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On Measure Quantifiers in First-Order Arithmetic∗

(Long Version)

Melissa Antonelli† Ugo Dal Lago‡ Paolo Pistone§

Abstract

We study the logic obtained by endowing the language of first-order arithmetic with
second-order measure quantifiers. This new kind of quantification allows us to express that
the argument formula is true in a certain portion of all possible interpretations of the quan-
tified variable. We show that first-order arithmetic with measure quantifiers is capable of
formalizing simple results from probability theory and, most importantly, of representing ev-
ery recursive random function. Moreover, we introduce a realizability interpretation of this
logic in which programs have access to an oracle from the Cantor space.

1 Introduction

The interactions between first-order arithmetic and the theory of computation are plentiful and
deep. On the one side, proof systems for arithmetic can be used to prove termination of certain
classes of algorithms [62], or to establish complexity bounds [8]. On the other, higher-order
programming languages, such as typed λ-calculi, can be proved to capture the computational
content of arithmetical proofs. These insights can be pushed further, giving rise to logical and
type theories of various strengths. Remarkably, all the quoted research directions rely on the tight
connection between the concepts of totality (of functions) and termination (of algorithms).

However, there is one side of the theory of computation which was only marginally touched by
this fruitful interaction, that is, randomized computation. Probabilistic models have been widely
investigated and are nowadays pervasive in many areas of computer science. The idea of relaxing
the notion of algorithm to account for computations involving random decisions appeared early in
the history of modern computability theory and studies on probabilistic computation have been
developed since the 1950s and 1960s [9, 41, 14, 52, 53, 58]. Today several formal models are
available, such as probabilistic automata [56, 50], both Markovian and oracle probabilistic Turing
machines (from now on, PTMs) [14, 54, 21, 22], and probabilistic λ-calculi [51, 31]. At this point
randomized computation is ubiquitous.

In probabilistic computation, behavioral properties, such as termination, have a quantitative
nature: any computation terminates with a given probability. Can such quantitative properties be
studied within a logical system? Of course, logical systems for set-theory and second-order logic
can be expressive enough to represent measure theory [59] and, thus, are inherently capable of
talking about randomized computations. Yet, what should one add to first-order arithmetic to
make it capable of describing probabilistic computation?

In this paper we provide an answer to this question by introducing a somehow minimal ex-
tension of first-order Peano Arithmetic by means of measure quantifiers. We will call this system
MQPA. Its language is obtained by enriching the language of PA with a special unary predi-
cate, FLIP(·), whose interpretation is an element of the Cantor space {0, 1}N, and with measure-

quantified formulas, such as C
1
2F , which expresses the fact that F has probability ≥ 1

2 of being
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true (that is, the subset of {0, 1}N which makes A true has measure ≥ 1
2 ). The appeal to the Can-

tor space is essential here, since there is no a priori bound on the amount of random bits a given
computation might need; at the same time, we show that it yields a very natural measure-theoretic
semantics.

The rest of this paper is structured as follows. In Section 2 we introduce the syntax and
semantics of MQPA. Section 3 shows that some non-trivial results in probability theory can be
naturally expressed in MQPA. In Section 4 we establish our main result, that is, a representation
theorem within MQPA for random functions computed by PTMs, which is the probabilistic analo-
gous to Gödel’s arithmetization theorem for recursive functions in PA [23]. Finally, in Section 5, a
realizability interpretation for MQPA in terms of computable functions with oracles on the Cantor
space is presented.

2 Measure-Quantified Peano Arithmetic

This section is devoted to the introduction of the syntax and semantics for formulas of MQPA.
Before the actual presentation, we need some (very modest) preliminaries from measure theory.

Preliminaries. The standard model (N,+,×) has nothing probabilistic in itself. Nevertheless,
it can be naturally extended into a probability space: arithmetic being discrete, one may consider
the underlying sample space as just BN, namely the set of all infinite sequences of elements from
B = {0, 1}. We will use metavariables, such as ω1, ω2, . . . , for the elements of BN. As it is known,
there are standard ways of building a well behaved σ-algebra and a probability space on BN, which
we will briefly recall here. The subsets of BN of the form

CX = {s · ω | s ∈ X & ω ∈ BN},

where X ⊆ Bn and · denotes sequence concatenation, are called n-cylinders [7]. Specifically, we
are interested in Xs defined as follows: Xb

n = {s ·b | s ∈ Bn & b ∈ B} ⊆ Bn+1, with n ∈ N. We will
deal with cylinders of the form CX1

n
. We let Cn and C indicate the set of all n-cylinders and the

corresponding algebra, made of the open sets of the natural topology on BN. The smallest σ-algebra
including C, which is Borel, is indicated as σ(C). There is a natural way of defining a probability

measure µC on C [37], namely by assigning to CX the measure |X|2n . There exist canonical ways
to extend this to σ(C). In doing so, the standard model (N,+,×) can be generalized to P =
(N,+,×, σ(C), µC), which will be our standard model for MQPA.1 When interpreting sequences
in BN as infinite supplies of random bits, the set of sequences such that the k-th coin flip’s result is
1 (for any fixed k) is assigned measure 1

2 , meaning that each random bit is uniformly distributed
and independent from the others.

Syntax. We now introduce the syntax of MQPA. Terms are defined as in classic first-order
arithmetic. Instead, the formulas of MQPA are obtained by endowing the language of PA with
flipcoin formulas, such as FLIP(t), and measure-quantified formulas, as for example Ct/sF and
Dt/sF . Specifically, FLIP(·) is a special unary predicate with an intuitive computational meaning.
It basically provides an infinite supply of independently and randomly distributed bits. Intuitively,
given a closed term t, FLIP(t) holds if and only if the n-th tossing returns 1, where n denotes t+1.

Definition 1 (Terms and Formulas of MQPA) Let G be a denumerable set of ground vari-
ables, whose elements are indicated by metavariables such as x, y. The terms of MQPA, denoted
by t, s, are defined as follows:

t, s := x | 0 | S(t) | t+ s | t× s.

The formulas of MQPA are defined by the following grammar:

F,G := FLIP(t) | (t = s) | ¬F | F ∨G | F ∧G | ∃x.F | ∀x.F | Ct/sF | Dt/sF.
1Here, we will focus on this structure as a “standard model” of MQPA, leaving the study of alternative models

for future work.
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Semantics. Given an environment ξ : G → N, the interpretation JtKξ of a term t is defined as
usual.

Definition 2 (Semantics for Terms of MQPA) An environment ξ is a mapping that assigns
to each ground variable a natural number, ξ : G → N. Given a term t and an environment ξ, the
interpretation of t in ξ is the natural number JtKξ ∈ N, inductively defined as follows:

JxKξ := ξ(x) ∈ N
J0Kξ := 0

JS(t)Kξ := JtKξ + 1

Jt+ sKξ := JtKξ + JsKξ
Jt× sKξ := JtKξ × JsKξ

Instead, the interpretation of formulas requires a little care, being it inherently quantitative: any
formula F is associated with a measurable set, JF Kξ ∈ σ(C) (similarly, for example, to [45]).

Definition 3 (Semantics for Formulas of MQPA) Given a formula F and an environment ξ,
the interpretation of F in ξ is the measurable set of sequences JF Kξ ∈ σ(C) inductively defined as
follows:

JFLIP(t)Kξ := CX1
JtKξ

Jt = sKξ :=

{
BN if JtKξ = JsKξ
∅ otherwise

J¬GKξ := BN – JGKξ

JG ∨HKξ := JGKξ ∪ JHKξ
JG ∧HKξ := JGKξ ∩ JHKξ

J∃x.GKξ :=
⋃
i∈N

JGKξ{x←i}

J∀x.GKξ :=
⋂
i∈N

JGKξ{x←i}

JCt/sGKξ :=

{
BN if JsKξ > 0 and µC(JGKξ) ≥ JtKξ/JsKξ
∅ otherwise

JDt/sGKξ :=

{
BN if JsKξ = 0 or µC(JGKξ) < JtKξ/JsKξ
∅ otherwise

The semantics is well-defined since the sets JFLIP(t)Kξ and Jt = sKξ are measurable, and measura-
bility is preserved by all the logical operators. It is not difficult to see that any n-cylinder can be
captured as the interpretation of some MQPA formula. However, the language of MQPA allows us
to express more and more complex measurable sets, as illustrated in the next sections.

A formula of MQPA, call it F , is valid if and only if for every ξ, JF Kξ = BN. The notion
of logical equivalence is defined in a standard way: two formulas of MQPA, call them F,G, are
logically equivalent F ≡ G if and only if for every ξ, JF Kξ = JGKξ. Notably, the two measure
quantifiers are inter-definable, since one has JCt/sF Kξ = J¬Dt/sF Kξ.

Lemma 1 For every formula of MQPA, call it F :

Ct/sF ≡ ¬Dt/sF.

Proof. The proof is based on Definition 3,

J¬Dt/sF Kξ = BN − JDt/sF Kξ

= BN −

{
BN if µC(JF Kξ) < JtKξ/JsKξ
∅ otherwise

=

{
∅ if µC(JF Kξ) < JtKξ/JsKξ
BN otherwise

= JCt/sF Kξ.

�
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The following examples illustrate the use of measure-quantifiers Ct/s and Dt/s and, in particular,
the role of probabilities of the form t

s .

Example 1 The formula F = C1/1∃x.FLIP(x) states that a true random bit will almost surely be
met. It is valid, as the set of constantly 0 sequences forms a singleton, which has measure 0.

Example 2 The formula2 F = ∀x.C1/2x∀y≤x.FLIP(y) states that the probability for the first x
random bits to be true is at least 1

2x . This formula is valid too.

3 On the Expressive Power of MQPA

As anticipated, the language of MQPA allows us to express some elementary results from proba-
bility theory, and to check their validity in the structure P. In this section we sketch a couple of
examples.

The Infinite Monkey Theorem. Our first example is the so-called infinite monkey theorem
(IMT). It is a classic result from probability theory stating that a monkey randomly typing on a
keyboard has probability 1 of ending up writing the Macbeth (or any other fixed string), sooner or
later. Let the formulas F (x, y) and G(x, y) of PA express, respectively, that “y is strictly smaller
than the length of (the binary sequence coded by) x”, and that “the y+1-th bit of x is 1”. We
can formalize IMT through the following formula:

FIMT : ∀x.C1/1∀y.∃z.∀w.F (x,w)→ (G(x,w)↔ FLIP(y + z + w)).

Indeed, let x be a binary encoding of the Macbeth. The formula FIMT says then that for all choice of
start time y, there exists a time y+z after which FLIP(·) will evolve exactly like x with probability
1.

How can we justify FIMT using the semantics of MQPA? Let ϕ(x, y, z, w) indicate the formula
F (x,w) → (G(x,w) ↔ FLIP(y + z + w)). We must show that for every natural number n ∈ N,
there exists a measurable set Sn ⊆ BN of measure 1 such that any sequence in Sn satisfies the
formula ∀y.∃z.∀w.ϕ(n, y, z, w). To prove this fact, we rely on a well-known result from measure
theory, namely the second Borel-Cantelli Lemma:

Theorem 1 ([7], Thm. 4.4, p. 55) If (Uy)y∈N is a sequence of independent events in BN, and∑∞
y µC(Uy) diverges, then µC

(⋂
y

⋃
z>y Uz

)
= 1.

Let us fix n ∈ N and let `(n) indicate the length of the binary string encoded by n.
We suppose for simplicity that `(n) > 0 (as the case `(n) = 0 is trivial). We construct Sn in a

few steps as follows:

• for all p ∈ N, let Unp be the cylinder of sequences which, after p steps, agree with n; observe
that the sequences in Unp satisfy the formula ∀w.ϕ(n, p, 0, w);

• for all p ∈ N, let V np = Unp·`(n)+1; observe that the sets V np are pairwise independent and

µC(
∑∞
p V np ) =∞;

• for all p ∈ N, let Snp =
⋃
{Unp+q | ∃s>p.p+ q = s · `(n) + 1}. Observe that any sequence in Snp

satisfies ∃z.∀w.ϕ(n, p, z, w); Moreover, one can check that Snp =
⋃
q>p V

n
q ;

• we finally let Sn :=
⋂
p S

n
p .

We now have that any sequence in Sn satisfies ∀y.∃z.∀w.ϕ(n, y, z, w); furthermore, by Theorem 1,
µC(Sn) = µC(

⋂
p

⋃
q>p V

n
q ) = 1. Thus, for each choice of n ∈ N, µC(J∀y.∃z.∀w.ϕ(x, p, z, w)K{x←n})

≥ µC(Sn) ≥ 1, and we conclude that JFIMTKξ = BN.

2For the sake of readability, F has been written with a little abuse of notation the actual MQPA formula being
∀x.C1/z(EXP(z, x)∧∀y.(∃w.(y+w = x)→ FLIP(y)), where EXP(z, x) is an arithmetical formula expressing z = 2x

and ∃w.y + w = x expresses y ≤ x.
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The Random Walk Theorem. A second example we consider is the random walk theorem
(RW): any simple random walk over Z starting from 1 will pass through 1 infinitely many times
with probability 1. More formally, any ω ∈ BN induces a simple random walk starting from 1, by
letting the n-th move be right if ω(n) = 1 holds and left if ω(n) = 0 holds. One has then:

Theorem 2 ([7], Thm. 8.3, p. 117) Let U
(n)
ij ⊆ BN be the set of sequences for which the simple

random walk starting from i leads to j in n steps. Then µC

(⋂
x

⋃
y≥x U

(y)
11

)
= 1.

Similarly, the random predicate FLIP(n) induces a simple random walk starting from 1, by letting
the n-th move be right if FLIP(n) holds and left if ¬FLIP(n) holds. To formalize RW in MQPA we
make use two arithmetical formulas:

• H(y, z) expresses that y is even and z is the code of a sequence of length y
2 , such that for all

i, j < y
2 , zi < y, and zi = zj ⇒ i = j (that is, z codes a subset of {0, . . . , y–1} of cardinality

y
2 );

• K(y, z, v) = H(y, z) ∧ ∃i.i < y
2 ∧ zi = v.

The formula of MQPA expressing RW is as follows:

FRW : C1/1∀x.∃y.∃z.y ≥ x ∧H(y, z) ∧ ∀v.
(
v < y →

(
K(y, z, v)↔ FLIP(v)

))
.

FRW basically says that for any fixed x, we can find y ≥ x and a subset z of {0, . . . , y − 1} of
cardinality y

2 , containing all and only the values v < y such that FLIP(v) holds (so that the
number of v < y such that FLIP(v) holds coincides with the number of v < y such that ¬FLIP(v)
holds). This is the case precisely when the simple random walk goes back to 1 after exactly y
steps.

To show the validity of FRW we can use the measurable set S =
⋂
n

⋃
p≥n U

(p)
11 . Let ψ(y, z, v)

be the formula (v < y → (K(y, z, v)↔ FLIP(v))). Observe that any sequence in U
(n)
11 satisfies the

formula ∃z.H(n, z) ∧ ∀v.ψ(y, z, v, w). Then, any sequence in S satisfies the formula ∀x.∃y.∃z.y ≥
x ∧ H(y, z) ∧ ∀v.ψ(y, z, v). Since, by Theorem 2, µC(S) = 1, we conclude that µC(JFRWKξ) ≥
µC(S) ≥ 1, and thus that JFRWKξ = BN.

4 Arithmetization

It is a classical result in computability theory [23, 25, 26, 60, 62] that all computable functions are
arithmetical, that is, for each partial recursive function f : Nm ⇀ N there is an arithmetical for-
mula Ff , such that for every n1, . . . , nm, l ∈ N: f(n1, . . . , nm) = l⇔ (N,+,×) � Ff (n1, . . . , nm, l).
In this section we show that, by considering arithmetical formulas of MQPA, this fundamental re-
sult can be generalized to computable random functions.

Computability in Presence of Probabilistic Choice. Although standard computational
models are built around determinism, from the 1950s on, models for randomized computation
started to receive wide attention [41, 14, 50, 54, 55, 21, 22, 58]. The first formal definitions of
probabilistic Turing machines are due to Santos [54, 55] and Gill [22, 21]. Roughly, a PTM is an
ordinary Turing machine (for short, TM) with the additional capability of making random deci-
sions. Two alternative paradigms have been developed in the literature, the so-called Markovian
and oracle PTMs. Here, we consider the definition by Gill, in which the probabilistic choices
performed by the machines are binary and fair.

Definition 4 (Probabilistic Turing Machine [21, 22]) A (one-tape) probabilistic Turing ma-
chine is a 5-tuple (Q,Σ, δ, q0, Qf ), whose elements are defined as in a standard TM, except for the
probabilistic transition function δ, which, given the current (non-final) state and symbol, specifies
two equally-likely transition steps.
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As any ordinary TM computes a partial function on natural numbers, PTM can be seen as
computing a so-called random function [54, pp. 706–707]. Let D(N) indicate the set of pseudo-
distributions on N, i.e. of functions f : N → R[0,1], such that

∑
n∈N f(n) ≤ 1. Given a PTM M,

a random function is a function 〈M〉 : N → D(N) which, for each natural number n, returns a
pseudo-distribution supporting all the possible outcomesM produces when fed with (an encoding
of) n in input, each with its own probability.3 As expected, the random function f : N → D(N)
is said to be computable when there is a PTM M, such that 〈M〉 = f . Another widespread
definition of TM is the one based on the notion of oracle. An oracle TM is a pair consisting of
a standard deterministic TM and a random-bit oracle (for further details, see for example [16]).
The random-bit oracle takes the form of an oracle tape, which is consulted whenever a coin-tossing
state is encountered. The two definitions are assumed to be equivalent but, to the best of the
authors’ knowledge, no formal proof of this equivalence has been presented in the literature yet.

Stating the Main Result. In order to generalize Gödel’s arithmetization of partial recursive
functions to the class of computable random functions, we start by introducing the notion of
arithmetical random function.

Definition 5 (Arithmetical Random Function) A random function f : Nm → D(N) is said
to be arithmetical if and only if there is a formula of MQPA, call it Ff , with free variables
x1, . . . , xm, y, such that for every n1, . . . , nm, l ∈ N, it holds that:

µC

(
JFf (n1, . . . , nm, l)K

)
= f(n1, . . . , nm)(l). (1)

The arithmetization theorem below relates random functions and the formulas of MQPA, and is
the main result of this paper.

Theorem 3 All computable random functions are arithmetical.

Actually, we establish a stronger fact. Let us call a formula A of MQPA Σ0
1 if A is equivalent to

a formula of the form ∃x1. . . . .∃xn.B, where B contains neither first-order or measure quantifiers.
Then, Theorem 3 can be strengthened by saying that any computable random function is repre-
sented (in the sense of Definition 5) by a Σ0

1-formula of MQPA. Moreover, we are confident that
a sort of converse of this fact can be established, namely that for any Σ0

1-formula A(x1, . . . , xm),
there exists a computable random relation r(x1, . . . , xm) (i.e. a computable random function such
that r(x1, . . . , xn)(i) = 0, whenever i 6= 0, 1) such that µC(JA(n1, . . . , nm)K) = r(n1, . . . , nm)(0)
and µC(J¬A(n1, . . . , nm)K) = r(n1, . . . , nm)(1). However, we leave this fact and, more generally,
the exploration of an arithmetical hierarchy of randomized sets and relations, to future work.

Given the conceptual distance existing between TMs and arithmetic, a direct proof of Theo-
rem 3 would be cumbersome. It is thus convenient to look for an alternative route.

On Function Algebras. In [11, 13], the class PR of probabilistic or random recursive func-
tions is defined as a generalization of Church and Kleene’s standard one [10, 32, 34, 35]. PR is
characterized as the smallest class of functions, which (i) contains some basic random functions,
and (ii) is closed under composition, primitive recursion and minimization. For all this to make
sense, composition and primitive recursion are defined following the monadic structure of D(·). In
order to give a presentation as straightforward as possible, we preliminarily introduce the notion
of Kleisli extension of a function with values in D(N).

3The seminal definition of random function already appeared in [54]:

Definition. A k-ary random function φ is a function from En+1, the collection of all (k + 1)-tuples
of nonnegative integers, to [0,1] satisfying

∞∑
m=0

φ(m1,m2, · · · ,mk,m) ≤ 1

for every k-tuple (m1,m2, . . . ,mk). [54, pp. 706-707]

Remarkably, in the same paper, Santos also delineated the notion of probabilistic transition function, on which the
Markovian paradigm of PTM is based [54, p. 705] [55, p. 170].
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Definition 6 (Kleisli Extension) Given a function f : N→ D(N), its (simple) Kleisli extension
fK : D(N)→ D(N) is defined as follows:

fK(d)(n) =
∑
i∈N

d(i) · f(i)(n).

More in general, given a k-ary function f : X1 × · · · ×Xi−1 × N ×Xi+1 × · · · ×Xk → D(N), its
i-th Kleisli extension fKi : X1×· · ·×Xi−1×D(N)×Xi+1×· · ·×Xk → D(N) is defined as follows:

fKi (x1, . . . , xi−1, d, xi+1, . . . , xk)(n) =
∑
j∈N

d(j) · f(x1, . . . , xi−1, j, xi+1, . . . , xk)(n).

The construction at the basis of the K-extension’s general case can be applied more than once.4

Specifically, given a function f : Nk → D(N), its total K-extension fK : (D(N))
k → D(N) is defined

as follows:
fK(d1, . . . , dk)(n) =

∑
i1,...,ik∈N

f(i1, . . . , ik)(n) ·
∏

1≤j≤k

dj(ij).

We can now formally introduce the class PR as follows:

Definition 7 (The Class PR [11]) The class of probabilistic recursive functions, PR, is the
smallest class of probabilistic functions containing:

• The zero function , z : N→ D(N), such that for every x ∈ N, z(x)(0) = 1;

• The successor function, s : N→ D(N), such that for every x ∈ N, s(x)(x+ 1) = 1;

• The projection function, πnm : Nn → D(N), defined as for 1 ≤ m ≤ n, πnm(x1, . . . , xn)(xm) =
1;

• The fair coin function, r : N→ D(N), defined as follows:

r(x)(y) =


1
2 if y = x
1
2 if y = x+ 1

0 otherwise;

and closed under:

• Probabilistic composition. Given f : Nn → D(N) and g1, . . . , gn : Nk → D(N), their compo-
sition is a function f � (g1, . . . , gn) : Nk → D(N) defined as follows:5

(f � (g1, . . . , gn))(x) = fK(g1(x), . . . , gn(x));
4For example, let us consider a binary function f : N× N→ D(N), its total K-extension is as follows:

fK1 (d1, d2)(y) =
∑
i1∈N

d1(i1) · fK2 (i1, d2)(y)

=
∑
i1∈N

d1(i1) ·
( ∑
i2∈N

d2(i2) · f(i1, i2)(y)
)

=
∑

i1,i2∈N
f(i1, i2)(y) · d1(i1) · d2(i2)

=
∑

i1,i2∈N
f(i1, i2)(y) ·

∏
k∈{1,2}

dk(ik).

5That is,

((f � (g1, . . . , gn))(x))(y) = (fK(g1(x), . . . , gn(x)))(y)

=
∑

i1,...,in

f(i1, . . . , ik)(y) ·
∏

1≤j≤n
gj(x)(ij).

The simplest case, is teat of unary composition which is defined as follows, given f : N→ D(N) and g : N→ D(N),
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• Probabilistic primitive recursion. Given f : Nk → D(N), and g : Nk+2 → D(N), the function
h : Nk+1 → D(N) obtained from them by primitive recursion is as follows:

h(x, 0) = f(x)

h(x, y + 1) = gKk+2(x, y, h(x, y));

• Probabilistic minimization. Given f : Nk+1 → D(N), the function h : Nk → D(N), obtained
from it by minimization is defined as follows:

µf(x)(y) = f(x, y)(0) ·
(∏
z<y

(∑
k>0

f(x, z)(k)
))
.

Proposition 1 ([11]) PR coincides with the class of computable random functions.

The class PR is still conceptually far from MQPA. In fact, while the latter has access to
randomness in the form of a global supply of random bits, the former can fire random choices
locally through a dedicated initial function. To bridge the gap between the two, we introduce a
third characterization of computable random functions, which is better-suited for our purposes.
In doing so, we will define the class of oracle recursive functions, OR. Our definition is loosely
inspired from oracle TM, which can be defined as deterministic TM whose transition function can
query a random-bit tape ω ∈ BN. The class of oracle recursive functions, OR, is the smallest class
of partial functions of the form f : Nm × BN ⇀ N, which (i) contains the class of oracle basic
functions, and (ii) is closed under composition, primitive recursion, and minimization. Formally,

Definition 8 (The Class OR) The class of oracle recursive functions, OR, is the smallest class
of probabilistic functions containing:

• The zero function, f0, such that f0(x1, . . . , xk, ω) = 0;

• The successor function, fs, such that fs(x, ω) = x+ 1;

• The projection function, fπi , such that, for 1 ≤ i ≤ k, fπi(x1, . . . , xk, ω) = xi;

• The query function, fq, such that fq(x, ω) = ω(x);

and closed under:

• Oracle composition. Given the oracle functions h from Nn × BN to N and g1, . . . gn (from
Nm), the function f obtained by composition from them, is defined as follows:

f(x1, . . . , xm, ω) = h(g1(x1, . . . , xm, ω), . . . , gn(x1, . . . , xm, ω), ω);

• Oracle primitive recursion. Given two oracle functions h and g, from respectively Nn × BN

and Nn+2 × BN to N, the function f , obtained by primitive recursion from them, is defined
as follows:

f(x, x1, . . . , xn) =

{
f(0, x1, . . . , xn, ω) = h(x1, . . . , xn, ω)

f(x+ 1, x1, . . . , xn, ω) = g(f(x, x1, . . . , xn, ω), x, x1, . . . , xn, ω);

the function h : N→ D(N) obtained by composition from f and g is:

(f � g)(x)(y) = fK(g(x))(y)

Otherwise said,

((f � g)(x))(y) =
∑
z∈N

g(x)(z) · f(z)(y).
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• Oracle minimization. Given the oracle function g from Nn+1 × BN to N, the function f ,
obtained by minimization from g, is defined as follows:

f(x1, . . . , xn, ω) = µx(g(x1, . . . , xn, x, ω) = 0).

Remarkably, the only basic function depending on ω is the query function. All the closure schemes
are independent from ω as well.

But in what sense do functions in OR represent random functions? In order to clarify the
relationship between OR and PR, we associate each OR function with a corresponding auxiliary
function.

Definition 9 (Auxiliary Function) Given an oracle function f : Nm × BN → N, the corre-
sponding auxiliary function, f∗ : Nm × N→ P(BN), is defined as follows:

f∗(x1, . . . , xm, y) = {ω | f(x1, . . . , xm, ω) = y}.

The following lemma ensures that the value of f∗ is always a measurable set:

Lemma 2 For every oracle recursive function f ∈ OR, f : Nm × BN → N, and natural numbers
x1, . . . , xm, y ∈ N, the set f∗(x1, . . . , xm, y) is measurable.

Proof. We will show that, for each f ∈ OR, f∗ ∈ σ(C), by induction on the structure of oracle
recursive functions:

• Let f ∈ OR be an oracle basic function. There are four possible cases:

Zero Function. Let f0 be the zero function, f0(x1, . . . , xn, ω) = 0. Then,

f∗0 (x1, . . . , xn, 0) = {ω | f0(x1, . . . , xn, ω) = 0} = BN.

For Axioms 1 of the σ-algebra, BN ∈ σ(C), so f∗0 ∈ σ(C).

Successor Function. Let fs be the successor function fs(x, ω) = x+ 1. Then,

f∗s (x, x+ 1) = {ω | fs(x, ω) = x+ 1} = BN.

As before, f∗s ∈ σ(C).

Projection Function. Let fπi be the projection function, fπi(x1, . . . , xn, ω) = xi, with 1 ≤
i ≤ n. Then,

f∗πi(x1, . . . , xn, xi) = {ω | fπi(x1, . . . , xn, ω) = xi} = BN.

Again, f∗πi ∈ σ(C).

Query Function. Let fq be the query function, fq(x, ω
′) = ω′(x). Then,

f∗q (x, ω′) = {ω | fq(x, ω) = ω′(x)} = {ω | ω(x) = 0}

for ω′(x) = 0 or f∗q (x, ω′) = {ω | ω(x) = 1} if ω′(x) = 1, in both cases f∗q (x, ω′) is a (thin)
cylinder, so f∗q (x, 0) ∈ σ(C). Therefore, f∗q ∈ σ(C).

• Let f ∈ OR be obtained by oracle composition, recursion or minimization from OR func-
tions. Since the three cases are proved in a similar way, let us take into account (sim-
ple) composition only. Let f : Nn × BN → N be obtained by (unary) composition from
h : N × BN → N and g : Nn × BN → N. Assume f(x1, . . . , xn, ω) = h(g(x1, . . . , xn, ω), ω) =
v. By Definition 9, f∗(x1, . . . , xn, v) =

⋃
z∈N{ω | h(z, ω) = v} ∩ {ω | g(x1, . . . , xn, ω) = z}

=
⋃
z∈N h

∗(z, v) ∩ g∗(x1, . . . , xn, z). By IH, h∗, g∗ ∈ σ(C) so, by Axiom 3 of σ-algebras,
h∗ ∩ g∗ ∈ σ(C) as well. Therefore, since f∗ is a countable union of measurable sets, again
for Axiom 3, it is measurable as well, so f∗ ∈ σ(C).

�
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Thanks to Lemma 2, we can associate any oracle recursive function f : Nm × BN → N with a
random function f# : Nm → D(N), defined as:

f#(x1, . . . , xm)(y) = µC(f∗(x1, . . . , xm, y)).

This defines a close correspondence between the classes PR and OR.

Proposition 2 For each f ∈ PR, there is an oracle function g ∈ OR, such that f = g#.
Symmetrically, for any f ∈ OR, there is a random function g ∈ PR, such that g = f#.

For our purpose, only the first part of Proposition 2 is necessary, namely that for every f ∈ PR,
there is a g ∈ OR such that g# = f . This is established by means of a few intermediate steps.

First, some auxiliary notions are introduced. A computable bijection between N and N×N and
the corresponding maps 〈·, ·〉 : N×N→ N and π1, π2 : N→ N is fixed. A tree is defined as a subset
X of B∗ (the finite set of strings) such that if t ∈ X and v @ t (v being the prefix relation), then
v 6∈ X. Given t ∈ B∗, ω ∈ BN is said to be an n-extension of t if and only if ω = v · t · ω′, where
|v| = n and ω′ ∈ BN. The set of all n-extensions of t is indicated as EXTnt and is measurable.
Moreover, µ(EXTnt ) = 1

2|t|
for every n and t. Given a tree X, every function f : X → N is said to

be an X-function. Thus, an oracle function f : Nn+1 × BN → N ∈ OR returns a tree X and an
X-function g on input (m1, . . . ,mn) if and only if for every k ∈ N, it holds that:

• f(m1, . . . ,mn, k, ω) is defined if and only if ω ∈ EXTkt , where t ∈ X.

• if ω ∈ EXTkt and t ∈ X, then
f(m1, . . . ,mn, k, ω) = q,

where π1(q) = g(t) and π2(q) = |t|.

It is now possible to prove the following preliminary lemma.

Lemma 3 For every f : Nn → D(N) ∈ PR, there is an oracle recursive function g : Nn+1×BN ⇀
N ∈ OR, such that for every m1, . . . ,mn, g returns a tree Xm1,...,mn and an Xm1,...,mn-function
hm1,...,mn on input m1, . . . ,mn, and

f(m1, . . . ,mn)(y) =
∑

hm1,...,mn
(t)=y

1

2|t|
.

Proof. The proof is by induction on the structure of f as an element of PR.

• Let f ∈ PR be a basic probabilistic function. Then, there are four possible cases.

Zero Function. Let z ∈ PR be the zero function. Then, g ∈ OR is an oracle function,
so defined that on inputs m1, k, ω, it returns the value 〈0, 0〉. Indeed, g returns the tree
Xm1 = {ε} and the Xm1-function hm1 always returning 0, as it can be easily checked.
Moreover:

z(m1)(y) =

{
1 if y = 0

0 otherwise

=
∑

hm1
(s)=y

1

2|t|
.

Successor Function. Let s ∈ PR be the successor function. Then, g ∈ OR is an oracle
function, so defined that on inputs m1, k, ω, it returns the value 〈m1 + 1, 0〉. So, g returns
the tree Xm1

= {ε} and the Xm1
-function hm1

always returning m1 + 1. Therefore:

s(m1)(y) =

{
1 if y = m1 + 1

0 otherwise

=
∑

hm1 (t)=y

1

2|t|
.
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Projection Function. Let πni ∈ PR, with 1 ≤ i ≤ n, be the projection function. Then,
g ∈ OR is an oracle function, so defined that, on inputs m1, . . . ,mn, k, ω it returns the value
〈mi, 0〉. Indeed, g returns the tree Xm1,...,mn = {ε} and the Xm1,...,mn -function hm1,...,mn

always returning mi. Moreover:

πni (m1, . . . ,mn)(y) =

{
1 if y = mi

0 otherwise

=
∑

hm1,...,mn
(t)=y

1

2|t|
.

Fair Coin Function. Let r ∈ PR be the fair coin function. Then, g ∈ OR is an oracle
function, so defined that g(m1, k, ω) = 〈l, 1〉 where,

l =

{
m1 if ω[k] = 0

m1+1 if ω[k] = 1.

• If f is obtained by either composition, primitive recursion or minimization, the argument is
a bit more involved, as in defining the function g we must take into account how the bits
of the oracle accessed by g are distributed in an independent way to each of the component
functions. We will here only illustrate how this works in the case of composition.

Let then f be obtained by composition from f1, . . . , fp : Nn → D(N) and f ′ : Np → D(N),
i.e. f(m1, . . . ,mn)(y) =

∑
i1,...,ip

f ′(i1, . . . , ip)(y) ·
∏p
j=1 fj(m1, . . . ,mn)(ij). By induction

hypothesis there exist functions g1, . . . , gp : Nn+1 × BN → N and g′ : Np+1 × BN → N such
that

1. for all m1, . . . ,mn ∈ N, each gi returns a tree Xi
m1,...,mn and an Xi

m1,...,mn -function

him1,...,mn , and fi(m1, . . . ,mn)(y) =
∑
him1,...,mn

(t)=y
1

2|t|
;

2. for all m1, . . . ,mp ∈ N, g′ returns a tree Ym1,...,mn and a Ym1,...,mp -function h′m1,...,mp ,

and f ′(m1, . . . ,mp)(y) =
∑
h′m1,...,mp

(t)=y
1

2|t|
.

We thus have that

f(m1, . . . ,mn)(y) =
∑

i=1,...,ip

 ∑
h′i1,...,ip

(s)=y

1

2|s|

 ·
 p∏
j=1

∑
hjm1,...,mn

(t)=ij

1

2|t|


=

∑
i=1,...,ip

 ∑
h′i1,...,ip

(s)=y,hjm1,...,mn
(tj)=ij

1

2|s|+
∑p
j=1 |tj |


For allm1, . . . ,mn ∈ N, let Xm1,...,mn = {t1·· · ··tp | s ∈ tj ∈ Xj

m1,...,mn , s ∈ Yh1
~m
(t1),...,h

p
~m
(tp)}.

Observe that any v ∈ Xm1,...,mn can be decomposed in a unique way as v = t0 · t1 · · · · · tp.
In fact, if t′0 · t′1 · · · · · t′p is any other decomposition, let j ≤ p be minimum such that tj 6= t′j .

Then it must be either tj @ t′j or t′j @ tj , which contradicts the fact that Xj
m1,...,mn and

Yh1
~m
(t1),...,h

p
~m
(tp) are all trees.

Using this fact we can show thatXm1,...,mn is also a tree: suppose v = t0·t1·· · ··tp ∈ Xm1,...,mn

and suppose v′ ∈ Xm1,...,mn , where v′ @ v. Then v′ has a unique decomposition t′0 · · · · · t′p
and one can easily show by induction on j ≤ p that t′j = t′j holds. Hence it must be v′ = v,
against the assumption.

Let hm1,...,mn : Xm1,...,mn → N be defined by hm1,...,mn(v) = y, where v uniquely decomposes

as s · t1 · · · · · tp, hj~m(tj) = ij and h′i1,...,ip(s) = y. We can finally define:
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g(m1, . . . ,mn, k, ω) =
〈
π1

(
g′
(
π1(L1), . . . , π1(Lp), k +

∑p
j=1 Lj , ω

))
, π2

(
g′
(
π1(L1), . . . , π1(Lp), k +

∑p
j=1 Lj , ω

))
+Rp

〉
where the Lj , Rj are defined inductively as follows:

L1 = g1(~m, k, ω) R1 = 0

Lj+1 = gj+1(~m, k +Rj+1, ω) Rj+1 = Rj + π2(Lj)

It can be checked that, by construction, g(m1, . . . ,mn, k, ω) = 〈hm1,...,mn(v), |v|〉, where

v ∈ EXTkv′ and v′ uniquely decomposes as s · t1 · · · · · tp. Using the equations above we thus
have:

f(m1, . . . ,mn)(y) =
∑

hm1,...,mn (v)=y

1

2|v|

�

The desired Proposition 2 can now be proved as a corollary of Lemma 3. Indeed, once it is ob-
served that if g is obtained from f ∈, as in Lemma 3, and h(m1, . . . ,mn, ω) = π1(g(m1, . . . ,mn, 0, ω)),
then it follows that f = h#.

The Proof of the Main Result. The last ingredient to establish Theorem 3 is the following
lemma, easily proved by induction on the structure of OR functions.

Lemma 4 For every oracle function f ∈ OR, the random function f# is arithmetical.

Proof. By Definition 9, given an arbitrary oracle function f ∈ OR, f(x1, . . . , xm, ω) = y, the
corresponding f# is defined as follows

f# = µC(f∗(x1, . . . , xm, y)) = µC({ω | f(x1, . . . , xm, ω) = y}).

Lemma 4 states that such f# is arithmetical, i.e. there is an MQPA formula Ff# , such that for
every n1, . . . , nm, l,

µC

(
JFf#(n1, . . . , nm, l)K

)
= f#(n1, . . . , nm)(l).

The proof of the Lemma is by induction on the structure of oracle recursive functions. Actually,
the only case which is worth-considering is the one of query functions. Indeed, all the other cases
are obtained by trivial generalizations of the standard proof by Gödel [23].

• For each basic oracle function, f ∈ OR, the corresponding random function, f#, is arith-
metical. There are four possible cases:

Oracle zero function. Let f0 ∈ OR be the oracle zero function. For Definition 9, f0(x1,

. . . , xn, ω) = y, with y = 0, is such that the corresponding f#0 is defined by the MQPA
formula,6

Ff#
0

: y = 0.

Oracle successor function. Let fs ∈ OR be the successor function. For Definition 9,
fs(x, ω) = y, with y = x+1, is such that f#s is defined by the MQPA formula,

Ff#
s

: S(x) = y.

6Indeed, f#0 = µC ({ω | f(x1, . . . , xm, ω) = 0}) = 1 and F
f
#
0

: y = 0 and, since y = 0 as JyK = 0 and J0K = 0,

µC (F
f
#
0

) = 1.
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Oracle projection function. Let fπi ∈ OR be the projection function Definition 9, fπi(x1,
. . . , xk, ω) = y, with y = xi, be the is such that fπi( such that f#πi is defined by the MQPA
formula

Fπki : xi = y.

Oracle query function. Let q ∈ OR be the query function. For Definition 9, q(x, ω) = ω(x),
is such that f#q is defined by the MQPA formula

Fq : x = FLIP(x).

• For each oracle function f ∈ OR obtained composition, primitive recursion, or minimization
from oracle recursive functions, whose corresponding random functions are arithmetical, the
corresponding random function f# is arithmetical. The proofs for these three cases are very
similar to the standard ones. As an example, let us consider the case of (simple) composition
only.

Oracle (simple) composition. Let f be obtained by composition from h and g, i.e. f(x1,
. . . , xn, ω) = h(g(x1, . . . , xn, ω), ω) = v. It is possible show that f#(x1, . . . , xn)(v) is arith-
metical, which is, for every x1, . . . , xn, v ∈ N, there is a MQPA formula, Ff#(x1, . . . , xn, v),
such that µC(JFf#(x1, . . . , xn, v)K) = f#. Indeed, the desired formula is

Ff# = ∃v
(
Fh#(v, y) ∧ Fg#(x1, . . . , xn, v)

)
where, by IH, µC(JFh#K) = h# and µC(JFg#K) = g#.

�

As seen, since for both OR and MQPA the source of randomness consists in a denumerable
amount of random bits, the proof of Lemma 4 is easy, and follows the standard induction of [23].
Theorem 3 comes out as a corollary of Lemma 4 above, together with Proposition 1: any com-
putable random function is in PR, by Proposition 1, and each PR function is arithmetical, by
Lemma 4 and Proposition 2. Indeed, by Proposition 2, for any f ∈ PR there is a g ∈ OR such
that f = g# and, since g ∈ OR, by Lemma 4, g# (= f) is arithmetical.

5 Realizability

In this section we sketch an extension of realizability, a well-known computational interpretation
of Peano Arithmetics, to MQPA. The theory of realizability [64, 24, 40, 62], which dates back
to Kleene’s 1945 paper [36], provides a strong connection between logic, computability, and pro-
gramming language theory. The fundamental idea behind realizability is that from every proof of
an arithmetical formula in HA or equivalently (via the Gödel-Gentzen translation) in PA, one can
extract a program, called the realizer of the formula, which encodes the computational content of
the proof. In Kreisel’s modified-realizability [40] realizers are typed programs: any formula A of
HA is associated with a type A∗ and any proof of A yields a realizer of type A∗.

Our goal is to show that the modified-realizability interpretation of HA can be extended to
the language MQPA. As we have not introduced a proof system for MQPA yet, we limit ourselves
to establishing the soundness of modified-realizability with respect to the semantics of MQPA.
Similarly to what happens with the classOR, the fundamental intuition is that realizers correspond
to programs which can query an oracle ω ∈ BN. For instance, a realizer of Ct/sA is a program
which, for a randomly chosen oracle, yields a realizer of A with probability at least JtKξ/JsKξ.

Our starting point is a PCF-style language with oracles. The types of this language are
generated by basic types nat,bool and the connectives→ and ×. We let O := nat→ bool indicate
the type of oracles. For any type σ, we let [σ] (resp. [σ]O) indicate the set of closed terms of type
σ (resp. of terms of type σ with a unique free variable o of type O). Moreover, for all i ∈ {0, 1}
(resp. n ∈ N), we indicate as i (resp. n) the associated normal form of type bool (resp. nat). For
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all term M and normal form N , we let M ⇓ N indicate that M converges to N . For any term
M ∈ [σO] and oracle ω ∈ BN, we let Mω ∈ [σ] indicate the closed program in which any call to
the variable o is answered by the oracle ω.

We consider the language of MQPA without negation and disjunction, enriched with implication
A→ B. As is usually done in modified-realizability, we take ¬A and A∨B as defined connectives,
given by A → (0 = S(0)) and ∃x.(x = 0 → A) ∧ (x = S(0) → B), respectively. With any closed
formula A of MQPA we associate a type A∗ defined as follows:

FLIP(t)∗ = nat (∀x.A)∗ = nat→ A∗

(t = u)∗ = bool (∃x.A)∗ = nat×A∗

(A ∧B)∗ = A∗ ×B∗ (Ct/sA)∗ = (Dt/sA)∗ = O→ A∗

(A→ B)∗ = A∗ → B∗

We define by induction the realizability relation M,ω  A where ω ∈ BN and, if A = Ct/sB
or A = Dt/sB, M ∈ [σ], and otherwise M ∈ [σ]O.

1. M,ω  FLIP(t) iff ω(JtK) = 1;

2. M,ω  t = s iff JtK = JsK;

3. M,ω  A1 ∧A2 iff π1(M), ω  A1 and π2(M), ω  A2;

4. M,ω  A→ B iff ω ∈ JA→ BK and P, ω  A implies MP,ω  B;

5. M,ω  ∃x.A iff π1(Mω) ⇓ k and π2(M), ω  A(k/x);

6. M,ω  ∀x.A iff for all k ∈ N, Mk,ω  A(k/x);

7. M,ω  Ct/sA iff JsK > 0 and µC ({ω′ |Mo,ω′  A}) ≥ JtK/JsK;

8. M,ω  Dt/sA iff ω ∈ JDt/sAK, and JsK = 0 or µC ({ω′ |Mo,ω′  A}) < JtK/JsK.

Condition 7. is justified by the fact that for all term M and formula A, the set {ω |M,ω  A} can
be shown to be measurable. Conditions 5. and 9. include a semantic condition of the form ω ∈ JAK,
which has no computational meaning. This condition is added in view of Theorem 4 below. In
fact, also in standard realizability a similar semantic condition for implication is required to show
that realizable formulas are true in the standard model, see [64].

Lemma 5 For each term M ∈ [σ]O and normal form N ∈ [σ], the set SM,N of oracles ω such
that Mω ⇓ N is measurable.

Proof. Let M̂ = {Mω | ω ∈ BN}. Let r be a reduction from some P = Mω ∈ M̂ to N ; since
r is finite, it can only query finitely many values b1, . . . , bnq of ω. Let Cr be the cylinder of all

sequences which agree with ω at b1, . . . , bnq . It is clear that for all ω′ ∈ Cr, Mω′ reduces to N .

We have then that SM,N =
⋃
{Cr | ∃P ∈ M̂ and r is a reduction from P to N}, so SM,N is a

countable union of measurable sets, and it is thus measurable. �

Lemma 6 For each term M and closed formula A, the set SM,A = {ω |M,ω � A} is measurable.

Proof. By induction on the structure of A:

1. if A = FLIP(t), then SM,A is the cylinder of all ω such that ω(JtK) = 1;

2. if A = t = s, then SM,A =

{
BN if JtK = JsK
∅ otherwise;

3. if A = A1 ∧A2, then SM,A = Sπ1(M),A1
∩ Sπ2(M),A2

;
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4. if A = B → C, then SM,A =
⋂
P∈[B∗]O(SP,B ∩ SMP,C);

5. if A = ∃x.B, then SM,A =
⋃
k(Sπ1(M),k ∩ Sπ2(M),A(k/x));

6. if A = ∀x.B, then SM,A =
⋂
k SMk,A(k/x);

7. if A = Ct/sB, then SM,A =

{
BN if JsK > 0 and µC(SMo,B) ≥ JtK/JsK
∅ otherwise;

8. if A = Dt/sB, then SM,A =

{
BN if JsK = 0 or µC(SMo,B) < JtK/JsK
∅ otherwise.

�

Theorem 4 (Soundness) For a closed formula A, if M,ω  A, then ω ∈ JAK.

Proof. By induction on A:

1. if A = FLIP(t) and M,ω  A, then ω(JtK) = 1, so ω ∈ JFLIP(t)K;

2. if A = t = s and M,ω  A, then JtK = JsK, so ω ∈ BN = JAK;

3. if A = A1 ∧ A2 and M,ω  A, then from π1(M), ω � A1 and π2(M), ω ` A2 we deduce
ω ∈ JA1K ∩ JA2K = JAK;

4. if A = B → C and M,ω  A, then by definition ω ∈ JAK;

5. if A = ∃x.B and M,ω  A then π1(Mω) ⇓ k and π2(M), ω  B(k/x), so by IH ω ∈
JB(k/x)K ⊆ JAK;

6. if A = ∀x.B and M,ω  A then for all k ∈ N, Mk,ω  A(k/x), so by IH ω ∈ JA(k/x)K and
we conclude ω ∈ JAK =

⋂
kJA(k/x)K;

7. ifA = Ct/sB andM,ω  A then JsK > 0 and µC(S) ≥ JtK/JsK, where S = {ω′ |Mo,ω′  B}.
Then, by IH S ⊆ JBK, hence µC(JBK) ≥ µC(S) ≥ JtK/JsK. We conclude then that JAK = BN

and thus ω ∈ JAK;

8. if A = Dt/sB and M,ω  A then by definition ω ∈ JDt/sBK.

�

For example, the term M = λo.fix
(
λfx.(iszero(ox))(f(x+1))〈x, x〉

)
0 realizes the valid formula

C1/1∃x.FLIP(x). Indeed, M looks for the first value k such that o(k) = 1 and returns the pair
〈k, k〉. Similarly, the program λxoyz.o(y), which checks whether the y-th bit of ω is true, realizes
the formula ∀x.C1/2x∀y≤xFLIP(y). With the same intuition, one can imagine how a realizer M
of the formula FIMT can be constructed: given inputs x, o, y, M looks for the first k such that
the finite sequence o(y + k), o(y + k + 1), . . . , o(y + k + `(n)) coincides with the string coded by
x (where this last check can be encoded by a program λw.P (x, o, y, z, w)), and returns the pair
〈k, λw.P (x, 0, y, k, w)〉.

6 Related Works

To the best of the authors’ knowledge, the term “measure quantifier” was first introduced by
Morgenstern in 1979 in order to formalize the idea that a formula F (x) is true for almost all
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x [46].7 In the same years, similar quantifiers were investigated from a model-theoretic perspective
by H. Friedman (see [63] for a survey). More recently, Mio et al. [44, 45] investigated the possibility
for such quantifiers to define extensions of MSO. Generally speaking, all these works have been
strongly inspired by the notion of generalized quantifiers, which already appeared in a seminal
work by Mostowski [47].8 Nevertheless, the main source of inspiration for our treatment of measure
quantifiers comes from computational complexity, namely from Wagner’s counting operators on
classes of languages [66, 67, 68].9

On the other hand, there is an extensive amount of publications dealing with different forms of
probabilistic reasoning (without references to arithmetic). Most of the recent probability systems
have been developed in the realm of modal logic, starting with the seminal (propositional) work by
Nilsson [48]. From the 1990s on, first-order probability logic and (axiomatic) proof systems, have
been independently introduced by Bacchus [6, 4, 5] and Fagin, Halpern and Megiddo [19, 18, 27, 28].
Remarkably, Bacchus defined probability terms, by means of a modal operator prob computing the
probability of certain events, and probability formulas, which are equalities between probability
terms and numbers. A similar first-order probability logic was introduced by Fagin, Halpern and
Megiddo [19] (and later studied in [18, 27, 28]), in which probability spaces define the underlying
models, and can be accessed through the so-called weight terms. Another class of probabilistic
modal logics have been designed to model Markov chains and similar structure, for example
in [39, 29, 42, 20]. However, once again, no reference to arithmetic is present in these works.
Universal modalities show affinities with counting quantifiers, which however focusses on counting
satisfying valuations, rather than on identifying (sets of) worlds.

From the 1950s on, the interest for probabilistic algorithms and models started spreading [41,
14, 9, 50, 52, 21, 57]. Nowadays, random computation is pervasive in many area of computer science
and, several formal models are available, such as probabilistic automata [56], both Markovian and
oracle probabilistic Turing machines [54, 55, 21, 22], and probabilistic λ-calculi [51, 31, 15, 12, 17].
As seen, also a well-defined probabilistic recursion theory has been developed by [11, 13]. Our
definition of the class OR is guided by both by recent PR [11, 13] and by classical recursion the-
ory [23, 10, 32, 33, 34, 35, 65, 49].10 Our definition of random arithmetical formulas and Theorem
3 generalize the original results by Gödel [26, pp. 63–65]. Also our study of realizability is inspired
by classical works. The functional or D-interpretation was first introduced by Gödel in 1958 in
order to prove the consistency of arithmetic [24].11 The theory was further developed by Kreisel,
who introduced the notion of modified-realizability [40], starting from Kleene’s realizability [36].

7 Conclusion

This paper can be seen as “a first exploration” of MQPA, providing some preliminary results, but
also leaving many problems and challenges open. The most compelling one is certainly that of
defining a proof system for MQPA, perhaps inspired by realizability. Furthermore, our extension

7Morgenstern’s definition was inspired by the notion of generalized quantifier, which was “introduced to specify
that a given formula was true for “many x’s”” [46, p. 103]. Morgenstern defined a language Lµ, obtained by adding
the measure quantifier Qµ to the standard first-order grammar and presented the the central notions of his logic
as follows (actually, other extended languages are considered in [46]):

Definition 2.1 A measure structure U is a pair U = (U , µU ), where U ′ is a first-order structure,
card|U| = k, a measurable cardinal, and µU is a nontrivial k-additive measure on |U ′| which satisfies
the partition property. [...]

Definition 2.2 Define a language Lµ to be a first-order language together with a quantifier Qµ,
binding one free variable, where a measure U � Qµv0ϕ(v0) iff {x ∈ |U| | U ′ � ϕ[x]} ∈ µU . [46,
pp. 103-104]

8Specifically, generalized quantifiers were first introduced by Mostowski, as “operators which represent a natural
generalization of the logical quantifiers” [47, p. 13] and have then been extensively studied in the context of finite-
model theory [43, 38]. Second-order generalized quantifiers have been recently defined as well [1].

9For further details, see [2], where the model theory and proof theory of an extension of propositional logic with
counting quantifiers is studied (in particular, the logic CPL0 can be seen as a “finitary” fragment of MQPA).

10For further details on the history of the notion of recursion, see [61].
11Actually, Gödel started conceiving the D-interpretation in the late 1930s [61, 3].
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of PA is minimal by design. In particular, we confined our presentation to a unique predicate
variable, FLIP(x). Yet, it is possible to consider a more general language with countably many

predicate variables FLIPa(x), and suitably-named quantifiers C
t/s
a and D

t/s
a , as in [2]. We leave

the exploration of this more sophisticated syntax to future work. Another intriguing line of work
concerns the study of bounded versions of MQPA, which may suggest novel ways of capturing
probabilistic complexity classes, different from those in the literature, e.g. [30].
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