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Reinforcement Symbolic Learning ?

Chloé Mercier[0000−0002−5069−3138], Frédéric Alexandre[0000−0002−6113−1878],
and Thierry Viéville[0000−0003−1031−3572]
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Abstract. Complex problem solving involves representing structured
knowledge, reasoning and learning, all at once. In this prospective study,
we make explicit how a reinforcement learning paradigm can be applied
to a symbolic representation of a concrete problem-solving task, modeled
here by an ontology. This preliminary paper is only a set of ideas while
feasibility verification is still a perspective of this work.

Keywords: Reinforcement Symbolic Learning· Ontology Edit Distances·
Models for Learning Sciences

1 Introduction

Understanding how humans solve problems and learn is a key issue in education,
and one of the transversal competencies sometimes referred to as “21st-century
skills”. At the cognitive level, we need to consider both exploration and exploita-
tion strategies directed either by a stimulus-driven behavior or toward different
concurrent goals in a goal-driven behavior [1]. At a computational level, the typ-
ical paradigm is reinforcement learning (RL) with a final reward (success of the
task) and some intermediate rewards (discoveries of affordances, partial result
regarding the goal), more precisely intrinsically motivated reinforcement learn-
ing [9]. The latter family of models is extensively used in cognitive neurosciences
to model high-level executive control functions (e.g., [2,8]).

In a recent development, we have introduced the operationalization of a cre-
ative problem-solving task, via the construction of an ontology1 [6]. The state
is defined by the configuration of the objects manipulated during the task and
some other observables regarding the learner2. The key point is that, in our case,
the internal state of the subject and the external state of the task material con-
stitute a complex structure, modeled here by a set of “statements”; that is to
say, in the ontological vocabulary, entities typed by classes and linked together

? Supported by Inria, AEx AIDE https://team.inria.fr/mnemosyne/en/aide.
1 Concretely the ontology role is to help specifying the representation of the world as

conceived by the learner, i.e., what is observed and what is to be inferred during
the learning activity, to solve the task. This also helps to verify the specification
coherence of the model, which allows us to infer some assumptions about non ob-
servable elements of the learning process, as detailed in the supplementary material
accessible here https://gitlab.inria.fr/line/aide-group/creacog.

2 See here for a video illustration.

https://team.inria.fr/mnemosyne/en/aide
https://gitlab.inria.fr/line/aide-group/creacog
https://line.gitlabpages.inria.fr/aide-group/creaonto/vid/creacube.mp4
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through relationships labeled by properties. Unlike usual mechanisms based on
Markov chains, the state space to consider in our RL setup is thus not reduced
to an unordered finite enumeration. We would like to study here to what extent
reinforcement learning could be designed on such state spaces.

In “symbolic reinforcement learning” (e.g. [3]), deep neural networks trans-
form raw perceptual data into a symbolic representation which is then fed to
a symbolic module that might perform, for instance, action selection. Other
approaches such as [4] propose architectures where a numerical reinforcement
algorithm communicates with a reasoner. Here we would like to explore another
track and make the reinforcement algorithm work directly on the symbolic data
space itself in a more integrative way, which we propose to call ”reinforcement
symbolic learning”.

2 Symbolic state space specification

General framework: An agent interacts with its environment. At a given discrete
time, it perceives a part of the environment, i.e., a stimulus, including a reward.
It infers elements (e.g., causes) from this input cue, including the computation
of the next action. In our case, we consider a potentially hypermnesic agent for
which any previous input, including rewards, might be part of the internal state.
This choice is directly linked to the notion of episodic memory, an episode here
being represented by an event sequence (a list of times of occurrence of atomic
events). This frees us from the “Markovian” constraint taking into account not
just one step in the past, at the cost of a multiplicative increase of the state
space. This is going to be manageable thanks to the hierarchical structure of
our state space, which encompasses a lot of information without the need for an
exhaustive enumeration. Furthermore, the state space no more reduces to a flat
enumeration of state values, while the number of possible ontology construction
of size S on a vocabulary if size V is an order of magnitude higher (i.e. roughly
in O(V 3 S)).

Input structure: The input is a hierarchical data structure time sequence, with
information regarding the task and the learner. Syntactically this corresponds
to tuples of named values {· · · , name : value, · · · }; each value has a ”type”
(determined by a predefined schema 3 making explicit the value set), and may
be either another tuple or a literal or the meta-value undefined (i.e., expected
by the schema, but not present in the given context). Literal values are taken
among a finite enumeration of qualitative values (e.g., a color set) or quantitative
values (i.e., finite precision bounded values).

Comparing two inputs: An input s is thus a tree data structure, equipped4 with
a a partial semi-order compatible with an extended semi-distance. This means

3 In the sense of https://json-schema.org.
4 We consider edit operations given an input (l+) adding, (l-) deleting or (l#) changing

a value in a list, (t+) defining, (t-) undefining or (t#) changing a value in a tuple,

https://json-schema.org
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that two values may be equal, indistinguishable (i.e., too close to be ordered, thus
equal or not), comparable or incomparable (i.e., too different to be compared).
This mechanism not only allows to define a distance between two inputs (as
the minimal cost of editing sequences transforming one input into another), but
also to make explicit which node has been added, deleted, or changed. Thus, it
offers a ”geodesic”, i.e., a path of transformation from one structure to another,
allowing us to interpolate intermediate input structure between both of them.

Inferring other elements from input: Each data structure is translated in terms
of RDF statements as follows. Each tuple is a ”subject” and each named value
corresponds to a relationship labeled by a ”property”, the value being the ”ob-
ject” targeted by the relationship. This transformation allows us to generate
an ontology5, offering the possibility to perform inferences, thus implementing
the learner behavior at a pure symbolic level. Conversely, each RDF ontology
graph may be mapped back onto the data structure, with tuples having the value
undefined if the corresponding statement is absent from the ontology after rea-
soning, and defined as the property object·s otherwise — hence the need for a
pre-defined schema.

3 Reinforcement learning on symbolic state space.

Let us consider a concrete example on the most common algorithm setup, i.e., Q-
learning with ε-greedy exploration, namely an action-state value function Q : S×
A→ R. At each step this function is updated, using the weighted average of the
old value and the new information, while the action is chosen to either maximize
the reward value, given the state, or with a small probability randomly explore
new actions. This algorithm is known as ”model-free”, however, we are using it
in a non-conventional way with inferences we generate from prior information
on symbolic states, bringing it somewhat closer to model-based algorithms.

The key point is that, given the largeness of the state space, each state value
is very likely different from another, so that one state value is very likely visited
once, making it impossible to use the usual update rule on tabulated values
Q[st, at]. However, given a new state value st and reward rt+1, we can easily
update all preceding Q-values in a neighborhood.

Considering an exponential weighting of radius ρ, for a learning factor α, a
discount factor γ, this writes, for all Q-values:

Q[s, at]+=α e−d(s,st)/ρ (rt+1 + γ maxaQ(st+1, a)−Q[s, at])
where d(s, st) stands for the predefined edit distance between both states. During
an epoch of T steps, it means that we have to compute O(T 2) edit distances,

each of these operations having a user-defined positive cost, related to the literal
extended semi-distances. The key point is that we consider restricted edit distances
preserving the tree filiation, computable in polynomial time [7], which would not have
been the case otherwise, or if considering the tree as a general graph or ontology
portion.

5 In the sense of RDF and OWL2.

https://www.w3.org/TR/WD-rdf-syntax-971002/
https://www.w3.org/TR/owl2-overview/
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and Q-value updates, but this complexity depends only on the trajectory length,
rather than on the state space itself.

The computation of the maximum reward prediction maxaQ(st+1, a), re-
quires to both (i) interpolate the Q-value given available tabulated values and (ii)
enumerate action candidates, including unprecedented actions. For (ii) consider
a set of potential actions ak including previous actions, predefined prototypical
actions, and putative actions generated by an external process. For (i) we can
use an exponential interpolation

Q(s, ak) =
∑
st,at

e−(d(s,st)+d(ak,at))/ρQ[st, at]
/∑

st,at
e−(d(s,st)+d(ak+,at))/ρ

in coherence with the previous design choice.

4 Conclusion

We have here all ingredients to apply well-established Q-learning mechanisms
not only on an enumeration of indexed states, but on a rich semantic structure,
which was the goal of this preliminary work. Meanwhile, in a companion study,
we explore ways to map such a semantic structure onto a neuronal vector space
[5]. We are making a prospective presentation here to share the scientific idea,
it goes without saying that this is only an open issue to be developed.
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