
HAL Id: hal-03328269
https://hal.inria.fr/hal-03328269

Submitted on 29 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DIVINE: Data Offloading In Vehicular Networks with
QoS Provisioning

Yasir Saleem, Nathalie Mitton, Valeria Loscri

To cite this version:
Yasir Saleem, Nathalie Mitton, Valeria Loscri. DIVINE: Data Offloading In Vehicular Networks with
QoS Provisioning. Ad Hoc Networks, 2021, 123. �hal-03328269�

https://hal.inria.fr/hal-03328269
https://hal.archives-ouvertes.fr

DIVINE: Data Offloading In Vehicular Networks with
QoS Provisioning

Yasir Saleem, Nathalie Mitton, Valeria Loscri

Inria Lille − Nord Europe, France

Abstract

In vehicular networks, vehicles may carry various types of data that need to be
offloaded to the RoadSide Units (RSUs) through Vehicle-to-Infrastructure (V2I)
communications when vehicles come into their coverage. RSUs are not widely
deployed everywhere, which causes intermittent connectivity between vehicles
and RSUs. In this paper, we propose DIVINE, a Data offloading In VehIcular
NEtworks scheme with QoS provisioning, which enables a vehicle to offload its
data to RSU directly through V2I communications or using other neighboring
vehicles through Vehicle-to-Vehicle (V2V) communications. DIVINE considers
the connectivity time of an offloading vehicle with the RSU, with other vehicles
heading either on the same or opposite direction, offloading capacity, expected
time to reach RSU and contact duration with neighboring vehicles. Additionally,
the Quality of Service (QoS) is an important consideration for data offloading
in vehicular networks due to the coexistence of urgent data to offload (e.g., ac-
cident or emergency data). Therefore, for QoS provisioning, DIVINE uses three
QoS functions: traffic classification, overload control and admission control. DI-
VINE is presented with algorithms and procedures, as well as with illustrative
examples. The performance evaluation in network simulator OMNeT++ with
Veins and SUMO frameworks shows that DIVINE outperforms other schemes in
terms of average offloading delay, maximum offloading delay and running time
for a varying number of vehicles, maximum speed values, number of RSUs and
RSUs’ capacity. It also best behaves in terms of amount of offloaded important
data.

Keywords: Data offloading, Road-side Unit (RSU), Quality of Service (QoS)
provisioning, Vehicular network, Vehicle-to-Vehicle (V2V) communication,
Vehicle-to-Infrastructure (V2I) communication.

1. Introduction

In vehicular networks, offloading is a core component. There are two types of
offloading in vehicular networks: data offloading [1] and task offloading [2]. Data
offloading is further classified into two types. Firstly, vehicles carry data that
has to be offloaded to the RoadSide Units (RSUs) and secondly, vehicles request

Preprint submitted to Ad Hoc Networks July 28, 2021

some services (such as online videos) from RSUs that have to be offloaded from
RSUs to requested vehicles. In task offloading, vehicles have some tasks to
calculate (such as processing of captured images), however vehicles are equipped
with limited computation power, therefore such tasks need to be offloaded to
RSUs where an edge server computes the task and the results are sent back
to the vehicles. Both, the data and task offloading are important in vehicular
networks because either the vehicles carry data that needs to be reached to the
decision support centres for taking appropriate actions timely or the vehicles
need to compute some tasks (e.g., route finding or image processing) which they
cannot perform themselves due to their limited resources. Therefore, for both
purposes, there is a need of some mechanisms that can offload both the data and
the tasks of vehicles efficiently and timely using the help of road infrastructures
(i.e., RSUs). We focus on the first type of offloading, i.e., the data carried by
vehicles to be offloaded to RSUs. Therefore, throughout this article, the data
offloading refers to this type.

A vehicle can carry various types of data, such as accident data of nearby
incident, emergency health data of patients, road traffic conditions, periodic
health monitoring data, entertainment (e.g., streaming of online gaming and
videos) and backup data. The format of data could be video, image or text.
Such data needs to be offloaded to RSUs through Vehicle-to-Infrastructure (V2I)
communications (i.e., V2I data offloading) when vehicles come into their cov-
erage so that RSUs, which are equipped with edge servers, can analyze and
process the data for taking required actions or forward the data to the cloud.
The RSUs have been developed for more than ten years, however they are still
not widely deployed everywhere [3]. Therefore, there is an intermittent connec-
tivity of RSUs that causes a vehicle to be not in the coverage of RSUs all the
time.

Some data carried by vehicles can be very urgent and needs to be offloaded
to RSUs as soon as possible, such as accident data of nearby incident and
emergency health data. However, with the intermittent connectivity of RSUs,
there might be substantial delay in offloading such data to RSUs. Vehicle-to-
Vehicle (V2V) communications (i.e., V2V data offloading) can be used to reduce
such an offloading delay. For instance, if there is another vehicle heading on the
same direction at a higher speed or another vehicle on the opposite direction
that is going to meet an RSU sooner, it can be used to relay the vehicle’s data
up to an RSU. Moreover, since the vehicles are moving, their contact duration
needs to be considered while selecting V2V data offloading.

The V2I and V2V data offloading should be decided based on the connec-
tivity modeling, such as the connectivity time of a vehicle with an RSU, con-
nectivity time of a vehicle with other vehicles heading on the same or opposite
direction, offloading capacity (i.e., the maximum data that could be offloaded)
and expected time to reach RSU.

There are some Quality of Service (QoS) considerations that are imperative
to be provisioned. For instance, since a vehicle carries various types of data,
urgent data must be offloaded first. Additionally, how to avoid RSUs from
getting overloaded for smooth data offloading, how to offload urgent data if an

2

RSU is overloaded and finally, which data to offload using V2V data offloading
should be considered.

In this paper, we propose DIVINE, a Data offloading In VehIcular NEtworks
scheme with QoS provisioning. The main objective is to offload vehicles’ data to
RSUs as soon as possible. DIVINE models the connectivity for deciding V2I or
V2V data offloading. It decides V2V data offloading based on the type of data
to offload, contact duration of vehicles and the expected time to reach the next
RSU. It ensures the QoS by using the three functions of traffic classification,
overload control and admission control. To the best of our knowledge, there
does not exist any data offloading scheme in the literature that jointly considers
and investigates these features.

DIVINE provides three main contributions to offer an efficient data offload-
ing system for vehicular networks which are summarized as follows:

C.1 DIVINE models and characterizes the connectivity of a vehicle with an
RSU, with vehicles heading on the same and opposite direction, the of-
floading capacity and the expected time to reach an RSU by a vehicle.

C.2 DIVINE provisions the QoS by using the functions of traffic classification,
overload control and admission control. The traffic classification prioritizes
the data for offloading into three priorities: high, medium and low. The
overload control defines the threshold values of the maximum allowed loads
at the RSUs for medium and low priority data. The admission control
allows RSUs and vehicles to stop servicing an existing vehicle in order to
provide service to another vehicle having higher priority data and avoiding
the offloading of low priority data through V2V data offloading.

C.3 DIVINE integrates data offloading procedures and algorithms with QoS
provisioning, specifically the selection of node (RSU/vehicle) for data of-
floading request, the processing of data offloading request at an RSU and
a vehicle, and the data offloading decision. Additionally, we present illus-
trative examples for better understanding of V2I and V2V data offloading
procedures.

The remainder of this paper is organized as follows. Section 2 presents the
related work of existing data offloading schemes, as well as QoS provisioning
schemes in vehicular networks. It also describes how our proposed scheme is
positioned with respect to the literature and how it is novel. Section 3 presents
the system model that is comprised of three layers: vehicles, edge and cloud.
It also provides the assumptions that are considered in this paper. Section 4
presents the connectivity modeling of vehicles, specifically, the connectivity of
vehicles with RSUs and with other vehicles (heading on the same and oppo-
site directions). It also models the offloading capacity and the expected time
to reach an RSU. Section 5 presents our proposed solution DIVINE. It first
provides an overview of DIVINE followed by the QoS provisioning using the
functions of traffic classification, overload control and admission control. Then

3

it presents the algorithms and procedures of data offloading followed by illustra-
tive examples. Section 6 analyses the message overhead and time complexity of
DIVINE. Section 7 presents the performance evaluation, results and discussion.
It first presents the simulation setup and parameters, performance metrics and
comparison schemes. Then it presents the detailed performance evaluation with
respect to the varying number of vehicles, vehicles’ maximum speed, number of
RSUs and the RSUs’ capacity. Finally, section 8 presents the conclusion and
future work.

2. Related Work

This section presents the related work and discusses how DIVINE is different
and novel from the state-of-the-art related works. As discussed earlier, offloading
in vehicular networks has mainly been categorized into data offloading and task
offloading. Much research works focus on task offloading in vehicular networks,
however there are few studies that focus on data offloading in vehicular networks.
Since our focus is on data offloading in this article, therefore we cover the state-
of-the-art related to data offloading in vehicular networks.

Huang et al. [3] proposed V2V2I offloading that constructs multihop V2V
paths connected towards RSUs in which a vehicle normally uses cellular network
for data offloading. However, when a vehicle comes into the coverage of another
vehicle (i.e., offloading agent) that has a connected k-hop V2V path towards
RSU, the vehicle uses this V2V path to get connected to RSU for data offloading.
The authors studied the selection of offloading agent, the construction of k-hop
V2V path using Mobile Edge Computing (MEC) and path repairing if the k-
hop V2V2I offloading path is disconnected. Although we are also considering
V2I and V2V data offloading, however we are not considering multihop V2V
path because each vehicle contains data that needs to be offloaded to RSU.
Since, each vehicle has limited connectivity time with RSU, therefore if it has
more data to offload that needs higher connectivity time, then even if there is
a multihop path and it is part of this multihop path, it cannot provide service
to other vehicles in relaying their data.

Ancona et al. [4] dealt with Floating Car Data (FCD), i.e., the informa-
tion collected by vehicles that needs to be transmitted to control centers for
analysis. FCD is used for various applications, such as monitoring of vehicles
remotely, traffic management and urban sensing. The amount of FCD is gen-
erally huge that is collected by a large number of vehicles and uploaded to the
control centers through cellular communications by each vehicle. This causes
the cellular network to be overloaded with FCD. The authors tried to solve this
problem of relieving the overloaded cellular networks by utilizing V2V commu-
nications for FCD offloading. Hence, vehicles offload their FCD to a subset of
uploader vehicles using Dedicated Short-Range Communication (DSRC) tech-
nology and subsequently, such uploader vehicles aggregate all FCD and upload
the aggregated FCD to the control centers through cellular communications. For
aggregating FCD, the authors explored the aggregation models and proposed a
simple distributed heuristic algorithm that achieves near-optimal performance

4

under any FCD aggregation model. This work is mainly focused on partially
relieving the cellular networks from FCD by aggregating the FCD at uploader
vehicles, however our focus is mainly on data offloading from vehicles to RSUs
either directly through V2I communications or indirectly through V2V commu-
nications without aggregating the data, as all the data need to be reached to
RSUs. Additionally, there is no QoS provisioning in this work.

Xiangming et al. [5] investigated the integration of cellular and opportunis-
tic vehicular networks by considering the contact duration of vehicles for mo-
bile data offloading. Considering the contact duration, the authors proposed a
mathematical framework for contact-aware optimal resource allocation offload-
ing scheme that was formulated as utility maximization problem under limited
storage constraints of vehicles. The authors evaluated the performance in MAT-
LAB by using Shanghai and Beijing vehicular mobility traces and compared with
other schemes. This work is about data offloading from cellular network to ve-
hicles in which the vehicles further disseminate the data to other vehicles in an
opportunistic manner, mainly focusing on the contact duration among vehicles.
However, on the other hand, we focus on data offloading from vehicles to RSUs
in which the vehicles have data that needs to be offloaded to RSUs.

Lee et al. [6] proposed a data offloading technique for the reduction of
cellular traffic load for in-vehicle data services requests. The authors assumed
that the majority of in-vehicle service requests are about some popular content
that cause redundancy in cellular traffic. Hence, the relay nodes (also called
offloading positions) in vehicular networks keep the popular content and deliver
them to moving vehicles that request the content. In this manner, vehicles do
not need to use cellular network that results in the reduction of cellular traffic
load. The authors utilized vehicles trajectories and formulated the selection
of offloading position as spatio-temporal set-covering problem. Subsequently,
using the vehicles trajectories, the authors proposed a time-prediction based
set-covering algorithm to select the minimum number of offloading positions.
This work is also about data offloading from cellular network to vehicles using
intermediate relay nodes (offloading positions) for reducing cellular traffic load,
however, we are focused on data offloading from vehicles to RSUs.

Sun et al. [7] studied the cooperative downloading mechanism of online video
content in vehicular networks to offload the cellular network as an optimization
problem. The RSUs fetch the appropriate data from the Internet by acting as
traffic managers and offload them to vehicles. The authors designed a storage
time aggregated graph based on vehicles’ mobility prediction and throughput
estimation for planning transmission scheme. Subsequently, they proposed an
iterative greedy algorithm for a sub-optimal solution with a polynomial time
complexity. This work is also about video data offloading from cellular network
to vehicles using RSUs for reducing cellular traffic load, however, we are focused
on data offloading from vehicles to RSUs.

Feng and Feng [8] worked with non-uniformity of data traffic that causes
cellular network in hot zones, mostly at street intersections, to be overloaded
because of the pedestrians surfing the mobile Internet during waiting at red
light, while inefficient use of wireless resources of cellular networks in light-

5

loaded (i.e., non-intersection) zones. The authors proposed a vehicle-assisted
offloading (VAO) scheme to solve this problem in which the BSs of light-loaded
cellular networks offload delay-insensitive data to vehicles, and subsequently
after entering the street intersection and stopping at the red light, the vehicles
send the data to pedestrians. In this manner, the pedestrians do not use cellular
network to surf the Internet that reduce their load. This work also investigated
reducing the cellular traffic load by providing the content to pedestrian from
vehicles. However, we do not consider pedestrian in our work and do not consider
cellular traffic overload. Rather, we are mainly focused on data offloading from
vehicles to RSUs.

Song et al. [9] researched on backward data delivery for V2V data trans-
missions under the problematic scenario of traffic hole in which no vehicles are
available to relay the data of source vehicle towards the destination vehicle.
The authors took assistance of RSUs for data transmissions and proposed RSU-
Assisted Backward Delivery (RABD) that employed two methods: backward
data relaying among vehicles and the data relaying by RSUs. For reducing the
resource consumption and fulfilling the various demands of data delivery, the
authors investigated the single-copy and multiple copies schemes, respectively
and evaluated their trade-offs and performance through simulations in NS-2 and
SUMO using Taxi-ROMA dataset. However, firstly, this is a routing problem
of data delivery and secondly, it is mainly focused on backward data delivery
under the traffic hole problem, while we are mainly focused on V2I and V2V
data offloading.

Guntuka et al. [10] proposed a Smart Ranking based Data Offloading
(SRDO) scheme for the selection of RSU and to switch from cellular network
to RSU whenever possible. SRDO is based on Software Defined Networking
(SDN) controller for the centralized selection of RSUs using Q-learning. SRDO
relies on a centralized entity, while DIVINE is a distributed scheme without any
centralized entity. Additionally, SRDO does not consider V2V data offloading.
The QoS considerations in this work include packet loss, delay and throughput,
while DIVINE uses the QoS functions of traffic classification, overload control
and admission control.

Wu and Zheng [11, 12] investigated an important QoS metric of delay in
vehicular networks in a highway scenario which is an important metric for data
offloading in vehicular networks. The authors analysed the uplink local delay
[11] and download local delay [12] using stochastic geometry in edge-based ve-
hicular networks. They first derived an analytical model to study the average
uplink local delay of sending a packet from a vehicle to RSU node and the aver-
age downlink local delay to receive a packet by a vehicle from RSU. The vehicles
and RSUs are spatially distributed following the independent one-dimensional
homogeneous Poisson point process model and they use carrier sense multiple
access (CSMA) for channel access.

[13] studied the problem of RSU deployment in a vehicular network and
studied the information delivery delay. It considers a highway scenario in which
two neighboring RSUs cannot communicate with each other and the vehicles
are distributed on the road containing the information of road condition that

6

is randomly generated between the two neighboring RSUs. Considering this
scenario, it developed a mathematical model to model the relationship between
the deployment distance of two neighboring RSUs and the delay to deliver the
road condition data by considering the speed and density of vehicles and the
probability of an incident. This model is applicable for RSUs deployment in
estimating the maximum allowed distance between two neighboring RSUs.

Wang and Zheng [14] considered a one-way highway scenario having one
entry and exit with multiple uniformly distributed RSUs. The authors anal-
ysed the connectivity probability by deriving an analytical model in which the
highway road is distributed into multiple segments for which the connectiv-
ity probability is derived using probability distribution theory. The analytical
model considers the arrival rate of vehicles, speed, the number of RSUs and
the probability of vehicle’s driving-through at the entry and exit. Finally, the
connectivity probability of each sub-segment is used to derive the connectivity
probability of the highway road.

Li et al. [15] proposed an adaptive QoS-based routing protocol for vehicular
networks (AQRV) that considered three QoS metrics: delay, packet delivery
ratio and probability of connectivity. It selected the routes that satisfy these
QoS metrics by mathematically formulating as a constrained optimization prob-
lem using ant colony optimization. Sodhro et al. [16] investigated QoS issues
in vehicular networks and provides three contributions. Firstly, it proposed a
QoS-aware green, sustainable, reliable and available (QGSRA) algorithm for
multimedia transmission in edge-based vehicular networks. Secondly, it imple-
mented a QoS optimization for QGSRA algorithm. Thirdly, it proposed the
QoS metrics of energy efficiency, packet loss ratio and coverage for QGSRA
algorithm.

In [17], we proposed V2I-Q, a V2I data offloading scheme for vehicular net-
work with QoS provisioning. V2I-Q offloads the data using V2I data offloading.
It also uses QoS functions of traffic classification, overload control and admis-
sion control for QoS provisioning. Our current paper is an extension of [17] and
we differ with it in several ways. We have enabled vehicles to take advantage
of data offloading through other vehicles, i.e., we have added V2V data offload-
ing and presented the algorithms, procedures and illustrative examples for V2V
data offloading. We have also modeled the connectivity of vehicles with other
vehicles heading on the same or opposite direction, as well as the expected time
to reach the next RSUs. We also extended the QoS functions of overload control
and admission control and applied them on vehicles. We have compared our
proposed scheme DIVINE with V2I-Q as well.

Compared to the above works, our proposed scheme DIVINE is different from
them in many ways. For instance, we focus on data offloading from vehicles to
RSUs using V2I and V2V data offloading. We provide the QoS using three
functions of traffic classification, overload control and admission control. We
use DSRC technology based on IEEE 802.11p which is dedicated for vehicular
networks. Finally, we take various considerations into data offloading procedure,
such as type of data to offload, contact duration of vehicles and the expected
time to reach the next RSU.

7

Figure 1: System model.

3. System Model

We consider a vehicular network having K = {1, 2, . . . ,K} RSUs and N =
{1, 2, . . . , N} vehicles such that the total number of RSUs is less than the total
number of vehicles in the network, i.e., K < N . The network has intermittent
connectivity so a Vehicle i ∈ N can have connectivity with an RSU k ∈ K,
however, sometimes, a Vehicle i enters an area with very low or no connectivity
with RSUs but can have connectivity with other neighboring vehicles. However,
it could also happen that a Vehicle i has connectivity neither with an RSU nor
with other vehicles. The system model is presented in Figure 1 and is comprised
of three layers: vehicles, edge computing and cloud computing layers.

The first layer is comprised of vehicles on east-bound and west-bound high-
way roads having multiple lanes on each direction. A vehicle offloads its data to
RSU either directly or through other vehicles. The vehicles move at a variable
speed. The on-board unit (OBU) is mounted on each vehicle to provide wireless
communication capability. The vehicles communicate with RSUs and other vehi-
cles using DSRC technology that is based on IEEE 802.11p standard [18]. The
vehicles support V2I communications, V2V communications and store-carry-
forward mechanisms. V2I communication is used to communicate with RSUs.
V2V communication is used to communicate with other vehicles. Store-carry-
forward mechanism [19] is used when a vehicle has neither connectivity with
an RSU nor with other vehicles. We assume a vehicle can be connected to a
maximum one RSU at a time. Each vehicle knows its speed and the distance
of its last connected RSU. All this information (vehicle’s speed, distance of its
last connected RSU, supported data rate etc.) is broadcast through periodic
control messages and hence, each vehicle approximates the expected time to
reach the next RSU based on information received from neighboring vehicles.
The connectivity of vehicles with RSUs varies from lane to lane as illustrated
in the system model (e.g., the red Vehicle i moving on lane x that is farther
from the RSU k1 has shorter connectivity than the blue Vehicle j moving on

8

lane y that is nearer to the RSU k1). We assume all vehicles have the same
coverage area, while RSUs have higher coverage area, and therefore, if vehicles
have connectivity with RSUs (i.e., vehicles have RSUs in their coverage area),
then implicitly, RSUs also have connectivity with vehicles.

The second layer is comprised of RSUs and edge servers. Each RSU is
connected through broadband connection with an edge server having storage
and processing capabilities. Each RSU is also connected with previous and
next RSUs and communicate through broadband connection as well. The RSUs
collect data from vehicles using DSRC communication technology and send this
data to their connected edge server. Subsequently, the edge server forwards this
data to the cloud. We assume that the coverage areas of different RSUs do
not overlap, and as a consequence, a vehicle does not have more than one RSU
in its coverage at a time and it needs to establish connection with each RSU
separately. This layer supports V2I and Infrastructure-to-Infrastructure (I2I)
communications methods.

The third layer is the cloud layer. After RSUs send their collected data
from vehicles to edge servers, each edge server forwards data to the cloud for
a centralized storage and management. We do not deal with cloud layer and
therefore, this third layer is out of the scope of this paper.

Throughout the paper, the vehicle that is offloading its data to RSU or other
vehicle is referred as the offloading vehicle, while the vehicle that is receiving
data from offloading vehicle is referred as the offloaded vehicle. Table 1 sums
up all the notations used in this paper.

4. Connectivity Modeling and Characterization

A vehicle carries data that needs to be offloaded to RSU through either
V2I or V2V data offloading. The connectivity time plays an important role in
data offloading, more specifically, in calculating the offloading capacity, i.e., how
much data a vehicle can offload to RSU or other vehicles. The connectivity time
of a vehicle varies for RSU, neighboring vehicle heading on the same direction
and neighboring vehicle heading on the opposite direction.

In this section, we first model and characterize the connectivity time of a ve-
hicle in the three above mentioned cases. Subsequently, we model the offloading
capacity and the expected time to reach the RSU (that is a metric for selecting
a neighboring vehicle in V2V data offloading).

4.1. Connectivity Time

4.1.1. Connectivity Time with RSU

In this case, a vehicle has direct connectivity with an RSU. After having an
RSU in the coverage, a vehicle sends a data offloading request to RSU containing
the amount of each type of data it wants to offload, its speed and data rate. As
a first step, the RSU calculates the connectivity time of a vehicle with it before
analyzing the data offloading request as follows:

9

Table 1: Notations used in this article.

Notation Description
K Set of RSUs
N Set of vehicles
P Set of data priorities
dk,x Coverage area of lane x by RSU k
di Coverage area of Vehicle i
ri Data rate of Vehicle i
Vi Speed of Vehicle i
Hi Heading direction of Vehicle i
T c
i,k Connectivity time of Vehicle i with RSU k

T c
i,l Connectivity time of Vehicle i with Vehicle l

Smax
i,k Maximum allowed data size to offload by RSU k to Vehicle i

Smax
i,l Maximum allowed data size to offload by Vehicle l to Vehicle i

τi,k Registration time of a Vehicle i with RSU k
τi,l Registration time of a Vehicle i with Vehicle l

Shigh
i Size of high priority data carried by Vehicle i

Smed
i Size of medium priority data carried by Vehicle i

Slow
i Size of low priority data carried by Vehicle i

γmax,med
k

Threshold value of maximum allowed medium priority data at RSU k

γmax,low
k

Threshold value of maximum allowed low priority data at RSU k

ωmin,c
v2v Threshold value of the least allowed contact duration between vehicles for V2V data offloading

Ωarr
RSU Threshold value of the allowed difference of reaching RSU for two vehicles in V2V data offloading
ϑk Current load at RSU k
ϑmax
k Maximum tolerable load at RSU k

Φgrant
k,i

Granted set from RSU k to Vehicle i containing sizes of different priority data to offload

Smax,t
i Maximum allowed requested data size
Tarr
i,RSU Expected time to reach RSU by Vehicle i

Twait
i,v2i Waiting time duration for Vehicle i after sending data offloading request in V2I data offloading

Twait
j,v2v Waiting time duration for Vehicle j after sending data offloading request in V2V data offloading

T ofld
i,j Time required by Vehicle i to offload its data to Vehicle j

lrsui The distance of last connected RSU with Vehicle i
nbi Neighboring nodes (RSU or vehicles) of Vehicle i

nbsent
i Neighboring nodes (RSU or vehicles) of Vehicle i to whom it has requested data offloading

T lifetime
offl,req

Offloading request lifetime

T c
i,k =

di,x
Vi
− τi,k − Twait

i,v2i (1)

where i ∈ N is the vehicle that requested to offload its data to RSU k ∈ K, di,x
is the distance traveled by Vehicle i on lane x under the coverage of RSU k (as
shown of Figure 1), Vi is the speed of Vehicle i, τi,k is the registration time of
Vehicle i with RSU k and Twait

i,v2i is the waiting time for Vehicle i after sending
data offloading request to RSU k in V2I data offloading.

4.1.2. Connectivity Time with Vehicles Heading on the Same Direction

When two vehicles are moving on the same direction, they will remain con-
nected for a longer period of time depending upon the difference of theirs speeds.

10

The connectivity time for this case is calculated as:

T c
i,j =

min(di, dj)

|Vi − Vj |
− τi,j − Twait

i,v2v (2)

where i, j ∈ N are two vehicles heading on the same direction, di and dj are
the coverage areas of Vehicles i and j, Vi and Vj are their speeds, |Vi − Vj |
is the modulus of difference of speeds of both vehicles, τi,j is the registration
time of Vehicle i with its neighboring Vehicle j and Twait

i,v2v is the waiting time
of Vehicle i after sending a data offloading request to neighboring Vehicle j in
V2V data offloading. Note that although we considered all the vehicles to have
same coverage area, for the sake of generalization, we used min(di, dj) so that
even if the coverage areas of Vehicles i and j are different, our equation can still
hold.

4.1.3. Connectivity Time with Vehicles Heading on the Opposite Direction

When two vehicles are moving on the opposite direction, they will stay con-
nected for a shorter duration and the connectivity will be limited. If there is a
slight difference in their speeds, the connectivity time will be almost half of the
connectivity time of a vehicle with RSU. The connectivity time for this case is
calculated as:

T c
i,l =

min(di, dl)

Vi + Vl
− τi,l − Twait

i,v2v (3)

where i ∈ N is a vehicle that wants to offload its data to neighboring Vehicle
l ∈ N heading on the opposite direction, di and dl are the coverage areas
of Vehicle i and neighboring Vehicle l, Vi and Vl are their speeds, τi,l is the
registration time of a Vehicle i with its neighboring Vehicle l and Twait

i,v2v is the
waiting time for Vehicle i after sending a data offloading request to neighboring
Vehicle l in V2V data offloading. We used min(di, dl) for the same reason
discussed above.

4.2. Offloading Capacity

Offloading capacity is defined as the maximum allowed data size that a
vehicle can offload to RSU or other vehicles within the connectivity time. The
offloading capacity is directly proportional to the connectivity time. If the
connectivity time is higher, the offloading capacity will be higher, while if the
connectivity time is lower, the offloading capacity will also be lower. It is a
metric for limiting the size of data offloading and is calculated as:

Smax
i,j∈{K,N} = T c

i,j∈{K,N} ×min(ri, rj∈{K,N}) (4)

where i ∈ N is a vehicle wanting to offload its data either to RSU j ∈ K or other
Vehicle j ∈ N , ri is the data rate of Vehicle i and rj∈{K,N} is the data rate
of RSU j ∈ K or Vehicle j ∈ N . Note that it might be possible that vehicles
are using different devices that support different data rate. For example, it can

11

happen that Vehicle i supports higher data rate, while RSU or other vehicle to
which it is going to offload its data supports lower data rate that can cause data
loss. Therefore, we consider the minimum data rate min(ri, rj∈{K,N}) of both
offloading Vehicle i and offloaded RSU j ∈ K or Vehicle j ∈ N for smooth data
transfer.

4.3. Expected Time To Reach an RSU

As vehicles exchange the distance they have traveled from the last RSU
they encountered and we assume a highway scenario which is a straight road,
this information can be used by vehicles heading on the opposite direction to
estimate the expected time to reach the next RSU (i.e., arrival time to next
RSU). Indeed, in such a scenario, the last encountered RSU for a vehicle will be
the next RSU to meet for a vehicle heading on the opposite direction. We use it
in the selection of a neighboring vehicle in V2V data offloading. It is calculated
as:

T arr
i,RSU =

lrsuj

Vi
(5)

where i ∈ N is a vehicle approximating the expected time to reach the next
RSU, lrsuj is the distance of last connected RSU with a neighboring Vehicle
j ∈ N heading on the opposite direction and Vi is the speed of Vehicle i.

5. DIVINE: Proposed Solution

This section presents our proposed solution, DIVINE. It first presents an
overview of DIVINE followed by QoS provisioning. Then it presents algorithms
and procedures of node (RSU/vehicle) selection for data offloading request, pro-
cessing of data offloading request at RSUs and vehicles, and data offloading
decision. Finally, it presents illustrative examples for better understanding of
DIVINE.

5.1. Overview

A vehicle carries multiple types of data having P = {high,medium, low}
priorities that needs to be offloaded with respect to the priority to RSU either
directly or through other vehicles with QoS provisioning, i.e., the offloading will
be performed with respect to the priority of the data (see Section 5.2.1), with
overload control at RSU (see Section 5.2.2) and with admission control at both
RSUs and vehicles (see Section 5.2.3).

When vehicles have connectivity with RSUs, they use V2I data offloading,
while when they do not have connectivity with RSUs but have connectivity with
other vehicles, they may offload their data to RSUs through other vehicles using
V2V data offloading in a distributed manner within some conditions. In V2V
data offloading, a vehicle may select a neighboring vehicle heading either on
the same or opposite direction. When vehicles neither have connectivity with
RSUs nor with other vehicles, they store their data, keep it and when they

12

find RSUs or other vehicles in their coverage, they offload their data to them.
When a vehicle wants to offload its data through V2I or V2V data offloading,
it first needs to obtain the permission grant from RSU or vehicle by sending a
data offloading request, respectively, for each type of its data in order to ensure
that higher priority data gets offloaded before lower priority data (see Section
5.3). Subsequently, RSUs or vehicles processes the data offloading request and
decides whether and how much data to grant and sends a data offloading reply
back to the vehicle (see Section 5.4). Finally, on permission granted, the vehicle
takes offloading decision and starts data offloading (see Section 5.5).

5.2. Quality of Service (QoS) Provisioning

The QoS can be provisioned through various functions, such as traffic classi-
fication, admission control, traffic conditioning, scheduling and overload control
[20]. DIVINE uses three functions: traffic classification, overload control and
admission control for QoS provisioning.

5.2.1. Traffic classification

The data carried by the vehicles is classified into three priorities: high (urgent
data, such as accident and emergency health data), medium (standard data,
such as traffic conditions, periodic health monitoring data, and data streaming,
i.e., online gaming, multimedia applications and video conferencing), and low
(delay-tolerant data, such as advertisement, updates and backup data). The
QoS is provisioned based on the priority and the size of data. For instance, a
vehicle first offloads the high priority data, then the medium priority data and
finally the low priority data. If a vehicle has multiple types of data with the
same priority, it uses a greedy approach and first offloads the data having the
largest size.

5.2.2. Overload control

We use overload control in order not to overload the RSUs and keep RSUs’
resources available for future vehicles having high priority data. For this pur-
pose, we define an offload criterion by considering threshold values of the max-
imum allowed load at RSU for medium and low priority data (e.g., γmax,med

k

and γmax,low
k are the threshold values of maximum allowed medium and low

priority data, respectively) for RSU k. For instance, an RSU k will allow a
Vehicle i having medium priority data to offload its data if the current load ϑk
at RSU k is below the threshold value of maximum allowed medium priority
data γmax,med

k (i.e., ϑk < γmax,med
k). Similar is the case for low priority data.

Note that there is no threshold value of maximum allowed high priority data
because an RSU k will always try to service vehicles having high priority data
even if it has to remove existing vehicles offloading medium or low priority data
(see next Section 5.2.3).

13

5.2.3. Admission control

DIVINE also provisions QoS using admission control function in two ways.
Firstly, an RSU has the authority to stop servicing a vehicle that is currently
offloading its data in order to provide service to another vehicle. As an example,
in V2I data offloading, a Vehicle i having high priority data wants to offload
its data to RSU k. However, the current load ϑk at RSU k is already equal
to the maximum tolerable load ϑmax

k (i.e., ϑk = ϑmax
k). In this case, in order

to allow the Vehicle i to offload its high priority data, the RSU k will stop
servicing one of the Vehicle j that is currently offloading its low priority data (or
medium priority data if there is no vehicle with low priority data) to reduce its
current load ϑk and will grant permission to Vehicle i to offload its high priority
data. Similarly, in V2V data offloading, if an offloaded vehicle j is receiving
medium priority data from a neighboring vehicle l and it receives a new data
offloading request for high priority data from another neighboring vehicle i, then
the offloaded vehicle j has the authority to stop servicing currently offloading
vehicle l having medium priority data in order to allow the new vehicle i to
offload its high priority data.

Secondly, in V2V data offloading, a vehicle can only offload its high and
medium priority data to other vehicles. It will not offload its low priority data
to other vehicles, instead it will keep it and will offload it to RSU through V2I
data offloading when it gets connectivity to RSU.

5.3. Node Selection for Data Offloading Request
Algorithm 1 presents the procedure of selection of node (i.e., RSU or neigh-

boring vehicle) to request data offloading. There are two cases depending on
the connectivity of Vehicle i with RSU or other neighboring vehicles. A Ve-
hicle i is aware about its neighboring nodes nbi, as well as the neighboring
nodes nbsenti to whom it has requested data offloading within offloading request

lifetime T lifetime
offl,req interval. The list nbsenti is used to avoid requesting data of-

floading again to neighboring nodes that are requested within T lifetime
offl,req interval.

A vehicle first sends a data offloading request to RSU or neighboring vehicles
in order to obtain permission to offload its data.

5.3.1. Case 1: Direct Connectivity with RSU

In the first case, as presented in Part I of the algorithm, when a Vehicle i has
direct connectivity with RSU k (i.e., k ∈ nbi), it does not check its neighboring
vehicles. Rather, it requests V2I data offloading by sending a data offloading
request to RSU k by informing the RSU k about its parameters (e.g., speed Vi
and data rate ri) and the sizes of each priority data it wants to offload (i.e.,

Shigh
i , Smed

i and Slow
i). Subsequently, it waits for a time duration Twait

i,v2i to
receive a data offloading reply from RSU k.

5.3.2. Case 2: No Connectivity with RSU But Direct Connectivity with Neigh-
boring Vehicles

In the second case, a Vehicle i has no connectivity with RSU but has direct
connectivity with neighboring vehicles (nbi) heading either on the same or oppo-

14

Algorithm 1 Node selection for data offloading request.

1: Vehicle i is aware about nbi, nb
sent
i ;

2: /* Part I: V2I data offloading request to RSU k. */
3: if k ∈ nbi then
4: Send Vi, ri, S

high
i , Smed

i and Slow
i to RSU k;

5: Wait for Twait
i,v2i duration;

6: /* Part II: Selection of neighboring vehicle for V2V data offloading request. */
7: else
8: Calculate T arr

nbi,RSU using Eq. (5);
9: nbsorti ← Sort nbi based on min (T arr

nbi,RSU);
10: reqSent← false;
11: while (!reqSent AND nbsorti 6= ∅) do
12: j ← u ∈ nbi | T arr

u,RSU = min
u∈nbi

T arr
u,RSU ;

13: nbi.remove(j);
14: if j /∈ nbsent

i then
15: if (Hi = Hj) then
16: Calculate T c

i,j using Eq. (2);
17: else if (Hi 6= Hj) then
18: Calculate T c

i,j using Eq. (3);
19: end if
20: if (T arr

j,RSU ≥ T arr
i,RSU) OR (|T arr

i,RSU − T arr
j,RSU | < Ωarr

RSU) then
21: /* Quit because data offloading is not preferable. */
22: return;
23: else if (T c

i,j < ωmin,c
v2v) then

24: continue;
25: else
26: Send data offloading request to Vehicle j;
27: reqSent← true;
28: nbsent

i ← nbsent
i ∪ j;

29: Wait for Twait
i,v2v duration;

30: end if
31: end if
32: end while
33: end if

site direction and the Vehicle i checks whether to request V2V data offloading.
Just to recall, in V2V data offloading, the vehicles only offload their high and
medium priority data, while low priority data is offloaded only through V2I data
offloading. As presented in Part II of the algorithm, Vehicle i first calculates
the expected time to reach the next RSUs T arr

nbi,RSU for its neighboring vehicles
nbi using Eq. (5). It then checks its neighboring vehicles from nbi one by one
until either it finds a suitable neighboring vehicle to request data offloading
(i.e., reqSent = true) or it checks all the neighboring vehicles and no more
neighboring vehicles are available (nbsorti = ∅).

The Vehicle i selects a Vehicle j from neighboring vehicles nbi having the
least expected time to reach the next RSU (i.e., j ← u ∈ nbi | T arr

u,RSU =

15

min
u∈nbi

T arr
u,RSU). Depending on the heading direction of neighboring Vehicle j, the

Vehicle i calculates its connectivity time T c
i,j with neighboring Vehicle j using

Eq. (2) or (3), if the heading direction of both vehicles is same (i.e., Hi = Hj) or
opposite (i.e., Hi 6= Hj), respectively. Subsequently, Vehicle i checks whether
data offloading is preferable. There are three scenarios in which V2V data
offloading is not preferred. Firstly, if the expected time to reach the next RSU
T arr
j,RSU for neighboring Vehicle j is greater than or equal to the expected time

to reach the next RSU T arr
i,RSU for Vehicle i itself, it means that the Vehicle i can

reach the next RSU earlier than or at the same time as neighboring Vehicle j.
Secondly, the difference of the expected time to reach RSUs for Vehicles i and
j is lower than the threshold value Ωarr

RSU of the allowed difference of reaching
RSU for two vehicles in V2V data offloading which means that there is a slight
difference for Vehicle i and j to reach RSUs. Since the list nbsorti is sorted based
on the minimum expected time for neighboring vehicles to reach the next RSU,
therefore it is obvious that all the subsequent vehicles in the list nbsorti will also
have greater expected time to reach the next RSU than Vehicle i, as well as
the difference of expected time to reach RSUs for Vehicles i and subsequent
vehicles in the list nbsorti will be lower than the threshold value Ωarr

RSU . Hence,
Vehicle i quits and does not request V2V data offloading because it can offload
its data directly to RSU through V2I data offloading sooner. Thirdly, if the
connectivity time of Vehicles i and j is lower than the threshold value ωmin,c

v2v of
the least allowed contact duration between vehicles for V2V data offloading, it
means that the connectivity time is too short and it is better not to offload the
data. In this scenario, the Vehicle i checks the next neighboring vehicle in the
list nbsorti .

Otherwise, it is preferred to exploit V2V data offloading and hence, Vehicle
i sends the data offloading request to Vehicle j. It then sets the flag reqSent to
true and adds the Vehicle j into requested neighbor list nbsenti . Finally, Vehicle
i waits for a time duration Twait

i,v2v to receive a data offloading reply from Vehicle
j.

5.4. Processing of Data Offloading Request

Once data offloading is requested by Vehicle i to either RSU k or neighboring
Vehicle j, it is being processed differently by RSU k and neighboring Vehicle j.
The RSU k analyzes the sizes of each priority data at Vehicle i and calculates
which and how much data it can allow Vehicle i to offload. On the other hand,
Vehicle j analyzes its current situation and informs the Vehicle i about the
maximum data that Vehicle i can offload to it. The Vehicle i then calculates
the actual data sizes that it can offload to Vehicle j. We discuss each case below.

5.4.1. Processing of Data Offloading Request at RSU

Algorithm 2.1 presents the procedure of processing of data offloading request
at RSU k received from Vehicle i. RSU k first calculates its connectivity time
T c
i,k with Vehicle i and the offloading capacity (i.e., the maximum allowed data

size) Smax
i,k that Vehicle i can offload to it using Eqs. (1) and (4), respectively.

16

In Part I of the algorithm, the RSU k performs admission control for enabling
Vehicle i to offload high priority data if the current load at RSU k is maximum.
If the Vehicle i has high priority data (i.e., Shigh

i > 0), the RSU k checks the
amount of current high priority data Scurr

i,k that Vehicle i can offload. If the

size of high priority data Shigh
i of Vehicle i is less than the offloading capacity

Smax
i,k , it sets the current amount of data Scurr

i,k to be Shigh
i (i.e., Scurr

i,k ← Shigh
i),

otherwise, it sets Scurr
i,k ← Smax

i,k because the Vehicle i cannot offload more data
than the offloading capacity Smax

i,k . Subsequently, RSU k performs admission
control (see Section 5.2.3) if the sum of its current load ϑk and the amount of
current data Scurr

i,k that Vehicle i needs to offload is above the maximum tolerable
load ϑmax

k (i.e., ϑk +Scurr
i,k ≥ ϑmax

k). RSU k selects an existing Vehicle j that is
offloading its data and stops providing service to it (partially or completely) in
order to reduce its current load so that the Vehicle i can be able to offload its
high priority data. Vehicle j will be the one offloading its low priority data and if
there is no vehicle offloading low priority data, then the Vehicle j will be the one
offloading its medium priority data. RSU k informs Vehicle j about the service
termination so that Vehicle j can be aware about it and can offload its remaining
data to RSU k in case of partial service termination or can offload its data to
another RSU or vehicle in case of complete service termination. Subsequently,
RSU k updates its current load ϑk by subtracting the current load Scurr

j,k of
removed Vehicle j (i.e., ϑk ← ϑk − Scurr

j,k). RSU k repeats this process until its
current load enables it to allow Vehicle i to offload its high priority data. Note
that if there is no Vehicle j offloading the low or medium priority data, it means
that all the existing vehicles are offloading their high priority data, and hence
the RSU k will inform Vehicle i that it cannot offload its data.

In Part II, RSU k analyzes the sizes of high, medium and low priority data
that Vehicle i requested to offload and decides which priority data and how
much data it can grant Vehicle i to offload. If the size of high priority data
Shigh
i requested by Vehicle i is higher than the offloading capacity Smax

i,k of i,

RSU k sets the granted set Φgrant
k,i (containing the sizes of different priority

data that Vehicle i can offload) equal to the offloading capacity (i.e., Φgrant
k,i ←

Shigh
i | Shigh

i = Smax
i,k). Otherwise, it grants to offload all the high priority data

and sets it into the granted set Φgrant
k,i (i.e., Φgrant

k,i ← Shigh
i). Subsequently, if

the size of granted set Φgrant
k,i is lower than the offloading capacity Smax

i,k (i.e.,

Φgrant
k,i < Smax

i,k) and the sum of current load ϑk at RSU k and granted set Φgrant
k,i

is below the threshold value γmax,med
k of the maximum allowed medium priority

data (i.e., ϑk + Φgrant
k,i < γmax,med

k), it means that RSU k can also take medium
priority data from Vehicle i. It then takes as much data it can favoring medium
priority data over low priority data.

Finally, RSU k fetches the granted sizes of high, medium and low priority
data from granted set Φgrant

k,i , calculates the current data size Scurr
i,k that Vehicle

i will offload to RSU k by taking their sum (i.e., Scurr
i,k ← Shigh

i + Smed
i + Slow

i)
and updates it current load ϑk by adding the current Vehicle i’s granted data

17

Algorithm 2.1 Processing of data offloading request at RSU k from Vehicle i.

1: RSU k calculates T c
i,k and Smax

i,k using Eqs. (1) and (4) resp.;

2: Φgrant
k,i ← ∅;

3: /* Part I: Admission control.*/
4: if Shigh

i > 0 then
5: Scurr

i,k ← (Shigh
i ≤ Smax

i,k) ? Shigh
i : Smax

i,k ;
6: while (ϑk + Scurr

i,k ≥ ϑmax
k) do

7: Found ← RSU k selects existing Vehicle j | Slow
i > 0;

8: if not Found then
9: Found ← RSU k selects existing Vehicle j | Smed

i > 0;
10: end if
11: if not Found then
12: Declines data offloading request from Vehicle i; Return;
13: end if
14: Informs Vehicle j about service termination and stops servicing it;
15: ϑk ← ϑk − Scurr

j,k ;
16: end while
17: end if
18: /* Part II: Check which priority data and how much data can be allowed to of-

fload.*/
19: if Shigh

i > Smax
i,k then

20: Φgrant
k,i ← Shigh

i | Shigh
i = Smax

i,k ;
21: else
22: Φgrant

k,i ← Shigh
i ;

23: end if
24: if (Φgrant

k,i < Smax
i,k) and (ϑk + Φgrant

k,i < γmax,med
k) then

25: if Φgrant
k,i + Smed

i > Smax
i,k then

26: Φgrant
k,i ← Φgrant

k,i ∪ Smed
i | Smed

i = Smax
i,k − Φgrant

k,i ;
27: else
28: Φgrant

k,i ← Φgrant
k,i ∪ Smed

i ;
29: end if
30: end if
31: if (Φgrant

k,i < Smax
i,k) and (ϑk + Φgrant

k,i < γmax,low
k) then

32: if Φgrant
k,i + Slow

i > Smax
i,k then

33: Φgrant
k,i = Φgrant

k,i ∪ Slow
i | Slow

i = Smax
i,k − Φgrant

k,i ;
34: else
35: Φgrant

k,i = Φgrant
k,i ∪ Slow

i ;
36: end if
37: end if
38: Fetch Shigh

i , Smed
i and Slow

i from Φgrant
k,i ;

39: Scurr
i,k ← Shigh

i + Smed
i + Slow

i ;
40: ϑk ← ϑk + Scurr

i,k ;

41: Send Φgrant
k,i to Vehicle i;

size to its current load (i.e., ϑk ← ϑk + Scurr
i,k). It then sends the granted set

Φgrant
k,i as data offloading reply to Vehicle i.

18

5.4.2. Processing of Data Offloading Request at Vehicle

Algorithm 2.2 presents the processing of a data offloading request from Ve-
hicle i received by Vehicle j. This latter has to decide whether to accept or
reject it. Part I of the algorithm presents the first scenario in which Vehicle
j is already receiving offloaded data from another neighboring Vehicle l. In
this scenario, Vehicle j analyzes data priority of both vehicles and similarly to
offloading to RSU process, may decide to stop servicing l if its data is of lower
priority than the ones of j and serves j instead (see Section 5.2.3). If so, Vehicle
j sets the granted set Φgrant

j,i by calculating the maximum allowed data sizes
of high and medium priority data that it can allow Vehicle i to offload (i.e.,
using CalculateMaxSizes() function, discussed in the next paragraph). It
then sends the request acceptance confirmation and granted set Φgrant

j,i as data

offloading reply to Vehicle i, calculates the time duration T ofld
i,j required by Ve-

hicle i to offload its data S∗i,j and informs the Vehicle l to try again later after

T ofld
i,j duration.

Otherwise, if both vehicles l and i have same priority level data, Vehicle j
calculates the time duration T ofld

l,j required by Vehicle l to offload its data S∗l,j
to Vehicle j and informs the Vehicle i to try again later after T ofld

l,j duration.
The calculation of the maximum allowed data sizes (i.e., CalculateMax-

Sizes() function) of high and medium priority data (i.e., Smax,high
i,j and Smax,med

i,j)
that Vehicle j can allow Vehicle i to offload works as follows. Vehicle j first esti-
mates the offloading capacity Smax

j that it can offload to an RSU (in the future)

and calculates the maximum allowed size of high priority data Smax,high
i,j that

it can allow Vehicle i to offload, taking in priority higher priority data.
Part II and III of the algorithm present the second and third scenarios in

which Vehicle j is offloading its data to RSU k and another Vehicle m, respec-
tively. In both scenarios, Vehicle j calculates the time duration T ofld

j,k and T ofld
j,m

that it requires to offload its data S∗j,k and S∗j,m to RSU k and Vehicle m, re-

spectively. Accordingly, it informs Vehicle i to try again later after T ofld
j,k and

T ofld
j,m duration for second and third scenarios, respectively.

Finally, as presented in Part IV, if Vehicle j is neither offloading its data to
RSU or other neighboring vehicle nor receiving the offloaded data from another
neighboring vehicle, the Vehicle j sets the granted set Φgrant

j,i by calculating the
maximum allowed data sizes of high and medium priority data that it can allow
Vehicle i to offload (i.e., using CalculateMaxSizes() function, discussed
in Part I). It then sends the request acceptance confirmation and granted set
Φgrant

j,i as data offloading reply to Vehicle i.

5.5. Data Offloading Decision

When a Vehicle i receives data offloading reply from RSU k or neighboring
Vehicle j, it decides and starts the data offloading which procedure is presented
in Algorithm 3.

19

Algorithm 2.2 Processing of offloading request at Vehicle j.

1: Received data offloading request from Vehicle i;
2: /* Part I: Vehicle j is receiving offloaded data from another neighboring Vehicle l. */
3: if (Vehicle j is receiving offloaded data from Vehicle l) then

4: if (Shigh
l

= 0 and Shigh
i > 0) then

5: Inform Vehicle l about service termination;
6: Stop servicing Vehicle l;
7: Φgrant

j,i ← CalculateMaxSizes();

8: Send Φgrant
j,i to Vehicle i;

9: Calculate T ofld
i,j from S∗i,j ;

10: Inform Vehicle l to try again later after T ofld
i,j duration;

11: else if (Shigh
l

> 0 and Shigh
i > 0) OR (Shigh

l
= ∅ and Shigh

i = ∅) then

12: Calculate T ofld
l,j

from S∗l,j ;

13: Inform Vehicle i to try again later after T ofld
l,j

duration;

14: end if
15: /* Part II: Vehicle j is offloading its data to RSU k.*/
16: else if (Vehicle j is offloading its data to RSU k) then

17: Calculate T ofld
j,k

from S∗j,k;

18: Inform Vehicle i to try again later after T ofld
j,k

duration;

19: /* Part III: Vehicle j is offloading its data to another neighboring vehicle.*/
20: else if (Vehicle j is offloading its data to Vehicle m) then

21: Calculate T ofld
j,m from S∗j,m;

22: Inform Vehicle i to try again later after T ofld
j,m duration;

23: /* Part IV: Vehicle j is neither offloading its data to RSU or other vehicle nor receiving
the offloaded data from other vehicle. */

24: else
25: Φgrant

j,i ← CalculateMaxSizes();

26: Send Φgrant
j,i to Vehicle i;

27: end if

28: function CalculateMaxSizes()
29: Smax

j ← Estimated offloading capacity that Vehicle j can offload to RSU using Eq.

(4);

30: Smax,high
i,j = 0; Smax,med

i,j = 0;

31: if (Smax
j > Shigh

j) then

32: Smax,high
i,j ← Smax

j − Shigh
j ;

33: if (Smax,high
i,j > Shigh

i) then

34: Smax,high
i,j ← Shigh

i ;

35: end if
36: allocated← Shigh

j + Smax,high
i,j + Smed

j ;

37: if (Smax
j > allocated) then

38: Smax,med
i,j ← Smax

j − allocated;

39: if (Smax,med
i,j > Smed

i) then

40: Smax,med
i,j ← Smed

i ;

41: end if
42: end if
43: end if
44: Φgrant

j,i ← Smax,high
i,j ∪ Smax,med

i,j ;

45: return Φgrant
j,i ;

46: end function

20

Algorithm 3 Data offloading decision.

1: Received data offloading reply Φgrant
j,k from RSU k or Φgrant

j,i from Vehicle j
2: /*Part I: Received data offloading reply from RSU k*/
3: if received Φgrant

j,k from RSU k then

4: Fetch Sgrant,high
i , Sgrant,med

i , Sgrant,low
i from Φgrant

j,k ;

5: Offload Shigh
i , Smed

i , Slow
i to RSU k | Shigh

i = Sgrant,high
i , Smed

i = Sgrant,med
i ,

Slow
i = Sgrant,low

i ;
6: Update Shigh

i ← Shigh
i − Sgrant,high

i ;
7: Update Smed

i ← Smed
i − Sgrant,med

i ;
8: Update Slow

i ← Slow
i − Sgrant,low

i ;
9: /*Part II: Received data offloading reply from Vehicle j*/

10: else if received Φgrant
j,i from Vehicle j then

11: Fetch Smax,high
i,j and Smax,med

i,j from Φgrant
j,i ;

12: if (Hi = Hj) then
13: Calculate T c

i,j using Eq. (2);
14: else if (Hi 6= Hj) then
15: Calculate T c

i,j using Eq. (3);
16: end if
17: Calculate Smax

i,j using Eq. (4);

18: if (Smax
i,j ≥ (Smax,high

i,j + Smax,med
i,j) then

19: /* Offload all the allowed data. */
20: Offload Shigh

i and Smed
i to Vehicle j | Shigh

i = Smax,high
i,j and Smed

i =

Smax,med
i,j ;

21: Update Shigh
i ← Shigh

i − Smax,high
i,j ;

22: Update Smed
i ← Smed

i − Smax,med
i,j ;

23: else if (Smax
i,j ≤ Smax,high

i,j) then
24: /* Offload high priority data equal to the allowed data size. */
25: Offload Shigh

i to Vehicle j | Shigh
i = Smax

i,j ;

26: Update Shigh
i ← Shigh

i − Smax
i,j ;

27: else if (Smax
i,j < Smax,high

i,j + Smax,med
i,j) then

28: /* Offload high and medium priority data equal to the allowed data size. */
29: Offload Shigh

i to Vehicle j | Shigh
i = Smax,high

i,j ;

30: Offload Smed
i to Vehicle j | Smed

i = Smax
i,j − Smax,high

i,j ;

31: Update Shigh
i ← Shigh

i − Smax,high
i,j ;

32: Update Smed
i ← Smed

i − (Smax
i,j − Smax,high

i,j);
33: end if
34: end if

5.5.1. Processing of Data Offloading Reply from RSU

Part I of the algorithm shows the procedure when Vehicle i receives data
offloading reply from RSU k. In this case, the RSU k has already calculated the
actual size of each priority data that Vehicle i should offload to it in the granted
set Φgrant

j,k . Hence, the Vehicle i fetches the granted sizes of high, medium and
low priority data and offloads each priority data equal to its respective granted
size to the RSU k. Finally, it updates the sizes of each priority data.

21

5.5.2. Processing of Data Offloading Reply from Neighboring Vehicle

Part II of the algorithm shows the procedure when Vehicle i receives data
offloading reply from a neighboring Vehicle j. In this case, the Vehicle j has
informed the maximum allowed data sizes of high and medium priority data that
Vehicle i can offload to it in the granted set Φgrant

j,i (instead of the actual data
sizes that Vehicle i should offload, as in the case of RSU). Hence, the Vehicle i
first fetches the maximum allowed data sizes of high and medium priority data
(i.e., Smax,high

i,j and Smax,med
i,j) to offload from granted set Φgrant

j,i , and calculates
the offloading capacity Smax

i,j using Eq. (4), i.e., the maximum allowed data size
that it can offload to Vehicle j within the connectivity time.

If the offloading capacity Smax
i,j within the connectivity time T c

i,j matches or
exceeds the sum of sizes of maximum allowed high and medium priority data
informed by Vehicle j (i.e., Smax,high

i,j and Smax,med
i,j), it means that Vehicle i

can offload the maximum data informed by Vehicle j, hence it offloads its high
and medium priority data (Shigh

i and Smed
i) to Vehicle j equal to the maxi-

mum allowed sizes of high and medium priority data (Smax,high
i,j and Smax,med

i,j),
respectively. Subsequently, it updates the data sizes of its high and medium
priority data.

If the offloading capacity Smax
i,j is less than or equals the size of maximum

allowed high priority data Smax,high
i,j informed by Vehicle j, the Vehicle i only

offloads its high priority data equal to the maximum allowed data size Smax
i,j

within the connectivity time T c
i,j . It then updates the size of its high priority

data.
Otherwise, if the offloading capacity Smax

i,j within the connectivity time T c
i,j

is less than the sum of data sizes of maximum allowed high and medium priority
data informed by Vehicle i (i.e., Smax,high

i,j and Smax,med
i,j), the Vehicle i offloads

its high priority data equal to the size of maximum allowed high priority data
Smax,high
i,j informed by Vehicle j and offloads its medium priority data equal to

the size of difference of offloading capacity Smax
i,j within the connectivity time

T c
i,j and the size of maximum allowed high priority data Smax,high

i,j informed by

Vehicle j (i.e., Smed
i = Smax

i,j − Smax,high
i,j). Subsequently, it updates the data

sizes of its high and medium priority data.

5.6. Flow Chart

Figure 2 presents a flow chart for explaining the association and flow of
algorithms. We hope this will help the global understanding of DIVINE.

5.7. Examples

We present illustrative examples to better understand the procedures of V2I
and V2V data offloading.

5.7.1. V2I Data Offloading

An example of V2I data offloading is presented in Figure 3 in which the red
Vehicle i, into our consideration of data offloading, contains multiple types of

22

Figure 2: Flow chart.

priority data to offload and it has RSU k1 in its coverage. The red Vehicle i
executes Algorithm 1 for the node selection to request data offloading. Assuming
the speed of red Vehicle i to be Vi = 22m/s (i.e., average vehicles speed on
highways) and data rate of red Vehicle i to be ri = 0.75MBps (i.e., 6Mbps using
QPSK modulation scheme), following the Part I of algorithm, the red Vehicle
i sends a data offloading request to RSU k1 containing its parameters (speed
and data rate) and the sizes of each priority data to offload for obtaining data
offloading permission.

23

Figure 3: An example of processing of data offloading request at RSU.

Upon reception of the data offloading request, the RSU k1 executes Algo-
rithm 2.1. Assuming the coverage of red Vehicle i with RSU k1 on lane x in
which the red vehicle i is moving to be dk1,x = 500m, registration time τi,k and
waiting time Twait

i,v2i to be negligible (in this example for simplicity), the RSU
k1 calculates its connectivity time T c

i,k with red Vehicle i and the maximum
offloading capacity Smax

i,k using Eqs. (1) and (4). Suppose that the current load
ϑk1

at RSU k1 is above the maximum tolerable load ϑmax
k1

, hence the RSU k1
performs admission control by following Part I of the algorithm. It stops ser-
vicing an orange vehicle j that is offloading only low priority data in order to
allow red Vehicle i to offload its high priority data. Subsequently, following the
calculations in Part II, the RSU k1 grants the red Vehicle i to offload 15MB of
high priority data and 2MB of medium priority data and sends the granted set
in data offloading reply.

Finally, upon receiving the data offloading reply from RSU k1, the red Vehicle
i executes the Algorithm 3 of data offloading decision and following the Part I,
it offloads its data equal to the granted data sizes to RSU k1. The figure shows
both the initial data before offloading and the remaining data after offloading.

For the sake of simplicity, in Figure 3 and other following figures, we present
the coverage of Vehicle i with RSU on lane x to be d∗,x, where ∗ represents the
vehicle and x represents the lane on which the vehicle into our consideration is
moving.

5.7.2. V2V Data Offloading

Two examples of V2V data offloading are presented in Figs. 4 and 5 in which
the red vehicle (Vehicle i), into our consideration of data offloading, has no RSU
in its coverage but has two neighboring vehicles: an orange vehicle (Vehicle j1)
heading on the same direction and a black vehicle (Vehicle j2) heading on the

24

opposite direction. In Figure 4, the red vehicle i selects a neighboring orange
vehicle j1 heading on the same direction, while in Figure 5, the red vehicle i
selects a neighboring black vehicle j2 heading on the opposite direction for V2V
data offloading. Let us take the following assumptions for the sake of simplicity:
the red Vehicle i has not recently sent data offloading requests to orange Vehicle
j1 and black Vehicle j2 (i.e., nbsenti = ∅), the connectivity time of red Vehicle

i with both neighboring Vehicles j1 and j2 is sufficient (i.e., T c
i,j1
≥ ωmin,c

v2v and

T c
i,j2
≥ ωmin,c

v2v), the coverage of each vehicle is d∗∈N = 500m, the speeds of
red Vehicle i and black Vehicle j2 are Vi = Vj2 = 22m/s, the speed of orange
Vehicle j1 is Vj1 = 27m/s, the data rate of each vehicle is r∗∈N = 0.75MBps
(i.e., 6Mbps using QPSK modulation scheme) and the registration time τi,j∗
and waiting time Twait

i,v2v to be neglible. According to Part II of Algorithm 1,
the red Vehicle i selects a neighboring vehicle to request data offloading based
on the least expected time to reach the RSU for neighboring vehicle using Eq.
(5) and its connectivity time with neighboring vehicle. Hence, in Figure 4,
the red Vehicle i selects orange Vehicle j1, while in Figure 5, the red Vehicle i
selects black Vehicle j2. Subsequently, it sends data offloading requests to them
for obtaining data offloading permission and starts waiting for data offloading
reply from them.

For the next step of processing of data offloading request in this example,
we will use the term Vehicle j instead Vehicle j1 and Vehicle j2. On receiving
data offloading request, the Vehicle j executes Algorithm 2.2. Suppose that
the Vehicle j is neither receiving offloaded data from another Vehicle l, nor
offloading its data to RSU or other vehicle. In Part IV of the algorithm, since
vehicles only offload high and medium priority data in V2V data offloading, the
Vehicle j calculates the maximum size of high and medium priority data that
it can allow Vehicle i to offload. For the sake of simplicity, in Figure 4 and 5,
we keep the original data of both orange vehicle j1 and black vehicle j2 to be
the same. The Vehicle j estimates the offloading capacity (i.e., the maximum
possible size that it can offload to RSU in the future) to be Smax

j =17MB. The

size of Vehicle j’s high priority data is Shigh
j =7MB, while the requested size of

Vehicle i’s high priority data is Shigh
i =15MB. Hence the Vehicle j grants the

red Vehicle i to offload the maximum of 10MB of high priority data and sends
the granted set in data offloading reply.

Finally, on receiving a data offloading reply, the red Vehicle i executes the
Algorithm 3 of data offloading decision and following the Part II, it recalculates
the connectivity time using Eq. (2) or (3) depending on the heading direction of
neighboring Vehicle j and the maximum offloading capacity Smax

i,j using Eq. (4).
In the case of Figure 4, the red Vehicle i offloads all the granted 10MB of high
priority data to orange Vehicle j1, while in the case of Figure 5, the red Vehicle
i offloads 8.5MB of high priority data to black Vehicle j2. Note than 8.5MB
is equal to half of the data in Figure 3 in which the red Vehicle i offloaded its
data to RSU. This is because in this scenario, both vehicles are mobile having
the same speed, therefore the connectivity time is half of the connectivity time
with RSU in which only one vehicle was mobile and RSU was stationary.

25

Figure 4: An example of V2V data offloading on the same heading direction.

Figure 5: An example of V2V data offloading on the opposite heading direction.

6. Analysis of DIVINE Overhead

This section investigates the overhead of DIVINE, specifically the control
messages overhead and time complexity. The control messages overhead M is
the number of messages exchanged between the vehicles and RSUs and among
the vehicles. If a vehicle sends a control message to its neighbor (RSU or vehicle),
the message overhead is incremented by one [21]. The time complexity T is the
number of time slots to enable a vehicle to start offloading its data, specifically,
registering it with an RSU or neighboring vehicle for data offloading [22]. We
assume discrete time and that the transmission of a message by a vehicle/RSU
and ACK reception requires one time slot [21].

In DIVINE, time and complexity overheads are generated by three functions:
beacons exchange, data offloading request and data offloading reply.

6.1. Beacons Overhead

Beacons are broadcast in each predefined interval by vehicles and RSUs so
that vehicles can learn about their neighboring nodes (RSUs and vehicles). We

26

Table 2: Summary of DIVINE overhead

Overhead type Message overhead Time complexity

Beacons D × rb × (|K|+ |N |) D
Data offloading request [1, |nbi|] [Tscan + 1 + Twait

i,j∈K,N ,
Tscan + |nbi|(1 + Twait

i,j∈K,N)]
Data offloading reply [1, 1 + |Nac|] [1, 1 + |Nac|]
Total [D× rb× (|K|+ |N |) + 2,

D × rb × (|K| + |N |) +
|nbi|+ |Nac|+ 1]

[D + Tscan + Twait
i,j∈K,N + 2,

D + Tscan + |nbi|(1 +
Twait
i,j∈K,N) + |Nac|+ 1]

denote the number of beacons transmitted by a vehicle/RSU per time slot as rate
rb and the network lifetime is equal to D time slots. The overhead incurred in
broadcasting the beacons per time slot at rate rb by the total number of vehicles
and RSUs is |K|×rb and |N |×rb, respectively. To sum up, the message overhead
of total beacons is M = D× rb× (|K|+ |N |) and the time complexity is T = D
time slots.

6.2. Data Offloading Request Overhead

Initially, each vehicle has no knowledge about its neighbors (RSUs and ve-
hicles) and it listens to beacons to discover the neighbors. We denote such a
scanning period as Tscan. Hence, each vehicle must wait at least Tscan time slots
before sending a data offloading request. We denote the number of neighbors
of a vehicle as |nbi|. After Tscan period, a vehicle i sends a data offloading
request to a neighbor and waits for Twait

i,j∈K,N duration to receive a data offload-

ing reply. It takes at least T = Tscan + 1 + Twait
i,j∈K,N time slots and M = 1

message if the first neighbor accepts its data offloading request, and at most
T = Tscan + |nbi|(1 + Twait

i,j∈K,N) time slots and M = |nbi| messages if the last
neighbor accepts its data offloading request.

6.3. Data Offloading Reply Overhead

When an RSU or a vehicle receives a data offloading request, it processes
it and sends a data offloading reply (accepting or declining the request) back
to the vehicle. An RSU or a vehicle may need to perform admission control.
We denote the average number of vehicles that an RSU/vehicle has to stop
servicing during admission control as |Nac|. For data offloading reply, it takes
at least T = 1 time slot and M = 1 message if admission control is not required.
Otherwise, it takes at most T = 1+|Nac| time slots and M = 1+|Nac| messages.

6.4. Total Overhead

The total overhead is summarized in Table 2. To sum up, the total over-
head of DIVINE is based on beacons exchange, data offloading request and
data offloading reply. The lower bound of total DIVINE overhead for control
messages overhead is M = D × rb × (|K| + |N |) + 2 and time complexity is

27

T = D + Tscan + Twait
i,j∈K,N + 2. The upper bound of total DIVINE overhead

for control messages is M = D × rb × (|K| + |N |) + |nbi| + |Nac| + 1 and time
complexity is T = D + Tscan + |nbi|(1 + Twait

i,j∈K,N) + |Nac|+ 1.

7. Performance Evaluation, Results and Discussions

In this section, we evaluate the performance of DIVINE through extensive
simulations and present simulation setup and parameters, performance metrics,
results and discussions.

7.1. Simulation Setup and Parameters

DIVINE is implemented in network simulator OMNeT++ 5.5.1 [23] with
Veins 5.0 [24] and SUMO 1.7.0 (Simulation for Urban Mobility) [25] frame-
works. SUMO is used to create the scenarios and mobility of vehicles, while
OMNeT++ and Veins are used to simulate the vehicular communications using
IEEE 802.11p standard. We built a 30km two-way highway scenario in SUMO
having three lanes on each direction without intersections. The vehicles are
equally distributed on each lane and each vehicle is departed at a random time
and location. The generated scenario is imported into OMNeT++ using Veins
framework. The RSUs are uniformly distributed besides the highway. Each
vehicle and RSU periodically send beacons with an interval of one second. The
number of vehicles varies from 50 to 200, the number of RSUs varies from 10
to 100, the maximum speed of vehicles varies from 15m/s to 30m/s and the
maximum RSU capacity varies from 2,000Mb to 10,000Mb. The default num-
ber of vehicles is 100, number of RSUs is 30, the vehicles’ maximum speed is
25m/s (i.e., the average vehicles speed at highways) and the maximum RSUs’
capacity is 10,000Mb. We assume that while sending beacons, the RSU uses the
same transmit power as of vehicles. Hence, if vehicles can receive beacon from
RSU, then RSU can also receive beacon from vehicles. However, RSU can use
higher transmission power to broadcast some emergency messages to vehicles
in order to cover larger area, which is not the scope of this work. Since we are
not dealing with networking and MAC layer issues, therefore after a vehicle is
informed about the amount of data it can offload to RSU or neighboring vehicle,
then every time it receives a beacon from RSU or neighboring vehicle to whom
it is offloading its data, it considers the received beacon as acknowledgement
and thus, calculates the amount of data that could be offloaded since the recep-
tion of last beacon using its speed and data rate. Subsequently, it updates its
application data size. This helps to evaluate the full performance of our data
offloading scheme without having impact of external factors (such as collision).
The simulation parameters are summarized in Table 3.

7.2. Performance Metrics

The performance metrics for DIVINE are as follows:

28

Table 3: Simulation parameters and values.

Parameter Value

Area 30km long highway

Number of RSUs 10-100 (default 30)

Number of vehicles 50-200 (default 100)

Maximum vehicles’ speed 15-30 m/s (default 25m/s)

Vehicles depart position Random

Vehicles depart time Random

Simulation time 2000 seconds

Simulation runs 20

Maximum RSUs’ capacity 10000Mb

γmax,med
k 75%

γmax,low
k 50%

Ωarr
RSU 10 seconds

ωmin,c
v2v 10 seconds

Vehicle data 6000Mb

Data rate 6Mbps

Transmission power 10mW

Transmission range 357m

Communication technology IEEE 802.11p

Beacon interval 1 second

• Offloaded data is the amount of vehicles’ total, high, medium and low
priority data that has successfully been offloaded to RSUs. Higher amount
of offloaded data is preferable.

• Average offloading delay is the average time required for all the vehicles
to offload their total, high, medium and low priority data. Lower average
offloading delay is preferable.

• Maximum offloading delay is the maximum offloading delay for all the
vehicles to offload their high, medium and low priority data [26]. Lower
maximum offloading delay is preferable.

• Running time is the running time of the network in which all the vehicles
can offload their total, high, medium and low priority data [26].

7.3. Comparison Schemes

DIVINE is compared with three schemes. Firstly with DOVE, a baseline of
DIVINE without QoS consideration. Secondly with V2I-Q, a V2I data offloading
scheme with QoS provisioning [17]. Thirdly with V2I, a traditional V2I data
offloading that has also been used for comparison in the literature [3].

7.4. Performance Evaluation

This section evaluates the performance under the effects of number of ve-
hicles (network density) [27, 28], vehicles’ maximum speed [29, 30], number of
RSUs [31] and maximum RSUs’ capacity.

29

0*100

100*103

200*103

300*103

400*103

500*103

600*103

50 100 150 200

O
ff
lo
ad
ed
	d
at
a	
(M
b
)

Number	of	vehicles

(a) Amount of offloaded data.

	400

	500

	600

	700

	800

	900

50 100 150 200
Av
er
ag
e	
of
flo

ad
in
g	
de

la
y	
(s
ec
on
ds
)

Number	of	vehicles

(b) Average offloading delay.

	1150

	1200

	1250

	1300

	1350

	1400

50 100 150 200

M
ax
im
um
	o
ff
lo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

Number	of	vehicles

(c) Maximum offloading delay.

	500

	600

	700

	800

	900

50 100 150 200

R
un
ni
ng
	ti
m
e	
(s
ec
on
ds
)

Number	of	vehicles

(d) Running time.

Figure 6: Effects of number of vehicles.

30

Table 4: Summary of results of varying number of vehicles (cf. Figure 6).

Num of
vehicles

Scheme Offloaded data
(Mb)

Avg offloading de-
lay (sec)

Max offloading de-
lay (sec)

Running time (sec)

50

DIVINE Total 154025 688 − 926
DOVE Total 154609 792 − 890
V2I-Q Total 151457 835 − 927
V2I Total 154313 909 − 944
DIVINE High 70902 480 1172 562
DOVE High 53557 769 1308 826
V2I-Q High 70708 730 1209 745
V2I High 52458 908 1306 922
DIVINE Medium 53225 771 1218 804
DOVE Medium 51918 797 1298 848
V2I-Q Medium 51954 861 1205 876
V2I Medium 47539 908 1281 922
DIVINE Low 29898 910 1323 924
DOVE Low 49134 812 1300 872
V2I-Q Low 28795 910 1285 924
V2I Low 54316 911 1321 926

100

DIVINE Total 300903 654 − 936
DOVE Total 303029 746 − 894
V2I-Q Total 301616 839 − 940
V2I Total 303283 912 − 952
DIVINE High 137772 439 1224 538
DOVE High 104073 686 1352 768
V2I-Q High 140288 734 1257 756
V2I High 104416 918 1343 940
DIVINE Medium 103224 752 1291 798
DOVE Medium 101533 749 1352 829
V2I-Q Medium 102575 864 1294 886
V2I Medium 98076 906 1339 929
DIVINE Low 59908 914 1386 936
DOVE Low 97423 806 1357 892
V2I-Q Low 58752 917 1367 940
V2I Low 100791 912 1359 934

150

DIVINE Total 418318 655 − 946
DOVE Total 444415 715 − 877
V2I-Q Total 439392 844 − 951
V2I Total 450977 912 − 955
DIVINE High 205174 436 1252 535
DOVE High 151324 658 1369 755
V2I-Q High 210216 737 1275 768
V2I High 154081 914 1386 945
DIVINE Medium 145351 768 1336 824
DOVE Medium 149040 707 1372 803
V2I-Q Medium 149618 872 1340 902
V2I Medium 146916 908 1338 939
DIVINE Low 67794 916 1406 946
DOVE Low 144050 779 1382 877
V2I-Q Low 79557 920 1399 951
V2I Low 149980 914 1407 944

200

DIVINE Total 463206 685 − 951
DOVE Total 564476 672 − 817
V2I-Q Total 527768 860 − 955
V2I Total 592146 910 − 960
DIVINE High 261420 484 1272 578
DOVE High 192685 643 1395 744
V2I-Q High 276915 770 1321 809
V2I High 197877 911 1385 950
DIVINE Medium 147674 804 1401 857
DOVE Medium 189061 664 1401 772
V2I-Q Medium 179284 895 1369 935
V2I Medium 195093 905 1371 944
DIVINE Low 54112 912 1412 951
DOVE Low 182729 709 1387 814
V2I-Q Low 71568 915 1427 954
V2I Low 199176 913 1419 952

7.4.1. Effects of Number of Vehicles

This section evaluates the performance for varying number of vehicles from
50 to 200. Figure 6(a) presents the amount of offloaded total, high, medium
and low priority data by DIVINE, DOVE, V2I-Q and V2I. The amount of
offloaded data increases with the increasing number of vehicles. This is very
natural because with the increasing number of vehicles, the amount of data
also increases in the network. DIVINE is able to offload similar amount of
total offloaded data as other schemes. However, when there are 200 vehicles,

31

DIVINE offloads slightly lower amount of total data than others. This is because
the threshold values for the maximum allowed medium and low priority data
(γmax,med

k and γmax,low
k) are reached. V2I-Q is able to offload slightly more

data than DIVINE when number of vehicles are 200 because due to the higher
number of transmissions in DIVINE, some beacons broadcast by RSUs might
be collided, causing the vehicles to miss the opportunity of V2I data offloading.
DIVINE and V2I-Q are able to offload the highest and similar amount of high
priority data than DOVE and V2I, thanks to QoS considerations, however at
the cost of offloading lesser amount of low priority data. All schemes offloaded
similar amount of medium priority data. Overall, DIVINE offloads the highest
amount of high priority data similar to V2I-Q and almost equal amount of
medium priority data at the cost of offloading lesser amount of lower priority
data.

Figure 6(b) presents the average offloading delay of total, high, medium and
low priority data. For all the varying number of vehicles, DIVINE outperforms
all other schemes and achieves much lower average offloading delay, fulfilling our
objective of offloading the data as soon as possible to RSUs. DIVINE achieves
the lowest offloading delay for total and high priority, thanks to QoS provisioning
and V2V data offloading. However, V2I-Q achieves slightly higher offloading
delay for total and high priority data. This is because of not taking advantage
of V2V data offloading. For DOVE, the average offloading delay of total and
high priority data is even lower than V2I-Q, it shows the significance of V2V
data offloading, i.e., even without QoS provisioning, V2V data offloading can
significantly help to reduce the offloading delay. V2I performs the worst for all
types of data having almost similar average offloading delay. This is because
it neither considers QoS provisioning nor V2V data offloading. For medium
priority data, DIVINE performs almost similarly to DOVE. V2I-Q performs
worse than DIVINE and DOVE but better than V2I. For low priority data,
DOVE achieves lower average offloading delay because of no QoS provisioning
(i.e., traffic classification, overload control and admission control). DIVINE and
V2I-Q perform similar to V2I because they only offload low priority data once
high and medium priority data are offloaded. Overall, DIVINE achieves the
lowest offloading delay for total, high and medium priority data but gets higher
offloading delay for low priority data equivalent to V2I-Q and V2I.

Figure 6(c) presents the maximum offloading delay for high, medium and
low priority data. DIVINE achieves the lowest maximum offloading delay for
high priority data. The maximum offloading delay of all types of data for DI-
VINE is almost similar to V2I-Q. This is because the maximum offloading delay
corresponds to the cases of vehicles when V2V data offloading in DIVINE is
either not possible or not preferred. Hence, such vehicles offload their data using
V2I data offloading, exhibiting the similar maximum offloading delay as V2I-Q.
DOVE and V2I cause higher maximum offloading delay for all high, medium
and low priority data than DIVINE and V2I-Q because of no QoS provisioning.
Overall, DIVINE achieves the lowest maximum offloading delay for high priority
data and for medium priority data, its maximum offloading delay is similar to
V2I-Q and better than DOVE and V2I.

32

Figure 6(d) presents the running time for total, high, medium and low pri-
ority data. The total running of all the schemes is similar which is very natural
because in order to offload all the data, each scheme requires similar amount of
time. DIVINE achieves the lowest running time for the high priority data due
to QoS provisioning and V2V data offloading at the expense of higher running
time for low priority data (as discussed in Figure 6(a)). For medium priority
data, it achieves similar running time as DOVE. DOVE has similar running
time for high, medium and low priority data due to the lack of QoS provision-
ing, however, because of V2V data offloading, its running time is lower than V2I
that exhibits the highest running time for high, medium and low priority data.
Finally, V2I-Q achieves similar running time for high priority data as DOVE
and higher running time for medium priority data as compared to DIVINE and
DOVE because of lack of V2V data offloading. For low priority data, its running
time is similar to DIVINE because of the same reason (i.e., offloading high and
medium priority data first). Overall, as usual, DIVINE performs the best for
high and medium priority data, and for low priority data, it performs similar
to V2I-Q and V2I but not better than DOVE because DOVE achieves lesser
running time for low priority data at the expense of higher running time for
high and medium priority data.

The results for varying number of vehicles are also presented in Table 4 for
better readability.

7.4.2. Effects of Vehicles’ Maximum Speed

This section evaluates the performance for varying vehicles’ maximum speed
from 15m/s to 30m/s. Figure 7(a) presents the amount of offloaded total, high,
medium and low priority data by DIVINE, DOVE, V2I-Q and V2I. The amount
of offloaded data reduces with the increasing vehicles’ speed because with the
increasing vehicles’ speed, the connectivity time of vehicles with RSUs reduces.
All schemes offload similar amount of total offloaded data. When the speed is
15m/s, all the schemes offload almost similar amount of high, medium and low
priority data. This is because with lower speed, all vehicles are able to offload all
the data they contain, however there will be difference in offloading delay which
we will see next. As the speed keeps increasing, DIVINE and V2I-Q offload
more high priority data at the cost of offloading lesser amount of low priority
data because of QoS provisioning, as compared to DOVE and V2I. DOVE and
V2I offload similar amount of high, medium and low priority data because of
lack of QoS provisioning (i.e., no differentiation between types of data).

Figure 7(b) presents the average offloading delay of total, high, medium and
low priority data. For all the varying speed, the average offloading delay reduces
because with the increasing speed, vehicles meet RSUs sooner (although for
shorter duration, causing lesser amount of offloaded data, as seen in Figure 7(a))
and hence, they can offload their data to RSUs earlier. DIVINE outperforms all
other schemes and achieves much lower average offloading delay. DIVINE has
the lowest offloading delay for total and high priority data, thanks to QoS
provisioning and V2V data offloading, however at the cost of higher offloading
delay for low priority data. V2I-Q achieves slightly higher offloading delay

33

0*100

100*103

200*103

300*103

400*103

500*103

15 20 25 30

O
ff
lo
ad
ed
	d
at
a	
(M
b
)

Vehicles	max	speed	(m/s)

(a) Amount of offloaded data.

	300

	500

	700

	900

	1100

	1300

	1500

15 20 25 30
Av
er
ag
e	
of
flo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

Vehicles	max	speed	(m/s)

(b) Average offloading delay.

	1000

	1200

	1400

	1600

	1800

	2000

15 20 25 30

M
ax
im
um
	o
ff
lo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

Vehicles	max	speed	(m/s)

(c) Maximum offloading delay.

	400

	600

	800

	1000

	1200

	1400

15 20 25 30

R
un
ni
ng
	ti
m
e	
(s
ec
on
ds
)

Vehicles	max	speed	(m/s)

(d) Running time.

Figure 7: Effects of vehicles’ maximum speed.

34

Table 5: Summary of results of varying vehicles’ speed (cf. Figure 7).

Vehicles
speed

Scheme Offloaded data
(Mb)

Avg offloading de-
lay (sec)

Max offloading de-
lay (sec)

Running time (sec)

15

DIVINE Total 460734 898 − 1522
DOVE Total 483758 1056 − 1312
V2I-Q Total 462138 1161 − 1510
V2I Total 479165 1347 − 1402
DIVINE High 170702 525 1560 673
DOVE High 161001 952 1585 1090
V2I-Q High 167936 846 1576 869
V2I High 159971 1314 1567 1336
DIVINE Medium 160434 951 1788 1062
DOVE Medium 159766 1040 1587 1182
V2I-Q Medium 157429 1137 1699 1159
V2I Medium 153252 1348 1578 1370
DIVINE Low 129598 1499 1989 1522
DOVE Low 162991 1173 1599 1312
V2I-Q Low 136774 1487 1983 1510
V2I Low 165942 1378 1581 1401

20

DIVINE Total 376744 759 − 1159
DOVE Total 383571 906 − 1095
V2I-Q Total 380024 982 − 1166
V2I Total 380936 1131 − 1173
DIVINE High 157083 484 1506 604
DOVE High 129697 828 1525 924
V2I-Q High 155173 797 1500 819
V2I High 130786 1123 1543 1145
DIVINE Medium 128215 853 1548 919
DOVE Medium 124709 899 1541 996
V2I-Q Medium 129576 999 1517 1021
V2I Medium 128280 1131 1535 1154
DIVINE Low 91446 1136 1687 1159
DOVE Low 129165 991 1558 1094
V2I-Q Low 95275 1144 1620 1166
V2I Low 121870 1139 1546 1161

25

DIVINE Total 300903 654 − 936
DOVE Total 303029 746 − 894
V2I-Q Total 301616 839 − 940
V2I Total 303283 912 − 952
DIVINE High 137772 439 1224 538
DOVE High 104073 686 1352 768
V2I-Q High 140288 734 1257 756
V2I High 104416 918 1343 940
DIVINE Medium 103224 752 1291 798
DOVE Medium 101533 749 1352 829
V2I-Q Medium 102575 864 1294 886
V2I Medium 98076 906 1339 929
DIVINE Low 59908 914 1386 936
DOVE Low 97423 806 1357 892
V2I-Q Low 58752 917 1367 940
V2I Low 100791 912 1359 934

30

DIVINE Total 250733 588 − 783
DOVE Total 246398 631 − 748
V2I-Q Total 246862 729 − 788
V2I Total 244990 761 − 798
DIVINE High 134156 434 1052 514
DOVE High 84817 595 1135 661
V2I-Q High 126595 675 1045 698
V2I High 82205 759 1135 782
DIVINE Medium 80234 669 1118 708
DOVE Medium 83367 624 1140 690
V2I-Q Medium 80646 747 1088 769
V2I Medium 82139 763 1122 786
DIVINE Low 36343 761 1150 783
DOVE Low 78215 675 1153 747
V2I-Q Low 39621 764 1147 786
V2I Low 80645 759 1160 782

for total and high priority data because of not taking the advantage of V2V
data offloading. For DOVE, the average offloading delay of total and high
priority data is even lower than V2I-Q which shows the significance of V2V
data offloading. V2I performs the worst for all types of data (i.e., total, high,
medium and low priority) and achieving similar average offloading delay for
each varying speed. This is because of neither considering the QoS provisioning
nor V2V data offloading. For medium priority data, DIVINE performs almost
similar to DOVE, while V2I-Q performs worse than DIVINE and DOVE but
better than V2I. For low priority data, DOVE achieves lower average offloading

35

delay because of no QoS provisioning. DIVINE and V2I-Q perform similar to
V2I because they only offload low priority data once high and medium priority
data are offloaded.

Figure 7(c) presents the maximum offloading delay for high, medium and low
priority data. With the increasing speed, the maximum offloading delay reduces
because of the same reason as explained for Figure 7(b). When the vehicles’
maximum speed is 15m/s and 20m/s, DIVINE and V2I-Q have higher maxi-
mum offloading delay for low priority data. This is the cost of offloading high
priority data faster (as seen in Figure 7(b)). When the vehicle’s maximum speed
exceeds 25m/s, DIVINE and V2I-Q have lower maximum offloading delay for
high priority data due to QoS provisioning. For medium and low priority data,
all the schemes exhibit similar maximum offloading delay. To recall, the maxi-
mum offloading delay for DIVINE and V2I-Q is similar because the maximum
offloading delay is the case when V2V data offloading is not possible/preferred
for some vehicles, hence only V2I data offloading is used for such vehicles.

Figure 7(d) presents the running time for total, high, medium and low prior-
ity data. For the varying vehicles’ maximum speed, the total running of all the
schemes is almost similar (except 15m/s speed) because in order to offload all
the data, each scheme requires similar amount of time. When the vehicles’ max-
imum speed is 15m/s, DIVINE and V2I-Q take slightly longer time because as
we have seen in Figure 7(c), DIVINE and V2I-Q require more time for offload-
ing low priority data that increases the total running time. DIVINE achieves
the lowest running time for the high and medium priority data due to QoS
provisioning and V2V data offloading at the expense of higher running time for
low priority data. DOVE has similar running time for high, medium and low
priority data due to a lack of QoS provisioning, however, because of V2V data
offloading, its running time is lower than V2I that exhibits the highest running
time for high, medium and low priority data. V2I-Q achieves similar running
time for high and medium priority data as DOVE. For low priority data, its
running time is similar to DIVINE because of offloading high and medium pri-
ority data first. Overall, as expected, DIVINE performs the best for high and
medium priority data, and for low priority data, it performs similar to V2I-Q
and V2I but not better than DOVE because DOVE achieves lesser running time
for low priority data at the expense of higher running time for high and medium
priority data.

The results for varying vehicles’ speed are also presented in Table 5 for better
readability.

7.4.3. Effects of Number of RSUs

This section evaluates the performance for varying number of RSUs from
10 to 100. Figure 8(a) presents the amount of offloaded total, high, medium
and low priority data by DIVINE, DOVE, V2I-Q and V2I. The amount of
offloaded data increases with the increasing number of RSUs. This is because
with the increasing number of RSUs, vehicles get more opportunity to offload
their data. When there are 10 RSUs, all schemes offload very lesser amount of
data because there are not enough RSUs to receive the data of vehicles. When

36

0*100

100*103

200*103

300*103

10 30 70 100

O
ff
lo
ad
ed
	d
at
a	
(M
b
)

Number	of	RSUs

(a) Amount of offloaded data.

	400

	500

	600

	700

	800

	900

10 30 70 100
Av
er
ag
e	
of
flo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

Number	of	RSUs

(b) Average offloading delay.

	1100

	1200

	1300

	1400

10 30 70 100

M
ax
im
um
	o
ff
lo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

Number	of	RSUs

(c) Maximum offloading delay.

	500

	600

	700

	800

	900

10 30 70 100

R
un
ni
ng
	ti
m
e	
(s
ec
on
ds
)

Number	of	RSUs

(d) Running time.

Figure 8: Effects of number of RSUs.

37

Table 6: Summary of results of varying number of RSUs (cf. Figure 8).

Num of
RSUs

Scheme Offloaded data
(Mb)

Avg offloading de-
lay (sec)

Max offloading de-
lay (sec)

Running time (sec)

10

DIVINE Total 109800 701 − 944
DOVE Total 107704 699 − 865
V2I-Q Total 102675 915 − 952
V2I Total 102800 916 − 953
DIVINE High 69686 537 1391 631
DOVE High 35445 639 1368 740
V2I-Q High 59157 915 1377 938
V2I High 34660 918 1372 941
DIVINE Medium 26624 780 1344 827
DOVE Medium 36759 689 1375 787
V2I-Q Medium 29203 912 1350 934
V2I Medium 33872 920 1365 942
DIVINE Low 13490 921 1384 944
DOVE Low 35500 766 1380 865
V2I-Q Low 14315 917 1371 940
V2I Low 34269 911 1370 933

30

DIVINE Total 300903 654 − 936
DOVE Total 303029 746 − 894
V2I-Q Total 301258 839 − 940
V2I Total 299998 913 − 952
DIVINE High 137772 439 1224 538
DOVE High 104073 686 1352 768
V2I-Q High 140258 733 1257 756
V2I High 101774 915 1358 937
DIVINE Medium 103224 752 1291 798
DOVE Medium 101533 749 1352 829
V2I-Q Medium 102415 864 1294 886
V2I Medium 97856 909 1340 932
DIVINE Low 59908 914 1386 936
DOVE Low 97423 806 1357 892
V2I-Q Low 58584 917 1368 940
V2I Low 100368 913 1399 936

70

DIVINE Total 373298 757 − 934
DOVE Total 372297 871 − 934
V2I-Q Total 375074 791 − 935
V2I Total 375211 907 − 944
DIVINE High 156493 582 1197 633
DOVE High 127058 843 1227 882
V2I-Q High 153548 649 1203 671
V2I High 128316 903 1226 926
DIVINE Medium 127936 807 1223 833
DOVE Medium 124083 883 1238 914
V2I-Q Medium 127084 806 1211 828
V2I Medium 121637 909 1220 932
DIVINE Low 88870 912 1243 934
DOVE Low 121156 892 1249 927
V2I-Q Low 94443 913 1240 935
V2I Low 125259 907 1243 929

100

DIVINE Total 380045 744 − 929
DOVE Total 379462 868 − 929
V2I-Q Total 379302 787 − 934
V2I Total 379402 904 − 942
DIVINE High 152049 563 1192 615
DOVE High 126060 852 1220 889
V2I-Q High 154237 644 1199 666
V2I High 129075 900 1220 922
DIVINE Medium 130831 785 1227 813
DOVE Medium 126608 860 1227 896
V2I-Q Medium 128511 802 1204 824
V2I Medium 123704 901 1215 923
DIVINE Low 97166 907 1235 929
DOVE Low 126794 893 1238 928
V2I-Q Low 96554 912 1233 934
V2I Low 126624 911 1234 933

the number of RSUs exceed 70, the amount of all types of offloaded data for all
the schemes do not change because at this point, there are sufficient RSUs to
receive offloaded data from all the vehicles and there is no benefit of adding more
RSUs in our considered scenario. DIVINE and V2I-Q offload the highest and
similar amount of high priority data as compared to DOVE and V2I, thanks to
QoS considerations, however as expected, at the cost of offloading lesser amount
of low priority data. Their offloaded amount of medium priority data is similar
to DOVE and V2I. Due to the lack of QoS consideration, DOVE and V2I offload
similar amount of high, medium and low priority data.

38

Figure 8(b) presents the average offloading delay of total, high, medium and
low priority data. For all the varying number of RSUs, DIVINE outperforms all
other schemes and achieves much lower average offloading delay. Similar to Fig-
ure 8(a), when the number of RSUs exceed 70, the average offloading delay for
all the schemes do not change because at this point, all vehicles can offload their
data and hence, there is no effect of adding more RSUs. DIVINE has the lowest
offloading delay for total and high priority data, however at the cost of higher
offloading delay for low priority data. V2I-Q achieves slightly higher offloading
delay for total and high priority data because of not taking the advantage of
V2V data offloading. DOVE achieves even lower average offloading delay of
total and high priority data as compared to V2I-Q due to the exploitation of
V2V data offloading. As expected, V2I performs the worst for all total, high,
medium and low priority data and it achieves similar average offloading delay
because of neither considering the QoS provisioning nor V2V data offloading.
For medium priority data, DIVINE performs even better than DOVE, while
V2I-Q performs worse than DIVINE and DOVE and similar to V2I. For low
priority data, only DOVE achieves slightly lower average offloading delay when
number of RSUs are less than 70. However, beyond this point, all the schemes
have similar average offloading delay of low priority data.

Figure 8(c) presents the maximum offloading delay for high, medium and low
priority data. With the increasing number of RSUs, the maximum offloading
delay reduces because vehicles find RSUs earlier and can offload their data faster.
When there are 10 RSUs, DIVINE has the highest maximum offloading delay
for high priority data. Since there are very few RSUs, such maximum offloading
delay is recorded when there is higher delay for some vehicles caused by V2V
data offloading for offloading high priority data in DIVINE. When the number
of RSUs increases, DIVINE achieves the least maximum offloading delay for
high priority data. When the number of RSUs reach 70, beyond this point,
the maximum offloading delay for all schemes stays same. DIVINE and V2I-Q
achieve the lowest maximum offloading delay for high priority data due to QoS
provisioning. For medium priority data, DOVE achieves the lowest maximum
offloading delay, while for low priority data, all the schemes exhibit similar
maximum offloading delay. Even though DIVINE has slightly higher maximum
offloading delay for medium priority data, however as seen in Figure 8(b), it has
the least average offloading delay for medium priority data.

Figure 8(d) presents the running time for total, high, medium and low prior-
ity data. For the varying number of RSUs, the total running of all the schemes is
almost similar because each scheme requires similar amount of time to offload all
their data. DIVINE achieves the lowest running time for the high priority data
due to QoS provisioning and V2V data offloading. DOVE has similar running
time for high, medium and low priority data due to lack of QoS provisioning,
however, its running time is lower than V2I due to the exploitation of V2V
data offloading. V2I that exhibits the highest running time for high, medium
and low priority data. V2I-Q achieves slightly higher running time for high and
medium priority data as DIVINE. Overall, as usual, DIVINE performs the best
for high and medium priority data, and for low priority data, it performs similar

39

Table 7: Summary of results of varying RSUs’ capacity (cf. Figure 9).

RSU ca-
pacity

Scheme Offloaded data
(Mb)

Avg offloading de-
lay (sec)

Max offloading de-
lay (sec)

Running time (sec)

2000

DIVINE Total 167018 701 − 937
DOVE Total 293837 691 − 807
V2I-Q Total 176469 906 − 949
V2I Total 293199 913 − 953
DIVINE High 104681 513 1356 600
DOVE High 99874 669 1352 758
V2I-Q High 110668 888 1375 910
V2I High 95271 914 1337 936
DIVINE Medium 46216 807 1372 843
DOVE Medium 95066 691 1358 780
V2I-Q Medium 50157 912 1350 934
V2I Medium 101435 915 1338 938
DIVINE Low 16122 914 1390 937
DOVE Low 98897 712 1348 797
V2I-Q Low 15644 917 1371 940
V2I Low 96492 909 1345 932

4000

DIVINE Total 260952 677 − 937
DOVE Total 297719 721 − 856
V2I-Q Total 271035 854 − 942
V2I Total 296522 910 − 953
DIVINE High 142463 468 1236 564
DOVE High 100653 693 1355 771
V2I-Q High 138526 753 1257 775
V2I High 98443 913 1363 935
DIVINE Medium 86241 795 1351 839
DOVE Medium 100056 708 1338 794
V2I-Q Medium 94470 890 1322 913
V2I Medium 101291 907 1343 930
DIVINE Low 32248 915 1380 937
DOVE Low 97011 764 1391 851
V2I-Q Low 38039 917 1371 940
V2I Low 96788 910 1348 932

6000

DIVINE Total 291665 664 − 939
DOVE Total 299821 743 − 888
V2I-Q Total 295324 840 − 940
V2I Total 302205 912 − 948
DIVINE High 145594 454 1248 556
DOVE High 99657 694 1355 775
V2I-Q High 140179 734 1257 757
V2I High 99602 909 1340 931
DIVINE Medium 98421 767 1299 816
DOVE Medium 100326 731 1337 810
V2I-Q Medium 102007 867 1295 890
V2I Medium 101442 914 1357 936
DIVINE Low 47650 917 1365 939
DOVE Low 99838 809 1379 888
V2I-Q Low 53137 917 1371 940
V2I Low 101161 913 1357 935

8000

DIVINE Total 301100 659 − 937
DOVE Total 303437 752 − 885
V2I-Q Total 299994 839 − 940
V2I Total 299836 912 − 951
DIVINE High 140312 446 1252 545
DOVE High 103019 707 1353 783
V2I-Q High 140142 734 1257 756
V2I High 98709 916 1359 939
DIVINE Medium 104283 754 1286 802
DOVE Medium 99944 740 1349 817
V2I-Q Medium 102230 864 1294 887
V2I Medium 98139 912 1339 935
DIVINE Low 56505 914 1376 937
DOVE Low 100474 809 1388 885
V2I-Q Low 57622 917 1371 940
V2I Low 102987 908 1368 931

to V2I-Q and V2I but not better than DOVE because DOVE achieves lesser
running time for low priority data at the expense of higher running time for
high and medium priority data.

The results for varying number of RSUs are also presented in Table 6 for
better readability.

7.4.4. Effects of RSUs Capacity

This section evaluates the performance for varying RSUs’ capacity from
2000Mb to 8000Mb. Figure 9(a) presents the amount of offloaded total, high,

40

0*100

50*103

100*103

150*103

200*103

250*103

300*103

2000 4000 6000 8000

O
ff
lo
ad
ed
	d
at
a	
(M
b
)

RSUs	capacity	(Mb)

(a) Amount of offloaded data.

	400

	500

	600

	700

	800

	900

2000 4000 6000 8000
Av
er
ag
e	
of
flo
ad
in
g	
de
la
y	
(s
ec
on
ds
)

RSUs	capacity	(Mb)

(b) Average offloading delay.

	1200

	1250

	1300

	1350

	1400

2000 4000 6000 8000

M
ax

im
um

	o
ff
lo

ad
in

g	
de

la
y	

(s
ec

on
ds

)

RSUs	capacity	(Mb)

(c) Maximum offloading delay.

	500

	600

	700

	800

	900

2000 4000 6000 8000

R
un
ni
ng
	ti
m
e	
(s
ec
on
ds
)

RSUs	capacity	(Mb)

(d) Running time.

Figure 9: Effects of RSUs’ capacity.

41

medium and low priority data by DIVINE, DOVE, V2I-Q and V2I. When the
RSUs’ capacity is 2000Mb, DIVINE and V2I-Q offload lesser amount of to-
tal data because the capacity of RSUs is insufficient and the threshold values
of maximum allowed medium and low priority data (γmax,med

k and γmax,low
k)

restricted them to offload higher amount of medium and low priority data.
Within such RSUs’ capacity, the maximum amount of high priority data that
DIVINE and V2I-Q can offload is similar to DOVE and V2I. However, as the
capacity of RSUs keeps increasing, DIVINE and V2I-Q take its advantage and
start to offload more high priority data, however at the cost of offloading lesser
amount of low priority data. When the RSUs’ capacity exceeds 6000Mb, there
is no much difference in the amount of offloaded data by DIVINE and V2I-Q
because this is the optimal RSUs’ capacity to offload all the data of vehicles
in the network without getting overloaded in our current scenario. As usual,
DOVE and V2I offload similar amount of high, medium and low priority data
because of lack of QoS provisioning.

Figure 9(b) presents the average offloading delay of total, high, medium and
low priority data. For all the varying RSUs’ capacity, DIVINE outperforms
all other schemes and achieves much lower average offloading delay for total
and high priority data. When the RSUs’ capacity exceeds 6000Mb, there is
very negligible effect because as seen in Figure 8(a), 6000Mb is the optimal
RSUs’ capacity to successfully offload all the data without getting overloaded
in our scenario. As expected, V2I-Q achieves slightly higher offloading delay for
total and high priority data because of not taking the advantage of V2V data
offloading, while DOVE achieves lower average offloading delay of total and
high priority data as compared to V2I-Q due to the exploitation of V2V data
offloading. V2I performs the worst as always for all total, high, medium and
low priority data resulting in similar average offloading delay due to the lack of
QoS provisioning and V2V data offloading. For medium priority data, DOVE
performs the best, while DIVINE performs the second best. V2I-Q performs
worse than DIVINE and DOVE and similar to V2I. For low priority data, only
DOVE achieves slightly lower average offloading delay.

Figure 9(c) presents the maximum offloading delay for high, medium and
low priority data. For all the varying RSUs’ capacity, DIVINE outperforms
all other schemes and achieves much lower maximum offloading delay for high
and medium priority data, except when the capacity of RSUs is 2000Mb because
this is the case of insufficient RSUs’ capacity in which some vehicles offload their
data only using V2I data offloading. When the RSUs’ capacity exceeds 6000Mb,
there is very negligible effect because as seen in Figs. 8(a) and 8(b), 6000Mb is
the optimal RSUs’ capacity to successfully offload all the data without getting
overloaded in our scenario. Hence, the maximum offloading delay is similar.
V2I-Q achieves slightly higher offloading delay for high and medium priority
data than DIVINE åbecause of not taking the advantage of V2V data offloading,
while DOVE and V2I have similar maximum offloading delay for high, medium
and low priority data. For low priority data, all schemes exhibit almost similar
maximum offloading delay.

Figure 9(d) presents the running time for total, high, medium and low pri-

42

ority data. For the varying RSUs’ capacity, the total running of all the schemes,
except DOVE, is almost similar. Since DOVE does not differentiate between the
data, therefore, using V2V data offloading, it offloads all its data without con-
sidering QoS provisioning and gets lower total running time. DIVINE achieves
the lowest running time for the high priority data due to QoS provisioning and
V2V data offloading. DOVE has similar running time for high, medium and
low priority data due to lack of QoS provisioning. V2I results in the highest
running time for high, medium and low priority data. V2I-Q achieves higher
running time for high priority data than DIVINE and higher running time for
medium priority data than DIVINE and DOVE. All schemes, except DOVE,
have the similar running time for low priority data. Overall, DIVINE performs
the best for high and medium priority data.

The results for varying RSUs’ capacity are also presented in Table 7 for
better readability.

7.4.5. Summary and Insights

To summarize, DIVINE overall performs the best by offloading the high-
est amount of high priority data with the least offloading delay and the least
running time, however, at the cost of lower performance for low priority data
(i.e., lesser amount of offloaded data, higher offloading delay and higher running
time). DOVE offloads similar amount of data with similar offloading delay and
similar running time for all types of data, however it has the higher maximum
offloading delay. V2I-Q performs similar to DIVINE for the amount of offloaded
data, however it incurs higher offloading delay and higher running time. V2I
offloads lower amount of high priority data, but higher amount of medium and
low priority data (similar to DOVE), but it has the highest average and maxi-
mum offloading delays, and the highest running time. In our current scenario,
60 RSUs, each with a capacity of 6000Mb is the optimal setting to achieve
the best performance in terms of higher amount of offloaded data, lower aver-
age offloading delay, lower maximum offloading delay and lower running time.
Moreover, although we target a highway scenario, however our evaluation also
covers a rural scenario. Because the rural scenario has lower number of RSUs
deployed (evaluated in Section 7.4.3), lower number of vehicles (evaluated in
Section 7.4.1) and higher vehicles’ speed (evaluated in Section 7.4.2). In future,
we plan to consider more specific urban and rural scenarios into consideration.

8. Conclusion and Future Work

In this paper, we proposed DIVINE, an efficient data offloading scheme for
vehicular networks with QoS provisioning. We modeled the connectivity of ve-
hicles with RSU, with other vehicles heading on the same or opposite direction,
the offloading capacity, and the expected time to reach the next RSU. We provi-
sioned the QoS using three QoS functions: traffic classification, overload control
and admission control. We have provided detailed data offloading procedure
and algorithms of DIVINE, i.e., how a vehicle selects a node (RSU/vehicle) for

43

requesting data offloading, how the data offloading request is processed at RSU
and vehicles, and finally, how a requested vehicle processed data offloading reply
to start data offloading. In order to better understand DIVINE, we presented
illustrative examples. The simulation results confirmed that DIVINE outper-
forms other schemes by offloading more high priority data with lower average
offloading delay, the maximum offloading delay and the running time.

In future, we plan to extend this work in several dimensions. We plan to
consider urban and rural scenarios that will consider more crossing roads and
heterogeneous traffic. In such scenarios, estimated contact time between vehicles
and time to reach an RSU will have to be revisited. We will investigate how to
avoid offloading redundant data (e.g., same accident data captured by multiple
vehicles) by enabling coordination and collaboration among vehicles. We also
plan to consider overlapping in the coverage of RSUs in which a vehicle does
not necessarily need to establish connection with each RSU separately. We will
consider to change the priority of data with time and consider an expiration
timer of data. We plan to extend V2V data offloading in two ways. Firstly, by
enabling a vehicle to receive data from multiple vehicles at a time. Secondly, if
a vehicle is performing V2I data offloading, then enabling a vehicle to change its
granted low and medium priority data with high priority data, and its granted
low priority data with medium priority data of requested vehicle. Finally, we
plan to tune the threshold values of maximum allowed medium and low priority
data.

Acknowledgment

This work was partially supported by CPER DATA and ELSAT projects.

References

[1] H. Zhou, H. Wang, X. Chen, X. Li, S. Xu, Data Offloading Techniques
Through Vehicular Ad Hoc Networks: A Survey, IEEE Access 6 (2018)
65250–65259. doi:10.1109/ACCESS.2018.2878552.

[2] H. Lin, S. Zeadally, Z. Chen, H. Labiod, L. Wang, A Survey
on Computation Offloading Modeling for Edge Computing, Jour-
nal of Network and Computer Applications 169 (2020) 102781.
doi:10.1016/j.scitotenv.2020.139795.

[3] C.-M. Huang, S.-Y. Lin, Z.-Y. Wu, The k-hop-limited V2V2I VANET Data
Offloading using the Mobile Edge Computing (MEC) Mechanism, Vehicular
Communications 26 (2020) 100268. doi:10.1016/j.vehcom.2020.100268.

[4] S. Ancona, R. Stanica, M. Fiore, Performance Boundaries of Massive Float-
ing Car Data Offloading, IEEE/IFIP Proceedings on 11th Annual Con-
ference on Wireless On-Demand Network Systems and Services, (WONS)
(2014) 89–96doi:10.1109/WONS.2014.6814727.

44

[5] X. Zhu, Y. Li, D. Jin, J. Lu, Contact-Aware Optimal Resource Allo-
cation for Mobile Data Offloading in Opportunistic Vehicular Networks,
IEEE Transactions on Vehicular Technology 66 (8) (2017) 7384–7399.
doi:10.1109/TVT.2017.2668396.

[6] M. Lee, J. Song, J. P. Jeong, T. T. Kwon, DOVE: Data Offloading through
Spatio-temporal Rendezvous in Vehicular Networks, 24th International
Conference on Computer Communications and Networks, (ICCCN) (2015)
1–8doi:10.1109/ICCCN.2015.7288400.

[7] Y. Sun, L. Xu, Y. Tang, W. Zhuang, Traffic Offloading for On-
line Video Service in Vehicular Networks: A Cooperative Approach,
IEEE Transactions on Vehicular Technology 67 (8) (2018) 7630–7642.
doi:10.1109/TVT.2018.2837024.

[8] J. Feng, Z. Feng, A Vehicle-Assisted Offloading Scheme for Hotspot Base
Stations on Metropolitan Streets, IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC) (2018) 1–
6doi:10.1109/PIMRC.2017.8292366.

[9] C. Song, J. Wu, W. S. Yang, M. Liu, I. Jawhar, N. Mohamed, Exploiting
Opportunities in V2V Transmissions with RSU-assisted Backward Delivery,
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS) (2017) 271–276doi:10.1109/INFCOMW.2017.8116388.

[10] S. Guntuka, E. M. Shakshuki, A. Yasar, H. Gharrad, Vehicu-
lar Data Offloading by Road-Side Units Using Intelligent Software
Defined Network, Procedia Computer Science 177 (2020) 151–161.
doi:10.1016/j.procs.2020.10.023.

[11] Y. Wu, J. Zheng, Modeling and Analysis of the Uplink Local Delay in
MEC-Based VANETs, IEEE Transactions on Vehicular Technology 69 (4)
(2020) 3538–3549. doi:10.1109/TVT.2020.2984835.

[12] Y. Wu, J. Zheng, Modeling and Analysis of the Downlink Local Delay in
MEC-Based VANETs, IEEE Transactions on Vehicular Technology 69 (6)
(2020) 6619–6630. doi:10.1109/TVT.2020.2984835.

[13] Y. Wang, J. Zheng, N. Mitton, Delivery Delay Analysis for Roadside Unit
Deployment in Vehicular Ad Hoc Networks with Intermittent Connectiv-
ity, IEEE Transactions on Vehicular Technology 65 (10) (2016) 8591–8602.
doi:10.1109/TVT.2015.2506599.

[14] Y. Wang, J. Zheng, Connectivity analysis of a highway with one entry/exit
and multiple roadside units, IEEE Transactions on Vehicular Technology
67 (12) (2018) 11705–11718. doi:10.1109/TVT.2018.2873706.

[15] G. Li, L. Boukhatem, J. Wu, Adaptive Quality-of-Service-Based Rout-
ing for Vehicular Ad Hoc Networks with Ant Colony Optimization,

45

IEEE Transactions on Vehicular Technology 66 (4) (2017) 3249–3264.
doi:10.1109/TVT.2016.2586382.

[16] A. H. Sodhro, M. S. Obaidat, Q. H. Abbasi, P. Pace, S. Pirbhulal, A.-u.-h.
Yasar, G. Fortino, M. A. Imran, M. Qarage, Quality of Service Optimiza-
tion in an IoT-Driven Intelligent Transportation System, IEEE Wireless
Communications 26 (2) (2019) 10–17.

[17] Y. Saleem, N. Mitton, V. Loscri, A Vehicle-to-Infrastructure Data Offload-
ing Scheme for Vehicular Networks with QoS Provisioning, International
Wireless Communications & Mobile Computing Conference (IWCMC).
URL https://hal.inria.fr/hal-03188360/document

[18] F. Lyu, H. Zhu, N. Cheng, H. Zhou, W. Xu, M. Li, X. Shen, Character-
izing Urban Vehicle-to-Vehicle Communications for Reliable Safety Appli-
cations, IEEE Transactions on Intelligent Transportation Systems (2019)
1–17doi:10.1109/tits.2019.2920813.

[19] W. Zhao, M. Ammar, E. Zegura, A Message Ferrying Approach for Data
Delivery in Sparse Mobile Ad Hoc Networks, International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc) (2004) 187–
198doi:10.1145/989459.989483.

[20] Quality of Service (in Mobile Networks), Last accessed: March 2021.
URL https://www.tu-ilmenau.de/fileadmin/public/iks/files/lehre/mobicom/MCN-08-QoS.pdf

[21] C. Bettstetter, S. Konig, On the message and time complexity of a dis-
tributed mobility-adaptive clustering algorithm in wireless ad hoc networks,
Proceedings of European Wireless Conference (2002) 128–134.

[22] I. I. Er, W. K. Seah, Clustering overhead and convergence time analysis
of the mobility-based multi-hop clustering algorithm for mobile ad hoc
networks, Journal of Computer and System Sciences 72 (7) (2006) 1144–
1155.

[23] A. Varga, R. Hornig, An Overview of the OMNeT++ Simulation Envi-
ronment, Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems (SIMU-
Tools)doi:10.4108/ICST.SIMUTOOLS2008.3027.

[24] C. Sommer, R. German, F. Dressler, Bidirectionally Coupled Network and
Road Traffic Simulation for Improved IVC Analysis, IEEE Transactions on
Mobile Computing 10 (1) (2011) 3–15. doi:10.1109/TMC.2010.133.

[25] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flot-
terod, R. Hilbrich, L. Lucken, J. Rummel, P. Wagner, E. Wieb-
ner, Microscopic Traffic Simulation using SUMO, Proceedings of IEEE
Conference on Intelligent Transportation Systems (ITSC) (2018) 2575–
2582doi:10.1109/ITSC.2018.8569938.

46

[26] J. Zhang, H. Guo, J. Liu, Y. Zhang, Task Offloading in Ve-
hicular Edge Computing Networks: A Load-Balancing Solution,
IEEE Transactions on Vehicular Technology 69 (2) (2020) 2092–2104.
doi:10.1109/TVT.2019.2959410.

[27] R. S. D. Sousa, A. Boukerche, A. A. F. Loureiro, A Distributed and
Low-Overhead Traffic Congestion Control Protocol for Vehicular Ad
Hoc Networks, Computer Communications 159 (March) (2020) 258–270.
doi:10.1016/j.comcom.2020.05.032.

[28] T. S. Gomides, R. E. De Grande, A. M. de Souza, F. S. H. Souza,
L. A. Villas, D. L. Guidoni, An Adaptive and Distributed Traffic Man-
agement System using Vehicular ad-hoc Networks, Computer Communica-
tionsdoi:10.1016/j.future.2020.02.017.

[29] A. J. Kadhim, S. A. H. Seno, Energy-efficient Multicast Routing Proto-
col based on SDN and Fog Computing for Vehicular Networks, Ad Hoc
Networks 84 (2019) 68–81. doi:10.1016/j.adhoc.2018.09.018.

[30] M. H. Eiza, T. Owens, Q. Ni, Q. Shi, Situation-Aware QoS Routing Al-
gorithm for Vehicular Ad Hoc Networks, IEEE Transactions on Vehicular
Technology 64 (12) (2015) 5520–5535. doi:10.1109/TVT.2015.2485305.

[31] G. Premsankar, B. Ghaddar, M. D. Francesco, R. Verago, Efficient Place-
ment of Edge Computing Devices for Vehicular Applications in Smart
Cities, IEEE/IFIP Network Operations and Management Symposium
(NOMS) (2018) 1–9doi:10.1109/NOMS.2018.8406256.

47

