing the decryption
key. Then, as the decryption key is not known anymore, using IND-CPA, we can
replace all the ciphertexts in the offline phase by encryptions of 0: the client
cannot learn anything anymore.

4 Malicious Client and Honest-but-Curious Server

Unfortunately, a malicious client could trivially bias the outcome of the protocol
described in Figure 2 by setting all the JS̃iK as encryptions of zeros so that he
will be accepted by the server independently of its inputs. He knows accepting
paths should encrypt 0, he can force that in his unique flow to the server.

In this section, we describe a protocol providing secure decision forests eval-
uation even if the client behaves maliciously in order to get accepted, while the
server is still honest-but-curious. Our security goals remain unchanged from
Section 3, however the client may now deviate from the protocol to influence
the evaluation outcome. In order to secure our protocol, we add some random-
ness within the model through the notion of path polarity and rely on secure
equality tests.

4.1 Protocol Description

In order to avoid the above attack, we introduce the notion of path polarity pi:
the client cannot predict anymore the expected outcome of a path. With thus
now use an enriched model M = (P, δ, ν, τ, (ti,j , vi,j , pi)i∈[P],j∈[δ]), with ternary
sequences of comparisons (as shown of Figure 1) with a polarity pi. Indeed,
to be able to exploit the polarity, a path should have three possible outcomes:
’accept’, ’reject’, ’ignore’. Then, when a path is positive (pi = 1), according
to the computed value, -1, 0, or +1, it will be ’reject’, ’ignore’, or ’accept’,
respectively; if the path is negative (pi = −1), according to the computed value,
-1, 0, or +1, it will be ’accept’, ’ignore’, or ’reject’, respectively. From a binary
tree, such a path is now the path down to the last node that has two distinct
leaves: on an input x, if it does not reach the last node (some of the comparisons
fails before), one outputs 0, otherwise one outputs -1 or +1, whether the leaf is
rejecting or accepting. A tree of depth δ has at most 2δ−1 such disjoint paths:
an input x must be accepted/rejected by exactly one path only, all the other
paths should output ’ignore’. It is possible to extract such paths from any binary
decision tree, by possibly adding some ’always true’/’always false’ nodes. Such
’always true’/’always false’ comparisons will also be added to hide the actually
used features. This will lead to an impossibility for the malicious client to guess
the outcome of a path from the features used in the comparisons: the client does
not know if the comparison is really exploited, and the client does not know the
polarity and thus whether it should force +1 or -1 to increase the score.

Intuitively, the best attack of the adversary is by guessing the polarity of
the paths to hope to pass the threshold. But as the polarity is random and

12

hidden (as no information leaks, as proven later), the sum of the outputs of
a malicious client will follow a binomial distribution with bias 1/2. And the
expected sum is 0. If we set the threshold not too low, the probability to get
accepted is negligible. An alternative is also to add some ’always accepting’
paths, to artificially increase the expected sum of an honest user. With 20 such
paths, we can set τ = 20. Let us thus consider 120 paths with a threshold τ = 20
(with either additional ’always accepting’ paths, or an initially high threshold):
to pass the threshold, one needs 20 correct guesses (probability bounded by
1/106, on exactly 20 non-zero outputs), or at least 70 successes among 120
(probability less than 3%, with random -1/1 outputs). This remains reasonable
with respect to usual accuracy of such models.

To evaluate a path on an input x, with a ternary result, we need different
weights in each comparisons: the values encrypted in the Ck

i,j will be 1 or 0 for
all the active comparisons except the last node (in red on Figure 1), that will
contain δ or 0, where δ is the length of the paths: if all the comparisons pass,
the sum is 2δ − 1 and corresponds to +1, if all but the last comparison pass,
the sum is δ − 1 and corresponds to -1, all the other cases will lead to a sum
between 0 and δ − 2 or δ and 2δ − 2 and correspond to 0. In the following, we
will show how the conversion of the sum being 2δ−1, δ−1, or anything else can
be converted into +1, -1 and 0, respectively, using a verifiable Garbled Circuit.

To make a path with negative polarity, we just invert the comparison in the
last node. The inversion by the server will restore the correct value. We stress
that the nodes, after the Ck

i,j have been generated, can be randomly permuted
to hide which feature is involved in the final node. Furthermore, we remind that
since the complexity of our protocol will be independent of the length of the
path, any additional comparisons will have no impact to the online phase: we
can use them to hide the real structure of the paths and make random guesses
of path polarities the best attack for the adversary.

Unfortunately, one cannot rely on path permutations anymore to enforce
client privacy once path polarity is used. Indeed, the server needs to know for
which path a score has been computed in order to later involve the correct path
polarity pi. To overcome this issue, we rely on a secure equality test based
on garbled circuits along with an oblivious transfer, to obliviously convert the
above sums between 0 and 2δ− 1 into another ciphertext (under the client key)
of +1, -1 or 0.

Hereafter, we use JmKS (respectively JmKC) to denote an encryption of m
under the public key of the server (respectively, the client) in order to avoid any
confusion. The client starts by computing the path score ⊞jJSi,jKS as previously
and masks it with a random value αi in order to obtain JβiKS = Jαi + SiKS. As
(Si = δ − 1) ⇔ (αi + δ − 1 = βi) and (Si = 2δ − 1) ⇔ (αi + δ − 1 = βi − δ),
the client prepares a garbled circuit testing equality of αi + δ − 1 with βi and
with βi − δ. The server computes βi by decrypting JβiKS and retrieves the
corresponding circuit inputs using an oblivious transfer, thus allowing it to
evaluate the aforementioned equality tests, where αi + δ − 1 is the common
input from the client, and βi and βi − δ are the inputs from the server. Note
that in our ElGamal setting, one may use gβi instead of βi for the comparisons,

13

which avoids the server to compute a discrete logarithm during the decryption.
Each of the outcomes of the garbled circuit is mapped to AHE ciphertexts,

under the client key, either (J−1KC, J+1KC) or (J+1KC, J−1KC), according to a
random choice, along with a pair of NIZK proving that those ciphertexts are
actually encryptions of both +1 and −1, without revealing the order.

The first equality test labels output +1 in the positive case and -1 otherwise;
while the second ones output -1 in the positive case and +1 otherwise: the
average of the two values is +1 if the sum is 2δ − 1; -1 if the sum is δ − 1; and
0 otherwise. One can thereafter apply the polarity factor pi to the ciphertext
σi of the above mean, to restore the real encrypted outcome of the path, under
the client key: the server gets, for each path, J+1KC, J0KC, or J−1KC. All the
products pi ⊡ σi are summed up into JSΩKC, initialized to a random value θ.
Hence, SΩ = θ +

∑
i Si, where Si ∈ {−1, 0, +1} is the outcome of each path.

The server will ask the client to help in decrypting this ciphertext, but after
having applied a random blinding factor ζ ∈ Z

∗
p, to get back ζ(θ +

∑
i Si). The

server can remove ζ and θ: if the client cheated, the result is random, otherwise
this is the number of accepting trees minus the number of rejecting trees. One
accepts if this number is between the threshold τ and the number T of trees.
In case the client cheats, the probability to be in this window is less than T/p,
which is negligible. Again, we stress that discrete logarithms are not needed to
check the value is in the window, as the latter is small enough. One can deal
with group elements, and not scalars. The global protocol is described in the
appendix.

4.2 Protocol Security

Correctness and Soundness. The correctness follows the above analysis,
where the two equality tests conclude into ciphertexts of -1, +1, or 0, and the
path polarity pi ∈ {−1, 1} is thereafter applied to obtain +1 in the accepting
case, -1 in the rejecting case, and 0 to ignore the path.

Because of the polarity, we prevent the server from a client arbitrarily choos-
ing the outcome of a path. Indeed, in contrast to the honest-but-curious case
where expected paths values were zero, the expected value sent to the server
(the outcome of the garbled circuit) will depend on the path polarity: +1 if the
path has positive polarity, or -1 for the negative polarity, to be an accepting
path. 0 values will lead to ignore the path. The paths cannot all be ignored,
otherwise, there is no change to be above the threshold τ , hence the two ex-
treme attacks presented before: either the client specifically guesses τ values to
be correct, and set all the other to zero (with a success probability bounded
by 2−τ), or the client tries non-zero values for all the outputs and the success
probability follows a binomial distribution with parameters (P, 1/2), where the
number of successes must be greater than (P + τ)/2.

The garbled circuits will evaluate the initial scores before polarity, and the
unknown polarity bit pi will restore the exact outcome of the path. A malicious
client has no other choice than a random guess of the polarity to fake the output
labels of the garbled circuits. He could cheat with a bad encoding of the circuit

14

to bias the output, but only with +1/ − 1 or −1/ + 1 as the output table is
proven to contain encryptions of +1 and −1 with a zero-knowledge proof. But
since the player has no idea about the polarity bit pi, the final outcome for the
path is −1 or +1 with identical probability, if positive and negative polarities
are balanced. Hence, alteration of the result of a path, without knowing the
polarity, will make the sum closer to 0. If the threshold is not too close to 0, the
probability for the adversary to impersonate the user is negligible. Or at least,
the impact of the malicious behaviour of the client on false positive outcome
will be small, compared to initial accuracy of the system (in clear).

Of course, another cheating strategy can be sending a false zero-knowledge
proof or wrong ciphertexts for the garbled circuit gates. This would lead to
failure attacks with a random value in SΩ (enforced in the protocol). Similarly,

an incorrect decryption of JS̃ΩKC would lead to a random value for ζ−1 ·SΩ− θ,
with the detection probability greater than 1 − T/p, which is overwhelming.
This concludes in a reject.

As a consequence, we just have to take care of the accuracy of the model in
the clear, for an honest execution, and we will also have to consider the impact of
malicious behaviours on the false positive decisions, which is the most critical in
the case of continuous authentication. In some other applications, false negative
decisions might be more important to limit (such as for spam detection).

Client Privacy. We are still considering the client privacy against an honest-
but-curious server. However, in this protocol, we no longer use permutations,
because of the path polarity. However, from the client privacy of the oblivious
transfers in the garbled circuits, there is no leakage about the αi’s. Then the
outcome Si of the path is encrypted under the client key, which hides it from
the server. Eventually, the server only gets the decryption of

∑
i Si, which is

the number of accepting trees, the expected result to obtain the classification
with confidence score.

Server Privacy. Our main goal was the soundness against a malicious client
that would try get falsely accepted. However, this is also important, for our
argument of random guess only of the path polarities as the best attack, to
show that the adversary cannot learn anything that could help him to make
a better guess than at random. Eventually, the client does not get back the
decision, so if all the received information looks random, we have proven server
privacy.

The first messages received by the client are the encryptions of the compar-
ison gates. Under the indistinguishability of the public-key encryption scheme,
they do not leak any information about these gates. Then, the server sends en-
codings for his inputs βi and βi − δ, which are just keys for the garbled circuit.
This does not reveal any information about them to the client. Eventually, the
client receives the encryption of S̃Ω, which is randomized by θ and ζ. The latter
is used to avoid the client to increase his score after decryption while the former
completely hides the real value of

∑
i Si

15

As a consequence, the view of the client does not contain any information
about the model, nor the outcome. Of course, the information to be known
to be client is which feature is used in each comparison, in order to use the
appropriate xi,j . But again, because of possible dummy comparisons, and the
random permutations of the comparisons along a path, the client cannot know
which gates are real gates, and which gate is the last critical gate.

5 Performances and Applications

5.1 Storage and Bandwidth Costs

In this section, we describe the storage and bandwidth cost of our protocols.
Let λR

OT = |b̃| = |OT.Encode(b)|, λS
OT = |OT.Compute(b̃)| and λAHE = |JmKS| =

|JmKC|.

Offline Storage Cost. During the offline phase, the server sends C to the
client which requires to store 2ν · δ · P · λAHE bits. Using lifted ElGamal with
Elliptic Curves and p over 256 bits as κ = 128, one has λAHE = 512. With
inputs over ν ∈ [2, . . . , 8] bit, depth δ ∈ [2, . . . , 16], and P ranging from 10 to
100, the storage is between a few KB and a few MB.

Honest-but-Curious Bandwidth Cost. During the online phase, the client
sends P ciphertexts (one for each path score) to the server. Using the lifted
ElGamal AHE, the message sent by the client is of size P ·512 bits (see Table 2).

Malicious Bandwidth Cost. During the online phase, the client sends P
tuples, each formed with a ciphertext of size λAHE as the path score along with
the AND-gate encodings. To reduce communication costs, we use a hash function
on the garbled circuit inputs to be compared, with output length λGC. Thus,
the client will sent λGC − 1 AND-gate encodings, the λGC input labels (where
each label is a hash with size κH) and the transition table consisting in 4-tuple
with a garbled circuit output label, a ciphertext, and a ZKP.

This results for each path in the following bit-length:

λAHE︸ ︷︷ ︸
|JSiK|

+ κH · 2(λGC − 1)︸ ︷︷ ︸
|Ci|

+ λGC · κH︸ ︷︷ ︸
|IG

αi
|

+ 2 · (2κH + λAHE)︸ ︷︷ ︸
|Ti|

)

which is 3(λAHE+λGC ·κH)+2κH. With κH = 256, λGC = 64 and λAHE = 512,
the first client’s message can be expressed as 51200P bits, i.e. 6.25 KB per path.
During the oblivious transfers, the server encodes P × |βi| = P · λGC bits. As a
consequence, he sends to the client a message of P ·λGC ·λ

R
OT bits. Using classical

ElGamal as PKE in the oblivious transfer, one has λR
OT = 512 and λS

OT = 1024
resulting in a 4 KB long message for each path. The client responds with a
P ·λGC ·λ

S
OT bit long message corresponding to 8 KB per path. Then, the server

sends the encrypted randomized score to the client who returns the plaintext

16

value he retrieves when decrypting. Table 2 shows the total bandwidth cost for
each party in both protocols, according to the number P of paths.

Table 2: Communications During the Online Phase.
P 50 100 150 200

Honest-but-Curious

Client 3.13 KB 6.25 KB 9.38 KB 12.5 KB

Server 0 bit

Malicious

Client 712.5 KB 1.4 MB 2.1MB 2.8MB

Server 200 KB 400 KB 600KB 800KB

5.2 Application to Continuous Authentication and Spam

Filtering

We run our tests in Python with the scikit-learn library, using 75% of the dataset
as the training set and the remaining 25% as the testing set. We optimize the
training with the Orthogonal Matching Pursuit Algorithm [MZ93]: we generate
100 times more trees than expected. We then apply the OMP algorithm on
the global set, such that the outcome is the best linear combination with the
expected number of trees.

We first deal with continuous authentication. We used an internal database
of 20531 samples splitted in 35 profiles built with 222 features. In this context,
low False Positive Rate (FPR) is privileged to low False Negative Rate (FNR),
since it is preferable to ask the client to use a second authentication factor rather
than being impersonated. Moreover, high accuracy for each test is not required,
as multiple tests will amplify the quality. Table 3 shows the mean results ont
the 35 profiles (where, for a given profile, all other profiles are considered as
imposter), depending on the number of paths P and the depth of the model δ,
while ν is set to 6, leading to 64 ciphertexts for each comparison, stored by the

Table 3: Accuracy on our continuous authentication Database
Γ 50% 55%

T δ FPR FNR F1 Score FPR FNR F1 Score

10
6 0.02 0.15 0.92 0.02 0.16 0.91
8 0.01 0.19 0.91 0.01 0.19 0.91

25
6 0.04 0.13 0.92 0.03 0.15 0.92
8 0.02 0.14 0.92 0.02 0.17 0.91

60% 65%

FPR FNR F1 Score FPR FNR F1 Score

0.01 0.23 0.89 0.01 0.23 0.89

0.01 0.25 0.88 0.01 0.26 0.88

0.02 0.2 0.9 0.01 0.23 0.89

0.01 0.24 0.89 0.01 0.26 0.88

17

Table 4: Accuracy on the spambase Database
Γ 50% 55%

T δ FPR FNR F1 Score FPR FNR F1 Score

10
2 0.02 0.24 0.88 0.01 0.28 0.87
4 0.03 0.20 0.89 0.04 0.18 0.90

25
2 0.03 0.24 0.88 0.02 0.25 0.88
4 0.04 0.19 0.89 0.04 0.21 0.88

60% 65%

FPR FNR F1 Score FPR FNR F1 Score

0.02 0.24 0.88 0.01 0.45 0.81

0.02 0.27 0.87 0.01 0.30 0.86

0.01 0.47 0.80 0.00 0.56 0.78

0.02 0.23 0.89 0.01 0.34 0.85

client. Also, we consider several values for the acceptation threshold (Γ) (which
equals 50% by default, for the simple majority).

We compute the FPR and FNR, then the accuracy is defined as the F1-
score (defined by (1−FPR)/(1+(FNR−FPR)/2)). Random decision would lead
to an accuracy of 1/2, and perfect filter should have F1-score equal to 1. We
determine the best accuracy depending on those parameters in Table 3. For the
honest-but-curious security setting, there is no constraint on the threshold, while
against malicious clients, the higher the threshold is, the higher the security level
is against active impersonation attempts.

Secondly, we worked on the spambase database [HRFS99] (with 4601 samples
× 57 features) which determines if an email should be considered as spam or
not. Results are shown in Table 4

6 Conclusion

In this paper, we proposed new constructions to securely evaluate decision
forests with two output classes. As we targeted applications where the in-
teractions between the client and the server should be as low as possible (both
in term of number of rounds and online bandwidth cost), we designed two-
steps protocols in which some part of the computation can be performed offline.
This introduces an interesting trade-off between the storage and the number of
rounds during the online step of the protocol.

References

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva.
Non-interactive secure computation based on cut-and-choose.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-

18

CRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Hei-
delberg, May 2014.

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo
Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. Secure
evaluation of private linear branching programs with medical appli-
cations. In Michael Backes and Peng Ning, editors, ESORICS 2009,
volume 5789 of LNCS, pages 424–439. Springer, Heidelberg, Septem-
ber 2009.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols (extended abstract). In 22nd ACM

STOC, pages 503–513. ACM Press, May 1990.

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett
Witchel. Privacy-preserving remote diagnostics. In Peng Ning, Sab-
rina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM

CCS 2007, pages 498–507. ACM Press, October 2007.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.
Machine learning classification over encrypted data. In NDSS 2015.
The Internet Society, February 2015.

[DDH+16] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, An-
derson C. A. Nascimento, Stacey C. Newman, and Wing-Sea
Poon. Efficient and private scoring of decision trees, support
vector machines and logistic regression models based on pre-
computation. Cryptology ePrint Archive, Report 2016/736, 2016.
https://eprint.iacr.org/2016/736.

[DPB18] Aurélien Dupin, David Pointcheval, and Christophe Bidan. On the
leakage of corrupted garbled circuits. In Joonsang Baek, Willy
Susilo, and Jongkil Kim, editors, ProvSec 2018, volume 11192 of
LNCS, pages 3–21. Springer, Heidelberg, October 2018.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A random-
ized protocol for signing contracts. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 205–210.
Plenum Press, New York, USA, 1982.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
Heidelberg, August 1984.

[HRFS99] Mark Hopkins, Erik Reeber, George Forman, and
Jaap Suermondt. Spambase Data Set, 1999.
http://archive.ics.uci.edu/ml/datasets/Spambase/.

19

https://eprint.iacr.org/2016/736
http://archive.ics.uci.edu/ml/datasets/Spambase/

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled
circuit: Free XOR gates and applications. In Luca Aceto, Ivan
Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July
2008.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious
and covert adversaries. In Ran Canetti and Juan A. Garay, edi-
tors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 1–17.
Springer, Heidelberg, August 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for se-
cure two-party computation in the presence of malicious adversaries.
In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 52–78. Springer, Heidelberg, May 2007.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure
computation in the online/offline and batch settings. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, vol-
ume 8617 of LNCS, pages 476–494. Springer, Heidelberg, August
2014.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for
malicious two-party computation. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958
of LNCS, pages 458–473. Springer, Heidelberg, April 2006.

[MZ93] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing,
41(12):3397–3415, 1993.

[TKK19] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser.
Private evaluation of decision trees using sublinear cost. PoPETs,
2019(1):266–286, January 2019.

[TMZC17] Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and Sherman
S. M. Chow. Privacy-preserving decision trees evaluation via lin-
ear functions. In Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes, editors, ESORICS 2017, Part II, volume 10493 of LNCS,
pages 494–512. Springer, Heidelberg, September 2017.

[WFNL16] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter.
Privately evaluating decision trees and random forests. PoPETs,
2016(4):335–355, October 2016.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster se-
cure two-party computation in the single-execution setting. In

20

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-

CRYPT 2017, Part III, volume 10212 of LNCS, pages 399–424.
Springer, Heidelberg, April / May 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (ex-
tended abstract). In 27th FOCS, pages 162–167. IEEE Computer
Society Press, October 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half gates. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,

Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg,
April 2015.

21

A Auxiliary Material

We first give a few more formal description of some advanced tools, to be used
the global protocol, and then more details about the global security decision
forest evaluation for malicious clients.

A.1 Advanced Primitives

Garbled Circuits From our modeling of them, we can define Garbled Cir-
cuits with two algorithms (Generate, Eval), in addition to an OT, as follows:

• Generate(C, α): Given a circuit C and the generator input α, returns:

The ciphertexts corresponding to the gates of C: C

The input labels corresponding to the generator input α: IG
α

The input labels IE corresponding to the possible inputs of the eval-
uator (but not published)

The transition table mapping the output labels with arbitrary values:
T;

• OT Execution: on input IE from the generator (as sender) and the input
β of the evaluator (as receiver), for the latter to receive the input labels
IE

β ;

• Eval(C, IG
α, IE

β ,T): From the garbled circuit C, input labels {IG
α, IE

β} and
transition table T, retrieve Ob ∈ (O0,O1) by evaluating the garbled circuit
C with input labels IG

α, IE
β and return the value mapped by Ob in T. If

the garbled circuit evaluation fails (the output value is not in (O0,O1),
return ⊥, as a failure outcome.

The generator should not learn any information about the evaluator input α,
while the evaluator should not learn any information about the generator input
β, except what the result reveals. These privacy notions rely on the privacy of
the OT: with receiver-privacy against a malicious sender, we then get the privacy
of the evaluator against a malicious generator, and with sender-privacy against
an honest-but-curious receiver, we get the privacy of the generator against an
honest-but-curious evaluator. Another important notion is of course the correct
evaluation of the function, a.k.a. the soundness. Since the evaluator is interested
in the correct result, the attack can come from the generator that provides a
wrong encoding of the circuit. A classical technique to avoid incorrect circuits
is based on a costly cut-and-choose. One of our contributions is an efficient
alternative in our particular case.

Zero-Knowledge Proofs A Zero-Knowledge Proof (ZKP) is an interactive
protocol between a prover P , who wants to prove to a verifier V , that a given
statement belongs to a language, without leaking any information about the

22

witness. It can be made non-interactiveWe will consider Non-Interactive Zero-
Knowledge proofs (NIZK):

• ZKGen(x, L, w) outputs πx, a zero-knowledge proof of the statement (x ∈
L), using the witness w;

• ZKVerify(x, L, πx) verifies if πx is a correct proof of the statement (x ∈ L).
Return accept if true, reject otherwise;

• ZKSim(x, L) simulates a proof πx of any (possibly false) statement (x ∈ L)
without any witness.

A NIZK requires three properties:

• Completeness: ZKGen always generate an acceptable proof when x ∈ L;

• Soundness: no adversary can generate an acceptable proof when x /∈ L,
but with negligible probability;

• Zero-Knowledge: using possibly a different setup, ZKSim(x, L) gener-
ates proofs that are indistinguishable to proofs generated by ZKGen(x, L, w),
on valid statements but without the witness.

A.2 Detailed Protocol

In this section we give a detailed description of the protocol in the malicious
client setting. We first describe the steps executed by the server then the
steps done by the client. We recall that JmKS = AHE.Enc(pkS, m) and JmKC =
AHE.Enc(pkC, m).

a) Client steps
input : P, δ, ν, x = (xi,j)i∈[P],j∈[δ]

roles: GC: Generator , OT: Sender

(pkC, skC) = AHE.KeyGen(1κ)
(pkC, skC) = KeyGenC(1κ)

for i ∈ [1 .. P]: αi
$
← Zp

(Ci, I
G
αi

, IE
i ,Ti)← GC.Generate(pkC, CEQ, αi)

(α,C, IG
α, IE,T) = InitializeGC(pkC)

for i ∈ [1 .. P]:
for j ∈ [1 .. δ] : JSi,jKS = C

xi,j

i,j

JβiKS = JαiKS⊞

(
⊞jJSi,jKS

)

JβKS = EvaluatePaths(pkS, x, α, C)

for i ∈ [1 .. P], for k ∈ [1 .. λAHE] :

ĨE
i,k ← OT.Compute(IE

i , β̃k
i)

ĨE = ComputeOT(IE, β̃)

23

S̃Ω ← AHE.Dec(skC, JS̃ΩKC)

S̃Ω = DecryptScore(skC, JS̃ΩKC)

b) Server steps
input: M = (P, δ, ν, τ, (pi, ti,j , vi,j)i∈[P],j∈[δ])
roles: GC: Evaluator , OT: Receiver

(pkS, skS) = AHE.KeyGen(1κ)
(pkS, skS) = KeyGenS(1κ)

for i ∈ [1 .. P]: π ← Sδ

for k ∈ [0 .. 2ν − 1], for j ∈ [1 .. δ − 1]:

Ck
i,π(j) =

{
J1 − vi,jKS if k ≤ ti,j

Jvi,jKS otherwise.

Ck
i,π(δ) =

{
J((1 + pi)/2− vi,δpi) · δKS if k ≤ ti,j

J((1 − pi)/2 + vi,δpi) · δKS otherwise.
C = EncodeModel(pkS,M)

for i ∈ [1 .. P] : βi = AHE.Dec(skS, JβiKS)

for k ∈ [1 .. λAHE] : β̃k
i = OT.Encode(βi[k])

β̃ = EncodeOT(skS, JβKS)

θ
$
← Zp; JSΩKC ← JθKC

for i ∈ [1 .. P] :

for k ∈ [1 .. λAHE] : IE
βk

i

← OT.Decode(ĨE
i,k)

if GC.Eval(Ci, I
G
αi

, IE
βi

,Ti) =⊥:
θ′ $
← Zp; JSΩKC ← Jθ′KC

else: ((σ0, π0), (σ1, π1))← GC.Eval(Ci, I
G
αi

, IE
βi

,Ti)

if ZKVerify(((σ0, π0), (σ1, π1))) = accept:
JSΩKC ← JSΩKC ⊞ (pi ⊡ (σ0 ⊞ σ1))

else: θ′ $
← Zp; JSΩKC ← Jθ′KC

ζ
$
← Z

∗
p; JS̃ΩKC ← ζ ⊡ JSΩKC

(JS̃ΩKC, θ, ζ) = ComputeScore(pkC,M,C, IG
α, ĨE,T)

S ← ζ−1 · S̃Ω − θ
if S ∈ [τ, T] : result = 1; else: result = 0

result = ComputeResult(M, θ, ζ, S̃Ω)

24

c) Protocol We now describe the protocol execution:
Offline phase

KeyGenS()
pkS, C

←−−−−−−−−−−− EncodeModel()
Online phase

KeyGenC()
InitializeGC()

EvaluatePaths()
pkC, β, (C,IG

α,T)

−−−−−−−−−−−→
β̃

←−−−−−−−−−−− EncodeOT()

ComputeOT()
ĨE

−−−−−−−−−−−→

JS̃ΩK

←−−−−−−−−−−− ComputeScore()

DecryptScore()
S̃Ω

−−−−−−−−−−−→
ComputeResult()

25

	Introduction
	Related Work
	Contributions
	Paper Organization

	Preliminaries
	Decision Tree Learning
	Public-Key Encryption
	Homomorphic Encryption
	Oblivious Transfer
	Garbled Circuits
	Secure Equality Test
	Zero-Knowledge Proofs

	Honest-but-Curious Client and Server
	Protocol Description
	Protocol Security

	Malicious Client and Honest-but-Curious Server
	Protocol Description
	Protocol Security

	Performances and Applications
	Storage and Bandwidth Costs
	Application to Continuous Authentication and Spam Filtering

	Conclusion
	Auxiliary Material
	Advanced Primitives
	Detailed Protocol

