
HAL Id: hal-03144290
https://hal.inria.fr/hal-03144290v7

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locality-Aware Scheduling of Independant Tasks for
Runtime Systems

Maxime Gonthier, Loris Marchal, Samuel Thibault

To cite this version:
Maxime Gonthier, Loris Marchal, Samuel Thibault. Locality-Aware Scheduling of Independant Tasks
for Runtime Systems. [Research Report] RR-9394, Inria Grenoble -Rhône-Alpes. 2021, pp.21. �hal-
03144290v7�

https://hal.inria.fr/hal-03144290v7
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

94
--

FR
+E

N
G

RESEARCH
REPORT
N° 9394
February 2021

Project-Teams ROMA and
STORM

Locality-Aware
Scheduling of
Independent Tasks for
Runtime Systems
(Extended Version)
Maxime Gonthier, Loris Marchal , Samuel Thibault

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Locality-Aware Scheduling of Independent
Tasks for Runtime Systems (Extended Version)

Maxime Gonthier *, Loris Marchal *, Samuel Thibault�

Project-Teams ROMA and STORM

Research Report n° 9394 � version 7 � initial version February 2021 �
revised version August 2021 � 22 pages

Abstract: A now-classical way of meeting the increasing demand for computing speed by
HPC applications is the use of GPUs and/or other accelerators. Such accelerators have their
own memory, which is usually quite limited, and are connected to the main memory through
a bus with bounded bandwidth. Thus, a particular care should be devoted to data locality in
order to avoid unnecessary data movements. Task-based runtime schedulers have emerged as a
convenient and e�cient way to use such heterogeneous platforms. When processing an application,
the scheduler has the knowledge of all tasks available for processing on a GPU, as well as their
input data dependencies. Hence, it is able to order tasks and prefetch their input data in the
GPU memory (after possibly evicting some previously-loaded data), while aiming at minimizing
data movements, so as to reduce the total processing time. In this paper, we focus on how to
schedule tasks that share some of their input data (but are otherwise independent) on a GPU.
We provide a formal model of the problem, exhibit an optimal eviction strategy, and show that
ordering tasks to minimize data movement is NP-complete. We review and adapt existing ordering
strategies to this problem, and propose a new one based on task aggregation. These strategies have
been implemented in the StarPU runtime system. We present their performance on tasks from
tiled 2D, 3D matrix products, Cholesky factorization and randomized 2D matrix operation. Our
experiments demonstrate that using our new strategy together with the optimal eviction policy
reduces the amount of data movement as well as the total processing time.

Key-words: Memory-aware scheduling, Eviction policy, Tasks sharing data, Runtime systems

* LIP, CNRS, ENS de Lyon, Inria & Université Claude-Bernard Lyon 1
� LaBRI, Université de Bordeaux, CNRS, Inria Bordeaux � Sud-Ouest

Ordonnancement de tâches indépendantes pour support
d'exécution utilisant la localité des données (Version

Etendu)

Résumé : Une manière désormais classique de répondre à la demande croissante de puis-
sance de calcul par les applications HPC est l'utilisation de GPU et autres accélérateurs. Ces
accélérateurs ont leurs propre mémoire, qui est généralement assez limitée, et sont connectés
à la mémoire principale via un bus dont la bande passante est bornée. Ainsi, une attention
particulière doit être portée à la localité des données a�n d'éviter des mouvements de données
inutiles. Les ordonnanceurs des supports d'exécution à base de tâches sont un moyen pratique
et e�cace d'utiliser de telles plateformes hétérogènes. Lors du traitement d'une application,
l'ordonnanceur a la connaissance de toutes les tâches disponibles, ainsi que leurs dépendances.
Ainsi, il est capable d'ordonner les tâches et de pré-charger leurs données d'entrée dans la mé-
moire du GPU (après avoir éventuellement évincé certaines données précédemment chargées),
tout minimisant les transferts de données, a�n de réduire le temps d'exécution total. Dans
ce papier, nous nous concentrons sur la façon de plani�er des tâches qui partagent des don-
nées (mais sont par ailleurs indépendantes) sur un GPU. Nous fournissons un modèle formel
du problème, nous présentons une stratégie d'éviction optimale et nous montrons qu'ordonner
des tâches a�n de minimiser les mouvement des données est un problème NP-complet. Nous
adaptons des stratégies d'ordonnancement existantes à ce problème, et nous en proposons une
nouvelle basé sur l'agrégation des tâches. Ces stratégies ont été implémentées sur le support
d'exécution StarPU. Nous présentons leurs performances sur des produits matriciels 2D, 3D,
la factorisation de Cholesky et un produit matriciel 2D randomisé. Nos expériences démontrent
qu'en utilisant notre nouvelle stratégie, avec la politique d'éviction optimale, nous réduisons la
quantité de transferts de données ainsi que le temps de traitement total.

Mots-clés : Ordonnancement sous contrainte mémoire, Politique d'éviction, Tâches partageant
des données, Support d'exécution

Locality-Aware Scheduling 3

1 Introduction

High-performance computing applications, such as physical simulations, molecular modeling or
weather and climate forecasting, have an increasing demand in computer power to reach better
accuracy. Recently, this demand has been met by extensively using GPUs, as they provide
large additional performance for a relatively low energy budget. Programming the resulting
heterogeneous architecture which merges regular CPUs with GPUs is a very complex task, as
one needs to handle load balancing together with data movements and task a�nity (tasks have
strongly di�erent speedups on GPUs). A deep trend which has emerged to cope with this new
complexity is using task-based programming models and task-based runtimes such as PaRSEC [5]
or StarPU [3]. These runtimes aim at scheduling scienti�c applications, expressed as directed
acyclic graphs (DAGs) of tasks, onto distributed heterogeneous platforms, made of several nodes
containing di�erent computing cores.

Data movement is an important problem to consider when scheduling tasks on GPUs, as
those have a limited memory as well as a limited bandwidth to read/write data from/to the
main memory of the system. Thus, it is crucial to carefully order the tasks that have to be
processed on GPUs so as to increase data reuse and minimize the amount of data that needs
to be transferred. It is also important to schedule the transfers soon enough (prefetch) so that
data transfers can be overlapped with computations and all tasks can start without delay. We
focus in this paper on the problem of scheduling a set of tasks on one GPU with limited
memory, where tasks share some of their input data but are otherwise independent.
More precisely, we want to determine the order in which tasks must be processed to optimize for
locality, as well as when their input must be loaded/evicted into/from memory. Our objective is
to minimize the total amount of data transferred to the GPUs for the processing of all tasks with
a constraint on the memory size. We start focusing on independent tasks sharing input data
because when using usual dynamic runtime schedulers, the scheduler is exposed at a given time
to a fairly large subset of tasks which are independent of each others. This is in particular the
case with linear algebra work�ows, such as the matrix multiplication or Cholesky decomposition:
except possibly at the very beginning or very end of the computation, a large set of tasks is
available for scheduling. Thus, solving the optimization problem for the currently available tasks
can lead to a large reduction in data transfers and hence a performance increase.

In this paper, we make the following contributions:

� We provide an extensive review of related work (Section 2).

� We provide a formal model of the optimization problem, and prove the problem to be
NP-complete. We derive an optimal eviction policy by adapting Belady's rule for cache
management (Section 3).

� We review and adapt three heuristic algorithms from the literature for this problem, and
propose a new one based on gathering tasks with similar data patterns into packages
(Section 4).

� We implement all four heuristics into the StarPU runtime and study the performance
(amount of data transfers and total processing time) obtained on various tasks sets coming
from linear algebra operations (Section 5). Overall, our evaluation shows that our heuristic
generally surpasses previous strategies, in particular in the most constrained situations.

Note that while we focus our experimental validation on GPUs, the optimization problem
studied in this paper is not speci�c to the use of such accelerators: it appears as soon as tasks
sharing data must be processed on a system with limited memory and bandwidth. For example,

RR n° 9394

4 Gonthier & Marchal & Thibault

it is also relevant for a computer made of several CPUs with restricted shared memory, and
limited bandwidth for the communication between memory and disk.

2 Related work

The problem of �tting a working set in a given amount of memory [9] is a general concern that
shows up at various levels such as the processor cache, the operating system page cache (most
often solved with only a mere LRU heuristic), or even at the task scheduler level. We detail here
related papers in some of these areas.

Our work is �rst related to existing studies in cache optimization. In particular, some papers
have considered the problem of cache reuse by allowing to reorder some requests (see Feder et
al. [10] for instance). However, in the present study, we are able to fully reorder the full set of
requests (tasks), contrarily to cache optimization, where only a (short) portion of future cache
accesses are known in advance. Besides, in our study, each task may request several data.

The problem of tasks sharing input �les has been extensively studied in scheduling for dis-
tributed platforms. In particular Giersch et al. [13] studied how to allocate and schedule tasks
sharing input �les on a distributed platform, when the communication between the server hold-
ing the input �les and the workers is limited. Senger et al. [20] proposed a hierarchical strategy
for data distribution in order to improve scalability. Kaya et al. re�ned the problem by con-
sidering that input �les are initially distributed on the platform, but may also be transferred
through the network is required. They proposed heuristics using hypergraph partitioning [16]
and a three-phase approach using initial task placement, re�nement, and task ordering [17].

There have been plenty of studies on data locality to improve the performance of High Perfor-
mance Computing, from the seminal work of Hong & Kung [15], many of them targeting linear
algebra (see [18, 21] for recent works). The work of Yao et al. [22] is very close to our problem:
they optimize the scheduling of independent tasks sharing input data. However, their target
platforms are multicore CPUs. Hence, a large part of their work is devoted to grouping tasks
before ordering them. In our experiments, we include a MST heuristic which is adapted from
their ordering strategy.

3 Problem modeling and complexity

We consider the problem of scheduling independent tasks on one GPU with memory size M. As
proposed in previous work [17], tasks sharing their input data can be modeled as a bipartite
graph G = (T∪D, E). The vertices of this graph are on one side the tasks T = {T1, . . . , Tm} and
on the other side the data D = {D1, . . . , Dn}. An edge connects a task Ti and a data Dj if task Ti
requiresDj as input data. For the sake of simplicity, we denote by D(Ti) = {Dj s.t. (Ti, Dj) ∈ E}
the set of input data for task Ti. We here consider that all data have the same size. The GPU
is equipped with a memory of limited size, which may contain at most M data simultaneously.
During the processing of a task Ti, all its inputs D(Ti) must be in memory.

For the sake of simplicity, we here do not consider the data output of tasks. In the case of
linear algebra for instance, the output data is most often much smaller than the input data and
can be transferred concurrently with data input. Data output is then not the driving constraint
for e�cient execution. Our model could however easily be extended to integrate task output.

All m tasks must be processed. Our goal is to determine in which order to process them,
and when each data must be loaded or evicted, in order to minimize the amount of
data movement. More formally, we denote by σ the order in which tasks are processed, and

Inria

Locality-Aware Scheduling 5

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

D1

D2

D3

D4

D5

D6

D1

timeT1 T2 T3 T4 T5

data in memory

processed tasks

Figure 1: Example with 5 tasks and 6 data, with a memory holding at most M = 3 data. The
graph of input data dependencies is shown on the left. The schedule on the right corresponds
to processing the tasks in the natural order with the following eviction policy: V(1) = V(2) = ∅,
V(3) = {1}, V(4) = {2}, V(5) = {3, 4}. This results in 7 loads (only D1 is loaded twice).

by V(t) the set of data to be evicted from the memory before the processing of task Tσ(t). A
schedule is made of m steps, each step being composed of the following three stages (in this
order):

1. All data in V(t) are evicted (unloaded) from the memory;
2. The input data in D(Tσ(t)) that are not yet in memory are loaded;
3. Task Tσ(t) is processed.
An example is shown in Figure 1. This example illustrates that input data are loaded in

memory as late as possible: loading them earlier would be pointless and possibly trigger more
data movements. In real computing systems, a pre-fetch is usually designed to load data a bit
earlier so as to avoid waiting for unavailable data, however, for the sake of simplicity, we do not
consider this in our model: if needed, we may simply book part of our memory for the pre-fetch
mechanism.

Using the previous de�nition, we de�ne the live data L(t) as the data in memory during the
computation of Tσ(t), which can be de�ned recursively:

L(t) =

{
D(Tσ(1)) if t = 1

L(t) = (L(t− 1)\V(t)) ∪ D(Tσ(t)) otherwise

Our memory limitation can then be expressed as |L(t)| ≤M for each step t = 1, . . . ,m. Our
objective is to minimize the amount of data movement, i.e., to minimize the number of load
operations: we consider that data are not modi�ed so no store operation occurs when evicting
a data from the memory. Assuming that no input data used at step t is evicted right before the
processing (V(t) ∩ D(Tσ(t)) = ∅), the number of loads can be computed as follows:

#Loads(σ,V) =
∑
t

∣∣∣D (Tσ(t)) \L(t)
∣∣∣

There is no reason for a scheduling policy to evict some data from memory if there is still
room for new input data. We call thrifty scheduler such a strategy, formalized by the following
constraints: if V(t) 6= ∅, then |L(t)| = M . For this class of schedulers, the number of loads can
be computed more easily: as soon as the memory is full, the number of loads is equal to the
number of evictions. That is, for the regular case when not all data �t in memory (n > M), we
have:

#Loads(σ,V) = M +
∑
t

|V(t)|

Our optimization problem is stated below:

RR n° 9394

6 Gonthier & Marchal & Thibault

De�nition 1 (MinLoadsForTasksSharingData). For a given set of tasks T sharing data in
D according to D, what is the task order σ and the eviction policy V that minimizes the number
of loads #Loads?

A solution to this optimization problem consists in two parts: the order σ of the tasks and the
eviction policy V. Note that when each task requests a single data, �nding an e�cient eviction
policy corresponds to the classical cache management policy problem. When the full sequence
of data requests is known, the optimal policy consists in evicting the data whose next use is
the furthest in the future. This is the well-known Belady MIN replacement policy [4](see proof
in [19]). We prove in the following theorem that this rule can be extended to our problem, with
tasks requiring multiple data.

Theorem 1. We consider a task schedule σ for a MinLoadsForTasksSharingData problem.
We denote by MIN the thrifty eviction policy that always evicts a data whose next use in σ is
the latest (breaking ties arbitrarily). MIN reaches an optimal performance, i.e., for any eviction
policy V,

#Loads(σ,MIN) ≤ #Loads(σ,V).

Proof. We consider a given task order σ. We transform our problem so that each task depends
on a single data (or page). we replace a task Ti depending on data D(Ti) = {D1, . . . , Dk} by a

series of 2k tasks: T
(1)
i , T

(2k)
i such that D(T

(j)
i) = D(T

(j+k)
i) = Dj for j = 1, . . . , k. We denote

by T′ the modi�ed set of tasks and by σ′ the modi�ed task order.
Let V be an optimal eviction policy for the original problem, i.e. for task set T and task order

σ. We now transform it into an eviction policy for T′ and σ′ with the same number of loads and
evictions. We group tasks by subsets of 2k tasks (as they were created above) and evict all data

in V(t) before processing tasks T
(1)
σ(t), T

(2k)
σ(t) (and loading their missing inputs). We denote this

strategy by V ′. Clearly, this is a valid strategy (we never exceed the memory if V did not on the
original problem) and it has the same number of loads as V:

#Loads(σ,V) = #Loads(σ′,V ′).

Symmetrically, we consider an optimal eviction policy for the transformed problem (T′ and
σ′) obtained with Belady's MIN replacement policy, denoted by MIN ′: whenever some data
must be evicted, it selects the one whose next use is the furthest in the future. We now prove
that it can be transformed into an eviction policy MIN for the original problem with the same
performance (loads and evictions), and thatMIN also follows Belady's rule. We consider a subset

of 2k tasks T
(1)
i , T

(2k)
i coming from the expansion of task Ti scheduled at time t (σ(t) = Ti) and

the set of data V evicted by MIN ′ right before some task T
(j)
i . By property of MIN ′ and as the

memory is large enough for the inputs of task Ti (M ≥ k) no input data of some T
(j)
i belongs to

V : during the �rst k tasks, their next occurrence is the closest, and there is no eviction during
the processing of the last k tasks. Thus, we can adapt MIN ′ for the original problem by setting
MIN (t) = V . It is easy to verify that MIN reaches the same performance as MIN ′:

#Loads(σ,MIN) = #Loads(σ′,MIN ′)

and that the data evicted at time t are (among the) ones whose next use is the furthest in the
future.

As MIN ′ is known to be optimal for the transformed problem, we have #Loads(σ′,MIN ′) ≤
#Loads(σ′,V ′) and we conclude that #Loads(σ,MIN) ≤ #Loads(σ,V), which proves that MIN
is optimal on the original problem.

Inria

Locality-Aware Scheduling 7

For cache management, Belady's rule has little practical impact, as the stream of future
requests is generally unknown; simple online policies such as LRU (Least Recently Used [9]) are
generally used. However in our case, the full set of tasks is available at the beginning. Hence,
we can take advantage of this optimal o�ine eviction policy. Thanks to the previous result, we
can restrict our problem to �nding the optimal task order σ. Unfortunately, this problem is
NP-complete.

Theorem 2. Given a set of tasks T sharing data in D according to D and an integer B, �nding
a task order σ such that #Loads(σ,MIN) ≤ B is NP-complete.

Proof. We �rst check that the problem is in NP. Given a schedule σ (and an eviction policy V,
which might be deduced by MIN), it is easy to check in polynomial time that:

� The schedule is valid, that is, no more than M data are loaded in memory at any time
step;

� The number of loads is not greater than the prescribed bound B.
The NP-completeness proof consists in a reduction from the cutwidth minimization problem

(or CMP), proven NP-complete by Gavril in 1977 [12]. We denote by ICMP an instance of CMP
composed of a graph. The question is to decide whether there exists a linear arrangement of the
vertices such that the cutwidth is at most K. A linear arrangement α is a simple order of the
vertices. The cutwidth CUTα(v) of a vertex v under the linear arrangement α is the number
of edges that connect vertices ordered before and after v in α, that is, the number of edges
(u,w) ∈ E, such as α(u) < α(v) < α(w). The total cutwidth of G is the maximal cutwidth over
all vertices : CUTα(G) = maxv∈V CUTα(v).

Given an instance ICMP an instance of CMP , we create an instance IMinLoads of our problem
as follows. For each vertex vi ∈ ICMP , we create a task Ti, and for each edge ek = (vi, vj), we
create a data Dk such that Dk is a shared input of Ti and Tj . Then,

D(Ti) = {Dk, such that ek is adjacent to vi in G}.

Finally, we set M = K and B = |D| = |E|: we are looking for a solution where each data is
loaded exactly once.

We now prove that if ICMP has a solution, then IMinLoads has a solution. Let α be the linear
arrangement solution of ICMP . We consider the task order σ = α−1, and the optimal eviction
policy MIN . We prove that

(i) A data is evicted only if it is not used anymore;

(ii) Each data is loaded exactly once.

Note that (ii) is a direct consequence of (i). We consider a step t when some data Dj is evicted
and some task Ti is processed. We consider the set S of data in memory before starting step t
together with the inputs of Tσ(t) that are loaded in memory during step t. If Dj is evicted, this
means that |S| > M (MIN is a thrifty policy). We consider S′, the subset of S containing the
data that are as input for a later step t′ > t. By construction of IMinLoads , each data Dk ∈ S′
corresponds to an edge ek = (va, vb) in G such that σ−1(ua) = α(va) < t (the data was loaded for
a task Ta scheduled before t) and σ−1(vb) = α(vb) > t (the data is used for a task Tb scheduled
after t). Hence, it corresponds to an edge counted in the cutwidth CUTα(vi). Since this cutwidth
is bounded by K = M , there are at most M data in S′. Thus, the evicted data Dj is not used
later than t. Since all data are loaded exactly once, the number of loads is not larger than B.

We now prove that if IMinLoads has a solution, then ICMP has a solution. Let σ the task
order in the solution of IMinLoads . We construct the solution of ICMP such that α = σ−1. We
now prove that its cutwidth is not larger than K. By construction, the cutwidth CUTα(vi) at

RR n° 9394

8 Gonthier & Marchal & Thibault

some vertex vi (corresponding to a task Ti scheduled at time t) is the number of data which are
used both before t and after t. Given the constraint on the number of loads, each data is loaded
once, so such a data must be in memory during the processing of Ti, and there are at most M
such data. This proves that CUTα(vi) ≤M = B. Hence α is a solution for ICMP .

4 Algorithms

We present here several heuristics to solve theMinLoadsForTasksSharingData optimization
problem. Two of them are adapted from the literature (Reverse-Cuthill-McKee and Maximum
Spanning Tree), one of them is the actual dynamic strategy from the StarPU runtime (Deque
Model Data Aware Ready) and we �nally propose a new strategy: Hierarchical Fair Packing.

Reverse-Cuthill-McKee (RCM) We have seen above that our problem is close to the
cutwidth minimization problem, known to be NP-complete. This motivates the use of the
Cuthill�McKee algorithm, which concentrates on a close metric: the bandwidth of a graph.
It permutes a sparse matrix into a band matrix so that all elements are close to the diagonal [8].
If the resulting bandwidth is k, it means that vertices sharing an edge are not more than k edges
away. We apply this algorithm on the graph of tasks GT = (T, ET , wT) where there is an edge
(Ti, Tj) if tasks Ti and Tj share some data, and where wT (Ti, Tj) is the number of such shared
data. If the bandwidth of the graph is not larger than k, this means in our problem that any task
Ti processed at time t has all its �neighbours� tasks (tasks sharing some data with Ti) processed
in the time interval [t−k; t+k]. Hence, if k is low, this leads to a very good data locality. Revers-
ing the obtained order is known to improve the performance of the Cuthill�McKee algorithm,
which we also notice in our experiments. The adaption of the Reverse-Cuthill�McKee algorithm
to our model is described in Algorithm 1.

Algorithm 1 Reverse-Cuthill-McKee heuristic

Build the graph GT where vertices are tasks and edges are common data between tasks,
weighted by the number of such data
σ ← [v] where v is the vertex of GT with smallest weighted degree
i← 0
while |σ| < m do

Let N be the set of vertices adjacent to σ[i] in GT not yet in σ
Sort N by non-decreasing weighted degree
Append N at the end of σ
i← i+ 1

end while
Return σ in the reverse order

Di�erences CM and RCM We prove in the following theorem that both Cuthill-McKee
(CM) and Reverse-Cuthill-McKee (RCM) algorithms reach the same amount of data movement.
More generally, reversing a schedule does not change the number of reads or eviction.

Theorem 3. For a given set of tasks T sharing data in D and a given task order σ : #Loads(σ,MIN) =
#Loads(σ̄,MIN).

Proof. Given σ, an order of computation for T, we know that data are used in the following
order: D(Tσ(1)), . . . ,D(Tσ(m)). Together with the knowledge of the MIN eviction policy, we can

Inria

Locality-Aware Scheduling 9

deduce the set of data that we need to load before computing task Tσ(t), that we note St. It
is the set of input data of Ti that were not in memory during the computation of the last task
Ti−1, in other words: St = D(Tσ(t))\L(t− 1). We denote by S the ordered list of data sets that
we need to load before each task: S = [S1, ..., Sm]. Similarly, we build V, the ordered list of data
that we are evicted before each task= V = [V(2), ...,V(m),V(m+ 1)]. Note that we start at task
2 (no data is evicted before the �rst task) and we denote by V(m + 1) the operation needed to
completely empty the memory at the end of the execution. S and V totally describe the memory
operations for an execution, and can be used to count the number of loads:

#Loads(σ,MIN) = #Loadsordered_list(S,V) =
∑
Si∈S
|Si| =

∑
V(i)∈V

|V(i)|

The last equality comes from the fact that each data is evict exactly as many times as it is
loaded, thanks to the last eviction that totally frees the memory.

We consider the reversed order of σ: σ̄, and similarly the reversed list of loads (S̄) and
evictions (V̄). We consider S′ = V̄ and V′ = S̄ and notice that the pair (S′,V′) describes correct
lists of loading sets and eviction sets for σ̄: this is what happens if we reverse the task order, and
consider than each eviction for σ is transformed into a load, and each load for σ is transformed
into an eviction. Hence, the total memory used by (S′,V′) for σ̄ is the same as the one used by
(S,V) for σ, and not larger than M . Because (S′,V′) is a correct loading/eviction scheme, we
have

#Loadsordered_list(S′,V′) ≤ #Loads(σ̄,MIN)

We also have

#Loadsordered_list(S′,V′) = #Loadsordered_list(V̄, S̄)

=
∑
Si∈S
|Si|

= #Loadsordered_list(S,V) = #Loads(σ,MIN)

Hence, we have #Loads(σ̄,MIN) ≤ #Loads(σ,MIN) By reversing once again the schedule (as
well as the list of loading sets and eviction set), we obtain similarly that #Loads(σ,MIN) ≤
#Loads(σ̄,MIN), proving the equality.

As we will see later (see Section 5, Figure 8), the performance reached by both variants are
not similar. We observed that in practice, RCM is always better than CM. Even if the total
number of load is the same, the distribution of loads in time is not equal: there is more overlap
between data movements and computation in RCM than in CM, which allows RCM to reach
better performance.

Maximum Spanning Tree (MST) As outlined in the related work, Yoo [22] et al. proposed
another heuristic to order tasks sharing data to improve data locality. They �rst build a Max-
imum Spanning Tree in the graph GT using Prim's algorithm [7] and then order the vertices
according to their order of inclusion in the spanning tree. By selecting the incident edge with
largest weight, they increase the data reuse between the current scheduled tasks and the next
one to process. The direct adaption of the Maximum Spanning Tree to our model algorithm is
described in Algorithm 2

RR n° 9394

10 Gonthier & Marchal & Thibault

Algorithm 2 Maximum Spanning Tree heuristic

For each vertex vi set Key_V alue(vi) to 0
Key_V alue(v0)← 1
while |σ| 6= m do

Choose vi ∈ T /∈ σ such that Key_V alue(vi) is maximum
Add vi at the end of the list σ
For each couple (vi, vj), update Max_Path_Length(i, j)
for each vj adjacent to vi∩ /∈ σ do

if Key_V alue(vj) < Max_Path_Length(i, j) then
Key_V alue(vj)←Max_Path_Length(i, j)

end if
end for

end while
Return σ

Deque Model Data Aware Ready (DMDAR) DMDA or �Deque Model Data Aware� is
a dynamic scheduling heuristic designed to schedule tasks on heterogeneous processing units
in the StarPU runtime. It takes data transfer time into account and schedules tasks where
their completion times is expected to be minimal [2] (also called tmdp). We focus here on a
variant, DMDAR, which additionally uses a ready strategy at runtime, to favor tasks whose data
has already been loaded into memory. If at some point the next task Ti planned for execution
requires some data which is not yet loaded in the GPU memory, then it looks further in the list
of scheduled tasks. If it �nds a task Tj that needs to load strictly less data than task Ti, it will
�rst opportunistically compute that task Tj (see Algorithm 3). In our context with a single
processing unit, DMDAR is reduced to selecting the next task with this strategy. DMDAR is a
dynamic scheduler that relies on the actual state of the memory, it thus depends on the eviction
policy, which is the LRU policy.

Algorithm 3 DMDAR heuristic

Let T1 be the �rst task in T
Add T1 to σ, InMem ← D(T1)
while |σ| 6= m do

Select a task Ti /∈ σ such that |D(Ti)\InMem| is minimal
Add Ti to σ
InMem ← InMem ∪ D(Ti)
if |InMem| > M then evict data from InMem following LRU's policy

end while
Return σ

Hierarchical Fair Packing (HFP) HFP builds packages (denoted P1, P2, ...) of tasks, which
are stored as lists of tasks, forming a partition of T. To do so, it gathers tasks that share the
most input data. By extension, we denote by D(Pk) the set of inputs of all tasks in Pk. We aim
at building the smallest number of packages so that the inputs of all tasks in each package �t
in memory: D(Pk) ≤ M . The intuition is that once the data D(Pk) are loaded, all tasks in the
package can be processed without any additional data movement. We have proven that building
the minimum number of packages is NP-complete (see Theorem 4 and it's proof), hence we rely
on a greedy heuristic to build them, described in Algorithm 4.

Inria

Locality-Aware Scheduling 11

Algorithm 4 Hierarchical Fair Packing heuristic

1: Let Pi ← [Ti] for i = 1 . . .m and P = {P1, . . . , Pm}
2: SizeLimit ← true, MaxSizeReached ← false,
3: while |P| > 1 do
4: while (MaxSizeReached = false or SizeLimit = false) and |P| > 1 do
5: MaxSizeReached ← true
6: for all packages Pi with the smallest number of tasks do
7: Find a package Pj such that |D(Pi) ∩ D(Pj)| is maximal
8: if weight(Pi ∪ Pj) ≤M or SizeLimit = false then
9: Merge Pi and Pj (append Pj at then end of Pi and remove Pj from P)
10: MaxSizeReached ← false
11: end if
12: end for
13: end while
14: SizeLimit ← false
15: end while
16: Return the only package in P

Theorem 4. We consider a set of tasks T sharing data in D. Partitioning tasks into at most L
packages P1, . . . , PL such that |D(Pi)| ≤M for each package Pi is an NP-complete problem.

Proof. Given a set of packages, it is easy to verify that they partition the task set and that the
input size of each package is smaller than the M bound, hence the problem lies in NP.

We prove that the problem is NP-complete thanks to a reduction from the 3-partition problem:
Given an integer B and 3n integer a1, a2, . . . , an, such that

∑3n
i=1 ai = nB the problem is to decide

whether we can partition 3n into n triplet whose sum of integers is B. We consider the restricted
version of the problem where ∀i M/4 < ai < M/2, which is still NP-complete [11]. In this
variant, each subset of integers reaching B has exactly three elements.

We consider an instance I3P of the 3-partition problem and build an instance IMinP of the
package minimization problem as follows. For each ai ∈ I3P , we create a task Ti and ai input
data D(Ti) = {Di,1 . . . , Di,ai} (no input data is shared among two tasks). We set the size limit
of a package to M = B and the maximum number of packages to L = n. Thus, in instance
IMinP , we try to solve the following question: Can we �nd at most n packages of input size at
most M?

We know prove that if I3P has a solution, then IMinP has a solution. If I3P has a solution,
then we have n subsets of integers S1, S2, . . . , Sn which verify: ∀i, |Si| = M . We group tasks in n
packages P1, P2, . . . , Pn such that Pj = {Ti, ai ∈ Sj} Since, L = n, we have exactly L packages.
The input size of each package is

|D(Pj)| =
∑
Ti∈Pj

|D(Ti)| =
∑
ai∈Sj

ai = B = M.

Hence, this is a solution for IMinP .
We know prove that if IMinP has a solution, then I3P has a solution. If IMinP has a solution

then there are at most L packages whose input size is at most M : ∀i|D(Pi)| ≤ M . We know
that

∑n
i=1 |Si| = nM , so

∑n
i=1 |D(Pi)| = nM . We therefore have L = n packages which must

satisfy the following conditions: { ∑n
i=1 |D(Pi)| = nM

∀i |D(Pi)| ≤M

RR n° 9394

12 Gonthier & Marchal & Thibault

Any package with input size smaller thanM would require that another package has a size larger
than M , which is not possible. Therefore, we have |D(Pi)| = M for each package Pi. We denote
by Sj the set of ai corresponding to tasks Ti in Pj . Hence,

∑
ai∈Sj

ai = M for all Sj . We assume

that M/4 < ai < M/2, hence each Sj counts exactly three ais, and the Sj are a solution to
instance I3P .

Since building packages in an optimal way is NP-complete, we concentrate on a greedy heuris-
tic to build them, described in Algorithm 4. We start with packages containing a single task.
Then we consider all packages with fewest tasks and try to merge each of them with another
package with whom it shares the most input data. When it is not possible to merge packages
without exceeding theM bound any more, we perform a second step where we gather packages in
the same way but ignore theM bound on the input size. The intuition is to create meta-packages
that express the data a�nity between packages already built. Note that we do not modify the
order of tasks within packages when merging them, hence keeping the good data locality inside
packages. Eventually, the last remaining package after all merges is the list of tasks for the
schedule.

Complexity of HFP Let's note ∆ = maxi |D(Ti)| the maximal number of data for any task.
In the best case we merge all the packages two by two at each iteration of the inner while loop.
It result in log2m iterations. The number of data of a package is growing at each fusion, it size
is at most ∆× 2i. At iteration i we have m

2i packages and ∆× 2i data by package. To �nd the
package with which a package share the most data we must compute (m2i)2 on the ∆ × 2i data
of each package. So the cost at iteration i is:

(
m

2i
)2 ×∆× 2i =

m2 ×∆

2i

If we sum the i iterations we get:

∆×m2 +
∆×m2

21
+

∆×m2

22
+ ...+

∆×m2

2i
< O(∆×m2)

So the complexity of HFP in the best case is: O(∆×m2).
In the worst case, the tasks do not have a�nities between them, so the total data weight

remains the same and the number of packages only decreases by 1 at each iteration of the inner
while loop. There are therefore m iterations before having only one package left. We note
a =

∑
i |D(Ti)| the number of access to data on all the tasks, thus, whatever the number of

fusion, the number of loads will be less than a.
∑
i |D(Ti)| ≤ m ×maxi |D(Ti)|, so a ≤ m ×∆.

We can rephrase "Find a package Pj such that |D(Pi) ∩ D(Pj)| is maximal" this way:

� For Pi ∈ P we read D(Pi)

� For Pj ∈ P we read D(Pj)

� For each of these two loops there are at most a iterations

� Combined this gives a complexity of O(a2)

a is bounded by m×∆. So we get a complexity of O(m2×∆2) to �nd the package Pj . Knowing
that there are m iterations until getting only one package we have the complexity in the worst
case: O(m3 ×∆2).

In linear algebra in particular, all tasks have a very similar data access pattern and the data
shares are regular. Hence, in practice, the complexity is often O(∆×m2).

Inria

Locality-Aware Scheduling 13

P start
i P end

iPi: P start
j P end

jPj :

P start
i P end

i
rev(P start

j)rev(P end
j)Pi + rev(Pj):

Figure 2: Flipping packages to improve HFP. Here we assume that the pair of sub-packages
(P end
i , P end

j) is the one with the most shared input data, so that only Pj is reversed before
merging packages.

Improving HFP with package �ipping A concern appears in the second step of HFP
(when we merge packages without taking care of the M bound): if Pi is merged with Pj , the
merged package contains the tasks of Pi followed by the ones of Pj . However, the last tasks
of Pi might have very little shared data with the �rst tasks of Pj , leading to poor data reuse
when starting Pj . Hence, for each package Pi, we consider two sub-packages P start

i and P end
i

containing the �rst and last tasks so that the weight of their input data is smaller than M but
their cardinal is maximal, as illustrated on Figure 2. Then, we count the common input data
of each pair: (P start

i , P start
j), (P start

i , P end
j), (P end

i , P start
j), (P end

i , P end
j). We identify the pair

with most common input data and selectively reverse the packages so that tasks in this pair of
sub-packages are scheduled consecutively in the resulting package.

Package �ipping requires to go through the set of tasks of two packages. In the worst case,
the two packages together contain all of T, so the complexity is O(m). This complexity can be
neglected compared to the original complexity of HFP.

Figure 3 shows an example of the tasks processing order of C on a 2D matrix multiplication
with and without package �ipping.

Optimal eviction policy Lastly, we make another improvement to HFP: it is equipped with
the optimal eviction policy adapted from Belady's rule (see Lemma 1). To make it compatible
with dynamic runtimes, such as the StarPU runtime used in our experiments, we use a dynamic
version of the eviction policy: whenever the runtime needs to evict some data, we choose the one
whose next usage is the latest.

5 Experimental evaluation

We present below a subset of the experimental evaluation conducted to compare the strategy
presented above.1 We refer the interested reader to the extended version of the paper [14] for
a more thorough discussion of these results, as well as experiments on other datasets (Cholesky
and randomized 2D multiplication tasks sets). We used cuBLAS 10.2 GPU kernels with single
precision.

5.1 Settings

All strategies mentioned above have been implemented in the StarPU runtime system [3]. This
allows us to test them on a variety of applications expressed as sets of tasks. We performed both
real experiments on a tesla V100 GPU as well as simulations using the ability to run StarPU
code over the SimGrid simulator [6] to test our strategies in various experimental conditions.
The use of simulation is motivated both by the �delity of the simulated results as well as the

1The code used to reproducibly obtain the results of this paper is available at

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021

RR n° 9394

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021

14 Gonthier & Marchal & Thibault

16 18 24 26 68 70 76 78 0 2
17 19 25 27 69 71 77 79 1 3
20 22 28 30 72 74 80 82 4 6
21 23 29 31 73 75 81 83 5 7
32 34 40 42 84 86 92 94 8 10
33 35 41 43 85 87 93 95 9 11
36 38 44 46 88 90 96 98 12 14
37 39 45 47 89 91 97 99 13 15
60 62 64 66 48 50 52 54 56 58
61 63 65 67 49 51 53 55 57 59

(a) Without package �ipping

0 3 15 12 48 51 63 60 47 44
1 2 14 13 49 50 62 61 46 45
7 4 8 11 55 52 56 59 40 43
6 5 9 10 54 53 57 58 41 42
31 28 16 19 79 76 64 67 39 36
30 29 17 18 78 77 65 66 38 37
24 27 23 20 72 75 71 68 32 35
25 26 22 21 73 74 70 69 33 34
92 95 96 99 80 83 84 87 88 91
93 94 97 98 81 82 85 86 89 90

(b) With package �ipping

Figure 3: Tasks computation's order with HFP with or without package �ipping on a 10x10
matrix

Inria

Locality-Aware Scheduling 15

saving of energy consumption. Even on the actual GPU, we have divided the original 12000MB/s
PCI bandwidth by two (by generating tra�c between the CPU memory and another GPU) to
represent the bandwidth share typically available for a given GPU in a multi-GPU platform.
We have limited the GPU memory to 500MB in order to better distinguish the performance of
di�erent strategies even on small datasets.

The scheduling algorithms receive the whole set of tasks of the application in a natural order
(row by row for a matrix multiplication for instance), then output this same set of tasks in a
new order, which is used in StarPU to process tasks on the GPU. We measure the obtained
performance (in GFlop/s) as well as the total volume of data transferred between CPU and
GPU. When measuring GFlop/s, the cost of computing the MST, RCM, and HFP heuristics is
not considered, to only observe their bene�t as a �rst approach.

We use two sets of tasks for these experiments (see [14] for more datasets).

Square 2D matrix multiplication To compute C = A×B in parallel, each task corresponds
to the multiplication of one block-row of A per one block-column of B. Input data are thus
the rows of A and columns of B.

Square 3D Matrix multiplication All matrices (A, B, C) are tiled, and the computation of
each tile of C is decomposed into multiple tasks, each of which requires one tile of A and
one tile of B. Each tile of C is also used as input for all tasks on this tile but the �rst one.

Task set from the Cholesky factorization We consider the tasks of the tiled Cholesky de-
composition [1], but remove all dependencies, as we are interested only in independent
tasks. This allows to have dependencies with some regularity, but more complex than the
2D or 3D matrix multiplication.

Randomized 2D matrix operation We consider the set of tasks and data from the 2D matrix
multiplication, but with a random dependency pattern between tasks and data: each task
requires one (random) block-row of A and one (random) block-column of B. This allows
us to test our algorithms on an unstructured dependency graph.

We use the four scheduling heuristics presented above, together with Eager, a scheduler that
processes tasks in the natural order (i.e. row major for matrix multiplications) as a baseline.
Unless speci�ed otherwise, for HFP we enable all of the Ready dynamic task reordering of
DMDAR (see Section 4), the package �ipping (called �ip on the plots), and Belady's optimal
eviction policy (called Belady on the plots). We also show results when enabling only one of
them.

5.2 Results on the 2D matrix multiplication

On Figure 4, we plot the performance of each scheduling heuristic when varying either the size
of the problem, or conversely the size of the available memory. On these graphs, the dotted
horizontal black line represents the maximum GFlop/s (12557) that the GPU can achieve when
processing elementary matrix product (without I/Os) and is our asymptotic goal. The red dotted
vertical line denotes the situation when the GPU memory can �t exactly only one of the two
input matrices, and the orange line denotes the situation when it can accommodate both input
matrices.

The Eager, MST and RCM heuristics switch to pathological behavior at the red line. Indeed,
they tend to process tasks along the rows of C. This allows us to reuse the same block-row of
matrix A for tasks that compute tiles of the same row of C, but requires reloading the whole

RR n° 9394

16 Gonthier & Marchal & Thibault

●

●

●
●

● ● ● ● ●

●

●

●

● ●
● ● ● ●

●

●

●

● ●
● ● ● ●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

B = MA + B = M

GFlop/s max

0

2500

5000

7500

10000

12500

500 1000
Working set (MB)

G
F

lo
p/

s

(a) On a a Tesla V100 GPU. GPU memory size fixed
 to 500MB, varying working set size.

●

●

●

● ● ● ●
●

● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

● ●

B = M A + B = M

GFlop/s max

0

2500

5000

7500

10000

12500

100 200 300 400 500
Memory (MB)

G
F

lo
p/

s

(b) In SimGrid. Working set size fixed to 422MB,
 varying GPU memory size.

●●●●●●●●● ●●●●●●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●●●●●

HFP HFP only ready HFP only flip RCM Eager

HFP only ready and flip HFP only Belady DMDAR MST

Figure 4: Performance on the 2D matrix multiplication.

matrix B for each new block-row of A, which is a well-known pathological case of the LRU
eviction policy.

What happens? First, we have to understand how the LRU works when multiplying matrix.
We multiply A by B to get C. Consider that we use the rows of A and the columns of B. So
for small matrices we can for example load all of B, a row of A and a piece of C to write the
result in it. We compute the �rst row of C, then we will want to load the second row of A to
be able to compute the second row of C. So the LRU will evict the last data used, the �rst row
of A. It goes without problems. On Figure 4a, after 1000MB, neither A nor B �ts in memory.
The scheduler is therefore forced to load a few columns of B, a row of A and a block of C. It
compute the �rst row of C. Unfortunately it could not load all the columns from B, so when we
want to compute a block where all the data are not on memory, it has to evict the �rst column
from B (the oldest therefore) in order to load the column of B it needs. But when we go to the
computation of the second row of C, we need the �rst columns of B that we just evicted. It
must therefore again evict the last columns of B. This generates many additional data transfers.
So all the algorithms treating tasks row by row or column by column will su�er from this is
well-known pathological case of LRU. HFP aim to avoid that.

DMDAR does not su�er from this pathological case because its Ready strategy allows it to
rather process tasks that need the block-column of B already in memory instead of reloading the
whole matrix.

The HFP heuristic gets performance very close to ideal. Indeed, it tends to gather tasks that
compute a square part of C that require parts of A and B, that can �t in memory size M . This
allows us to execute a lot of tasks with very few data to load. On �gure 4a which shows native
execution measurements, we notice that, with larger working sets, the cost of our implementation
of the Belady rule brings signi�cant overhead. On other �gures which show simulated execution,
this overhead is not included, which allows to observe its bene�t. Here are the percentage of
improvement of HFP with only Ready and �ip over the other heuristics, averaged on the nine
points:

Reference Eager MST RCM DMDAR HFP only �ip HFP only ready
Improvement 51.5% 25.6% 26.0% 8.3% 1.9% -0.2%

Figure 4b shows the dual view of Figure 4a: the working set is now set to 422MB and we

Inria

Locality-Aware Scheduling 17

●

●

●
●

●

●
● ●

●

●

●

●

●
● ● ●

● ●

●

●

●

●
● ● ● ● ●

●

●

●

● ●

● ● ●
●

B = M
A + B = M

All data fit

GFlop/s max

0

3000

6000

9000

2500 5000 7500
Working set (MB)

G
F

lo
p/

s

(a) Performance.

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

B = M
A + B = M

All data fit PCI b
us

 lim
it

0

1000

2000

3000

4000

5000

6000

2500 5000 7500
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

(b) Amount of data transfers.

●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●

HFP HFP only Belady DMDAR MST

HFP only ready HFP only flip RCM Eager

Figure 5: Results on 3D matrix multiplication on SimGrid: GPU memory size �xed to 500MB,
varying working set size.

simulate varying amounts of available GPU memory. The measurements at 500MB on Figure 4b
are the same as the measurements at 422MB on Figure 4a. We can observe the same results
as on 4a but reversed: when the available memory is smaller than the working set, heuristics
get pathological behavior. Since we strongly reduce the amount of available memory, we get a
more restrictive situation, and the Ready task selection provides a large improvement here. The
Belady rule or package �ipping alone do not provide the same amount of improvement.

5.3 Results on the 3D matrix multiplication

On Figure 5, we plot the performance and amount of data transfers for all heuristics on the 3D
matrix multiplication. On this set of tasks, matrix C now plays a role in a�nities, which is why
we added a vertical green dotted line to denote the situation when all A, B, and C matrices �t in
memory. On Figure 5b, the black dotted line represents the maximum number of transfers that
can be done during the minimum time for computation (given by the bound on the GFlop/s),
thus the hard limitation induced by the PCI bus bandwidth: a heuristic exceeding this amount
necessarily requires more than the optimal time for computation.

MST keeps ordering tasks along the rows of C, and thus still gets pathological performance
when memory can not �t matrix B. This is con�rmed on Figure 5b: the number of loads gets
dramatically high. RCM and DMDAR, however, do not have the same problem. RCM (resp.
DMDAR) computes tasks along columns (resp. rows) of C but alternates between tasks of a
few consecutive columns (resp. rows). This allows them to improve data reuse: Figure 5b shows
that they exhibit a limited number of transfers, even with a large working set.

HFP keeps gathering tasks forming a square part of C, which provides better locality. Here
are the percentages of average improvement of HFP over the other heuristics:

Reference
Eager MST RCM DMDAR

HFP HFP HFP
algorithm only �ip only ready only Belady

Improvement 79.4% 48.1% 16.2% 11.0% 2.0% 1.9% 2.7%

As the 3D matrix multiplication already exhibits a better data locality than the 2D multipli-
cation, the di�erences in performance between heuristics is less pronounced than on Figure 4a,

RR n° 9394

18 Gonthier & Marchal & Thibault

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●All data fit

GFlop/s max

0

2500

5000

7500

10000

12500

0 500 1000 1500 2000
Working set (MB)

G
F

lo
p/

s

(a) Performance.

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

All data fit

PCI b
us

 lim
it

0

2500

5000

7500

10000

12500

0 500 1000 1500 2000
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

(b) Amount of data transfers.

●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●

HFP HFP only Belady DMDAR MST

HFP only ready HFP only flip RCM Eager

Figure 6: Results on the task set of the Cholesky factorization on SimGrid: GPU memory size
�xed to 500MB, varying working set size.

but HFP is still better on average. It is worth noticing that HFP without the Belady rule gets
higher performance than RCM and DMDAR, even if it triggers a larger number of transfers.
The latter heuristics indeed tend to periodically require a sudden burst of data loads, while
HFP tends to require loads that are nicely distributed over time, and thus well overlapped with
computation. We however notice that HFP without Ready gets a number of transfers very close
to the PCI bus limit in the 3014MB working set case, which translates into lower performance.
We can also see on Figure 5b that the Belady rule reduces the quantity of data transfers by
approximately 48% compared to HFP without Belady, which is a signi�cant amount.

5.4 Results on the task set of the Cholesky factorization

Figure 6a present the performance obtained by the heuristics on the set of tasks of the Cholesky
decomposition. We notice that the Eager, RCM and MST heuristics get pathological performance
once the whole matrix cannot �t the memory. They indeed do not manage to reuse more than
one tile between consecutive tasks, thus entailing a lot of tile reloads. We can observe indeed
that for these three heuristics, the quantity of data transfers explode on the fourth point on
Figure 6b. DMDAR has similar results with HFP for a working set inferior to 2.5 times the
memory. DMDAR indeed takes advantage of the actual task submission order of the Cholesky
algorithm, which starts with tasks which require few input data (POTRF and TRSM kernels).
Meanwhile, it can load data for the subsequent tasks with more input dependencies (GEMM
kernel). HFP, on the contrary, does not pay attention to the task submission order, and aims for
data sharing as much as possible. It will thus introduce a lot of GEMM tasks at the beginning of
the execution, and is thus impacted by the loading time (we can indeed observe lower performance
for HFP with only Ready or �ip on the �fth point). As the working set increases, however, HFP
with the Belady eviction achieves better performance than DMDAR. The average improvement
of HFP over the other heuristics is as follows:

Reference
Eager MST RCM DMDAR

HFP HFP HFP
algorithm only �ip only ready only Belady

Improvement 74.0% 55.5% 57.7% 11.6% 10.6% 12.2% 2.0%

Inria

Locality-Aware Scheduling 19

●

●

●

● ●
● ● ● ●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●
●

● ●
● ●

●

B = MA + B = M

GFlop/s max

0

2500

5000

7500

10000

12500

500 1000
Working set (MB)

G
F

lo
p/

s

(a) Performance.

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

B = MA + B = M

PC
I b

us
 li

m
it

0

5000

10000

15000

500 1000
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

(b) Amount of data transfers.

●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●

HFP HFP only Belady DMDAR MST

HFP only ready HFP only flip RCM Eager

Figure 7: Results on randomized 2D matrix operation on SimGrid: GPU memory size �xed to
500MB, varying working set size.

Again we can see on Figure 6b that the number of data transfers are greater with HFP
without Belady than with DMDAR whereas the number of GFlop/s for HFP without Belady are
greater. Again the distribution of loads over time is better for HFP. HFP with Belady further
reduce the number of data transfers.

5.5 Results on the randomized 2D matrix operation

The randomization of data dependencies of the 2D matrix multiplication, shown on Figure 7a,
has an interesting impact on the results previously discussed from Figure 4a. In this randomized
setting, MST does not manage to �nd task a�nities any more: it is only able to ensure that
a common data is shared between two consecutive tasks, its performance drops as soon as the
two matrices no longer �t into memory. RCM, however, get more sustained performance: the
randomization of dependencies actually decreases the e�ect of the classical LRU pathological case,
since it does not tend to execute tasks rows by rows any more. For similar reasons, DMDAR get
performance close to ideal. HFP, is not better than DMDAR before the last three working set
sizes. The randomization does not allow HFP to form square of tasks. Thus it can only beat
DMDAR when the working set is very restrictive compared to the GPU's memory. Here are the
percentages of average improvement of HFP over the other heuristics averaged on the ten points:

Reference
Eager MST RCM DMDAR

HFP HFP HFP
algorithm only �ip only ready only Belady

Improvement 131.3% 33.3% 6.6% -1.1% 3.3% 1.3% 2.2%
We can also note that when the working set grow, HFP without Belady loses performance. With

Belady it stay close to GFlop/s max. Indeed, if the data are random, HFP with LRU can no
longer rely on the favorable natural order of tasks in 2D. Belady therefore allows improvements
in more general cases as well.

RR n° 9394

20 Gonthier & Marchal & Thibault

B = MA + B = MAll data fit

GFlop/s max

0

3000

6000

9000

2500 5000 7500
Working set (MB)

G
F

lo
p/

s

Cuthill−McKee Reverse−Cuthill−McKee

(a) On 3D matrix multiplication.

All data fit

GFlop/s max

0

2500

5000

7500

10000

12500

0 500 1000 1500 2000
Working set (MB)

G
F

lo
p/

s

Cuthill−McKee Reverse−Cuthill−McKee

(b) On the task set of the Cholesky factorization.

Figure 8: Comparison of Cuthill-McKee and Reverse-Cuthill-McKee.

6 Conclusion and Future Work

To take the best performance out of GPUs, it is crucial to avoid moving data as much as possible.
We provided in this paper a formalization of the problem of ordering independent tasks sharing
input data in order to minimize the amount of data transfers, and showed that this problem is
NP-complete. We also exhibited an optimal eviction scheme, based on Belady's rule. We adapted
three heuristics for the ordering problem, based on the state of the art, and compared them with
a new algorithm gathering tasks with similar input data into packages of increasing size, called
HFP. We also present an improvement of HFP based on package �ipping. All four ordering
strategies have been implemented in the StarPU runtime and tested on various sets of tasks.
In all cases, the proposed HFP heuristic provides signi�cant speedups. For instance, it allows on
average a 8.3% (resp. 11%) improvement over the most advanced StarPU scheduler for 2D (resp.
3D) matrix multiplication. HFP is very relevant and obtains important speedups particularly in
the case when the memory is very constrained compared to the size of the total working set. The
Belady rule reduces drastically the number of data transfers. Without this rule, HFP may entail
much more data transfers than other heuristics, but achieves better performance, which shows
that HFP is also good at distributing data transfer over time to increase transfer/computation
overlap. Studying this �nal problem (minimizing computation time with overlap) is one of our
future directions. We also plan to focus on the very beginning of the execution, where it is crucial
to �rst schedule tasks with few input data. Optimizing the implementation of Belady's rule and
adapting it to the Ready dynamic task reordering will allow to integrate it in native executions.
On a longer term, we want to tackle the general case with tasks not only sharing input data,
but also with inter-task dependencies, as well as targeting multi-GPU platforms, for which our
approach with packages seems particularly well suited.

Inria

Locality-Aware Scheduling 21

Acknowledgments

This work was supported by the SOLHARIS project (ANR-19-CE46-0009) which is operated by
the French National Research Agency (ANR).

Experiments presented in this paper were carried out using the Grid'5000 testbed, supported
by a scienti�c interest group hosted by Inria and including CNRS, RENATER and several Uni-
versities as well as other organizations (see https://www.grid5000.fr).

References

[1] Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Roman, J., Thibault,
S., Tomov, S.: Dynamically scheduled Cholesky factorization on multicore architectures
with GPU accelerators. In: Symposium on Application Accelerators in High Performance
Computing (SAAHPC) (Jul 2010)

[2] Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-Aware Task Scheduling
on Multi-Accelerator based Platforms. In: 16th International Conference on Parallel and
Distributed Systems. Shangai, China (Dec 2010)

[3] Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Uni�ed Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, Special Issue: Euro-Par 2009 23 (2011)

[4] Belady, L.A.: A study of replacement algorithms for a virtual-storage computer. IBM Sys-
tems Journal 5(2) (1966)

[5] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.: PaRSEC:
A programming paradigm exploiting heterogeneity for enhancing scalability. Computing in
Science and Engineering 15(6), 36�45 (Nov 2013)

[6] Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable, and
accurate simulation of distributed applications and platforms. Journal of Parallel and Dis-
tributed Computing 74(10) (Jun 2014)

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd
Edition. MIT Press (2009)

[8] Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceed-
ings of the 1969 24th National Conference. ACM '69 (1969)

[9] Denning, P.J.: The working set model for program behavior. Communications of the ACM
11(5), 323�333 (1968)

[10] Feder, T., Motwani, R., Panigrahy, R., Seiden, S., van Stee, R., Zhu, A.: Combining request
scheduling with web caching. Theoretical Computer Science 324(2) (2004)

[11] Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co, London (UK) (1979)

[12] Gavril: Some np-complete problems on graphs. In: Proceedings of the 11th conference on
Information Sciences and Systems. pp. 91�95 (1977)

RR n° 9394

https://www.grid5000.fr

22 Gonthier & Marchal & Thibault

[13] Giersch, A., Robert, Y., Vivien, F.: Scheduling tasks sharing �les on heterogeneous clusters.
In: European Parallel Virtual Machine/Message Passing Interface Users' Group Meeting
(EuroPVM/MPI). pp. 657�660. Lecture Notes in Computer Science, Springer (2003)

[14] Gonthier, M., Marchal, L., Thibault, S.: Locality-Aware Scheduling of Independant Tasks
for Runtime Systems. Research report, Inria (2021), https://hal.inria.fr/hal-03144290

[15] Hong, J.W., Kung, H.: I/O complexity: The red-blue pebble game. In: STOC'81: Pro-
ceedings of the 13th ACM symposium on Theory of Computing. pp. 326�333. ACM Press
(1981)

[16] Kaya, K., Aykanat, C.: Iterative-improvement-based heuristics for adaptive scheduling of
tasks sharing �les on heterogeneous master-slave environments. IEEE Trans. Parallel Dis-
tributed Syst. 17(8), 883�896 (2006), https://doi.org/10.1109/TPDS.2006.105

[17] Kaya, K., Uçar, B., Aykanat, C.: Heuristics for scheduling �le-sharing tasks on heteroge-
neous systems with distributed repositories. J. Parallel Distributed Comput. 67(3) (2007)

[18] Kwasniewski, G., Kabic, M., Besta, M., VandeVondele, J., Solcà, R., Hoe�er, T.: Red-blue
pebbling revisited: near optimal parallel matrix-matrix multiplication. In: Taufer, M., Bal-
aji, P., Peña, A.J. (eds.) Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019, Denver, Colorado, USA, November
17-19, 2019. pp. 24:1�24:22. ACM (2019), https://doi.org/10.1145/3295500.3356181

[19] Michaud, P.: (yet another) proof of optimality for min replacement (Oct 2007)

[20] Senger, H., Silva, F.A., Nascimento, W.M.: Hierarchical scheduling of independent tasks
with shared �les. In: Sixth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID'06). vol. 2. IEEE (2006)

[21] Smith, T.M., Lowery, B., Langou, J., van de Geijn, R.A.: A tight i/o lower bound for matrix
multiplication (2019)

[22] Yoo, R.M., Hughes, C.J., Kim, C., Chen, Y.K., Kozyrakis, C.: Locality-aware task man-
agement for unstructured parallelism: A quantitative limit study. In: ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA) (2013)

Inria

https://hal.inria.fr/hal-03144290
https://doi.org/10.1109/TPDS.2006.105
https://doi.org/10.1145/3295500.3356181

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related work
	Problem modeling and complexity
	Algorithms
	Experimental evaluation
	Settings
	Results on the 2D matrix multiplication
	Results on the 3D matrix multiplication
	Results on the task set of the Cholesky factorization
	Results on the randomized 2D matrix operation

	Conclusion and Future Work

