
1

Latency-Aware Strategies for Deploying Data
Stream Processing Applications on Large

Cloud-Edge Infrastructure
Alexandre da Silva Veith, Marcos Dias de Assunção, Laurent Lefèvre

Abstract—Internet of Things (IoT) applications often require the processing of data streams generated by devices dispersed over a
large geographical area. Traditionally, these data streams are forwarded to a distant cloud for processing, thus resulting in high
application end-to-end latency. Recent work explores the combination of resources located in clouds and at the edges of the Internet,
called cloud-edge infrastructure, for deploying Data Stream Processing (DSP) applications. Most previous work, however, fails to scale
to very large IoT settings. This paper introduces deployment strategies for the placement of DSP applications onto cloud-edge
infrastructure. The strategies split an application graph into regions and consider regions with stringent time requirements for edge
placement. The proposed Aggregate End-to-End Latency Strategy with Region Patterns and Latency Awareness (AELS+RP+LA)
decreases the number of evaluated resources when computing an operator’s placement by considering the communication overhead
across computing resources. Simulation results show that, unlike the state-of-the-art, AELS+RP+LA scales to environments with more
than 100k resources with negligible impact on the application end-to-end latency.

Index Terms—Data Stream Processing, Edge Computing, Aggregate end-to-end latency, Operator placement

F

1 INTRODUCTION

THe rapid growth of the Internet of Things (IoT) has led
to scenarios where data is produced in overwhelming

rates and which require (near) real-time analysis. In smart
cities, IoT, and operational monitoring of large infrastruc-
ture, applications generate continuous data streams that
must be processed under short delays. Streaming data is
often gathered and analyzed by Data Stream Processing
Engines (DSPEs) where an application is commonly struc-
tured as a dataflow. A dataflow comprises multiple sensors,
gateways and/or actuators as data sources generating data;
stateless or stateful operators such as filtering, and aggre-
gation that perform transformations on the data; and data
sinks or queries that consume or store the data. Traditionally,
DSPEs place the whole dataflow on a single cloud [1].

The schedulers of DSPEs commonly assign tasks to re-
sources in a round-robin fashion while ignoring intricacies
of operators and resources. This often results in poor perfor-
mance and load imbalance when considering the distributed
nature of IoT. In IoT scenarios, data sources are mainly
located at the edges of the Internet, and data is transferred to
the cloud via long-distance links that increase the end-to-end
latency (i.e., the time data is generated to the time it reaches
the sinks). The communication overhead incurred by trans-
ferring data via the Internet makes it hard to achieve near
real-time processing on clouds alone. Cloud-edge infrastruc-
ture provides an alternative approach to deploy Data Stream

• A. da Silva Veith is with the University of Toronto.
E-mail: alexandre.veith@utoronto.ca

• M. Dias de Assunção is with ETS Montreal.
E-mail: Marcos.Dias-De-Assuncao@etsmtl.ca

• L. Lefèvre is with Inria, ENS of Lyon, University of Lyon.
E-mail: laurent.lefevre@ens-lyon.fr

Manuscript received in September, 2020

Processing (DSP) applications by combining multiple cloud
providers (i.e., federated cloud) and resources at the edges
of the Internet, often organized in edge sites.

Existing application placement strategies for cloud-edge
infrastructure generally expect some sort of manual in-
tervention [2] and many models are oblivious to com-
plex operator transformation patterns (e.g., stateful – store
information about previous executions as new data is
streamed in) [3] and do not support resource constraints
(e.g., memory and communication) [4] or dependencies be-
tween operators [5], [6]. Likewise, other efforts offer linear
approaches [7] where the behavior of a DSP application de-
ployment on heterogeneous infrastructure is non-stochastic.
Another major drawback is that prior work fails to scale
to cloud-edge infrastructure [8] where the number of edge
resources can be in the hundreds or thousands. For instance,
initiatives including the Humble Lamppost Project [9] and
LinkNYC [10], and companies such as SMIGHT [11] and
Edgemicro [12], illustrate that cloud-edge infrastructure will
become even more pervasive and reach much larger scale in
near future.

In this paper, we introduce a set of strategies for the
initial placement of the operators onto federated cloud and
edge resources while supporting large-scale infrastructure,
considering the characteristics of resources and meeting
application requirements. We consider synthetic and generic
analytics applications with multiple sources and sinks dis-
tributed across cloud and edge resources. In particular,
we decompose the application graph by identifying pat-
terns such as the final destination of messages, and then
placing operators across edge and cloud resources while
considering their latency closeness. We also extrapolate the
infrastructure topology size to show that the scalability of

2

current approaches is an issue. The results demonstrate that
our strategies are scalable and provide operator placements
at a reasonable time. Comprehensive simulations compris-
ing multiple network topologies and several application
settings demonstrate the effectiveness of our approach in
maintaining the end-to-end latency regardless of the net-
work size. The results also show that our solution can cover
large-scale infrastructure where the state-of-the-art fails.

The main motivation is to design operator placement for
cloud-edge infrastructure that are scalable and do not penal-
ize the end-to-end latency, which is a stringent requirement
for near real-time analytics. The main contributions of this
work are:

• It improves a model for DSP applications on hetero-
geneous infrastructure introduced in previous work
[13] by extending it to address large-scale scenarios.

• Strategies for placing operators across large-scale
network topologies.

• Evaluation of the strategies against traditional and
state-of-the-art schemes.

The rest of this paper is organised as follows. Section 2
discusses related work. The application and infrastructure
models are introduced in Section 3. The placement strate-
gies are detailed in Section 4 whereas Section 5 presents
performance evaluation results. Finally, Section 6 concludes
the paper and discusses future work.

2 RELATED WORK

Previous work reviewed strategies for operator placement in
early distributed DSP systems [14]. Several approaches aim
to optimize the application end-to-end latency by exploiting
the location of computing resources in a network infras-
tructure, hence reducing inter-resource communication and
maximizing processing throughput. Previous work, how-
ever, does not handle large IoT scenarios and is oblivious
to the constraints of IoT resources regarding memory, CPU,
and network bandwidth. Also, most solutions do not han-
dle cloud-edge infrastructure, consider oversimplified DSP
applications, and do not use IoT resources for DSP tasks.

Taneja’s Cloud-Edge Placement (TCEP) [3] is a best-
fit scheduling policy for application placement on cloud-
edge infrastructure that organizes computing resources and
application operators into two distinct vectors, which are
then sorted by their CPU capacity and CPU requirement
respectively. For each operator in the operators vector,
TCEP evaluates whether the resource at the middle of the
resources vector meets the operator’s CPU, memory, and
bandwidth requirements. TCEP ignores multiple or feder-
ated edge sites and the network latency, which results in
high application end-to-end latency. It also does not estimate
application characteristics, which is an issue when handling
heterogeneous computing resources.

Redowan et al. [15] propose a policy where DSP oper-
ators are classified in a three-dimensional space (i.e., user-
defined end-to-end latency, amount of data per input and
frequency for collecting data in IoT devices). Operators
with stringent requirements are placed on the edge while
non-stringent ones are assigned to the cloud. The work
also offers an Integer Linear Programming (ILP) model for

minimizing the application end-to-end latency, which has
scalability issues, and considers scenarios with up to 25
devices. The work also ignores states when computing the
end-to-end latency.

DROPLET [16] offers a scheduling policy by modeling
the completion time of DSP applications as the shortest path
problem. The proposed model ignores operators that change
the pattern of input data, assuming equal sizes for output
and input tuples. DROPLET considers only the operators’
output queues and a single edge site. Moreover, memory
and CPU capacity are ignored when assigning multiple
operators to the same resource.

Cardellini et al. [7] introduce an ILP model for geo-
distributed DSP systems that considers resource hetero-
geneity, but ignores memory constraints as it is conceived
for federated clouds with large memory capacity. Edge
computing resources, however, often have limited capacity
and cannot host operators with heavy memory demands.
Moreover, the solution has scalability issues as it relies on
ILP. Communication-aware heuristics were proposed for
assigning DSP operators to Virtual Machines (VMs) placed
across federated clouds [17], [18], but these solutions do
not consider edge computing resources and struggle to
minimize the end-to-end latency since data sources are often
located in IoT devices.

Canali et al. [19] introduce an ILP model and algorithm
for placing applications onto cloud-edge infrastructure that
focuses on reduce end-to-end latency from edge sites. They
evaluate their solution by analyzing the traffic monitoring
application of the Italian city of Modena, with a population
of 180,000 inhabitants. Despite the significant population,
the testbed was based on 89 sensors and seven cloud
resources. Likewise, Geelytics [20] explores a cloud-edge
infrastructure for minimizing the end-to-end latency of ap-
plications and respecting resource constraints. In contrast,
Kiani et al. [21] attempt to minimize the energy-time cost
using Mixed-Integer Nonlinear Programming (MINLP), but
their solution handles only small network topologies, ig-
nores multi-tenancy, and estimates the operator placement
by considering all application operators and computing
resources. Existing solutions do not address scenarios with a
vast number of sensors, hence demonstrating that scalability
is still an issue.

Table 1 summarizes how the related work handles the
operator placement problem. Some existing work proposes
solutions for federated clouds [17], [18], while ignoring IoT
devices. Other approaches for stateful operators [7], [19]
tackle cloud-edge infrastructure, but disregard memory and
bandwidth constraints. TCEP [3] and Redowan et al. [15]
consider some of these constraints, but their solutions do
not support stateful operators, while Kiani et al. [21] re-
strict the scheduling of a single operator at the same edge
location. Droplet [16] presents both a complexity analysis
and experiments that demonstrate the efficiency of a two-
layer architecture that considers a single cloud and one
edge site. However, it is unclear whether the proposed
architecture can scale to a scenario with multiple clouds
and edge sites. Canali et al. [19] evaluate their approach in a
large scenario, but ignore federated clouds. There is a lack of
scalable solutions for cloud-edge infrastructure that support
stateful operators, respect resource constraints and consider

3

TABLE 1
Current features in the related work.

Solutions Infrastructure Stateful Operators Resource constraints Scalable
Cloud Edge Memory CPU Bandwidth

TCEP [3] ! ! ! ! ! !

Geelytics [20] ! ! ! !

Cardellini et al. [7] ! ! ! ! !

Gu et al. [17] ! ! ! !

Chen et al. [18] ! ! ! !

Kiani et al. [21] ! ! ! !

Droplet [16] ! ! ! !

Canali et al. [19] ! ! ! !

Redowan et al. [15] ! ! ! ! !

This work " " " " " " "

Internet

...Cloudlet/Edge site

Edge/IoT Devices

... Cloudlet/Edge site

Edge/IoT Devices

... Cloudlet/Edge site

Edge/IoT Devices

...

...
Federated Clouds

Azure EC2 Google
Cloud

Fig. 1. Overview of cloud-edge infrastructure.

the scale of future IoT deployments [8].

3 SYSTEM MODEL AND PROBLEM DEFINITIONS

This section describes the system model for operator place-
ment introduced in our previous work [13], [22], extending
it to cover stateful operators and to address scalability
issues. Table 2 summarizes the symbols used in the paper.

3.1 System Model

Cloud-edge infrastructure comprises federated clouds and
edge sites as depicted in Fig. 1. The clouds and edge sites
are interconnected via the Internet. Each cloud resource rep-
resents a service supplied by a cloud service provider (e.g.,
Amazon EC2 [23], Microsoft Azure [24], Google Cloud [25]).
In contrast, each edge site has multiple and heterogeneous
resources connected to a LAN. The internal communication
of an edge site often adopts technologies such as LTE and
other wireless equipment that increase the network latency
significantly [26]. For this reason, the internal links and edge
resources in an edge site are analyzed individually. This
work considers that information on the network topology
and resource availability are discovered and maintained via
algorithms such as Vivaldi and Software Defined Network
solutions [7].

We focus on application end-to-end latency as perfor-
mance metric for placing DSP applications across edge
and cloud resources. The DSP operator placement prob-
lem consists of accommodating the application components
(i.e., operators) onto the available infrastructure resources
to optimize the end-to-end latency. Information about the

TABLE 2
Main symbols adopted for the problem description.

Symbol Description

R Set of cloud ∪ edge resources
L Set of all network links
N ,G Network and application graphs
k↔ l A link connecting resources k and l
cpurk , memrk CPU and memory capacities in MIPS

and bytes of resource k
latk↔l,bdwk↔l Latency and bandwidth in seconds and

bps of bidirectional link k↔ l
O Set of operators
Osrc, Otrn, Oout Set of data sources, transformations

and data sink operators
E Set of event streams between operators
cpuoi , memoi CPU and memory req. of operator i
wsoi Length of operator i’s window in

number of events
ψoi Selectivity of operator i
ωoi Data compression rate of operator i
ei→j Event stream between operator i and j
eρi→j Event stream with probability ρ that an event

emitted by operator i will flow to j
λini , λ

out
i Input/output event rate of operator i

ςini , ςouti Input/output event size of operator i
stime〈i,k〉 Service time in seconds of operator i at resource k
ctime〈i,k〉〈j,l〉 Communication time in seconds from operator i

at resource k to j at l
mem〈i,k〉 Overall memory required by operator i

when deployed at resource k
pi, Lpi A graph path and its end-to-end latency
P The set of all paths in an application graph
µ〈i,k〉 The rate at which operator i can process events

at resource k
1〈ei→j ,k↔l〉 Indicates when the stream between

operators i and j has been assigned to the link
between resources k and l

1〈i,k〉 Indicates whether operator i is placed
on resource k

AL Aggregate end-to-end latency

application can be obtained via profiling techniques or from
previous executions as demonstrated in existing work [27].

The infrastructure is viewed as a graph N = (R,L)
where R is the union set of cloud compute resources and
edge resources, and L is the set of logical links interconnect-
ing the resources, comprising WAN interconnections and
LAN links. A computational resource is defined as a tuple
rk = 〈cpurk,memr

k〉 ∈ R, where cpurk is the CPU capability

4

Resource 1
Operator 1

Message
Queue

Data transfer
service

Operator 2

Dispatching
service

Resource 2
Operator 3

Operator 4
Messages

Network

Fig. 2. Four operators and their queues placed on two resources.

in Millions of Instructions per Second (MIPS) and memr
k is

the memory capability in bytes. Similarly, a network link
is a tuple k ↔ l = 〈bdwk↔l, latk↔l〉 ∈ L, where k ↔ l
represents the interconnection between resource k and l,
bdwk↔l the bandwidth capability in bits per second (bps),
and latk↔l the latency in seconds. We consider the latency
of a resource k to itself (i.e., latk↔k) to be 0.

3.2 Application Model
A DSP application is a graph G = (O, E) of operators O
comprising data sources Osrc, data sinks Oout where data is
stored or published, and transformations Otrn that execute
functions over the incoming data, and streams E of data
events flowing between operators. Each operator is a tuple
oi = 〈cpuoi ,memo

i , ψ
o
i , ω

o
i , ws

o
i 〉 ∈ O, where cpuoi is the CPU

requirement in MIPS to handle an individual event, memo
i

is the memory requirement in bytes to load the operator in
a computing resource, ψoi is the ratio of number of input
events to output events (i.e., selectivity), ωoi is the ratio of
the size of input events to the size of output events (i.e.,
operator data transformation pattern), and wsoi is the length
of the operator’s window in number of events. The rate at
which operator i can process events at resource k is denoted
by µ〈i,k〉 and is essentially µ〈i,k〉 = cpurk÷cpuoi . An operator
can have one or multiple output streams. An event stream
eρi→j ∈ E connects operator i to j with a probability ρ that
an output event emitted by i will flow through to j. If eρi→j
is the only output stream of operator i, then eρi→j ∈ E = 1.

The rate at which operator i produces events (λouti) is
a product of its input event rate λini and its selectivity ψoi .
The output event rate of a data source operator z ∈ Osrc
depends on the number of measurements it takes from
a sensor or another monitored resource. We can then re-
cursively compute the input and output event rates for a
downstream operator j as follows:

λini = λoutz ∀ez→i ∈ E , z ∈ Osrc (1)

λinj =
∑

ei→j∈E
λini × ψoi × e

ρ
i→j ∀i, j ∈ O, i /∈ O

src (2)

λoutj = λinj × ψoj ∀j ∈ O, j /∈ Oout (3)

Likewise, we can recursively compute the average size ςini
of events that arrive at a downstream operator i and the
size of events it emits ςouti by considering the upstream
operators’ event sizes and their respective operator data
transformation pattern (i.e., ωoi). In other words:

ςini = ςoutz ∀ez→i ∈ E , z ∈ Osrc (4)

ςinj =
∑

ei→j∈E
ςini × ωoi × e

ρ
i→j ∀i, j ∈ O, i /∈ Osrc (5)

ςoutj = ςinj × ωoj ∀j ∈ O, j /∈ Oout (6)

A computational resource is multi-tenant and hosts one or
more operators. Operators within the same host communi-
cate directly whereas inter-node communication occurs via a
communication service as depicted in Fig. 2. The employed
queueing system is representative of the communication
and processing services performed by DSPEs. Frameworks
often run operators in containers, and the communication
between them is via message queues or brokers [28]. After
an operator processes a message, it is pushed to the queue(s)
of the downstream operator(s). The Dispatching Service
and Data Transfer Service provide functions analogous to
a Stream Manager in Apache Heron or a Supervisor in
Apache Storm. These services were decoupled from the local
manager in our case because of the geo-distributed nature
of cloud-edge infrastructure. The Dispatching Service man-
ages the communication between operators locally while
the Data Transfer Service handles external communications.
Operators in the same resource write directly to their down-
stream operator queues while in external communications
message brokers guarantee the message delivery.

Events are handled in a First-Come, First-Served (FCFS)
fashion both by operators and the communication service
that serializes events to be sent to another host. This
guarantees the time order of events; an important require-
ment in many data stream processing applications. Both
operators and the communication service follow a widely
employed M/M/1 Queueing Theory model [29] for their
queues which allows for estimating the waiting and service
times for computation and communication. The used queue
model is capable of capturing randomness in arrival and
service times. As in state-of-the-art solutions [7]: (i) Event
arrival follows a time-homogeneous Poisson process with a
constant rate – without event bursts as sensors collect data
periodically; and (ii) the service rate follows an exponential
distribution with constant mean time – homogeneous pro-
cessing demand for computing each message. Moreover, a
stateful operator can have an impact on the computation
time as it waits until it receives a number of events before
considering the window complete (wsoi). The computation
or service time stime〈i,k〉 in seconds of an operator i placed
on resource k is hence given by:

stime〈i,k〉 =
1

µ〈i,k〉 − λini
+
wsoi
λini

(7)

The communication time ctime〈i,k〉〈j,l〉 in seconds for oper-
ator i placed on a resource k to send an event to operator j
on a resource l is:

ctime〈i,k〉〈j,l〉 =
1(

bdwk↔l

ςout
i

)
− λinj

+ latk↔l (8)

3.3 Infrastructure and Application Constraints

Edge resources can be limited in terms of memory, com-
puting, and communication capabilities. An operator can
only be placed on a computing resource if it meets all the
operator’s processing and data transfer requirements:

λini < µ〈i,k〉 ∀i ∈ O,∀k ∈ R|1〈i,k〉 = 1 (9)

λouti <
(bdwk↔l

ςouti

)
∀i ∈ O,∀k↔ l ∈ L|1〈i,k〉 = 1 (10)

5

The CPU and memory requirements of operators on each
host are ensured by constraints 11 and 12:∑

i∈O
1〈i,k〉 × λini × cpuoi ≤ cpurk ∀k ∈ R (11)

∑
i∈O

1〈i,k〉 × (memo
i + wsoi × ςini) ≤ memr

k ∀k ∈ R (12)

Data transferring requirements of streams placed on links
are guaranteed by:∑
ei→j∈E
k↔l∈L

1〈ei→j ,k↔l〉 × ς
out
i ≤ bwdk↔l ∀k ↔ l ∈ L (13)

Constraints 14 and 15 ensure that an operator is not placed
on more than one resource and that a stream is not placed
on more than a network link respectively:∑

k∈R

1〈i,k〉 = 1 ∀i ∈ O (14)

∑
k↔l∈L

1〈ei→j ,k↔l〉 = 1 ∀ei→j ∈ E (15)

3.4 End-to-End Latency

As DSP applications must handle incoming data events
under short delays, the goal of the operator placement is
to minimize the application end-to-end latency.

A path in a DSP application graph is a sequence of
operators from a source to a sink. A path pi of length n
is a sequence of n operators and n− 1 streams, starting at a
source and ending at a sink:

pi = o0, o1, . . . , ok, ok+1, . . . , on−1, on (16)

where o0 is a source and on is a sink. The set of all possible
paths in the application graph is denoted by P . The end-to-
end latency of a path is the sum of the computation time
of all operators along the path and the communication time
required to stream events on the path. More formally, the
end-to-end latency of path pi, denoted by Lpi , is:

Lpi =
∑

j∈pi,k∈R

1〈j,k〉 × stime〈j,k〉

+
∑
l∈R

1〈ej→j+1,k↔l〉 × ctime〈j,k〉〈j+1,l〉
(17)

The aggregate end-to-end latency AL is therefore:

AL =
∑
pi∈P

Lpi (18)

As DSP applications are generally latency-sensitive, this
paper provides solutions that minimize the aggregate end-to-
end latency. In other words, find the mapping that minimizes
AL (i.e., minAL) and respects the resource and network
constraints.

4 OPERATOR PLACEMENT STRATEGIES

This section details the strategies proposed for placing DSP
applications onto cloud-edge infrastructure while minimiz-
ing the aggregate end-to-end latency.

4.1 System Overview

This work considers a scenario where a user submits an
application to the DSPE (e.g., NebulaStream [30]), and an or-
chestrator running in the cloud computes the initial operator
placement. The orchestrator maintains the network topol-
ogy information and profiles the application to determine its
operators’ requirements and communication patterns. With
the application and network topology information at hand,
the orchestrator can employ one of the strategies described
later to compute the placement. The applications are split
according to the proposed strategies. Before applying a
strategy, however, the orchestrator needs to create a deploy-
ment sequence, which is essentially a list of ordered oper-
ators, and the list of resources that can host the operators.
The next section describes how the deployment sequence is
computed, which is then used by all proposed strategies to
evaluate operators in a sequential manner.

4.2 Deployment Sequence

The problem of determining the operator placement has
been shown to be NP-hard [31]. In our strategies, we adopt
an incremental and scalable approach for assigning opera-
tors to resources by evaluating a deployment sequence, built
so that upstream operators are assessed before downstream
operators. When estimating the requirements of a given
operator, the system must guarantee that the requirements
of its upstream operator have already been estimated. In
this way, the placement strategy has all the information
about the upstream operators such as an operator’s output
data rate which is needed when estimating the AL of a
downstream operator. That is, the strategies require the
output data rate from previous operators (i.e., upstream op-
erators) to estimate the requirements of a given downstream
operator. After assigning all operators of the deployment se-
quence, the strategies can efficiently find an operator place-
ment by minimizing AL of a given application dataflow.

Algorithm 1 shows the method for sorting operators and
creating a deployment sequence. The method initializes the
deployment sequence and a queue (line 1). As data sources
do not have upstream operators, they are added to the de-
ployment sequence along with their downstream operators,
obtained via the function GetDS (lines 2-6). Then for each
operator in the queue, the algorithm checks whether its
upstream operators are in the deployment sequence (lines 7-
15). If all upstream operators are in the sequence, the opera-
tor is moved from the queue to the deployment sequence
and its downstream operators are pushed to the queue
(lines 9-13). Otherwise, the operator is moved from the
beginning to the end of the queue (line 15). The evaluation
of upstream operators completes when the queue is empty.
As Algorithm 1 essentially performs a breadth-first traversal
of the application dataflow, its complexity is O(|O| + |E|),
where O is set of application operators and E is the set of
streams in the dataflow.

4.3 Operator Placement Strategies

This section introduces three operator placement strategies
that use the deployment sequence.

6

Algorithm 1 to build the deployment sequence.
1: ds← { }, queue.clear()
2: for src in Osrc do
3: ds.append(src)
4: for downs in GETDS(src) do
5: if downs not in queue then
6: queue.push(downs)
7: while |queue| > 0 do
8: ope← queue.pop()
9: if all upstream operators of ope are in ds then

10: for downs in GETDS(ope) do
11: if downs not in queue then
12: queue.push(downs)
13: ds.append(ope)
14: else
15: queue.push(ope)
16: return ds

4.3.1 Aggregate End-to-End Latency Strategy (AELS)

AELS is a greedy strategy that places operators incremen-
tally by evaluating the AL while respecting the resource
constraints presented in Section 3. AELS estimates the AL

Algorithm 2 to compute the end-to-end latency.
1: function ESTIMATEAL(N = (R,L),G = (O,S), o)
2: rt← {}
3: us← placements of operators upstream to o
4: for r ∈ R do
5: comm← 0
6: for plcmt ∈ us do
7: if GETHOST(plcmt)6= r then
8: comm← comm+ ctime〈plcmt〉〈o,r〉

9: if MEETCONSTRAINTS(o, r) then
10: rt.append(〈r, stime〈o,r〉 + comm〉)
11: return rt

for each operator in the deployment sequence by con-
sidering the already placed upstream operators, resource
capabilities, and operator requirements. Algorithm 2 shows
this process, where the algorithm first obtains all the op-
erators that are upstream to operator o for estimating the
communication overhead from them to operator o itself
(line 3). The placement of operator o is then evaluated on
all resources (lines 4-10). During the evaluation, the commu-
nication overhead is computed according to the placement
of upstream operators (lines 5-8). If a resource can provide
the CPU, memory and bandwidth required by operator o,
the resource and its end-to-end latency are added to a set
of available resources (lines 9-10). After that, the resources
are sorted by their end-to-end latencies. The resource with
the smallest end-to-end latency is picked, and the resource’s
residual CPU and memory capabilities are updated. If the
application graph were complete, the complexity of execut-
ing Algorithm 2 for all operators in the sequence would
be O(|O| × |R| + |O|2), where O is the set of application
operators and R is the set of infrastructure resources. As
DSP graphs are often more sparse, the cost of computing the
communication latency from upstream streams is negligible

Merger

Splitter
Splitter and

Merger

Parallel Regions

Path 1

Path 3
Path 4
Path 5

Path 2

Path 6

Sink 2

Sink 1

Fig. 3. Example of application dataflow with several operator patterns,
resulting in multiple application paths, each with its own performance
requirements. Each arrow type corresponds to a unique path.

and the complexity can be considered O(|O| × |R|). As de-
scribed in the next section, DSP applications often comprise
parallel regions whose operators AL could be evaluated
in parallel. Also, the next sections present strategies that
further reduce this complexity.

4.3.2 AELS with Region Patterns (AELS+RP)
Aggregate End-to-End Latency Strategy with Region Pat-
terns (AELS+RP) is a strategy that handles complex
dataflows that contain multiple paths from sources to sinks.
As shown in Figure 3, a DSP dataflow can have patterns
such as: (i) splitters, where messages are replicated to multi-
ple downstream operators or scheduled to downstream op-
erators in a round-robin fashion using message key hashes
or other criteria [32]; (ii) parallel regions that perform the
same operations over different sets of messages or where
each individual region treats copies of the incoming mes-
sages; and (iii) mergers, which merge the outputs of parallel
regions. These patterns result in multiple application paths,
each with its own performance requirements. For instance,
messages emitted to sink 1 require shorter AL than those
sent to be stored in databases, i.e., sink 2. AELS+RP considers
each application path requirements and gives priority to
messages according to their destination. This information is
used to build regions and assist in placing operators across
cloud and edge resources. AELS+RP hence explores splitters
and the sinks’ placement (cloud or edge). According to
the destination of the output of an operator, this strategy
classifies the regions in:

• cloud when an operator is immediately upstream to
sinks placed on the cloud; and

• edge when an operator shares paths with sinks lo-
cated at the edge.

Based on the regions, the operators are classified and
allocated as depicted in Fig. 4. Since an edge region has
a higher priority than a cloud region, AELS+RP exploits
resources on edge sites for improving the AL. If an operator
exceeds the capabilities of edge resources, then it is allocated
to one of the clouds. AELS+RP aims to allocate operators
across edge and cloud meeting the AL only for operators
on the edge region, in contrast to the AELS strategy that
evaluates the end-to-end latency rate for all operators.

Similar to AELS, when evaluating theAL for an operator
in an edge region, the resource with the shortest AL is

7

Path 1

Path 3
Path 4
Path 5

Path 2

Path 6

Edge Region

Cloud Region

Sink 1

Sink 2

Fig. 4. The application is divided into regions according to the destina-
tion of messages. Each square box corresponds to a given priority for
the operator placement. Operators on the edge region (red square box)
have priority to be placed on resources at the edge sites while cloud
region (grey square box) are directed to the cloud provider closest to the
data sink.

picked. Operators on the edge region will be evaluated con-
sidering only resources on edge sites, unless their require-
ments are not met. The cloud will host operators in the cloud
region and those of the edge region whose requirements
cannot be satisfied by resources on edge sites.

4.3.3 AELS+RP and Latency Awareness (AELS+RP+LA)
AELS+RP improves the scalability of policies introduced in
our previous work [13]. AELS+RP reduces the search space
by picking a selected number of operators whose place-
ment is evaluated considering only edge resources instead
of the overall infrastructure. Further reducing the number
of evaluations of operator assignments is key to finding
operator placements in feasible time as current and future
IoT scenarios can contain many thousands of resources [8].
The AELS+RP+LA improves the scalability of AELS+RP
by applying a pruning technique to reduce the number of
resources and estimate the AL.

As previous work has shown that network latency is
often the largest overhead in a geo-distributed infrastruc-
ture [26], AELS+RP+LA explores it to reduce the number of
resources. When computing the incremental operator place-
ment from the deployment sequence, each operator has
its AL computed on a limited number of resources. These
resources1 are added to a list according to the following
schemes:

• In-situ: gets the best resources to place a given oper-
ator to avoid communication across edge sites. First,
it identifies the upstream operators of a downstream
operator. Second, each upstream operator placed on
edge has the resources with the smallest network
latency in the same edge site added to the considered
resource list.

• In-transit: obtains resources to reduce the overhead
of communication across edge sites. The approach
also evaluates the location of each upstream operator.
For each one, the method selects a resource in an
edge site (if the upstream operator is placed on the
edge, then the obtained edge site must be different

1. Only resources that support the memory, CPU and bandwidth
requirements of the operator are considered.

from the current one) and a cloud resource according
to their network latency. Then resources are included
to the considered resource list.

• Data sink locations: adds to the considered resource
list the resources where the destination data sinks
are placed. For each different data sink location,
the method includes the resource with the smallest
network latency.

Once the resource list is compiled, it is submitted to
the AELS+RP strategy. Instead of examining all edge sites
and clouds, the search space covers only resources that can
impact the AL positively.

5 EVALUATION

This section first describes the experimental setup and per-
formance metrics and then discusses obtained results.

5.1 Experimental setup

We built a framework atop OMNET++ [33] to model and
simulate the large-scale DSP scenarios envisioned in this
work2. Our previous work [22] showed that under smaller-
scale scenarios, simulation results closely match those ob-
tained in real-life settings. A computational resource is
an entity with CPU, memory and bandwidth capabilities
whereas operators comprise waiting queues and transfor-
mation operations posing demands in terms of CPU, mem-
ory and bandwidth.

The edge resources are modeled as Raspberry PIs 2
(RPi2) (i.e., 4.74 MIPS at 1 GHz and 1 GB of RAM) and
Raspberry PIs 3 (RPi3) (i.e., 5.02 MIPS at 1.2 GHz and 1
GB of RAM). The cloud resources are modeled as AMD
RYZEN 7 1800x (i.e., 304.51 MIPS [34] at 3.6 GHz and 1 TB
of memory). Half the edge resources are RPi2 and the other
half are RPi3. We evaluate multiple network configurations
(or topologies) by varying the number of edge sites, clouds
and IoT resources in each site from the following values: 10,
100 and 500. The configurations are summarized in Table 3.
The network topologies are classified as:

• Regular: with less than 10,000 resources.
• Large: between 10,000 and 99,999 resources.
• Extra-large: has 100,000 or more resources.

The network topologies follow patterns obtained from
the work by Hu et al. [26]:

• A gateway interfaces each edge site’s LAN and the
external WAN (the Internet).

• The LAN latency is uniformly distributed between
0.015 and 0.8 ms with a bandwidth of 100 Mbps.

• The WAN latency is drawn uniformly between 65
and 85 ms, and the bandwidth is 1 Gbps.

Aiming to capture a diverse range of IoT and monitor-
ing applications where sensors/actuators generate a variety
of events, 13 application graphs with single and multiple
data paths are considered divided into three categories as
described later. The 13 graphs were crafted using a Python

2. https://github.com/aveith/simulator-stream-processing

https://github.com/aveith/simulator-stream-processing

8

TABLE 3
Network topologies and their classifications.

Topology Number of Resources

Cloud Edge Site IoTs Total

Regular

10 10 10 110
100 10 10 200
500 10 10 600
10 10 100 1,010
10 100 10 1,010
100 10 100 1,100
100 100 10 1,100
500 10 100 1,500
500 100 10 1,500
10 10 500 5,010
10 500 10 5,010
100 10 500 5,100
100 500 10 5,100
500 10 500 5,500
500 500 10 5,500

Large

10 100 100 10,010
100 100 100 10,100
500 100 100 10,500
10 100 500 50,010
10 500 100 50,010
100 100 500 50,100
100 500 100 50,100
500 100 500 50,500
500 500 100 50,500

Extra-large
10 500 500 250,010
100 500 500 250,100
500 500 500 250,500

library3 and their orders are based on the size of Real-
time IoT Benchmark (RIoTBench) topologies [35], which are
representative of today’s DSP applications. The number of
stateful operators corresponds to 20% of the whole applica-
tion, also based on RIoTBench topologies. The sources and
sinks are placed on edge sites except for the sink on the
critical path, which is hosted on the cloud. This is the typical
behavior of IoT and smart home applications that collect
data from sensors located on the edge of the Internet and
have to provide response to nearby actuators, whereas part
of the processing is performed in the cloud [36], [37]. The
experiments consider 10 different configurations for each of
the 13 application graphs, where operator parameters and
the location of sinks and sources are uniformly drawn from
the value ranges shown in Table 4, hence resulting in a total
of 130 application graph settings divided into:4.

• Medium: 5 applications with up to 9 operators.
• Large: 7 applications with 25 operators.
• Extra-large: 1 application with 50 operators.

The size of large and extra-large graphs is much larger
than that of existing data stream processing applications,
and by having several sources and splitters, the resulting
paths can be viewed as multiple applications with several
sense-process/actuation loops. This captures the behavior
wherein the execution of an application (sense-process loop)
triggers the execution of another application.

An operator placement computed by a strategy is ex-
ecuted for 60 seconds and compared against a traditional

3. https://gist.github.com/bwbaugh/4602818
4. The operator parameters are based on the work by Murtaza et

al. [38] and Shukla et al. [35] who analyzed real-world applications.

TABLE 4
Operator parameters in the application graphs.

Parameter Value Unit

cpu 1,000-10,000 Instructions per second
Data compression rate 10-100 %

mem 100-7,500 bytes
Input event size 100-2,500 bytes

Selectivity 10-100 %
Input event rate 1,000-10,000 Messages per second
ws (window size) 1-100 Number of messages

deployment approach (Cloud-only) and TCEP [3] from the
state-of-the-art that performs cloud-edge placement. Cloud-
only deploys all operators on the cloud. TCEP iterates a
vector containing the application operators, and for each
operator, the algorithm ranks the computational resources
by CPU, gets the host of the middle of the rank, and
evaluates CPU, memory, and bandwidth constraints to ob-
tain the operator placement. If there exists any constraint,
the operator is assigned to the cloud. TCEP is chosen for
comparison because it is the closest solution to ours regard-
ing the features examined in Section 2. Also, it has fewer
scalability issues and could potentially address some of the
large-scale settings considered here.

Performance Metrics:

• Resolution time: the time in seconds to obtain a
solution according to the used strategy (i.e., TCEP,
cloud-only, AELS, AELS+RP, and AELS+RP+LA).

• Execution time violations: the number of unsuc-
cessful runs where the operator placement strategy
exceeded the resolution time limit of 600 seconds5.

• Aggregate end-to-end latency: the end-to-end la-
tency in seconds from the time events are generated
to the time they are processed by the sinks, consider-
ing application settings without time violations.

5.2 Performance Evaluation Results
This section presents the performance evaluation results for
regular, large and extra-large network topologies.

5.2.1 Regular Network Topology
Table 5 summarizes the execution time violations for 1,950
experiments conducted with regular network topologies.
The results are organized according to the application sizes.
For AELS, AELS+RP and Cloud-only, the number of viola-
tions increase with the number of operators. This is due
to the explosion of combinatorial space when considering
resources in each strategy. These strategies do not have
a significant reduction in the number of resources and
operators because they employ weak methods for reducing
such numbers. The strategies must evaluate each operator
considering a large number of resources.

AELS has the highest number of violations because it
checks at least once the end-to-end latency of an operator

5. Due to the dynamic nature of DSP applications and edge com-
puting, the operators needs and resource availability can change in
very short periods of time. Hence we adopt 10 minutes as a worst case
resolution time within which a scheduler needs to compute a feasible
operator placement.

https://gist.github.com/bwbaugh/4602818

9

for each resource in the network topology. In contrast,
AELS+RP and Cloud-only apply a simple pruning approach,
slightly decreasing the number of violations. Cloud-only cov-
ers only cloud resources in its search space, while AELS+RP
reduces both the number of resources and operators to
be evaluated. AELS+RP forces the usage of IoT resources
on the edge and places operators in the cloud when no
edge resource matching the operator requirements is found.
Cloud-only achieves fewer violations compared to AELS+RP
because its search space is at least 10 times smaller when
comparing the maximum number of resources considered
in the experiments. This demonstrates a strong relationship
between the number of considered resources and the num-
ber of violations, which results in small number of violations
under TCEP and AELS+RP+LA. AELS+RP+LA executes a
quick search to the resources organizing them by their
bandwidth capacities and then selects fewer resources ac-
cording to three selection approaches. TCEP iterates a vector
containing the application operators, gets the middle host of
the available resources and evaluates CPU, memory, and
bandwidth constraints to obtain the operator placement.
Hence, the strategy has a Best Fit method, which allows it
to compute solutions in a feasible time.

TABLE 5
Percentage of execution time violations for application sizes (medium,

large, and extra-large) in regular network topologies.

Solution Medium(%) Large(%) Extra-large(%)

AELS 52 65 71
AELS+RP 48 59 70

AELS+RP+LA 0 0 0
Cloud-only 40 41 46

TCEP 0 0 0

Fig. 5 presents the results for the resolution time for
each application size. AELS+RP+LA outperforms AELS,
AELS+RP and Cloud-only in over 77% when comparing the
mean resolution time as depicted in Fig. 5. The resolution
time reflects the number of resources evaluated for each
operator. AELS has the worst resolution time because it
assesses all cloud and IoT resources while AELS+RP and
Cloud-only reduce the resolution time by considering the set
of IoT resources or the set of cloud resources, respectively.
TCEP has longer resolution times of over 17% for extra-
large applications, ≈48% in large applications, and ≈83% in
medium applications when compared to AELS+RP+LA. The
gradual performance improvement of TCEP is due to the
way operators and resources are sorted in their respective
vectors. At the same time, AELS+RP+LA employs a strategy
to elect resources to be considered at each operator iteration,
resulting in a progressive expansion of the resolution time
when rising the number of operators.

AELS+RP+LA enhances AELS+RP by reducing the num-
ber of resources according to their network latencies, which
poses the highest overhead when dealing with geographi-
cally distributed infrastructure. This enables AELS+RP+LA
to have an aggregate end-to-end latency similar (≈3%
higher) to AELS+RP as depicted in Fig. 6. Similar to
AELS+RP, AELS computes each operator aggregate end-to-
end latency incrementally for each resource, the incremental
method with this high search space brings a performance

loss of ≈3% compared to AELS+RP+LA. AELS+RP+LA
outperforms Cloud-only and TCEP by over 26% and 50%
respectively. Cloud-only has performance loss in application
paths where data sinks are placed on the edge, requiring
messages to traverse network links with high latencies at
least twice. Meanwhile, TCEP achieves the worst aggregate
end-to-end latency because it comprises general vectors for
resources and operators, regardless of the communication
overhead.

5.2.2 Large Network Topology
Table 6 presents the results of 1,170 experiments where
network topologies have a number of resources between 10k
and 100k. As most state-of-the-art solutions rely on regular
network topologies without numerous edge resources or
federated clouds, they present a considerable number of
violations. Cloud-only fails mainly in experiments where
the number of cloud resources is equal to 500 because it
evaluates all cloud resources when assessing an operator.
Similarly, TCEP increases its number of violations because
the number of considered resources is greater than or equal
to 50,000, which results in a high overhead for sorting the
resource vector at each operator evaluation. AELS+RP+LA
has no violations because it smartly selects strategic re-
sources when estimating the communication and processing
time of each operator.

TABLE 6
Percentage of execution time violations for application sizes (medium,

large, and extra-large) in large network topologies.

Solution Medium(%) Large(%) Extra-large(%)

AELS 100 100 100
AELS+RP 94 100 100

AELS+RP+LA 0 0 0
Cloud-only 45 60 67

TCEP 44 44 44

AELS and AELS+RP often exceed the time limit of 600
seconds and hence seldom compute operator placements, as
depicted in Fig. 7. Although Cloud-only and TCEP find solu-
tions, they require at least 65% more time and yield ≈44%
higher aggregate latency when compared to AELS+RP+LA,
as presented in Fig. 8. Moreover, AELS+RP+LA increases
the resolution time by ≈37% compared to the regular
network topology, but it keeps the aggregate end-to-end
latency nearly stable, with a slight loss ≈2%. The growth
in resolution time is caused by the overhead in selecting
resources considered for operator placement; expected as
the strategy covers numerous resources. Nevertheless, our
approach effectively maintains the aggregate end-to-end
latency by picking resources according to their network
latency, which reflects the overhead of message processing.

5.2.3 Extra-large Network Topology
Here we consider future large-scale scenarios where IoT
and edge resources become very pervasive [8]. This set
comprises 390 experiments for network topologies with
more than 100k resources. These experiments show that
few strategies can produce valid placements for extra-
large topologies within the allotted execution time limit
as depicted in Table 7. In most cases, Cloud-only and

10

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600
Ti

m
e

(s
)

(a) Medium Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600

Ti
m

e
(s

)

(b) Large Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 5. Resolution time for network topologies with less than 10k resources.

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0.0

2.5

5.0

7.5

Ti
m

e
(s

)

(a) Medium Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0.0

2.5

5.0

7.5
Ti

m
e

(s
)

(b) Large Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0.0

2.5

5.0

7.5

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 6. Aggregate end-to-end latency for network topologies with less than 10k resources.

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600

Ti
m

e
(s

)

(a) Medium Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600

Ti
m

e
(s

)

(b) Large Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 7. Resolution time for network topologies greater than 10k and smaller than 100k resources. AELS and AELS+RP often exceed the time limit
of 600 seconds, and hence compute very few placement solutions.

AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

2

4

6

Ti
m

e
(s

)

(a) Medium Application Sizes

AELS+RP+LA
Cloud-only TCEP

Solution

0

2

4

6

Ti
m

e
(s

)

(b) Large Application Sizes

AELS+RP+LA
Cloud-only TCEP

Solution

0

2

4

6

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 8. Aggregate end-to-end latency for network topologies greater than 10k and smaller than 100k resources. AELS cannot provide any operator
placement because it exceeds the time limit of 600 seconds. AELS+RP is able to produce solutions only for medium application sizes.

AELS+RP+LA can produce operator placements. However,
Cloud-only has higher time violations than AELS+RP+LA.
Our method only fails in some cases for extra-large appli-

cations where the number of resources is equal to 250,500
(worst case) because some application configurations re-
quire more time to estimate the AL. This time demand

11

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

0

200

400

600
Ti

m
e

(s
)

(a) Medium Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

200

400

600

Ti
m

e
(s

)

(b) Large Application Sizes

AELS
AELS+RP

AELS+RP+LA
Cloud-only TCEP

Solution

300

400

500

600

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 9. Results of resolution time for network topologies greater than 100k resources.

AELS+RP+LA
Cloud-only

Solution

0

2

4

Ti
m

e
(s

)

(a) Medium Application Sizes

AELS+RP+LA
Cloud-only

Solution

0

2

4
Ti

m
e

(s
)

(b) Large Application Sizes

AELS+RP+LA

Solution

0

2

4

Ti
m

e
(s

)

(c) Extra-large Application Sizes

Fig. 10. Aggregate end-to-end latency for network topologies greater than 100k resources. In this set of experiments, the AELS, AELS+RPs and
TCEP approaches cannot provide any operator placement to medium and large application sizes because they exceed the resolution time of 600
seconds. In contrast, Cloud-only is not able to produce operator placements only for extra-large application sizes.

is caused by the heavy operator requirements and time to
compute the expected latency for the evaluated resources.

TABLE 7
Percentage of execution time violations for application sizes (medium,

large, and extra-large) in extra-large network topologies.

Solution Medium(%) Large(%) Extra-large(%)

AELS 100 100 100
AELS+RP 100 100 100

AELS+RP+LA 0 0 7
Cloud-only 67 94 100

TCEP 100 100 100

Moreover, AELS+RP+LA increases the number of re-
sources by 5 times when compared to large network
topologies and the resolution time by ≈70%, as depicted
in Fig. 9. However, these experiments demonstrate that
AELS+RP+LA increases the aggregate end-to-end latency
by less than 1%, as presented in Fig. 10, which shows its
effectiveness to stabilize the AL regardless of the size of
the network. Since AELS+RP+LA is based on the network
latency, the results show how impactful the network latency
is when handling time-sensitive applications.

6 CONCLUSIONS AND FUTURE WORK

This work described three strategies to minimize the end-to-
end latency of DSP applications by splitting the application
graph and distributing operators across cloud and edge
computing resources. The strategies leverage application

behaviors for identifying regions to which operators be-
long and how certain resources can impact the operator
placement. We started with Aggregate End-to-End Latency
Strategy (AELS), which estimates the application end-to-
end latency of each operator on all available resources. Ag-
gregate End-to-End Latency Strategy with Region Patterns
(AELS+RP) splits the dataflow graph using region patterns
and estimates the end-to-end latency only for operators that
are candidates to be deployed on edge sites. Aggregate End-
to-End Latency Strategy with Region Patterns and Latency
Awareness (AELS+RP+LA) further reduces the number of
evaluated resources by considering the resource network la-
tencies when assessing the regions identified by AELS+RP.

Performance evaluation results show that the proposed
strategies can achieve at least 30% better end-to-end latency
than cloud-only and a state-of-the-art solution when ap-
plications have multiple forks, parallel regions and joins.
The results also demonstrate that Aggregate End-to-End
Latency Strategy with Region Patterns and Latency Aware-
ness (AELS+RP+LA) is effective in maintaining the end-to-
end latency regardless of the size of the network, whereas
cloud-only and the state-of-the-art solution cannot produce
an operator placement in feasible time. In future work, we
intend to implement our strategies in a real DSPE.

REFERENCES

[1] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing timeli-
ness and cost in geo-distributed streaming analytics,” IEEE Trans-
actions on Cloud Computing, vol. 8, no. 1, pp. 232–245, 2020.

12

[2] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and
near-the-edge data centers,” in 2016 IEEE/ACM Symp. on Edge
Comp., Oct 2016, pp. 168–178.

[3] M. Taneja and A. Davy, “Resource aware placement of IoT appli-
cation modules in Fog-Cloud Computing Paradigm,” in IFIP/IEEE
Symp. on Integrated Net. and Service Management (IM), May 2017,
pp. 1222–1228.

[4] C. Hochreiner, M. Vogler, P. Waibel, and S. Dustdar, “VISP: An
ecosystem for elastic data stream processing for the internet of
things,” in 20th IEEE Int. Enterprise Distributed Object Computing
Conf., Sept 2016, pp. 1–11.

[5] A. J. Fahs and G. Pierre, “Tail-latency-aware fog application replica
placement,” in Service-Oriented Computing, E. Kafeza, B. Benatal-
lah, F. Martinelli, H. Hacid, A. Bouguettaya, and H. Motahari, Eds.
Cham: Springer International Publishing, 2020, pp. 508–524.

[6] Q. Fan and N. Ansari, “Application aware workload allocation for
edge computing-based IoT,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 2146–2153, 2018.

[7] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Op-
timal operator deployment and replication for elastic distributed
data stream processing,” Concurrency and Computation: Practice and
Experience, vol. 30, no. 9, p. e4334, 2018.

[8] J. Gedeon, M. Stein, J. Krisztinkovics, P. Felka, K. Keller,
C. Meurisch, L. Wang, and M. Mhlhuser, “From cell towers to
smart street lamps: Placing cloudlets on existing urban infrastruc-
tures,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC),
Oct 2018, pp. 187–202.

[9] “Humble Lamppost,” https://eu-smartcities.eu/initiatives/78/
description, 2018, online.

[10] “Link NYC,” https://www.link.nyc/, 2019, online.
[11] “Smight,” https://smight.com/, 2018, online in German.
[12] “EdgeMicro,” https://www.edgemicro.com/, 2019, online.
[13] A. da Silva Veith, M. D. de Assunção, and L. Lefèvre, “Latency-

aware placement of data stream analytics on edge computing,” in
Service-Oriented Computing, C. Pahl, M. Vukovic, J. Yin, and Q. Yu,
Eds. Cham: Springer International Publishing, 2018, pp. 215–229.

[14] H. Röger and R. Mayer, “A comprehensive survey on paralleliza-
tion and elasticity in stream processing,” ACM Comput. Surv.,
vol. 52, no. 2, Apr. 2019.

[15] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Edge affinity-
based management of applications in fog computing environ-
ments,” in Proceedings of the 12th IEEE/ACM International Conference
on Utility and Cloud Computing, ser. UCC19. New York, USA:
Association for Computing Machinery, 2019, p. 6170.

[16] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and G. Agha,
“DROPLET: Distributed operator placement for IoT applications
spanning edge and cloud resources,” in 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), 2018, pp. 1–8.

[17] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communi-
cation cost optimization framework for big data stream processing
in geo-distributed data centers,” IEEE Transactions on Computers,
vol. 65, no. 1, pp. 19–29, Jan 2016.

[18] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow
allocation on geo-distributed data centers,” IEEE Transactions on
Computers, vol. 66, no. 2, pp. 256–271, Feb 2017.

[19] C. Canali and R. Lancellotti, “GASP: genetic algorithms for service
placement in fog computing systems,” Algorithms, vol. 12, no. 10,
p. 201, 2019.

[20] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling
on-demand edge analytics over scoped data sources,” in IEEE
International Congress on Big Data, June 2016, pp. 101–108.

[21] A. Kiani and N. Ansari, “Optimal code partitioning over time and
hierarchical cloudlets,” IEEE Communications Letters, vol. 22, no. 1,
pp. 181–184, 2018.

[22] E. Gibert Renart, A. Da Silva Veith, D. Balouek-Thomert, M. D.
De Assuno, L. Lefèvre, and M. Parashar, “Distributed operator
placement for IoT data analytics across edge and cloud resources,”
in 2019 19th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), May 2019, pp. 459–468.

[23] “Amazon EC2,” https://aws.amazon.com/ec2/.
[24] “Microsoft Azure,” https://azure.microsoft.com/en-ca/.
[25] “Google Cloud,” https://cloud.google.com/.
[26] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and

M. Satyanarayanan, “Quantifying the impact of edge computing
on mobile applications,” in 7th ACM SIGOPS Asia-Pacific Wksp on
Systems, ser. APSys ’16. New York, USA: ACM, 2016, pp. 5:1–5:8.

[27] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth, “An experiment-
driven performance model of stream processing operators in Fog
computing environments,” in ACM/SIGAPP Symp. On Applied
Computing (SAC 2020), Brno, Czech Republic, Mar. 2020.

[28] M. Sarathchandra, C. Karandana, W. Heenatigala, M. Dayarathna,
and S. Jayasena, “Resource aware scheduler for distributed
stream processing in cloud native environments,” Concurrency and
Computation: Practice and Experience, vol. n/a, no. n/a, p. e6373.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.6373

[29] R. Ghosh, S. P. R. Komma, and Y. Simmhan, “Adaptive energy-
aware scheduling of dynamic event analytics across edge and
cloud resources,” in Proceedings of the 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, ser. CCGrid ’18.
Piscataway, USA: IEEE Press, 2018, pp. 72–82.

[30] S. Zeuch, E. T. Zacharatou, S. Zhang, X. Chatziliadis, A. Chaud-
hary, B. D. Monte, D. Giouroukis, P. M. Grulich, A. Ziehn, and
V. Mark, “Nebulastream: Complex analytics beyond the cloud,”
Open Journal of IoT (OJIOT), vol. 6, no. 1, pp. 66–81, 2020.

[31] A. Benoit, A. Dobrila, J.-M. Nicod, and L. Philippe, “Scheduling
linear chain streaming applications on heterogeneous systems
with failures,” Future Gener. Comput. Syst., vol. 29, no. 5, pp. 1140–
1151, Jul. 2013.

[32] H. Chen, F. Zhang, and H. Jin, “Pstream: a popularity-aware differ-
entiated distributed stream processing system,” IEEE Transactions
on Computers, pp. 1–1, 2020.

[33] “OMNeT++,” https://omnetpp.org/, 2017, online.
[34] “BOINC Performance on AMD Ryzen,” https://www.reddit.

com/r/BOINC/comments/5xog5v/boinc performance on
amd ryzen/, 2018, online.

[35] A. Shukla, S. Chaturvedi, and Y. Simmhan, “RIoTBench: An IoT
benchmark for distributed stream processing systems,” Concur-
rency and Computation: Practice and Experience, vol. 29, no. 21, p.
e4257, 2017.

[36] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog
computing in healthcare – a review and discussion,” IEEE Access,
vol. 5, pp. 9206–9222, 2017.

[37] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The
role of edge computing in internet of things,” IEEE Communications
Magazine, vol. 56, no. 11, pp. 110–115, 2018.

[38] F. Murtaza, A. Akhunzada, S. Islam, J. Boudjadar, and R. Buyya,
“Qos-aware service provisioning in fog computing,” Journal of
Network and Computer Applications, 04 2020.

Alexandre da Silva Veith is a postdoctoral re-
searcher at the University of Toronto, Canada.
He holds a Ph.D. in Computer Science from
the Ecole Normale Superieure (ENS) of Lyon
and the University of Lyon. His interests include
reinforcement learning, IoT and data stream pro-
cessing on cloud-edge infrastructure.

Marcos Dias de Assuncao is an associate pro-
fessor at ETS Montreal, Canada. Before join-
ing ETS, he was a former Researcher at Inria,
France (2014–2020), and a former research sci-
entist at IBM Research Brazil (2011–2014). He
holds a Ph.D. in Computer Science and Software
Engineering (2009) from The University of Mel-
bourne, Australia.

Laurent Lefevre is a permanent researcher in
computer science at Inria. He holds a Ph.D.
in Computer Science from the Ecole Normale
Superieure (ENS) of Lyon. His interests include
energy efficiency, environmental impacts and
performance of large-scale distributed comput-
ing and networking infrastructures, high perfor-
mance computing, high performance networks
protocols and services.

https://eu-smartcities.eu/initiatives/78/description
https://eu-smartcities.eu/initiatives/78/description
https://www.link.nyc/
https://smight.com/
https://www.edgemicro.com/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-ca/
https://cloud.google.com/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6373
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6373
https://omnetpp.org/
https://www.reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen/
https://www.reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen/
https://www.reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen/

	Introduction
	Related Work
	System Model and Problem Definitions
	System Model
	Application Model
	Infrastructure and Application Constraints
	End-to-End Latency

	Operator Placement Strategies
	System Overview
	Deployment Sequence
	Operator Placement Strategies
	Aggregate End-to-End Latency Strategy (AELS)
	AELS with Region Patterns (AELS+RP)
	AELS+RP and Latency Awareness (AELS+RP+LA)

	Evaluation
	Experimental setup
	Performance Evaluation Results
	Regular Network Topology
	Large Network Topology
	Extra-large Network Topology

	Conclusions and Future Work
	References
	Biographies
	Alexandre da Silva Veith
	Marcos Dias de Assuncao
	Laurent Lefevre

