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Abstract—Integrated Development Environments (IDEs) are
evolving towards cloud-native applications with the aim to relo-
cate the language services provided by an IDE on distant servers.
Existing research works focus on the overall migration process to
handle more efficiently their specific requirements. However, the
microservicization of legacy monolithic applications is still highly
dependent on the specific properties of the application of interest.
In this paper, we report our experiment on the microservicization
process of the Cloud-Based graphical modeling workbench Sirius
Web. We aim to identify the technical challenges related to
applications with similar properties, and provide insights for
practitioners to migrate their similar applications towards mi-
croservices. We discuss the main lessons learned and identify the
underlying challenges to be further addressed by the community.

Index Terms—Microservice, DevOps, Domain-Specific Lan-
guages

I. INTRODUCTION

In order to be fully functional and integrated into their usage
environment, software languages need to be delivered with In-
tegrated Development Environments (IDEs). These tools pro-
vide facilities to the programmers, such as syntax highlighting
or auto-completion. These services, called Language Services
allow the developer to use these languages more effectively
in order to implement new software. Recently, a new trend
for IDEs has emerged: Cloud-Based IDEs. These IDEs aim
to relocate language services from the user’s machine to a
distant server. These IDEs have many benefits in comparison
to more traditional IDEs, such as automatic saving and backup
of code or real time pair programming, without the need
to install anything [1]. Protocols such as LSP1 allowed to
standardize the communication between a generic IDE client
and a Language Server providing language services. However,
the way these servers are deployed, typically as monolithic
application, is currently not optimal for such an IDE usage.
Indeed, language services have specific requirements in terms
of bandwidth or memory [2]. Some need to be accessed fre-
quently, but do not require important computation capabilities,
for instance auto-completion, while others such as refactoring
are accessed less frequently but need more resources. Besides,
modern IDEs tend to move towards an open-world philosophy:
in this paradigm, an IDE consists of a basic kernel, which

1https://microsoft.github.io/language-server-protocol/

allows the addition of new features incrementally that have
access to the same resources, making it more modular. For
these reasons we explore a different software architecture more
likely to meet these constraints: the Microservice architecture.

Microservices have been recently introduced by the Soft-
ware Engineering community as a support for new distributed
and dynamic software architectures. In contrast to traditional
monolithic architectures, a microservice architecture consists
of small self-contained lightweight services working together.
This new architecture has been widely adopted in the case
of complex and heterogeneous projects by companies such
as Netflix [3], Spotify [4] or Uber [5]. Indeed, microservices
provide many benefits for Cloud-based applications, such
as better scalability, autonomy and deployment times [6].
As a result, such architectures are a good fit for DevOps
practices [7]. However, the transition from a monolithic to
a microservice2 application is still considered as a long and
risky process [9]. Furthermore, even though academic work
has been done to provide guides and tools to help companies
performing such a modernization, the refactoring of legacy
systems remains overall a case-by-case process [10].

This work aims to study the transition process of monolithic
applications towards microservices, by focusing on the migra-
tion of Domain Specific Cloud-Based IDEs. This case study
allows to explore the specific features of such software. These
applications offer services to the user, which are heterogeneous
in their response time and their computation requirements.
They also add an important layer of complexity for the de-
ployment of the services. Last, but not least, these applications
manipulate rich data structures which adds challenges for the
organization of the microservices.

In this paper we report our experience from the migration
towards microservices of Sirius Web3, an open-source frame-
work allowing the development of Cloud-Based Graphical
Language Workbenches. Based on the encountered difficulties,
we develop a basis for practitioners to execute the moderniza-
tion process of systems sharing similar specificities.

This paper is structured as follows: Section II presents
the motivations for this work and establishes technical back-

2In this article, we use the neologism microservicization, as in [8], to
designate the transition process from monolithic to microservice architecture.

3https://www.eclipse.org/sirius/sirius-web.html
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grounds on the domains of Software Language Engineering
and Microservices. Section III describes the specificities of
Cloud-Based IDEs in a microservicization context. Section IV
presents the experimental setup of the study, before describing
the technologies used. Section V describes the experimenta-
tions performed, and the encountered difficulties. Section VI
presents the lessons learned in this work: guides on microser-
vicization process for specific industrial cases related to the
case study. Section VII reflects on existing and related work
to position our contribution. Finally, Section VIII performs
a summary of the presented results, before bringing some
perspectives for future works.

II. MOTIVATION

A. Software Language Engineering (SLE)

1) Language Implementation: Modeling a language from
scratch is a tough process. Indeed, several steps are involved
in the creation of a language: first on the syntactic aspect,
with the specification of the concrete syntax, the abstract
syntax, the static semantics and the dynamic semantics, but
also on the behavior that can consist of either compilation
or interpretation. Moreover, in order to provide a usable
environment for the users, the language has to be delivered
with tools that assist its uses. These tools form an Integrated
Development Environment, or more simply, an IDE.

An IDE is a software which assists its user in the devel-
opment of a program using a particular language. Examples
of these are JetBrains CLion4 for C or C++ development
and RStudio5 for R development. These pieces of software
provide Language Services: functionalities aiming to assist the
developer in writing programs in a particular language. For
instance, the auto-completion advises the user to automatically
complete a string of characters they are typing, with the most
relevant proposition. Compilation can also be considered as a
language service which converts source code to object code.
Examples of other language services are refactoring, searching
for references, etc.

Currently, IDEs tend to move towards an Open World
philosophy, that is to say the ability to incrementally add
functionalities to an existing software. These IDEs such as
Microsoft Visual Studio Code6 or Atom7 are called modular
IDEs. They initially act as simple text editors, that do not offer
language specific functionalities. However, these IDEs allow
the installation of modules which provide Language Services,
for instance the syntax highlighting of C programs or the
debugging of Java programs. The trend of modularity in IDEs
is very noticeable if we look at the 2019 Stack Overflow’s
annual Developer Survey8. According to this survey, the
majority of the most popular IDEs (8 out of 10), such as Visual

4https://www.jetbrains.com/clion/
5https://rstudio.com/
6https://code.visualstudio.com/
7https://atom.io/
8https://insights.stackoverflow.com/survey/2019#

development-environments-and-tools

Studio Code or IntelliJ9, heavily rely on a plug-in mechanism
to customize the environment according to the needs of the
users.

With the different steps of specification and the develop-
ment of an IDE — or modules for modular IDEs — the
development of a language can become a fastidious task. In
order to facilitate this language development process, tools
have been developed: the Language Workbenches. Languages
workbenches have been introduced and popularized by Mar-
tin Fowler in 2005 [11], as environments that can drive
the development and the maintenance of Domain Specific
Languages (DSLs). Examples of language workbenches are
the Eclipse Modeling Framework10 (EMF) or JetBrains Meta
Programming System11 (MPS). These tools aim to support the
development and the evolution of a language. They support
every step of the conception of a language, from its design,
to the support of its evolution, including the development of
the associated IDE [12].

In the end, from the point of view of its implementation, a
DSL corresponds to a set of language services provided by an
IDE to develop a program [2].

2) Cloud-Based IDEs: Cloud-based IDEs aim to relocate
software from the user desktop to a distant server providing the
main functionalities of the application, following the Software
As A Service (SaaS) model. On the client side remains only a
user interface with minimal functions. The client side can be
localized either in a browser, or a basic desktop application.

There are a lot of opportunities for Cloud-Based IDEs. To
begin with, a SaaS architecture saves the user the trouble
of installing heavy and specific software to program such as
linters or a JDK [1]: this can possibly allow any user to use
the IDE, no matter the resources they have available locally.
An important feature of Cloud-based IDEs is the ability to
work simultaneously with other coworkers [1], [13], allowing
to ease real-time pair programming. Another aspect which
has been recently studied is the ability to take advantage
of these platforms to analyze the coding habits of either a
particular user or a community of users to provide a more
relevant assistance, based on their behaviors on the IDE [13],
[14]. These explain why Cloud-Based IDEs, such as Jupyter
Notebook12 or Overleaf13, have gained in popularity.

A Cloud-based IDE works the following way: the client-
side is composed of a language agnostic IDE (which mostly
acts as a simple text editor), and the server-side exposes a
language server which provides language services. Figure 1
illustrates the typical way Cloud Based IDEs are implemented.

The LSP protocol14, introduced by Microsoft in 2016,
standardizes the communication between a language agnostic
IDE and a language server. Instead of specifying how each
language service of each language works for each IDE, the

9https://www.jetbrains.com/idea/
10https://www.eclipse.org/modeling/emf/
11https://www.jetbrains.com/mps/
12https://jupyter.org
13https://www.overleaf.com/
14https://microsoft.github.io/language-server-protocol/
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Fig. 1: Legacy implementation of Cloud-based IDEs

LSP protocol allows to standardize the way these services are
rendered to the user. This protocol was originally developed
for the creation of modules for Microsoft Visual Studio Code,
but has become a standard for other environments as well.
Through its use, a single language server implementation can
be used as-is in a landscape of development environments,
and any environment can leverage on the existence of mul-
tiple language servers. Modular IDEs also allow their users
to personalize their own user experience by choosing the
functionalities they judge necessary.

However, current Cloud-Based DSL IDEs are still generally
implemented in a monolithic way [2]. All the services are
rendered by one non-modular application. In addition to the
lack of customization of these IDEs, the language services
are not optimal in their response time. Indeed, each service
has specific requirements in terms of bandwidth or latency,
but they are all still deployed on the same hardware. Another
way to implement such a language server has been explored
by Coulon et al. [2]. This new approach is based on a
microservice architecture, which is a deployment organization
that separates every functionality of the system as independent
services.

Cloud-Based DSL IDEs have a lot to gain to transition
towards microservices. The different language services pro-
vided by the IDE have different requirements in terms of
bandwidth or latency. Moreover, IDEs tends to move towards
an open-world philosophy, by separating the language services
in clear modules which can be added to the IDE incrementally.
Such requirements could be more easily met in a microservice
architecture rather than in a monolithic one.

B. Microservice Architectures

1) Definition and Properties of Microservice Architectures:
Microservice architecture is an approach of software service
design, development and delivery, which has gained a lot
of popularity in the recent years. It has been widely used
in the industry, more particularly in the case of large-scale
applications. For instance, companies such as Netflix [3],
Spotify [4] and Uber [5] have been using it as the basis for
complex infrastructures with great success.

The main characteristic of a microservice architecture is
the decomposition of the system in clear modules. These
modules, the microservices, are lightweight and independent.
They support a single functionality in the program the best
way possible [15]. Therefore, such a service would typically

only be a hundred to a thousand lines of code long [16].
Each service is deployed independently, and depending on its
specific needs, a lightweight service can be deployed locally
while a heavier service, needing more resources but not a fast
response time, can be deployed on a remote server. These
services communicate between each other using a Language
Agnostic API [17]. Microservices are generally packaged and
deployed in the cloud using lightweight container technologies
such as Docker15, following the fashion of DevOps practices.
These architectures are typically supported by fully automated
software integration and delivery machinery such as Gitlab16

and Jenkins17.
Such architectures are currently becoming a standard in soft-

ware engineering. In [7], the authors emphasize the benefits
that microservices architectures can bring to DevOps practices.
For instance, microservices are known for their ability to
deal with scalability [6], i.e. the ability to make the size
of the system evolve as the project evolves. This ability is
crucial in a DevOps-driven development, to quickly adapt a
system to its usage. In addition to such technical benefits,
microservices also allow for more process-related benefits,
such as the distribution of the workforce into small and self-
managed teams, each focused on a microservice. This fits very
well DevOps practices which recommend to vertically divide
the workforce into small cross functional teams [18].

2) Transition Process from Legacy Systems Towards a Mi-
croservice Architecture: Here, we discuss the modernization
process, which is undertaken by industrials when perform-
ing a transition from legacy systems towards microservice
architectures. In [19], the authors establish 4 phases to transi-
tion monolithic applications towards microservices, based on
a body of academic works studying the microservicization
process.

a) Analysis of the Driving Forces: First, the analysis
of the driving forces is considered as a crucial step of a
modernization. Indeed, while the transition to microservice
can bring significant improvements to the application in the
long term, and ease future developments, transition from
legacy systems towards microservice architecture is a long and
risky process [9]. Thus, companies often establish cost-benefit
analysis, based on the potential benefits such as increased
performances, better scalability and ease of the development
process [6].

b) Modernization Planning: The next phase of a mod-
ernization is the establishment of a plan for the transition
towards microservices. To begin with, practitioners explore,
analyze and understand the legacy systems: the different
features, how they interact, how they are implemented. This
process is called feature location. In order to accomplish this
task, practitioners can rely on high-level artifacts such as UML
diagrams, graphs, or texts based on low-level artifacts such as
source code [20]. The next step is to decompose the legacy

15https://www.docker.com/
16https://about.gitlab.com/
17https://www.jenkins.io
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system in small modules which will then be implemented as
microservices. This very complex step has been investigated
by a lot of research works. Here, the practitioners decide on the
granularity of the decomposition, that is to say the balance be-
tween the number of microservices and their size. Finally, the
microservice architecture is properly defined, by describing the
microservices behavior and the way they communicate. This
is done by defining the services’ APIs and the communication
protocols, such as HTTP or SOAP, used for the exchanges
between microservices [6]. However, the decomposition of
legacy systems remains in most cases a manual process.
Indeed, the microservices are often designed around business
capabilities, to allow their independent deployment [21]. These
capabilities are not easily identifiable through an automatic
process.

c) Modernization Execution: Once the modernization
has been planned, the next step is to execute this plan, by
developing and integrating the microservices. A few research
works aimed at automating the modernization execution. For
instance, in [22] the authors developed a Model-Driven ap-
proach which automates the transition from a Java based
monolithic application to a microservices-based application.
However, here again, such tools are rarely used in the industry,
and the implementation task remains mostly manual. In paral-
lel, or after the development of these microservices, comes the
test phases. While automated unit tests or integration tests are
usually done alongside the implementation, some validation
tests can still come afterwards.

d) Monitoring: Based on metrics defined upstream, the
microservicized application needs to be monitored in order
to verify that the aims have been reached. Tools have been
developed to assist this process such as Micrometer18 which
provides interfaces to evaluate JVM-based applications.

Our work aims to explore the specific case of Cloud-
Native IDEs, as a way to analyze the constraints linked to the
manipulation of rich data structures, in the case of a migration
towards microservice architectures. The next section describes
in more details this case study.

III. ON IDE MICROSERVICIZATION

As shown in Section II-A2, Cloud-Based IDEs have a lot
to gain to be migrated from a monolithic to a microservice
architecture. Besides, IDEs are interesting case studies due to
their particularities as software.

A. Heterogeneous Services

As explained in Section II-A1, an IDE provides multiple
language services (auto-completion, compilation, refactoring,
etc.). In a microservices approach, each one of these lan-
guage services would correspond to a single microservice.
An important aspect of these services is their heterogeneity,
whether they have different access frequencies or required
resources. For instance, auto-completion aims to propose to
the user to automatically complete a string of characters they

18https://micrometer.io/

are typing. Such a service is accessed very often — almost
at each user input. However, such a service usually does not
require a lot of computation power, in comparison to other
services. Conversely, compilation is usually a heavy process.
The compilation of a C program can take in some cases tens
of minutes. Nevertheless, such a time-consuming process is
usually accepted since compilation is called far less frequently
than auto-completion for instance. Such a diversity of services
often means a diversity of services implementations, but also
of deployments.

B. Complexity of Deployment

The question of microservices deployment and more gen-
erally of cloud deployment is complex due to the multiple
factors taken into account in addition to the response time [23].
Elements such as availability, free storage, CPU usage or
memory usage are constraints that are imposed to the deploy-
ment centers, which have specific needs [24]. In the case of
Domain-Specific IDEs, the question of services deployment
is even more complex due to the volatility of the resources.
Depending on the usage of the IDE, the optimal deployment
for the microservices differs. For instance, if a user is the only
one to use a given instance, the deployment will be different
from when a 10-person team is fully committed to a project.
Furthermore, in the last case, the resources available for the
deployment are susceptible to be unavailable at a certain point.
The deployment mechanism must thus adapt more or less
dynamically to the resources currently available. The black box
aspect of the services is also a challenge. Indeed, the resource
consumption of the services can be difficult to evaluate before
the deployment, and the resources needed are often only
known once the application begins to run.

C. Rich and Shared Data Structures

The goal of an IDE is to provide assistance to the user to
write a program. A program is manipulated as a rich data
structure, usually in the form of an Abstract Syntax Tree
(AST). These structures have to be accessible by language
services, more or less frequently depending on the services,
as explained previously. Therefore, the transfer and the seri-
alization of these structures have to be handled properly to
avoid any drop in performances. If the entirety of the program
and the associated resources were transferred at every call of
a service such as auto-completion, this could have a great
impact on the performances and make the overall environment
feel sluggish. Thus, one has to make choices, both about the
structures of the microservices and the data to transfer between
them. For instance, we can imagine a system that keeps a copy
of the AST in every microservice, which would be modified
on each call through diffs and patches to stay coherent with
the other services.

IV. EXPERIMENTAL SETUP

A. Case Study Overview

In order to study the modernization of Cloud-Native IDEs,
we rely on Sirius Web by Obeo. Sirius Web is a framework

https://micrometer.io/
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Fig. 2: Representation of a Sirius Web application structure:
(a) the legacy monolithic structure (b) the new microservice
structure we aim for

dedicated to the creation of Graphical Modeling Workbenches.
A graphical modeling workbench can be described as an IDE
that manipulates graphical modeling languages. Sirius Web is
mainly used in the context of model engineering, an approach
which relies heavily on models instead of textual code as the
source to generate software.

The first implementation of Sirius was a desktop application,
integrated as an Eclipse application. Examples of Sirius usages
are Capella19 by Thales, dedicated to the development of
system architectures, or AdvoCATE20 by NASA, used to
specify safety and assurance cases. Recently, Sirius has been
ported to the Cloud, as a monolithic application.

Here, we study the transition process of Sirius Web from a
monolithic application to microservices. The aim of this work
is to study the modernization process of Sirius, in order to
highlight some difficulties that such architectures can cause.
Figure 2 represents the legacy architecture of Sirius Web and
the modern microservice architecture we aim for.

B. Technologies Overview

1) Eclipse Modeling Framework & Meta-models: To de-
scribe a meta-model, Sirius uses the Eclipse Modeling Frame-
work21 (EMF), a set of Eclipse plug-ins which can be used

19https://www.eclipse.org/capella/
20https://ti.arc.nasa.gov/tech/rse/research/advocate/
21https://www.eclipse.org/modeling/emf/

in the practice of modeling engineering. EMF provides a
tool, Ecore, to describe graphically a meta-model. Ecore is
a framework composed of a set of concepts, that can be
manipulated by EMF to build a meta-model. In addition,
EMF allows specifying, in a genmodel file, the generation
of Java code from an Ecore meta-model, which will be then
manipulated by Sirius.

2) Eclipse Sirius: Once the meta-model of the manipulated
model has been generated, Sirius allows the user to define its
graphical representation. On top of an EMF Project, Sirius
allows the creation of an odesign file, to specify the graphical
representation of the different concepts described with Ecore.
For instance, choosing icons to represent the instances of an
EClass, or the EReferences with straight lines.

Sirius also offers the possibility to specify conditional rules,
for the representation of models. For instance, an element
could appear bigger if a numeric attribute x is superior to 10.
To specify these conditions, Sirius uses a query language, the
Acceleo Query Language22 (AQL). AQL is a Domain-Specific
Language (DSL) developed by Eclipse, to perform queries
over an Ecore meta-model. If a behavior is too complex to be
specified using AQL, it can be described by adding additional
Java code through what is referred to as “Java Services”.

The original version of Sirius, Sirius Desktop, allows to
produce an RCP application, but recently Obeo released a
Cloud-Native version of Sirius: Sirius Web. Sirius Web allows
the development of a Web Application running in a Web
Browser.

A Sirius Web application relies on a set of modules called
Sirius Components23. In this work, we focus in particular
on the backend components managing the back-end part of
Sirius Web. They are implemented using Java, and rely on
the Spring Boot framework24: a Java framework, particularly
adapted for the creation of Web Applications. Each component
provides a particular functionality of Sirius Web or describes
their associated API. Other Sirius Components are dedicated
to testing the behaviors of a set of Components designed to
work together.

V. EXPERIMENTATION

A. Feature Location & Analysis of Dependencies

To begin with, the first step to migrate Sirius Web towards
microservices is to analyze the different functionalities of
the legacy system. The idea being to locate features which
could lead to a specific microservice. As explained in Sec-
tion IV-B2, Sirius Web relies on Sirius Components, which
are the building blocks of any Sirius Web application. This
decomposition is an example of code modularity. It tends to
ease the identification of features inside the application, and
make the overall structure easier to understand.

However, the current decomposition has some limitations.
Indeed, this code modularity does not necessarily correspond

22https://www.eclipse.org/acceleo/documentation/
23https://github.com/eclipse-sirius/sirius-components
24https://spring.io/
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to the deployment modularity we aim for: each component
does not correspond directly to a specific functionality, which
could correspond to a microservice. For instance, some com-
ponents only provide the API of the system while other specify
some annotations used in others. Features to isolate are often
features contained inside Sirius Components.

An important part in this process is the identification of
dependencies between the different features to isolate. Here
again, the modular structure of the Sirius Components allows
to easily identify them since each Sirius Component is built
as a Maven25 project. Thus, all the dependencies of a Sirius
component are specified in the corresponding pom.xml file.

Identifying dependencies between components allows to
determine the decomposition in microservices and the overall
architecture. The components which have the fewer dependen-
cies on others will be easier to extract. Based on this study we
plan the decomposition of the application in different services.
The identified features to isolate consist of:

• The AQL Interpreter, performing AQL queries of the
meta-model;

• The Document Service, dealing with create, read, update
and delete (CRUD) operations;

• The Layout Service, organizing the layout of the repre-
sentations;

• The ODesign Reader, which aims to compute an odesign
file.

The interactions between the different features of the ap-
plication being very complex, we decided to perform the
decomposition of the application incrementally. That is to
say, we decided to plan and execute the decomposition of
one microservice at a time, rather than planning the mi-
croservicization of all the features identified, before executing
their modularization. This approach is not specific to this
work. Indeed, some academic research such as [25] argue
that the microservicization process of an application should
be incremental. Due to the complexity of the activity, one will
slowly learn how to better perform this decomposition for each
microservice successfully extracted from the monolithic sys-
tem. Thus, this organization would help us to better apprehend
the microservicization process at each increment.

For each component extracted from the rest of the appli-
cation, we pay attention to the difficulties encountered, and
how they can be generalized to other applications. This will
allow us to derive practice guides for the modernization of a
monolithic application.

B. AQL Interpreter Decomposition

The first feature chosen for the decomposition of Sirius Web
in microservices is the Acceleo Query Language Interpreter
— or AQL Interpreter. This part of the application aims to
interpret AQL expressions, which are queries performed on
EMF models. The reason for this choice is that the AQL
Interpreter does not have any dependencies on other Sirius

25https://maven.apache.org/

components, which tends to make the decomposition in mi-
croservices easier. Moreover, an AQL Interpreter microservice
could be reused in future Cloud-Based IDEs using the Eclipse
Modeling Framework.

1) Original Implementation: The AQL interpreter was
fully implemented in the sirius-web-interpreter
component. Before evaluating an AQL expression, an
AQLInterpreter needs to be initialized. To do so, one
must pass two arguments:

• A set of Java classes, corresponding to the Java services
available to the AQL interpreter;

• A set of EPackages, the Java code generated for addi-
tional meta-models which can be interpreted by the AQL
interpreter.

Once an AQL interpreter has been initialized, it can start
evaluating AQL expressions. Here, two elements are required:

• A set of variables, that the AQL evaluator can use;
• The AQL expression to evaluate.

The result of an evaluation can be an instance of various types:
a String, an Integer, an Object, etc. This result is wrapped in
an instance of Result. A Result encapsulates the result of
the expression, and allows delaying the typing of the resulting
value.

AQL interpreters are used in other components. The original
implementation of the AQL interpreter consisted in many
instances of AQLInterpreter used in the various compo-
nents. The idea of the microservicization was instead to have
only one AQL interpreter service which could be called by
other components.

2) Microservice Architecture: In order to explore the dif-
ferent ways to perform microservice migration, two imple-
mentation approaches were explored: a stateless and a stateful
approach.

a) Stateless Approach: In accordance to the current
trends of microservices, the first approach investigated was
a Stateless approach. This means that the AQL interpreter
should not retain any information from previous interactions.
Thus, no initialization phase is done in this implementation.
Each time an AQL expression is evaluated, the Java services
and additional metamodels needed are passed to the AQL
interpreter. This approach has the typical advantages of State-
less architectures: the on-demand elasticity and the reliability
through redundancy. Moreover, an AQL expression can be
directly evaluated without the need for an initialization phase.
However, this approach turns out to be very cumbersome
for the rest of the application. Indeed, the Java services and
additional packages must be carried between the components.
If this can be handled in a monolithic approach, it can quickly
become an issue in a microservice architecture. Moreover,
since no initialization phase is done with the AQL interpreter,
a similar work has to be done at each evaluation. This can
result in an important drop in performances, similar to the
one observed in [2].

b) Stateful Approach: The Stateful approach has also
been investigated. In this approach, the initialization phase is

https://maven.apache.org/


preserved. Thus, before performing an evaluation, one must
call the initialization function of the AQL microservice. A
“session” will be created as a IQueryEnvironment. This
corresponds to the information built during the initialization
of the Interpreter based on Java services and additional meta-
models. Each session is identified with an integer (more
precisely, a Long, to avoid running out of session IDs). Thus,
each time an evaluation has to be done, the session ID has to be
passed in order to evaluate the expression in the right environ-
ment. This approach loses the advantages of statelessness, in
particular the reliability through redundancy: the same call to
the AQL interpreter will not always produce the same output.
However, it allows to make the manipulation of the AQL
interpreter less complex. Instead of manipulating an instance
of AQLInterpreter like the original implementation, or a
set of Java classes and EPackages like the Stateless approach,
here a simple integer is enough to communicate with the AQL
Interpreter. For these reasons the Stateful approach has been
selected.

3) New Implementation: The new AQL interpreter mi-
croservice has been developed using the Quarkus Frame-
work26. This Java framework, similar to Spring Boot, is here
again particularly suitable for the development of Cloud appli-
cations, and microservice applications in particular. Quarkus
consists of a set of technologies optimized for GraalVM27.
GraalVM is a virtual machine considered as “universal”.
It allows running applications written in many languages:
JVM-based languages such as Java, Scala or Kotlin, LLVM-
based languages such as C and C++, and other dynamic
languages such as JavaScript, Python, R or Ruby. GraalVM
makes possible for Quarkus to perform ahead-of-time (AOT)
compilation, converting the produced Java bytecode into native
machine code, resulting in an optimized binary that can be
executed natively. This allows to reduce considerably the start-
up time and the memory footprint of the application, compared
to similar software made with Spring-boot [26].

For communicating with the microservices, we decided
to use a RESTful implementation. This was implemented
using the RESTEasy Framework28 by JBoss. This framework
provides an implementation of the JAX-RS API, a Java API
for RESTful services.

C. Next Components

Unfortunately, the decomposition of the AQL Interpreter
was a very complex process which did not allow us to focus
on other services. In future works, the decomposition of other
components will be explored. For instance, the Document
Service, dealing with CRUD operations, will allow to explore
the decomposition of a service dealing with a database. The
ODesign reader, which relies on the AQL Interpreter, can
serve as a case study to explore the communications between
differents microservices.

26https://quarkus.io/
27https://www.graalvm.org/
28https://resteasy.github.io/

However, the difficulties encountered during the decompo-
sition of the AQL Interpreter allowed us to derive practice
guides, that we will talk about in the next Section.

VI. LESSONS LEARNED

This section discusses the difficulties encountered during
the microservicization of Sirius Web, and the lessons learned
for future applications. We describe broader contexts where
such difficulties can be encountered, and discuss the possible
solutions which can be applied.

A. Serialization Issues

A difficulty encountered during the microservicization of
Sirius concerned the serialization process. The serialization
allows converting Java objects to streams of bytes, in order to
easily transfer these data between services — typically using
json or XML formats. In the case of complex data structures
such as Abstract Syntax Tree, serialization can be a tough
process. Indeed, elements such as inheritance of concepts
defined in external projects or self-references can add a layer
of complexity to the process. Nevertheless, in the case of
Sirius, some tools already existed to serialize EObjects. The
basic way to serialize EMF objects consisted in using the XML
Metadata Interchange29 (XMI) standard. This standard allows
specifying the representation of meta-data in an XML format.
More recently, the emf-json project30 provided a support
for the JSON format to the Eclipse Modeling Framework.
However, even though these formats were adapted to transfer
the EMF instances found in models, they were not designed
to deal with the EMF classes specifying the meta-models.

1) Application Cases: Such an issue can be encountered in
a lot of situations, as soon as the elements to exchange are
not trivial to serialize. The presence of rich and complex data
structures to transfer can be an evidence for such issues.

2) Practice Guide: In the planning phase, practitioners aim
to plan the decomposition of the application. It is important
at this point to anticipate which data must be transferred
between the services, and how they will be serialized. In
the case of uncommon data structures, practitioners have to
be aware of whether dedicated tools already exist for the
serialization of these structures or not. If this is not the case,
they must anticipate the difficulties that will be encountered
and decide on the way to resolve them before attempting any
decomposition.

Lesson Learned 1 Serialization of data to transfer
can be an arduous process when rich and complex
structures are manipulated. These difficulties should be
planned upstream, especially to audit existing solutions
or to schedule the development of a new one.

29https://www.omg.org/spec/XMI
30http://emfjson.github.io/
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B. Rupture of Pass-by-Reference Chains

In a program, a method or a function is characterized by the
elements passed as actual parameters. The way these elements
are passed can be grouped up in two main categories:

• In a pass by value evaluation strategy, the parameters
are passed as a copy of the object passed to the function,
which will prevent the original object from being affected
by the operations done by the function;

• In a pass by reference evaluation strategy, a reference
to the object is passed, which allows modifying directly
the element pointed by the reference.

In a Java program, the evaluation strategy is called Shared
Object Transfer, and is in practice similar to the pass-by-
reference strategy. It allows to easily manipulate Java objects
passed as the actual parameters of successive methods or
functions, creating pass-by-reference chains. However, this
way of manipulating data can cause issues in a microservi-
cization context. Indeed, when a feature is separated from the
legacy application to its own microservice, the communication
by pass-by-reference is cut during the serialization process.
Basically, this means that every object passed to a microservice
is in fact “passed by value”, breaking up existing pass-by-
reference chains.

1) Application Cases: If the legacy applications relies
heavily on a pass-by-reference strategy, such problems can
occur. In particular, such issues are more likely to occur if the
possibility to alter a function parameter is not made explicit.

2) Practice Guide: During the analysis of the legacy
systems, practitioners must take note of the way variables
are transferred throughout the program. If the application
is planned for a migration toward microservices, one would
prefer a more functional style. Otherwise, practitioners must
meticulously adapt the structure of the application. The called
microservice has to apply any changes on function parameters
and notify its caller afterwards.

Some future works could explore the development of a
framework that allows to explicitly specify how a parameter
should be treated during the microservicization. For instance,
in the case of a Java program, an annotation framework could
be developed to indicate if a parameter is expected to be
affected by side effects or not. This could allow developers to
analyze with more correctness the feature map in a program,
but could also open the way for microservicization processes
based on these annotations.

Lesson Learned 2 An application which heavily relies
on pass-by-reference chains exposes itself to issues
during the modernization process. One must thus be
vigilant to adapt these behaviors to the future microser-
vices’ interactions.

C. Open-World Challenges

Sirius Web relies on the open-world philosophy. Indeed, it
allows the enrichment of the application through the addition
of new functionalities, in particular using Java Services. This

philosophy makes a lot of sense in the context of IDEs, since it
allows a user to add functionalities incrementally to fit its use-
cases, as many other modular IDEs do. However, this makes
the microservicization of the application much more complex.
Indeed, multiple microservices must often have access to these
added functionalities.

In the case of the AQL interpreter, the problem came from
the presence of Java Services required during the initialization
phase. However, the microservice architecture prompts the
practitioners to develop the microservices to be deployable
and usable independently of their usage context. Thus, the
microservices need to dynamically adapt to these functionali-
ties.

1) Application Cases: Such problems can be encountered
in open-world applications, i.e. applications offering the pos-
sibility to dynamically add new functionalities. The closest
example to the case study is the case of modular IDEs, but
for instance one can also imagine a cloud-based video game
which offers the possibility to manage additional mods.

2) Practice Guide: In order to solve these issues, the
first element to take into account is the possibility for the
technology to adapt to dynamic functionalities. For instance,
the AQL interpreter was implemented using Quarkus, which
offers the possibility to run native applications, lowering both
the memory footprint and the startup time. As a downside,
such an approach prevents the deployed microservices to adapt
to modular functionalities. However, other technologies allow
for a more dynamic behavior. We thus recommend anticipating
such problems at the earliest, particularly when deciding on
the microservice technologies.

Another choice to handle open-world issues is to better
define the granularity. Indeed, the ability to manage modular
functionalities can be handled by using dedicated microser-
vices. However, such an implementation is not trivial either:
microservices have to coordinate to adapt to this new func-
tionality. New architectural challenges appear to deal with this
structure.

Lesson Learned 3 In an open-world application, the
availability of modular features for different microser-
vices can be an issue. Practitioners must plan how to
make microservices deal with the dynamic addition of
features, possibly by taking them into account when
considering the granularity of the application.

D. Manipulation of Shared Resources

In some application cases, multiple features can rely on
shared resources: heavy data which can be initialized once,
and then accessed by different functionalities of the program.
For instance, the AQL interpreter, as well as other features
of Sirius Web, relies on additional EPackages to initialize an
interpreter. The fact that a monolithic application may decide
to share the same resources with different features of the
application makes sense, and allows mechanisms such as lazy



initialization. However, their usage in the case of microservices
raises some issues.

As explained in Section VI-A, these issues can be linked
to the serialization of these resources or the synchronization
between the different components. In addition to these, the
horizontal scaling of microservices implies the creation of
multiple instances of the same resources in different services,
causing higher costs in memory footprint and greater instan-
tiation times.

1) Application Cases: Applications sharing rich resources
throughout multiple different features are subject to such
challenges.

2) Practice Guide: In the same way as the previous issue,
a solution to deal with such a challenge is to carefully plan
the microservicization architecture. Centralizing the services
which manipulate shared resources can solve the issue. How-
ever, such a solution is not always possible and does not fit
well with the philosophy of microservices. Another research
lead to investigate is the possibility to share such resources
locally. Once again, such a solution is difficult to implement
and adds additional constraints to the deployment strategy of
the application.

Lesson Learned 4 Shared resources in an application
raise challenges for the microservicization process.
In such cases, one must be aware of the impacts of
such elements on the microservice granularity and the
overall deployment.

VII. RELATED WORKS

The process of Cloud-based IDE microservicization has
already been explored in [2]. This article develops a systematic
approach to migrate monolithic Cloud-Based IDEs towards
microservices. Based on the specification of the manipulated
language and the desired language services, the approach
generates a set of modular language microservices and a tool-
supported feature model to configure their deployment. This
approach brings disparity in the performances of language
services after their modularization. If heavy services such
as compilation show improvements on their response time
from this approach, lightweight quick-feedback services such
as auto-completion suffer greatly in reactivity. This drop in
performances is even more accentuated when the length of
the code increases. The authors of the paper have already
identified two factors as responsible for this disparity: the
statelessness of the services and the lack of optimization for
the deployment.

Some research works have been done to automate the
decomposition of a Cloud-based application, based on the
expected benefits for the modernization. For instance, Service
Cutter relies on an Entity-Relationship model to propose
a decomposition of a legacy application [27]. In [22], the
authors developed a Model-Driven approach which automates
the transition from a Java based monolithic application to a

microservice application. This approach is based on Jolie31, a
programming language designed to implement microservices
and specify microservice architectures. Some academic works
established a broader classification on microservicization tech-
niques. In [28], the authors performed a “rapid review” on mi-
croservicization techniques and highlighted 3 main approaches
to perform such a modernization : model-driven based on
high level representations of the system, static analysis of
the source code, and dynamic analysis of the running system.
Similarly, in [10], the authors identified 10 architectural refac-
toring approaches for microservicization, classified in similar
categories. This work is accompanied by a selection guide
to support the practitioners in choosing the more adequate
solution.

VIII. CONCLUSION & PERSPECTIVES

We detail in this paper our experience on the microservi-
cization of a Cloud-based IDE. This work aims to provide
insights for developers on the difficulties that such applications
can raise during a modernization process. These difficulties
come from the various specificities that Cloud-based IDEs
possess, such as the heterogeneity of the language services’
needs or the manipulation of rich and complex data structures.
To explore these specificities, we rely on a Graphical Modeling
Workbench, Sirius Web: a framework that allows users to
deploy Cloud-based IDEs manipulating graphical languages.

This paper focused mainly on the microservicization of
the AQL interpreter. This part of the application aims to
interpret AQL expressions, which are queries performed on
an EMF meta-model. The reason for this choice is that the
AQL Interpreter does not have any dependencies over other
Sirius components, which tends to make the decomposition in
microservices easier. This microservicization allowed identi-
fying four main challenges that a Cloud-based IDE can raise
in a microservicization process:

• The serialization issues;
• The rupture of pass-by-reference chains;
• The open-world challenges;
• The manipulation of shared resources.
This paper opens the way for future works. To begin with,

this experience report focused on the microservicization of
Sirius Web’s AQL Interpreter. However, other components
could be interesting to extract. For instance, the DocumentSer-
vice, in charge of CRUD operations would allow to explore
the manipulation of these operations on a Cloud-Native IDE
context. DiagramDescriptionConverter could also be an inter-
esting case study to explore the manipulation of other types of
resources. More generally, the decomposition of Sirius Web in
many microservices could be interesting to tackle issues linked
to microservice deployment.

Finally, the lessons learned here open the way for the
development of microservicization automation tools. For in-
stance, solutions to deal with the rupture of pass-by-references
chains could be explored. One could develop an annotation

31https://www.jolie-lang.org/
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framework to specify the way a passed-by-reference parameter
should be handled during the modularization. However, these
automatic migration strategies should be diverse, to adapt to
different use cases. Each strategy would have strengths and
weaknesses. For instance, deciding to use a finer granularity
could allow dealing efficiently with applications relying on
an open-world strategy, but would add additional costs for an
application manipulating shared resources.
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