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Abstract12

This paper addresses reliability of timed systems in the setting of resilience, that considers the13

behaviors of a system when unspecified timing errors such as missed deadlines occur. Given a fault14

model that allows transitions to fire later than allowed by their guard, a system is universally resilient15

(or self-resilient) if after a fault, it always returns to a timed behavior of the non-faulty system.16

It is existentially resilient if after a fault, there exists a way to return to a timed behavior of the17

non-faulty system, that is, if there exists a controller which can guide the system back to a normal18

behavior. We show that universal resilience of timed automata is undecidable, while existential19

resilience is decidable, in EXPSPACE. To obtain better complexity bounds and decidability of20

universal resilience, we consider untimed resilience, as well as subclasses of timed automata.21

2012 ACM Subject Classification Models of computation, Timed and hybrid systems22

Keywords and phrases Timed automata; Fault tolerance; Integer-resets; Resilience23

Digital Object Identifier 10.4230/LIPIcs...24

1 Introduction25

Timed automata [2] are a natural model for cyber-physical systems with real-time constraints26

that have led to an enormous body of theoretical and practical work. Formally, timed27

automata are finite-state automata equipped with real valued variables called clocks, that28

measure time and can be reset. Transitions are guarded by logical assertions on the values29

of these clocks, which allows for the modeling of real-time constraints, such as the time30

elapsed between the occurrence of two events. A natural question is whether a real-time31

system can handle unexpected delays. This is a crucial need when modeling systems that32

must follow a priori schedules such as trains, metros, buses, etc. Timed automata are not a33

priori tailored to handle unspecified behaviors: guards are mandatory time constraints, i.e.,34

transition firings must occur within the prescribed delays. Hence, transitions cannot occur35

late, except if late transitions are explicitly specified in the model. This paper considers the36

question of resilience for timed automata, i.e., study whether a system returns to its normal37

specified timed behavior after an unexpected but unavoidable delay.38

Several works have addressed timing errors as a question of robustness [10, 8, 7], to39

guarantee that a property of a system is preserved for some small imprecision of up to ϵ40

time units. Timed automata have an ideal representation of time: if a guard of a transition41

contains a constraint of the form x = 12, it means that this transition occurs exactly when42

the value of clock x is 12. Such an arbitrary precision is impossible in an implementation [10].43

One way of addressing this is through guard enlargement, i.e., by checking that there exists44

a small value ϵ > 0 such that after replacing guards of the form x ∈ [a, b] by x ∈ [a− ϵ, b+ ϵ],45
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XX:2 Resilience of Timed Systems

Universal Resilience Existential Resilience

Timed Undecidable for TA (Prop. 18) EXPSPACE (Thm. 14)
EXPSPACE-C for IRTA (Thm. 20) PSPACE-Hard (Thm. 15, Thm. 32)

Untimed EXPSPACE-C (Thm. 21) PSPACE-C (Thm. 16, Rmk. 17)

Table 1 Summary of results for resilience.

the considered property is still valid, as shown in [7] for ω-regular properties. In [15], robust46

automata are defined that accept timed words and their neighbors i.e., words whose timing47

differences remain at a small distance, while in [16, 12, 19, 1], the authors consider robustness48

via modeling clock drifts. Our goal is different: rather than being robust w.r.t. to slight49

imprecisions, we wish to check the capacity to recover from a possibly large time deviation.50

Thus, for a bounded number of steps, the system can deviate arbitrarily, after which, it must51

return to its specified timed behavior.52

A first contribution of this paper is a formalization of resilience in timed automata. We53

capture delayed events with faulty transitions. These occur at dates deviating from the54

original specification and may affect clock values for an arbitrarily long time, letting the55

system diverge from its expected behavior. A system is resilient if it recovers in a finite56

number of steps after the fault. More precisely, we define two variants. A timed automaton57

is K-∀-resilient if for every faulty timed run, the behavior of the system K steps after the58

fault cannot be distinguished from a non-faulty behavior. In other words, the system always59

repairs itself in at most K steps after a fault, whenever a fault happens. This means that,60

after a fault happens, all the subsequent behaviors (or extensions) of the system are restored61

to normalcy within K steps. A timed automaton is K-∃-resilient if for every timed run62

ending with a fault, there exists an extension in which, the behavior of the system K steps63

after the fault cannot be distinguished from a non-faulty behavior. There can still be some64

extensions which are beyond repair, or take more than K steps after fault to be repaired,65

but there is a guarantee of at least one repaired extension within K steps after the fault.66

In the first case, the timed automaton is fully self-resilient, while in the second case, there67

exist controllers choosing dates and transitions so that the system gets back to a normal68

behavior. We also differentiate between timed and untimed settings: in timed resilience69

recovered behaviors must be indistinguishable w.r.t. actions and dates, while in untimed70

resilience recovered behaviors only need to match actions.71

Our results are summarized in Table 1: we show that the question of universal resilience72

and inclusion of timed languages are inter-reducible. Thus timed universal resilience is73

undecidable in general, and decidable for classes for which inclusion of timed languages74

is decidable and which are stable under our reduction. This includes the class of Integer75

Reset Timed Automata (IRTA) [18] for which we obtain EXPSPACE containment. Further,76

untimed universal resilience is EXPSPACE-Complete in general.77

Our main result concerns existential resilience, which requires new non-trivial core78

contributions because of the quantifier alternation (∀∃). The classical region construction79

is not precise enough: we introduce strong regions and develop novel techniques based on80

these, which ensure that all runs following a strong region have (i) matching integral time81

elapses, and (ii) the fractional time can be retimed to visit the same set of locations and82

(usual) regions. Using this technique, we show that existential timed resilience is decidable,83

in EXPSPACE. We also show that untimed existential resilience is PSPACE-Complete.84

Related Work: Resilience has been considered with different meanings: In [13], faults85

are modeled as conflicts, the system and controller as deterministic timed automata, and86

avoiding faults reduces to checking reachability. This is easier than universal resilience which87

reduces to timed language inclusion, and existential resilience which requires a new notion of88
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regions. In [14] a system, modeled as an untimed I/O automaton, is considered “sane” if its89

runs contain at most k errors, and allow a sufficient number s of error-free steps between two90

violations of an LTL property. It is shown how to synthesize a sane system, and compute91

(Pareto-optimal) values for s and k. In [17], the objective is to synthesize a transducer E,92

possibly with memory, that reads a timed word σ produced by a timed automaton A, and93

outputs a timed word E(σ) obtained by deleting, delaying or forging new timed events, such94

that E(σ) satisfies some timed property. A related problem, shield synthesis [5], asks given a95

network of deterministic I/O timed automata N that communicate with their environment, to96

synthesize two additional components, a pre-shield, that reads outputs from the environment97

and produces inputs for N , and a post-shield, that reads outputs from N and produces98

outputs to the environment to satisfy timed safety properties when faults (timing, location99

errors,...) occur. Synthesis is achieved using timed games. Unlike these, our goal is not to100

avoid violation of a property, but rather to verify that the system recovers within boundedly101

many steps, from a possibly large time deviation w.r.t. its behavior. Finally, faults in timed102

automata have also been studied in a diagnosis setting, e.g. in [6], where faults are detected103

within a certain delay from partial observation of runs.104

2 Preliminaries105

Let Σ be a finite non-empty alphabet and Σ∞ = Σ∗ ∪ Σω a set of finite or infinite words over106

Σ. R,R≥0,Q,N respectively denote the set of real numbers, non-negative reals, rationals,107

and natural numbers. We write (Σ ×R≥0)∞ = (Σ ×R≥0)∗ ∪ (Σ ×R≥0)ω for finite or infinite108

timed words over Σ. A finite (infinite) timed word has the form w = (a1, d1) . . . (an, dn)109

(resp. w = (a1, d1) . . .) where for every i, di ≤ di+1. For i ≤ j, we denote by w[i,j], the110

sequence (ai, di) . . . (aj , dj). Untiming of a timed word w ∈ (Σ × R≥0)∞ denoted Unt(w), is111

its projection on the first component, and is a word in Σ∞. A clock is a real-valued variable x112

and an atomic clock constraint is an inequality of the form a ▷◁l x ▷◁u b, with ▷◁l, ▷◁u∈ {≤, <},113

a, b ∈ N. An atomic diagonal constraint is of the form a ▷◁l x− y ▷◁u b, where x and y are114

different clocks. Guards are conjunctions of atomic constraints on a set X of clocks.115

▶ Definition 1. A timed automaton[2] is a tuple A = (L, I,X,Σ, T, F ) with finite set of116

locations L, initial locations I ⊆ L, finitely many clocks X, finite action set Σ, final locations117

F ⊆ L, and transition relation T ⊆ L× G × Σ × 2X × L where G are guards on X.118

A valuation of a set of clocks X is a map ν : X → R≥0 that associates a non-negative real119

value to each clock in X. For every clock x, ν(x) has an integral part ⌊ν(x)⌋ and a fractional120

part frac(ν(x)) = ν(x) − ⌊ν(x)⌋. We will say that a valuation ν on a set of clocks X satisfies121

a guard g, denoted ν |= g if and only if replacing every x ∈ X by ν(x) in g yields a tautology.122

We will denote by [g] the set of valuations that satisfy g. Given δ ∈ R≥0, we denote by ν + δ123

the valuation that associates value ν(x) + δ to every clock x ∈ X. A configuration is a pair124

C = (l, ν) of a location of the automaton and valuation of its clocks. The semantics of a125

timed automaton is defined in terms of discrete and timed moves from a configuration to the126

next one. A timed move of duration δ lets δ ∈ R≥0 time units elapse from a configuration127

C = (l, ν) which leads to configuration C ′ = (l, ν + δ). A discrete move from configuration128

C = (l, ν) consists of taking one of the transitions leaving l, i.e., a transition of the form129

t = (l, g, a,R, l′) where g is a guard, a ∈ Σ a particular action name, R is the set of clocks130

reset by the transition, and l′ the next location reached. A discrete move with transition t is131

allowed only if ν |= g. Taking transition t leads the automaton to configuration C ′ = (l′, ν′)132

where ν′(x) = ν(x) if x /∈ R, and ν′(x) = 0 otherwise.133
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▶ Definition 2 (Runs, Maximal runs, Accepting runs). An (infinite) run of a timed automaton134

A is a sequence ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · where every pair (li, νi) is a configuration,135

and there exists an (infinite) sequence of timed and discrete moves δ1.t1.δ2.t2 . . . in A such136

that δi = di+1 − di, and a timed move of duration δi from (li, νi) to (li, νi + δi) and a discrete137

move from (li, νi + δi) to (li+1, νi+1) via transition ti. A run is maximal if it is infinite, or if138

it ends at a location with no outgoing transitions. A finite run is accepting if its last location139

is final, while an infinite run is accepting if it visits accepting locations infinitely often.140

One can associate a finite/infinite timed word wρ to every run ρ of A by letting wρ = (a1, d1)141

(a2, d2) . . . (an, dn) . . ., where ai is the action in transition ti and di is the time stamp of142

ti in ρ. A (finite/infinite) timed word w is accepted by A if there exists a (finite/infinite)143

accepting run ρ such that w = wρ. The timed language of A is the set of all timed words144

accepted by A, and is denoted by L(A). The untimed language of A is the language145

Unt(L(A)) = {Unt(w) | w ∈ L(A)}. As shown in [2], the untimed language of a timed146

automaton can be captured by an abstraction called the region automaton. Formally, given147

a clock x, let cx be the largest constant in an atomic constraint of a guard of A involving x.148

Two valuations ν, ν′ of clocks in X are equivalent, written ν ∼ ν′ if and only if:149

i) ∀x ∈ X, either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) ≥ cx and ν′(x) ≥ cx150

ii) ∀x, y ∈X with ν(x)≤cx and ν(y)≤cy, frac(ν(x))≤frac(v(y)) iff frac(ν′(x))≤frac(ν′(y))151

iii) For all x ∈ X with ν(x) ≤ cx, frac(ν(x)) = 0 iff frac(ν′(x)) = 0.152

A region r of A is the equivalence class induced by ∼. For a valuation ν, we denote by [ν]153

the region of ν, i.e., its equivalence class. We will also write ν ∈ r (ν is a valuation in region r154

when r = [ν]. For a given automaton A, there exists only a finite number of regions, bounded155

by 2K , where K is the size of the constraints set in A. It is well known that for a clock156

constraint ψ that, if ν ∼ ν′, then ν |= ψ if and only if ν′ |= ψ. A region r′ is a time successor157

of another region r if for every ν ∈ r, there exists δ ∈ R>0 such that ν+ δ ∈ r′. We denote by158

Reg(X) the set of all possible regions of the set of clocks X. A region r satisfies a guard g if159

and only if there exists a valuation ν ∈ r such that ν |= g. The region automaton of a timed160

automaton A = (L, I,X,Σ, T, F ) is the untimed automaton R(A) = (SR, IR,Σ, TR, FR) that161

recognizes the untimed language Unt(L(A)). States of R(A) are of the form (l, r), where l is a162

location of A and r a region, i.e., SR ⊆ L×Reg(X), IR ⊆ I×Reg(X), and FR ⊆ F×Reg(X).163

The transition relation TR is such that
(
(l, r), a, (l′, r′)

)
∈ TR if there exists a transition164

t = (l, g, a,R, l′) ∈ T such that there exists a time successor region r′′ of r such that r′′
165

satisfies the guard g, and r′ is obtained from r′′ by resetting values of clocks in R. The size of166

the region automaton is the number of states in R(A) ans is denoted |R(A)|. For a region r167

defined on a set of clocks Y , we define a projection operator ΠX(r) to represent the region r168

projected on the set of clocks X ⊆ Y . Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) · · · be a run of A, where169

every ti is of the form ti = (li, gi, ai, Ri, l
′
i). The abstract run σρ = (l0, r0) a1−→ (l1, r1) · · · of ρ170

is a path in the region automata R(A) such that, ∀i ∈ N, ri = [νi]. We represent runs using171

variables ρ, π and the corresponding abstract runs with σρ, σπ respectively. The region172

automaton can be used to prove non-emptiness, as L(A) ̸= ∅ iff R(A) accepts some word.173

3 Resilience Problems174

We define the semantics of timed automata when perturbations can delay the occurrence175

of an action. Consider a transition t = (l, g, a,R, l′), with g ::= x ≤ 10, where action a can176

occur as long as x has not exceeded 10. Timed automata have a idealized representation of177

time, and do not consider perturbations that occur in real systems. Consider, for instance178

that ‘a’ is a physical event planned to occur at a maximal time stamp 10: a water tank179
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reaches its maximal level, a train arrives in a station etc. These events can be delayed, and180

nevertheless occur. One can even consider that uncontrollable delays are part of the normal181

behavior of the system, and that L(A) is the ideal behavior of the system, when all delays182

are met. In the rest of the paper, we propose a fault model that assigns a maximal error to183

each fireable action. This error model is used to encode the fact that an action might occur184

at time points slightly greater than what is allowed in the original model semantics.185

▶ Definition 3 (Fault model). A fault model P is a map P : Σ → Q≥0 that associates to186

every action in a ∈ Σ a possible maximal delay P(a) ∈ Q≥0.187

For simplicity, we consider only executions in which a single timing error occurs. The188

perturbed semantics defined below easily adapts to a setting with multiple timing errors.189

With a fault model, we can define a new timed automaton, for which every run ρ =190

(l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · contains at most one transition ti = (l, g, a, r, l′) occurring191

later than allowed by guard g, and agrees with a run of A until this faulty transition is taken.192

▶ Definition 4 (Enlargement of a guard). Let ϕ be an inequality of the form a ▷◁l x ▷◁u b,193

where ▷◁l, ▷◁u∈ {≤, <}. The enlargement of ϕ by a time error δ is the inequality ϕ▷δ of the194

form a ▷◁l x ≤ b+ δ. Let g be a guard of the form195

g =
∧

i∈1..m

ϕi = ai ▷◁li xi ▷◁ui bi ∧
∧

j∈1..q

ϕj = aj ▷◁lj xj − yj ▷◁uj bj.196

The enlargement of g by δ is the guard g▷δ =
∧

i∈1..m

ϕi▷δ
∧

∧
j∈1..q

ϕj197

For every transition t = (l, g, a,R, l′) with enlarged guard198

g▷P(a) =
∧

i∈1..m

ϕi = ai ▷◁li
xi ≤ bi + P(a) ∧

∧
j∈1..q

ϕj = aj ▷◁lj
xj − yj ▷◁uj

bj ,199

we can create a new transition tf,P = (l, gf,P , a, R,
•
l′) called a faulty transition such that,200

gf,P =
∧

i∈1..m

ϕi = bi▷̄◁lixi ≤ bi + P(a) ∧
∧

j∈1..q

ϕj = aj ▷◁lj xj − yj ▷◁uj bj with ▷̄◁li ∈ {<,≤}\ ▷◁li201

Diagonal constraints remain unchanged under enlargement, as the difference between clocks202

x and y is preserved on time elapse. From now, we fix a fault model P and write tf and gf203

instead of tf,P and gf,P . Clearly, g and gf are disjoint, and g ∨ gf is equivalent to g▷δ.204

▶ Definition 5 (Enlargement of automata). Let A = (L, I,X,Σ, T, F ) be a timed automaton.205

The enlargement of A by a fault model P is the automaton AP = (LP , I,X,Σ, TP , FP), where206

LP = L∪ {
•
l | l ∈ L} and FP = F ∪ {

•
l | l ∈ F}. A location

•
l indicates that an unexpected207

delay has occurred.208

TP = T ∪
•
T such that,

•
T = {(l, gf , a, R,

•
l′) | (l, g, a,R, l′) ∈ T} ∪ {(

•
l, g, a,R,

•
l′) |209

(l, g, a,R, l′) ∈ T} i.e.,
•
T is the set of transitions occurring after a fault.210

A run of AP is faulty if it contains a transition of
•
T . It is just faulty if its last transition211

belongs to
•
T and all other transitions belong to T . Note that while faulty runs can be finite212

or infinite, just faulty runs are always finite prefix of a faulty run, and end in a location
•
l.213

▶ Definition 6 (Back To Normal (BTN)). Let K ≥ 1, A be a timed automaton with fault214

model P. Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · be a (finite or infinite) faulty accepting run215

of AP , with associated timed word (a1, d1)(a2, d2) . . . and let i ∈ N be the position of the faulty216

transition in ρ. Then ρ is back to normal (BTN) after K steps if there exists an accepting217

run ρ′ = (l′0, ν′
0) (t′

1,d′
1)−→ (l′1, ν′

1) (t′
2,d′

2)−→ · · · of A with associated timed word (a′
1, d

′
1)(a′

2, d
′
2) . . .218

and an index ℓ ∈ N such that (a′
ℓ, d

′
ℓ)(a′

ℓ+1, d
′
ℓ+1) · · · = (ai+K , di+K)(ai+K+1, di+K+1) . . . . ρ219
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ℓ1 ℓ2ℓ3

ℓ5

ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 < x ≤ 6

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 1 Model of a train system with a mechanism to recover from delays

is untimed back to normal (untimed BTN) after K steps if there exists an accepting run ρ′ =220

(l′0, ν′
0) (t′

1,d′
1)−→ (l′1, ν′

1) (t′
2,d′

2)−→ · · · of A and an index ℓ ∈ N s.t. a′
ℓa

′
ℓ+1 · · · = ai+Kai+K+1 · · ·221

In other words, if w is a timed word having a faulty accepting run (i.e., w ∈ L(AP)), the222

suffix of w, K steps after the fault, matches with the suffix of some word w′ ∈ L(A). Note223

that the accepting run of w′ in A is not faulty, by definition. The conditions in untimed224

BTN are simpler, and ask the same sequence of actions, but not equality on dates.225

Our current definition of back-to-normal in K steps means that a system recovered from226

a fault (a primary delay) in ≤ K steps and remained error-free. We can generalize our227

definition, to model real life situations where more than one fault happens due to time delays,228

but the system recovers from each one in a small number of steps and eventually achieves its229

fixed goal (a reachability objective, some ω-regular property...). A classical example of this is230

a metro network, where trains are often delayed, but nevertheless recover from these delays231

to reach their destination on time. This motivates the following definition of resilience.232

▶ Definition 7 (Resilience). A timed automaton A is233

(untimed) K-∀-resilient if every finite faulty accepting run is (untimed) BTN in K steps.234

(untimed) K-∃-resilient if every just faulty run ρjf can be extended into a maximal235

accepting run ρf which is (untimed) BTN in K steps.236

Intuitively, a faulty run of A is BTN if the system has definitively recovered from a fault,237

i.e., it has recovered and will follow the behavior of the original system after its recovery.238

The definition of existential resilience considers maximal (infinite, or finite but ending at a239

location with no outgoing transitions) runs to avoid situations where an accepting faulty run240

ρf is BTN, but all its extensions i.e., suffixes ρ′ are such that ρf .ρ
′ is not BTN.241

▶ Example 8. We model train services to a specific destination such as an airport. On an242

average, the distance between two consecutive stations is covered in ≤ 4 time units. At243

each stop in a station, the dwell time is in between 1 and 2 time units. To recover from244

a delay, the train is allowed to skip an intermediate station (as long as the next stop is245

not the destination). Skipping a station is a choice, and can only be activated if there is a246

delay. We model this system with the timed automaton of Figure 1. There are 5 locations:247

ℓ1, and ℓ2 represent the normal behavior of the train and ℓ3, ℓ4, ℓ5 represent the skipping248

mechanism. These locations can only be accessed if the faulty transition (represented as a249

red dotted arrow in Figure 1) is fired. A transition tij goes from ℓi to ℓj , and
•
t21 denotes250

the faulty transition from ℓ2 to
•
ℓ1. The green locations represent the behavior of the train251

without any delay, and the red locations represent behaviors when the train chooses to skip252

the next station to recover from a delay. This mechanism is invoked once the train leaves253

the station where it arrived late (location ℓ3). When it departs, x is reset as usual; the254

next arrival to a station (from location ℓ4) happens after skipping stop at the next station.255

The delay can be recovered since the running time since the last stop (covering 2 stations)256

is between 6 and 8 units of time. Asking if this system is resilient amounts to asking if257

this mechanism can be used to recover from delays (defined by the fault model P(arr) = 2,258



S. Akshay, B. Genest, L. Hélouët, S. Krishna, S. Roychowdhury XX:7

see Figure 3, Appendix A). Consider the faulty run ρf = (ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (
•

t21,8)−→259

(ℓ1, 6|0) (t13,8)−→ (
•
ℓ3, 6|0) (t34,10)−→ (

•
ℓ4, 0|2) (t45,10)−→ (

•
ℓ5, 0|2) (t51,18)−→ (

•
ℓ1, 8|0) (t12,19)−→ (

•
ℓ2, 0|1) reading260

(dep, 2)(arr, 8)(late, 8)(dep, 10)(skip, 10)(arr, 18)(dep, 19). Run ρf is BTN in 4 steps. It261

matches the non-faulty run ρ = (ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (t21,6)−→ (ℓ1, 4|0) (t12,8)−→ (ℓ2, 0|2) (t21,12)−→262

(ℓ1, 4|0) (t12,14)−→ (ℓ2, 0|2) (t21,18)−→ (ℓ1, 4|0) (t12,19)−→ (ℓ2, 0|1) reading (dep, 2)(arr, 6) (dep, 8)(arr, 12)263

(dep, 14) (arr, 18)(dep, 19). This automaton is K-∃-resilient for K = 4 and fault model P,264

as skipping a station after a delay of ≤2 time units allows to recover the time lost. It is265

not K-∀-resilient, for any K, as skipping is not mandatory, and a train can be late for an266

arbitrary number of steps. In Appendix A we give another example that is 1-∀-resilient.267

K-∀-resilience always implies K-∃-resilience. In case of K-∀-resilience, every faulty run268

ρw has to be BTN in ≤ K steps after the occurrence of a fault. This implies K-∃-resilience269

since, any just faulty run ρw that is the prefix of an accepting run ρ of AP is BTN in less270

than K steps. The converse does not hold: AP can have a pair of runs ρ1, ρ2, sharing a271

common just faulty run ρf as prefix such that ρ1 is BTN in K steps, witnessing existential272

resilience, while ρ2 is not. Finally, an accepting run ρ = ρfρs in AP s.t., ρf is just faulty273

and |ρs| < K, is BTN in K steps since ε is a suffix of a run accepted by A.274

4 Existential Resilience275

In this section, we consider existential resilience both in the timed and untimed settings.276

Existential Timed Resilience. As the first step, we define a product automaton B ⊗K A277

that recognizes BTN runs. Intuitively, the product synchronizes runs of B and A as soon as278

B has performed K steps after a fault, and guarantees that actions performed by A and B are279

performed at the same date in the respective runs of A and B. Before this synchronization,280

A and B take transitions or stay in the same location, but let the same amount of time281

elapse, guaranteeing that synchronization occurs after runs of A and B of identical durations.282

The only way to ensure this with a timed automaton is to track the global timing from the283

initial state of both automata A and B till K steps after the fault, even though we do not284

need the timing for individual actions till K steps after the fault.285

▶ Definition 9 (Product). Let A = (LA, IA, XA,Σ, TA, FA) and B = (LB , IB , XB ,Σ, TB , FB)286

be two timed automata, where B contains faulty transitions. Let K ∈ N be an integer. Then,287

the product B⊗K A is a tuple (L, I,XA∪XB , (Σ∪{∗})2, T, F ) where L ⊆ {LB ×LA×[−1,K]},288

F = LB × FA × [−1,K], and initial set of states I = IB × IA × {−1}. Intuitively, −1 means289

no fault has occurred yet. Then we assign K and decrement to 0 to denote that K steps after290

fault have passed. The set of transitions T is as follows: We have
(
(lB , lA, n), g, < x, y >291

, R, (l′B , l′A, n′)
)

∈ T if and only if either:292

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), the action is293

< x, y >=< a, ∗ >, we have transition tB = (lB , g, a, R, l′B) ∈ TB, lA = l′A (the location294

of A is unchanged) and either: n = −1, the transition tB is faulty and n′ = K, or n = −1,295

the transition tB is non faulty and n′ = −1, or n > 0 and n′ = n− 1.296

n = n′ ≠ 0 (no fault has occurred, or less than K steps of B have occurred), the action297

is < x, y >=< ∗, a >, we have the transition tA = (lA, g, a, R, l′A) ∈ TA, lB = l′B (the298

location of B is unchanged).299

n = n′ = 0 (at least K steps after a fault have occured), the action is < x, y >=< a, a >300

and there exists two transitions tB = (lB , g, a, RB , l
′
B) ∈ TB and tA = (lA, gA, a, RA, l

′
A) ∈301

TA with g = gA ∧ gB, and R = RB ∪RA (tA and tB occur synchronously).302
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Runs of B ⊗K A are sequences of the form ρ⊗ = (l0, lA0 , n0) (t1,tA
1 ),d1−→ · · ·

(tk,tA
k ),dk−→ (lk, lAk , nk)303

where each (ti, tAi ) ∈ (TB ∪ {t∗}) × (TA ∪ {tA∗ }) defines uniquely the transition of B ⊗K A,304

where t∗ corresponds to the transitions with action ∗. Transitions are of types (ti, tA∗ ) or305

(t∗, tAi ) up to a fault and K steps of TB , and (ti, tAi ) ∈ TB × TA from there on.306

For any timed run ρ⊗ of AP ⊗K A, the projection of ρ⊗ on its first component is a timed307

run ρ of AP , that is projecting ρ⊗ on transitions of AP and remembering only location and308

clocks of AP in states. In the same way, the projection of ρ⊗ on its second component is a309

timed run ρ′ of A. Given timed runs ρ of AP and ρ′ of A, we denote by ρ⊗ ρ′ the timed310

run (if it exists) of AP ⊗K A such that the projection on the first component is ρ and the311

projection on the second component is ρ′. For ρ⊗ ρ′ to exist, we need ρ, ρ′ to have the same312

duration, and for ρs the suffix of ρ starting K steps after a fault (if there is a fault and K313

steps, ρs = ε the empty run otherwise), ρs needs to be suffix of ρ′ as well.314

A run ρ⊗ of AP ⊗K A is accepting if its projection on the second component (A) is315

accepting (i.e., ends in an accepting state if it is finite and goes through an infinite number316

of accepting state if it is infinite). We can now relate the product AP ⊗K A to BTN runs.317

▶ Proposition 10. Let ρf be a faulty accepting run of AP . The following are equivalent:318

i ρf is BTN in K-steps319

ii there is an accepting run ρ⊗ of AP ⊗K A s.t., the projection on its first component is ρf320

Let ρ be a finite run of AP . We denote by T⊗K
ρ the set of states of AP ⊗K A such that321

there exists a run ρ⊗ of AP ⊗K A ending in this state, whose projection on the first component322

is ρ. We then define S⊗K
ρ as the set of states of R(AP ⊗K A) corresponding to T⊗K

ρ , i.e.,323

S⊗K
ρ = {(s, [ν]) ∈ R(AP ⊗K A) | (s, ν) ∈ T⊗K

ρ }. If we can compute the set S = {S⊗k
ρ | ρ324

is a finite run of AP}, we would be able to solve timed universal resilience. Proposition 18325

shows that universal resilience is undecidable. Hence, computing S is impossible. Roughly326

speaking, it is because this set depends on the exact timing in a run ρ, and in general one327

cannot use the region construction.328

We can however show that in some restricted cases, we can use a modified region329

construction to build S⊗K
ρ , which will enable decidability of timed existential resilience. First,330

we restrict to just faulty runs, i.e., consider runs of AP and A of equal durations, but that331

did not yet synchronize on actions in the product AP ⊗K A. For a timed run ρ, by its332

duration, we mean the time-stamp or date of occurrence of its last event. Second, we consider333

abstract runs σ̃ through a so-called strong region automaton, as defined below. Intuitively, σ̃334

keeps more information than in the usual region automaton to ensure that for two timed335

runs ρ1 = (t1, d1)(t2, d2) . . . , and ρ2 = (t1, e1)(t2, e2) . . . associated with the same run of336

the strong region automaton, we have ⌊ei⌋ = ⌊di⌋ for all i. Formally, we build the strong337

region automaton Rstrong(B) of a timed automaton B as follows. We add a virtual clock338

x to B which is reset at each integral time point, add constraint x < 1 to each transition339

guard, and add a virtual self loop transition with guard x = 1 resetting x on each state.340

We then make the usual region construction on this extended timed automaton to obtain341

Rstrong(B). The strong region construction thus has the same complexity as the standard342

region construction. Let L(Rstrong(B)) be the language of this strong region automaton, where343

these self loops on the virtual clock are projected away. Indeed, these additional transitions,344

added to capture ticks at integral times, do not change the overall behavior of B, i.e., we345

have Unt(L(B)) ⊆ L(Rstrong(B)) ⊆ L(R(B)) = Unt(L(B)) so Unt(L(B)) = L(Rstrong(B)).346

For a finite abstract run σ̃ of the strong region automaton Rstrong(AP), we define the set347

S⊗K
σ̃ of states of Rstrong(AP ⊗K A) (the virtual clock is projected away, and our region is348

wrt original clocks) such that there exists a run σ̃⊗ through Rstrong(AP ⊗K A) ending in this349
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state and whose projection on the first component is σ̃. Let σ̃ρ be the run of Rstrong(AP)350

associated with a run ρ of AP . It is easy to see that S⊗K
σ̃ =

⋃
ρ|σ̃ρ=σ̃ S

⊗K
ρ . For a just faulty351

timed run ρ of AP , we have a stronger relation between S⊗K
ρ and S⊗K

σ̃ρ
:352

▶ Proposition 11. Let ρ be a just faulty run of AP . Then S⊗K
ρ = S⊗K

σ̃ρ
.353

Proof. First, notice that given a just faulty timed run ρ of AP and a timed run ρ′ of A of354

same duration, the timed run ρ⊗ ρ′ (the run of AP ⊗K A such that ρ is the projection on355

the first component and ρ′ on the second component) exists.356

To show that S⊗K
ρ = S⊗K

σ̃ρ
, we show that for any pair of just faulty runs ρ1, ρ2 of AP with357

σ̃ρ1 = σ̃ρ2 , we have S⊗K
ρ1

= S⊗K
ρ2

, which yields the result as S⊗K
σ̃ρ

=
⋃

ρ′|σ̃ρ′ =σ̃ρ
S⊗K

ρ′ . Consider358

ρ1, ρ2, two just faulty timed runs of AP with σ̃ρ1 = σ̃ρ2 and let (lAP , lA,K, r) ∈ S⊗K
ρ1

. Then,359

this implies that there exists ν1 |= r and a timed run ρ′
1 of A with the same duration as ρ1,360

such that ρ1 ⊗ ρ′
1 ends in state (lAP , lA,K, ν1). The following lemma completes the proof:361

▶ Lemma 12. There exists ν2 |= r and a timed run ρ′
2 of A with the same duration as ρ2,362

such that ρ2 ⊗ ρ′
2 ends in state (lAP , lA,K, ν2).363

The idea of the proof (detailed in appendix B) is to show that we can construct ρ′
2364

which will have the same transitions as ρ′
1, with same integral parts in timings (thanks to365

the information from the strong region automaton), but possibly different timings in the366

fractional parts, called a retiming of ρ′
1. Notice that ρ2 is a retiming of ρ1, as σ̃ρ1 = σ̃ρ2 . We367

translate the requirement on ρ′
2 into a set of constraints (which is actually a partial ordering)368

on the fractional parts of the dates of its transitions, and show that we can indeed set the369

dates accordingly. This translation follows the following idea: the value of a clock x just370

before firing transition t is obtained by considering the date d of t minus the date dx of the371

latest transition tx at which x has been last reset before t. In particular, the difference x− y372

between clocks x, y just before firing transition t is (d−dx) − (d−dy) = dy −dx. That is, the373

value of a clock or its difference can be obtained by considering the difference between two374

dates of transitions. A constraint given by x− y ∈ (n, n+ 1) is equivalent with the constraint375

given by dy − dx ∈ (n, n+ 1), and similar constraints on the fractional parts can be given.376

Lemma 12 gives our result immediately. Indeed, the lemma implies that (lAP , lA,K, r) ∈377

S⊗K
ρ2

from which we infer that S⊗K
ρ1

⊆ S⊗K
ρ2

. By a symmetric argument we get the other378

containment also, and hence we conclude that S⊗K
ρ1

= S⊗K
ρ2

. ◀379

Algorithm to solve Existential Timed Resilience. We can now consider existential380

timed resilience, and prove that it is decidable thanks to Propositions 10 and 11. The381

main idea is to reduce the existential resilience question to a question on the sets of regions382

reachable after just faulty runs. Indeed, focusing on just faulty runs means that we do not383

have any actions to match, only the duration of the run till the fault, whereas if we had tried384

to reason on faulty runs in general, actions have to be synchronized K steps after the fault385

and then we cannot compute the set of S⊗K
ρf

. We can show that reasoning on S⊗K
ρf

for just386

faulty runs is sufficient. Let ρf be a just faulty timed run of AP . We say that s ∈ S⊗K
ρf

is387

safe if there exists a (finite or infinite) maximal accepting run of AP ⊗K A from s, and that388

S⊗K
ρf

is safe if there exists s ∈ S⊗K
ρf

which is safe.389

▶ Lemma 13. There exists a maximal accepting extension of a just faulty run ρf that is390

BTN in K-steps iff S⊗K
ρf

is safe. Further, deciding if S⊗K
ρf

is safe can be done in PSPACE.391

Proof. Let ρf a just faulty run. By Proposition 10, there exists an extention ρ of ρf that is392

BTN in K steps if and only if there exists an accepting run ρ⊗K of AP ⊗K A such that ρf393
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is a prefix of the projection of ρ⊗K on its first component, if and only if there exists a just394

faulty run ρ⊗K

f of AP ⊗K A such that its projection on the first component is ρf , and such395

that an accepting state of AP ⊗K A can be reached after ρ⊗K

f , if and only if S⊗K
ρf

is safe.396

Safety of S⊗K
ρf

can be verified using a construction similar to the one in Theorem 16: it is397

hence a reachability question in a region automaton, solvable with a PSPACE complexity. ◀398

This lemma means that it suffices to consider the set of S⊗K
ρf

over all ρf just faulty, which399

we can compute using region automaton thanks to Prop. 11, which gives:400

▶ Theorem 14. K-∃-resilience of timed automata is in EXPSPACE.401

Proof. Lemma 13 implies that A is not K-timed existential resilient if and only if there exists402

a just faulty run ρf such that S⊗K
ρf

is not safe. This latter condition can be checked. Let us403

denote by Rstrong(AP) = (SR(AP ), IR(AP ),Σ, TR(AP ), FR(AP )) the strong region automaton404

associated with AP . We also denote R⊗K
= (SR⊗K

, IR⊗K
,Σ, TR⊗K

, FR⊗K
) the strong405

region automaton Rstrong(AP ⊗K A). Let ρf be a just faulty run, and let σ = σ̃ρf
denote406

the run of Rstrong(AP) associated with ρf . Thanks to Proposition 11, we have S⊗K
ρf

= S⊗K
σ ,407

as S⊗K
ρf

does not depend on the exact dates in ρf , but only on their regions, i.e., on σ.408

So it suffices to find a reachable witness S⊗K
σ of R⊗K

which is not safe, to conclude that409

A is not existentially resilient. For that, we build an (untimed) automaton B. Intuitively,410

this automaton follows σ up to a fault of the region automaton Rstrong(AP), and maintains411

the set S⊗K
σ of regions of R⊗K

. This automaton stops in an accepting state immediately after412

occurrence of a fault. Formally, the product subset automaton B is a tuple (SB, I,Σ, T, F )413

with set of states SB = SRstrong(AP ) × 2SR⊗K × {0, 1}, set of initial states I = IRstrong(AP ) ×414

{IR⊗K
} × {0}, and set of final states F = SRstrong(AP ) × 2SR⊗K × {1}. The set of transitions415

T ⊆ SB × Σ × SB is defined as follows,416 (
(l, r, S, 0), a, (l′, r′, S′, ♭)

)
∈ T if and only if tR =

(
(l, r), a, (l′, r′)

)
∈ TRstrong(AP ) and417

♭ = 1 if and only if tR is faulty and ♭ = 0 otherwise.418

S′ is the set of states s′ of Rstrong(AP ⊗K A) whose first component is (l′, r′) and such419

that there exists s ∈ S, (s, a, s′) ∈ TR(⊗K).420

Intuitively, 0 in the states means no fault has occurred yet, and 1 means that a fault has421

just occurred, and thus no transition exists from this state. We have that for every prefix422

σ of a just faulty abstract run of Rstrong(AP), ending on a state (l, r) of Rstrong(AP) then,423

there exists a unique accepting path σ⊗ in B such that σ is the projection of σ⊗ on its first424

component. Let (l, r, S, 1) be the state reached by σ⊗. Then S⊗K
σ = S. Thus, non-existential425

resilience can be decided by checking reachability of a state (l, r, S, 1) such that S is not426

safe in automaton B. As B is of doubly exponential size, reachability can be checked in427

EXPSPACE. Again, since EXPSPACE is closed under complementation we obtain that428

checking existential resilience is EXPSPACE. ◀429

While we do not have a matching lower bound, we complete this subsection with following430

(easy) hardness result (we leave the details in Appendix B.1 due to lack of space).431

▶ Theorem 15. The K-∃-resilience problem for timed automata is PSPACE-Hard.432

Existential Untimed Resilience. We next address untimed existential resilience, which433

we show can be solved by enumerating states (l, r) of R(A) reachable after a fault, and for434

each of them proving existence of a BTN run starting from (l, r). This enumeration and the435

following check uses polynomial space, yielding PSPACE-Completeness of K-∃-resilience.436

▶ Theorem 16. Untimed K-∃-resilience is PSPACE-Complete.437
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Figure 2 The gadget automaton BΣ∗⊆A (left) and the gadget Gund (right)

Proof (sketch). Membership : A is untimed K-∃-resilient if and only if for all states438

q = (l, r) reached by a just faulty run of R(AP), there exists a maximal accepting path σ439

from q such that its suffix σs after K steps is also the suffix of a path of R(A). This property440

can be verified in PSPACE. A detailed proof is provided in Appendix B.2.441

Hardness : We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider a442

timed automaton A with alphabet Σ and the construction of an automata that uses a gadget443

shown in Figure 2 (left). Let us call this automaton BΣ∗⊆A. This automaton reads a word444

(a, 1)(b, 1)(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a445

particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)446

then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A447

has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness448

problem for timed automata is PSPACE-Complete, the result follows. ◀449

▶ Remark 17. The hardness reduction in the proof of Theorem 16 holds even for deterministic450

timed automata. It is known [2] that PSPACE-Hardness of emptiness still holds for451

deterministic TAs. Hence, considering deterministic timed automata will not improve452

the complexity of K-∃-resilience. Considering IRTAs does not change complexity either, as453

the gadget used in Theorem 16 can be adapted to become an IRTA (as shown in Appendix D).454

5 Universal Resilience455

In this section, we consider the problem of universal resilience and show that it is very close to456

the language inclusion question in timed automata, albeit with a few subtle differences. One457

needs to consider timed automata with ε-transitions [11], which are strictly more expressive458

than timed automata. First, we show a reduction from the language inclusion problem.459

▶ Proposition 18. Language inclusion for timed automata can be reduced to K-∀-resilience.460

Thus, K-∀-resilience is undecidable in general for timed automata.461

Proof Sketch. Given A1 = (L1, {l01}, X1,Σ1, T1, F1) and A2 = (L2, {l02}, X2,Σ2, T2, F2),462

we start by defining a gadget Gund as shown in Fig 2 (right). Next, we define an automaton463

U that behaves as A1 after 15 time units if no fault occurs, and as A2 after 15 time units if464

a fault occurs. This is done by merging state s1 in the gadget with the initial state of A1465

and state s2 with the initial state of A2. Then, we can see that L(A1) ⊆ L(A2) if and only466

if U is 2-∀-resilient. A complete proof of this theorem can be found in Appendix C. ◀467

Next we show that the reduction is also possible in the reverse direction.468

▶ Proposition 19. K-∀-resilience can be reduced to language inclusion for timed automata469

with ε-transitions.470

Proof Sketch. Given a timed automaton A, we build a timed automaton AS that recognizes471

all suffixes af timed words in L(A). Given a fault model P , we build an automaton BP from472

AP which remembers if a fault has occurred, and how many transitions were taken since a473

fault. Then, we re-label every transition occurring before a fault and till K steps after the474
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fault by ε, keeping the same locations, guards and resets, and leave transitions occurring475

more than K steps after a fault unchanged to obtain an automaton BP,ε. Accepting locations476

of BP are those of A occurring after a fault in BP . Then, every faulty run accepted by477

BP,ε is associated with a word ρ = (t1, d1) . . . (tf , df )(tf+1, df+1) . . . (tf+K , df+K). . . . (tn, dn)478

where t1, . . . tf+K are ε transitions. A run ρ is BTN iff (af+K+1, df+K+1) . . . (an, dn) is a479

suffix of a timed word of A, i.e., is recognized by AS . We can check that every word in480

BP,ε (reading only ε before a fault) is recognized by the suffix automaton AS , by solving a481

language inclusion problem for timed automata with ε transitions. ◀482

We note that ε-transitions are critical for the reduction of Proposition 19. To get483

decidability of K-∀-resilience, it is thus necessary (but not sufficient) to be in a class with484

decidable timed language inclusion, such as Event-Recording timed automata [3], Integer485

Reset timed automata (IRTA) [18], or Strongly Non-Zeno timed automata [4]. However,486

to obtain decidability of K-∀-resilience using Proposition 19, one needs also to ensure487

that inclusion is still decidable for automata in the presence of ε transitions. When a488

subclass C of timed automata is closed by enlargement (due to the fault model), and if timed489

language inclusion is decidable, even with ε transitions, then Proposition 19 implies that490

K-∀-resilience is decidable for C. We show that this holds for the case of IRTA and leave491

other subclasses for future work. For IRTA [18], we know that L(A) ⊆ L(B) is decidable492

in EXPSPACE when B is an IRTA [18] (even with ε transitions), from which we obtain an493

upper bound for K-∀-resilience of IRTA. The enlargement of guards due to the fault can add494

transitions that reset clocks at non-integral times, but it turns out that the suffix automaton495

AS of Proposition 19 is still an IRTA. A matching lower bound is obtained by encoding496

inclusion for IRTA with K-∀-resilience using a trick to replace the gadget in Proposition 18497

by an equivalent IRTA. Thus, we have Theorem 20 (proof in Appendix D).498

▶ Theorem 20. K-∀-resilience is EXPSPACE-Complete for IRTA.499

Finally, we conclude this section by remarking that universal untimed resilience is decidable500

for timed automata in general, using the reductions of Propositions 18 and 19:501

▶ Theorem 21. Untimed K-∀-resilience is EXPSPACE-Complete.502

Proof Sketch. Untimed language inclusion of timed automata is EXPSPACE-Complete [9],503

so the reduction of Proposition 18 immediately gives the EXPSPACE lower bound. For504

the upper bound, we use the region construction and an ε-closure to build an automaton505

AS
U that recognizes untimed suffixes of words of A, and an automaton BP

U that recognizes506

suffixes of words played K steps after a fault. Both are of exponential size. Then untimed507

K-∀-resilience amounts to checking L(BP
U ) ⊆ L(AS

U ), yielding EXPSPACE upper bound. ◀508

6 Conclusion509

Resilience allows to check robustness of a timed system to unspecified delays. A universally510

resilient timed system recovers from any delay in some fixed number of steps. Existential511

resilience guarantees the existence of a controller that can bring back the system to a normal512

behavior within a fixed number of steps after an unexpected delay. Interestingly, we show513

that existential resilience enjoys better complexities/decidability than universal resilience.514

Universal resilience is decidable only for well behaved classes of timed automata such as IRTA,515

or in the untimed setting. A future work is to investigate resilience for other determinizable516

classes of timed automata, and a natural extension of resilience called continuous resilience,517

where a system recovers within some fixed duration rather than within some number of steps.518
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ℓ1 ℓ2ℓ3

ℓ5

ℓ4

•
ℓ1

•
ℓ2

•
ℓ3

•
ℓ5

•
ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 <
x ≤ 6

y :=
0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

skip

arr, x ≤ 4

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 3 Faulty automata of the model of a train system with a mechanism to recover from
delays as described in Example 8 and Figure 1

ℓ1 ℓ2 ℓ1 ℓ2
•
ℓ2

•
ℓ1

a, 3 < x < 12 ∧ y > 5

y := 0

x := 0

b, y < 7

a, 3 < x < 12 ∧ y > 5

y := 0

x := 0

b, y < 7

y := 0

a, 12 ≤ x ≤ 14 ∧ y > 5

b,
y

<
7

x
:=

0

a, 3 <
x <

12 ∧ y >
5

y :=
0

x := 0

b, y = 7

Figure 4 A on the left; Enlargement AP on the right, P(a) = 2, P(b) = 0.

A Example569

▶ Example 22. Consider the automaton A in Figure 4, with two locations ℓ1 and ℓ2, a570

transition t12 from ℓ1 to ℓ2 and a transition t21 from ℓ2 to ℓ1. The enlarged automaton AP has571

two extra locations
•
ℓ1,

•
ℓ2, extra transitions between

•
ℓ1 and

•
ℓ2, and from ℓ1 to

•
ℓ2 and from ℓ2 to572

•
ℓ1 respectively. We represent a configuration of the automata with a pair

(
ℓ, ν(x)|ν(y)

)
where,573

ℓ belongs to the set of the locations and ν(x) (resp. ν(y)) represents the valuation of clock x574

(resp. clock y). Let ρf = (ℓ1, 0|0) (t12,6)−→ (ℓ2, 6|0) (
•
t21,13)−→ (

•
ℓ1, 0|7) (

••
t 12,19)−→ (

•
ℓ2, 4|0) be a faulty575

run reading the faulty word (a, 6)(b, 13)(a, 19) ∈ L(AP). This run is 1-BTN since the run σ =576

(ℓ, 0|0) (t12,6)−→ (ℓ2, 6|0) (t21,12)−→ (ℓ1, 0|6) (t12,19)−→ (ℓ2, 7|0) is an accepting run of A, reading timed577

word wσ = (a, 6)(b, 12)(a, 19) ∈ L(A). Similarly, the run ρ′ = (ℓ, 0|0) (
•

t12,14)−→ (
•
ℓ2, 14|0) (

••
t21,20)−→578

(
•
ℓ1, 0|6) (

••
t12,31)−→ (

•
ℓ2, 11|0) of AP reading word (a, 14)(b, 20)(a, 31) is 1-BTN because of run579

σ′ = (ℓ1, 0|0) (t12,10)−→ (ℓ2, 10|0) (t21,15)−→ (ℓ1, 0|5) (t12,19)−→ (ℓ2, 4|0) (t21,20)−→ (ℓ1, 0|1) (t12,31)−→ (ℓ2, 11|0)580

reading the word wσ′ = (a, 10)(b, 15)(a, 19)(b, 20)(a, 31). One can notice that ρ′ and σ′ are581

of different lengths. In fact, we can say something stronger, namely it is 1-∀-resilient (and582

hence 1-∃-resilient) as explained below.583

The example consists of a single (a.b)∗ loop, where action a occurs between 3 and 12 time584

units after entering location ℓ1, and action b occurs less than 7 time units after entering ℓ2. A585

fault occurs either from ℓ1, in which case action a occurs 12 + d time units after entering ℓ1,586

with d ∈ [0, 2], or from ℓ2, i.e., when b occurs exactly 7 time units after entering ℓ2. Once a587

fault has occurred, the iteration of a and b continues on
•
ℓ1 and

•
ℓ2 with non-faulty constraints.588

Consider a just faulty run ρf where fault occurs on event a. The timed word generated in ρf589

is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+2), where dk+2 = dk+1 + 12 + x590

with x ∈ [0, 2]. The word w = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+1 + 5).(b, dk+1 + 5 +591
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x).(a, dk+1 + 5 + x + 7) is also recognized by the normal automaton, and ends at date592

dk+1 + 12 +x. Hence, for every just faulty word wf which delays action a, there exists a word593

w such for every timed word v, if wf .v is accepted by the faulty automaton, w.v is accepted594

by the normal automaton. Now, consider a fault occurring when playing action b. The just595

faulty word ending with a fault is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7). All596

occurrences of a occur at a date between dj +3 and dj +12 for some date dj at which location ℓ1597

is reached, (except the first time stamp d1 ∈ (5, 12)) and all occurrences of b at a date strictly598

smaller than di + 7, where di is the date of last occurrence of a. Also, for any value ϵ ≤ 7 the599

word wϵ = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7 − ϵ) is non-faulty. Let v1 = 12 − d1, recall that600

d1 ∈ (5, 12). If we choose ϵ < v1 then the run w+
ϵ = (a, d1+ϵ).(b, d2+ϵ) . . . (a, dk +ϵ).(b, dk +7)601

is also non-faulty because 5 < d1 + ϵ < d1 + v1 = 12. Clearly, we can extend w+
ϵ to match602

transitions fired from wϵ hence, the automaton of the example is 1-∀-resilient.603

B Proofs for section 4604

▶ Lemma 12 There exists ν2 |= r and a timed run ρ′
2 of A with the same duration as ρ2,605

such that ρ2 ⊗ ρ′
2 ends in state (lAP , lA,K, ν2).606

Proof. Let t1, . . . , tn be the sequence of transitions of ρ1, ρ2 taken respectively, at dates607

d1, . . . , dn and e1, . . . , en. Similarly, we will denote by t′1, . . . , t′k the sequence of transitions608

of ρ′
1, taken at dates d′

1, . . . , d
′
k. Run ρ′

2 will pass by the same transitions t′1, . . . , t′k, but with609

possibly different dates e′
1, . . . , e

′
k such that:610

the duration of ρ′
2 is the same as the duration of ρ2,611

σ̃ρ′
2

follows the same sequence of states of Rstrong(A) as σ̃ρ′
1

(in particular, ρ′
2 is a valid612

run as it fullfils the guards of its transitions, which are the same as those of ρ′
1).613

σ̃ρ2⊗ρ′
2

reaches the same state of Rstrong(AP ⊗K A) as σ̃ρ1⊗ρ′
1
.614

We translate these into three successive requirements on the dates (e′
i)i≤k of ρ′

2:615

R1. The first requirement is e′
k = en,616

R2. The second requirement sets the integral part ⌊e′
i⌋ = ⌊d′

i⌋ for all i ≤ k. Remark that we617

already have ⌊e′
k⌋ = ⌊en⌋ = ⌊dn⌋ = ⌊d′

k⌋ by the first requirement and the hypothesis,618

R3. The third requirement tackles the fractional part (frac(e′
i))i≤k. It is given as a set619

of satisfiable constraints, defined hereafter as a partial ordering on (frac(e′
i))i≤k ∪620

(frac(ei))i≤n.621

Notice that the value of a clock x just before firing transition ti is obtained by considering622

the date di of ti minus the date dx
i of the latest transition tj , j < i at which x has been623

last reset before i. In particular, the difference x− y between clocks x, y just before firing624

transition ti is (di − dx
i ) − (di − dy

i ) = dy
i − dx

i . That is, the value of a clock or its difference625

can be obtained by considering the difference between two dates of transitions. A constraint c626

given by x− y ∈ (n, n+ 1) is equivalent with the constraint d(c) given by dy
i −dx

i ∈ (n, n+ 1).627

We then characterize the conditions required for the run ρ2 ⊗ ρ′
2 to reach the same region628

r of Rstrong(AP ⊗K A) which was reached by ρ1 ⊗ ρ′
1. These conditions are described as on629

region r in the following equivalent ways:630

1. A set of constraints C on the disjoint union X ′′ = XAP ⊎XA of clocks of AP and A, of631

the form x − y ∈ (n, n + 1) or x − y = n or x − y > Max (possibly considering a null632

clock y) for n ∈ Z,633
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2. The associated set of constraints C ′ = {d(c) | c ∈ C} on D = {dx | x ∈ XAP } ⊎ {d′
x′ |634

x′ ∈ XA}, with dx the date of the latest transition t⊗j that resets the clock x ∈ XAP , and635

d′
x′ the date of the latest transition t⊗l that resets clock x′ ∈ XA,636

3. An ordering ≤′ over FP = {frac(τ) | τ ∈ D} defined as follows: for each constraint637

τ −τ ′ ∈ (n, n+1) of C ′, if ⌊τ⌋ = ⌊τ ′⌋+n then frac(τ) <′ frac(τ ′), and if ⌊τ⌋ = ⌊τ ′⌋+n+1638

then frac(τ ′) <′ frac(τ).639

For each constraint τ − τ ′ = n of C ′, then frac(τ ′) =′ frac(τ).640

For each constraint τ − τ ′ > cmax of C ′ such that ⌊τ⌋ = ⌊τ ′⌋ + cmax, we have frac(τ ′) >′
641

frac(τ) (if ⌊τ⌋ ≥ ⌊τ ′⌋ + cmax + 1, then we dont need to do anything), where cmax =642

max({cx | x ∈ X}).643

Further, path ρ′
2 needs to visit the regions r1, . . . rk visited by ρ′

1. For each i, visiting644

region ri is characterized by a set of constraints Ci, which we translate as above as an645

ordering ≤′
i on FP ′ = {frac(d′

i) | i ≤ k}.646

Thus, finally, we can collect all the requirements for having ρ′ with required properties by647

defining ≤′′ over FP ′ ∪FP (notice that it is not a disjoint union) as the transitive closure of648

the union of all ≤′
i and of ≤′. As the union of constraints on C ′

i and on C ′ is satisfied by the649

dates (di)i≤n and (d′
i)i≤k of ρ1 and ρ′

1, the union of constraints is satisfiable. Equivalently,650

≤′′ is a partial ordering, respecting the total natural ordering ≤ on FP ∪ FP ′. We will651

denote τ =′′ τ ′ whenever τ ≤′′ τ ′ and τ ′ ≤′′ τ , and τ <′′ τ ′ if τ ≤′′ τ ′ but we dont have652

τ =′′ τ ′. Because ≤′′ is a partial ordering, there is no τ, τ ′ with τ <′′ τ ′ <′′ τ .653

Note that there is only one way of fulfilling the first two requirements R1. and R2; namely654

by matching e′
k and en, and by witnessing dates with the same integral parts in e′

k, en as655

well as d′
k, dn. While this takes care of the last values, to obtain the remaining values, we656

can apply any greedy algorithm fixing successively frac(e′
k−1) . . . frac(e′

1) and respecting ≤′′
657

to yield the desired result. We provide a concrete such algorithm for completeness:658

We will start from the fixed value of frac(e′
k−1) and work backwards. Let us assume659

inductively that frac(e′
k−1) . . . frac(e′

i+1) have been fixed. We now describe how to obtain660

frac(e′
i). If frac(d′

i) =′′ frac(d′
j), j > i then we set frac(e′

i) = frac(e′
j). If frac(d′

i) =′′ frac(dj),661

then we set frac(e′
i) = frac(ej). Otherwise, consider the sets Li = {frac(ej) | j ≤ n, frac(dj) <′′

662

frac(d′
i)} ∪ {frac(e′

j) | i < j ≤ n, frac(d′
j) <′′ frac(d′

i)}. Also, consider Ui = {frac(ej) | j ≤663

n, frac(dj) >′′ frac(d′
i)} ∪ {frac(e′

j) | i < j ≤ n, frac(d′
j) >′′ frac(d′

i)}. We let li = max(Li)664

and ui = min(Ui). We then set frac(e′
i) to any value in (li, ui). It remains to show that we665

always have li < ui, which will show that such a choice of value for the fractional part of e′
i666

is indeed possible.667

By contradiction, consider that there exists i such that li ≥ ui, and consider the668

maximal (first) such i. First, assume that both li and ui are of the form frac(ej), frac(ek)669

respectively, i.e. corresponds to clock values in the last regions of ρ2. The contradiction670

hypothesis is li = frac(ej) ≥ ui = frac(ek). By definition of Li and Ui, we also have671

frac(dj) <′′ frac(d′
i) <′′ frac(dk). In particular, frac(dj) < frac(dk). This is a contradiction672

with σ̃ρ1 = σ̃ρ2 , as the strong region reached by ρ1 and ρ2 are the same. A contradiction.673

Otherwise, at least one of li, ui is of the form frac(e′
j), with j > i (consider j minimal674

if both are of this form). By symetry, let say li = frac(e′
j) ≥ ui. Let say ui = frac(ek),675

as ui = frac(e′
k) with k > j is similar since it has been fixed before frac(e′

j). We have676

frac(d′
j) <′′ d′

i <
′′ frac(dk) by definition of Li, Ui. In particular frac(d′

j) <′′ frac(dk): That677

is, k ∈ Uj , and by construction, and as j > i, we have li = frac(e′
j) < frac(ek) = ui, a678

contradiction. ◀679
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s0 si

s1

s2

x ≤ 10, a, {y} x > 11 ∧ y < 1, b

{X1}
x ≤ 10, b

{X2}10 < x ≤ 12, a, {y}

v0 v1

v2 qe

v3 A

x = 1, a, {y}
x = 1, y = 0, b

{x}

x = 10, c

X1

x = 9, c

X2

x = 2, y = 0, b{x}

⊤, Σ, ∅

1 < x ≤ 2, a, {y}

Figure 5 The gadgets G (left) and BΣ∗⊆A (right) which is untimed 2-∃-resilient iff L(A) ̸= ∅.

s0 si

si,1

si,2

s1

s2

x ≤ 10, a

{y}

x > 11 ∧ y < 1, b

x ≤ 10, b

z = 15, c

X1

z = 15, c

X2

Figure 6 The gadget automaton Gund.

B.1 Hardness for K-∃-resilience680

▶ Theorem 15 The K-∃-resilience problem for timed automata is PSPACE-Hard.681

Proof. We proceed by reduction from the language emptiness problem, which is known682

to be PSPACE-Complete for timed automata. We can reuse the gadget Gund of Figure 6.683

We take any automaton A and collapse its initial state to state s1 in the gadget. We684

recall that s1 is accessible at date 15 only after a fault. We add a self loop with transition,685

te = (s2, σ, true, ∅, s2) for every σ ∈ Σ. This means that after reaching s2, which is accessible686

only at date 15 if no fault has occurred, the automaton accepts any letter with any timing.687

Then, if A has no accepting word, there is no timed word after a fault which is a suffix688

of a word in L(A), and conversely, if L(A) ̸= ∅, then any word recognized from s1 is689

also recognized from qe. So the language emptiness problem reduces to a 2-∃-resilience690

question. ◀691

B.2 Untimed K-∃-resilience692

▶ Theorem 16 Untimed K-∃-resilience is PSPACE-Complete.693

Proof. Membership : For every run of A, there is a path in R(A). So, A is untimed694

K-∃-resilient if and only if, for all states q reached by a just faulty run, there exists a695

maximal accepting path σ from q such that, K steps after, the sequence of actions on its696

suffix σs agrees with that of an accepting path σ in R(A). We now prove that this property697

can be verified in PSPACE.698

Let q = (l, r) be a state of R(AP) reached after a just faulty run. K steps after reaching699

q = (l, r) of R(AP), one can check in PSPACE, if there exists a path σs whose sequence700

of actions is the same as the suffix of an accepting path σ of R(A). That is, either both701

these end in a pair of accepting states from which no transitions are defined (both paths are702

maximal), or visit a pair of states twice such that the cyclic part of the path contains both703

an accepting state of R(AP) and an accepting state of R(A). To find these paths σ, σs, one704

just needs to guess them, i.e., build them synchronously by adding a pair of transitions to705

the already built path only if they have the same label. One needs to remember the current706

pair of states reached, and possibly guess a pair of states (sA, sAP ) on which a cycle starts,707

and two bits bA (resp. bAP ) to remember if an accepting state of A (resp. AP) has been seen708

since (sA, sAP ). A maximal finite path or a lasso can be found on a path of length smaller709

than |R(AP)| × |R(A)|, and the size of the currently explored path can be memorized with710
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log2(|R(AP)| × |R(A)|) bits. This can be done in PSPACE. The complement of this, i.e.,711

checking that no maximal path originating from q with the same labeling as a suffix of a712

word recognized by R(A) K steps after a fault exists, is in PSPACE too.713

Now, to show that A is not untimed K-∃-resilient, we simply have to find one untimed714

non-K-∃-resilient witness state q reachable immediately after a fault. To find it, non715

deterministically guess such a witness state q along with a path of length not more than the716

size of |R(AP)| and apply the PSPACE procedure above to decide whether it is a untimed717

non-K-∃-resilience witness. Guess of q is non-deterministic, which gives an overall NPSPACE718

complexity, but again, using Savitch’s theorem, we can say that untimed K-∃-resilience is719

in PSPACE.720

Hardness : We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider a721

timed automaton A with alphabet Σ and the construction of an automata that uses a gadget722

shown in Figure 5 (right). Let us call this automaton BΣ∗⊆A. This automaton reads a word723

(a, 1).(b, 1).(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a724

particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)725

then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A726

has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness727

problem for timed automata is PSPACE-Complete, the result follows. ◀728

C Proofs for section 5729

▶ Proposition 18 Language inclusion for timed automata can be reduced to K-∀-resilience.730

Thus, K-∀-resilience is undecidable in general for timed automata.731

Proof. Let A1 = (L1, {l01}, X1,Σ1, T1, F1) and A2 = (L2, {l02}, X2,Σ2, T2, F2) be two timed732

automata with only one initial state (w.l.o.g). We build a timed automaton B such that733

L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.734

We first define a gadget Gund that allows to reach a state s1 at an arbitrary date d1 = 15735

when a fault happens, and a state s2 at date d2 = d1 = 15 when no fault occur. This gadget736

is shown in Fig 6. Gund has 6 locations s0, si, si,1, s1, s2 /∈ L1 ∪ L2, three new clocks x, y, z /∈737

X1 ∪X2, three new actions a, b, c /∈ Σ1 ∪Σ2, and 5 transitions t0, t1, t2, t3, t4 /∈ T1 ∪T2 defined738

as: t0 = (s0, a, g0, {y}, si) with g0 ::= x ≤ 10, t1 = (si, b, g1, ∅, si,1) with g1 ::= x > 11∧y < 1,739

t2 = (si, b, g2, ∅, si,2) with g2 ::= x ≤ 10, t3 = (si,1, c, g3, X1, s1) with g3 ::= z = 15, and740

t4 = (si,2, c, g4, X2, s2) with g4 ::= z = 15. Clearly, in this gadget, transition t1 can never741

fire, as a configuration with x > 11 and y < 1 is not accessible.742

We build a timed automaton B that contains all transitions of A1 and A2, but preceded743

by Gund by collapsing the initial location of A1 i.e., l01 with s1 and the initial location of A2744

i.e., l02 with s2. We also use a fault model P : a → [0, 2], that can delay transitions t0 with745

action a by up to 2 time units. The language L(B) is the set of words:746

L(B) = { (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (d1 ≤ 10)
∧(d2 ≤ 10) ∧ (d2 − d1 < 1)
∧∃w = (σ1, d

′
3) . . . (σn, d

′
n+2) ∈ L(A2),∀i ∈ 3..n+ 2, d′

i = di − 15}
747

The enlargement of B is denoted by BP . The words in L(BP) is the set of words in L(B)748

(when there is no fault) plus the set of words in:749

LF (BP){ (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (10 < d1 ≤ 12)
∧d2 > 11 ∧ (d2 − d1 < 1)
∧∃w = (σ1, d

′
3) . . . (σn, d

′
n+2) ∈ L(A1),∀i ∈ 3..n+ 2, d′

i = di − 15}
750

Now, B is K-∀-resilient for K = 2 if and only if every word in LF (BP) is BTN after 2751

steps (K = 2), i.e., for every word w = (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) in LF (BP),752
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if there exists a word w = (a, d′
1)(b, d′

2)(c, 15)(σ1, d3) . . . (σn, dn+2) in L(B). This means that753

every word of A1 is a word of A2. So L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.754

As language inclusion for timed automata is undecidable [2], an immediate consequence755

is that K-∀-resilience of timed automata is undecidable.756

◀757

▶ Proposition 19 K-∀-resilience can be reduced to language inclusion for timed automata758

with ε-transitions.759

Proof. Given a timed automaton A = (L, I,X,Σ, T, F ), we can build a timed automaton760

AS that recognizes all suffixes of timed words recognized by A. Formally, AS contains the761

original locations and transitions of A, a copy of all location, a copy of all transitions where762

letters are replaced by ε, and a transition from copies to original locations labeled by their763

original letters.764

We have AS = (LS , IS , X,Σ∪{ε}, TS , F ), where LS = L∪{l′ | l ∈ L}, IS = {l′ ∈ LS , l ∈765

I} TS = T ∪ {(l′1, g, ε, R, l′2) | ∃(l1, g, σ,R, l2) ∈ T} ∪ {(l′1, g, σ,R, l2) | ∃(l1, g, σ,R, l2) ∈ T}.766

Obviously, for every timed word (a1, d1)(a2, d2) . . . (an, dn) recognized by A, and every767

index k ∈ 1..n, the words (ε, d1)(ε, dk)(ak+1, dk+1) . . . (an, dn) = (ak+1, dk+1) . . . (an, dn) is768

recognized by AS .769

Given a timed automaton A and a fault model P, we build an automaton BP which770

remembers if a fault has occurred, and how many transitions have been taken since a fault.771

▶ Definition 23 (Counting automaton). Let AP = (L, I,X,Σ, T, F ) and be a timed automaton772

with faulty transitions. Let K ∈ N be an integer. Then, the faulty automaton BP is a tuple773

BP = (LP , IP , X,Σ, TP , FP) where LP ⊆ {L× {0}}, FP = F × [−1,K], and initial set of774

states IP = I × {−1}. Intuitively, −1 means no fault has occurred yet. Then we assign K775

and decrement to 0 to denote that K steps after fault have passed. The set of transitions TP
776

is as follows: We have
(
(l, n), g, a, R, (l′, n′)

)
∈ TP if and only if either:777

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), we have transition778

t = (l, g, a,R, l) ∈ T , and either: n = −1, the transition t is faulty and n′ = K, or779

n = −1, the transition t is non faulty and n′ = −1, or n > 0 and n′ = n− 1.780

n = n′ = 0 (at least K steps after a fault have occurred), and there exists a transition781

t = (l, g, a,R, l′) ∈ T .782

Then, we can build an automaton BP,ε by re-labeling every transition occurring before783

a fault and until K steps after the fault by ε, keeping the same locations, guards and784

resets, and leave transitions occurring more than K steps after a fault unchanged. The785

relabeled transitions are transitions starting from a location (l, n) with n ̸= 0. Accepting786

locations of BP,ε are of the form (l, 0) where l is an accepting locations of A occurring after787

a fault in BP . Then, every faulty run accepted by BP,ε is associated with a word of the788

form ρ = (t1, d1) . . . (tf , df )(tf+1, df+1) . . . (tf+K , df+K). . . . (tn, dn) where t1, . . . tf+K are ε789

transitions. A run ρ is BTN if and only if (af+K+1, df+K+1) . . . (an, dn) is a suffix of a timed790

word of A, i.e., is recognized by AS .791

Now one can check that every word in BP,ε (reading only ε before that fault) is recognized792

by the suffix automaton AS , i.e. solve a language inclusion problem for timed automata with793

ε transitions. ◀794

▶ Theorem 21 Untimed K-∀-resilience is EXPSPACE-Complete.795
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Figure 7 An example automaton A (left) and its the suffix automaton AS (right)

Proof. Recall that untimed language inclusion of timed automata is EXPSPACE-Complete [9].796

The lower bound is readily obtained by using the reduction of Proposition 18.797

For the upper bound, we will use the construction of automata AS and BP,ε built during798

the reduction of Proposition 19. We however need inclusion of TA with ε transitions, and799

thus we adapt the EXPSPACE algorithm in the presence of ε transitions:800

We can consider ε transitions as transitions labeled by any letter, and build the region801

automata A♯ = R(AS) and B♯ = R(BP,ε). These automata are untimed automata of size802

exponential in the number of clocks, with ε transitions. We can perform an ε reduction803

on A♯ to obtain an automaton AS
U with the same number of states as A♯ that recognizes804

untimed suffixes of words of A. Similarly, we can perform an ε reduction on B♯ to obtain an805

automaton BP
U with the same number of states as B♯ that recognizes suffixes of words played806

K steps after a fault.807

We then use a usual PSPACE inclusion algorithm to check that L(BP
U ) ⊆ L(AS

U ), which808

yields the EXPSPACE upper bound, as AS
U ,BP

U have an exponential number of states w.r.t.809

|A|. ◀810

D Resilience of Integer Reset Timed Automata811

Let us recall some elements used to prove decidability of language inclusion in IRTA. For812

a given IRTA A we can define a map f : ρ → wunt that maps every run ρ of A to an813

untimed word wunt ∈ ({✓, δ} ∪ Σ)∗. For a real number x with k = ⌊x⌋, we define a map814

dt(x) from R to {✓, δ}∗ as follows : dt(x) = (δ.✓)k if x is integral, and dt(x) = (δ.✓)k.δ815

otherwise. Then, for two reals x < y, the map dte(x, y) is the suffix that is added to dt(x)816

to obtain dt(y). Last, the map f associates to a word w = (a1, d1) . . . (an, dn) the word817
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f(w) = w1.a1.w2.a2 . . . wn.an where each wi is the word wi = dte(di−1, di). The map f maps818

global time elapse to a word of ✓ and δ but keeps actions unchanged. We define another map819

f↓ : w → {✓, δ}∗ that maps every word w of A to a word in {✓, δ}∗ dropping the actions from820

f(w). Consider for example, a word w = (a, 1.6)(b, 2.7)(c, 3.4) then, f(w) = δ✓δa✓δb✓δc,821

and f↓(w) = δ✓δ✓δ✓δ. It is shown in [18] for two timed words ρ1, ρ2 with f(ρ1) = f(ρ2)822

then ρ1 ∈ L(A) if and only if ρ2 ∈ L(A). It is also shown that we can construct a Marked823

Timed Automata (MA) from A with one extra clock and polynomial increase in the number824

of locations such that Unt(L(MA)) = f(L(A)). The MA of A duplicates transitions of A to825

differentiate firing at integral/non integral dates, plus transitions that make time elapsing826

visible using the additional clock which is reset at each global integral time stamp.827

▶ Definition 24 (Marked Timed Automaton (MA)). Given a timed automaton A = (L,L0, X,Σ, T, F )828

the Marked Timed Automata of A is a tuple MA = (L′, L′
0, X ∪ {n},Σ ∪ {✓, δ}, T ′, F ′) such829

that830

i) n /∈ X831

ii) L′ = L0 ∪ L+ where for α ∈ {0,+}, Lα = {lα | l ∈ L}832

iii) L′
0 = {l0 | l ∈ L0},833

iv) F ′ = {l0, l+ | l ∈ F} and834

v) T ′ is defined as follows,835

T ′ = {(l0, a, g ∧ n = 0?, R, l′0) | (l, a, g, R, l′) ∈ E}836

∪ {(l+, a, g ∧ 0 < n < 1?, R, l′+) | (l, a, g, R, l′) ∈ E}837

∪
⋃
l∈L

(l0, δ, 0 < n < 1, ∅, l+) ∪
⋃
l∈L

(l+,✓, n = 1?, {n}, l0)838

839

Then we have the following results.840

▶ Theorem 25 ([18]Thm.5). Let A be a timed automaton and MA be its marked automaton.841

Then Unt(L(MA)) = f(L(A))842

▶ Remark 26. The marked timed automaton of an IRTA is also an IRTA.843

The proofs of resilience for IRTA will also rely on the following properties,844

▶ Theorem 27 (Thm.3, [18]). If A is an IRTA and f(w) = f(w′), then w ∈ L(A) if and845

only if w′ ∈ L(A)846

▶ Lemma 28. The timed suffix language of an IRTA A can be recognized by an ε-IRTA AS
847

Proof. Let A = (L,X,Σ, T,G, F ) be a timed automaton. We create an automaton AS =848

(LS , X,Σ ∪ {ε}, TS ,G, F ) as follows. We set LS = L ∪ Lε, where Lε = {lε | l ∈ L} i.e., LS
849

contains a copy of locations in A and another “silent” copy. The initial location of AS is l0,ε.850

We set TS = T ∪ Tε ∪ T ′
ε, where Tε = {(lε, ε, true, ∅, l) | l ∈ L} and T ′

ε = {(lε, ε, g, R, l′ε) |851

∃(l, a, g, R, l′) ∈ T}. Clearly, for every timed word w = (a1, d1) . . . (ai, di)(ai+1, di+1) . . . (an, dn)852

of L(A) and index i, the word w′ = (ε, d1). . . . (ε, di)(ai+1, di+1) . . . (an, dn) = (ai+1, di+1) . . . (an, dn)853

is a recognized by AS , and it is easy to verify that As is an ε-IRTA. ◀854

▶ Lemma 29. For two IRTA A and B and their corresponding marked automata AM and855

BM , L(A) ⊆ L(B) if and only if untime(L(AM )) ⊆ untime(L(BM )).856

Proof. (⇒) Assume, L(A) ⊆ L(B) and assume there exists a word w ∈ untime(L(AM )), but857

w /∈ untime(L(BM )). Now, there exists a timed word ρ ∈ L(A) such that, f(ρ) = w. Clearly,858
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Figure 8 The automaton B (left) and the faulty automaton BP (right)

ρ ∈ L(B), then clearly f(ρ) = w ∈ untimed(L(BM )) a contradiction. So, untime(L(Am)) ⊆859

untime(L(Bm)).860

(⇐)Assume, untime(L(AM )) ⊆ untime(L(BM )), and L(A) ⊈ L(B). Then, there861

exists a timed word ρ ∈ L(A) such that ρ /∈ L(B). Assume f(ρ) = w, then clearly,862

w ∈ untime(L(AM )) and w ∈ untime(L(BM )). So, there exists a timed word ρ′ ∈ L(A)863

such that, f(ρ′) = w = f(ρ). According to Theorem 27 we can conclude that, ρ ∈ L(B) a864

contradiction. ◀865

▶ Remark 30. Lemma 29 shows that the timed and untimed language inclusion problems866

for IRTA are in fact the same problem. So, as we can solve the timed language inclusion867

problem by solving an untimed language inclusion problem of IRTA and vice-versa, the868

untimed language inclusion for IRTA is also EXPSPACE-Complete.869

▶ Theorem 31. Timed K-∀-resilience of IRTA is EXPSPACE-Hard.870

Proof. The proof is obtained by a reduction from the language inclusion problem of IRTA,871

known to be EXPSPACE-Complete [4]. The idea of the proof follows the same lines as the872

untimed K-∀-resilience of timed automata. Assume we are given IRTA A1,A2. a, b, c are873

symbols not in the alphabets of A1,A2. Consider B in Figure 8 (left). It is easy to see that874

L(B)=(a, 1)(b, 1)(c, 11)(L(A1)+11), where L(A1)+k = {(a1, d1+k)(a2, d2+k) . . . (an, dn+k) |875

(a1, d1) . . . (an, dn) ∈ L(A1)}. Associate a fault model P(a) = 1, where the fault of a is 1.876

We construct an IRTA BP as shown in Figure 8 (right). Notice that in general, IRTAs are877

not closed under the fault operation; the enlarged guard in B would read 1 ≤ x ≤ 2, and878

reset y. This transition violates the integer reset condition; however, since the transition879

on 1 < x < 2 resetting y clearly does not lead to acceptance in BP , we prune away that880

transition resulting in BP as in Figure 8 (right). Indeed, this resulting faulty automaton is881

an IRTA.882

The language accepted by BP is L(B)∪ (a, 2)(b, 2)(c, 11)(L(A2)+11). Considering K = 2,883

BP is BTN in 2 steps after the fault if and only if L(A2) ⊆ L(A1). The EXPSPACE884

hardness of the timed K-∀-resilience of IRTA follows from the EXPSPACE completeness of885

the inclusion of IRTA. ◀886

▶ Theorem 32. K-∃-resilience for IRTA is PSPACE-Hard.887

Proof. Consider an IRTA A with alphabet Σ and the construction of an automata that888

uses a gadget shown below in Figure 9 (left). Let us call this automaton BΣ∗⊆A. It889

is easy to see that the L(BΣ∗⊆A)=(a, 1)(b, 1)(c, 11)
(
(Σ × R)∗ + 11

)
, where L(A1) + k =890

{(a1, d1 + k)(a2, d2 + k) . . . (an, dn + k) | (a1, d1) . . . (an, dn) ∈ L(A1)}. The Σ loop on a891

particular accepting state qe is responsible for acceptance of all timed word. Now, associate a892
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fault model P(a) → 1 with B, where the fault of a is 1. Let us call this enlarged automaton893

B(Σ∗⊆A)P
. We can prune away the transition 1 < x < 2 resetting y which does not lead894

to acceptance, and resulting in an IRTA with the same language, represented in Figure 9895

(right). The language accepted by B(Σ∗⊆A)P
is L(BΣ∗⊆A) ∪ (a, 2)(b, 2)(c, 11)(L(A) + 11).896

The accepting states are qe ∪ F , where F is the set of final states of A. Then BΣ∗⊆A is897

K-∃-resilient if and only if L(A) ̸= ∅. ◀898
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Figure 9 The IRTA BΣ∗⊆A (left) and the faulty IRTA B(Σ∗⊆A)P
(right)

▶ Remark 33. The untimed language inclusion problem is shown to be EXPSPACE-Complete899

in Remark 30. The emptiness checking of timed automata is done by checking the emptiness900

of its untimed region automaton. So, to show the hardness of untimed K-∀-resilient or901

K-∃-resilient problems for IRTA, it is sufficient to reduce the untimed language inclusion902

problem and untimed language emptiness problem of IRTA respectively. This reduction can903

be done by using the same gadget as shown in Theorem 31 and Theorem 32 respectively.904
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