
HAL Id: hal-03343002
https://hal.inria.fr/hal-03343002v2

Submitted on 22 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified functional programming of an IoT operating
system’s bootloader

Shenghao Yuan, Jean-Pierre Talpin

To cite this version:
Shenghao Yuan, Jean-Pierre Talpin. Verified functional programming of an IoT operating system’s
bootloader. MEMOCODE 2021 - 19th ACM-IEEE International Conference on Formal Methods and
Models for System Design, Nov 2021, Beijing, China. pp.1-16. �hal-03343002v2�

https://hal.inria.fr/hal-03343002v2
https://hal.archives-ouvertes.fr

Verified functional programming of an IoT operating system’s bootloader

SHENGHAO YUAN, INRIA, IRISA, France

JEAN-PIERRE TALPIN, INRIA, IRISA, France

The fault of one device on a grid may incur severe economical or physical damages. Among the many critical components in such
IoT devices, the operating system’s bootloader comes first to initiate the trusted function of the device on the network. However, a
bootloader uses hardware-dependent features that make its functional correctness proof difficult. This paper uses verified programming
to automate the verification of both the C libraries and assembly boot-sequence of such a, real-world, bootloader in an operating
system for ARM-based IoT devices: RIoT. We first define the ARM ISA specification, semantics and properties in F★ to model its
critical assembly code boot sequence. We then use Low★, a DSL rendering a C-like memory model in F★, to implement the complete
bootloader library and verify its functional correctness and memory safety. Other than fixing potential faults and vulnerabilities
in the source C and ASM bootloader, our evaluation provides an optimized and formally documented code structure, a reasonable
specification/implementation ratio, a high degree of proof automation and an equally efficient generated code.

CCS Concepts: • Software and its engineering → Embedded software; Correctness; Software verification; Functional languages;
Domain specific languages; Formal software verification; • Security and privacy → Logic and verification.

Additional Key Words and Phrases: Verified programming, IoT kernel, boot loader, case study

ACM Reference Format:
Shenghao Yuan and Jean-Pierre Talpin. 2021. Verified functional programming of an IoT operating system’s bootloader. InMEMOCODE

’21: ACM-IEEE International Conference on Formal Methods and Models for System Design, Nov 20–22, 2021, Beijing, China. ACM, New
York, NY, USA, 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Among the critical components in the operating system stack of an embedded device, the first whose reliability is put
to trial is the bootloader to check, load and execute the image of the operating system or unikernel. Failure to boot
renders an embedded device useless, leaving its possibly networked and mission-critical function unattended until
maintenance. Well-known mechanisms, such as Trusted Boot [2] or Verified Boot[12], mainly focus on the validation of
loaded images. However, a bootloader is itself a small but complex piece of software, tightly coupled to its hardware
platform, making it quite difficult to be verified, especially when hand-written in an unsafe language like C and/or
assembly code.

Program verification techniques have become popular to ensure the correctness of programs written in unsafe
languages like C. Deductive programming tools would for instance allow one to verify a bootloader at its source C
code-level, but probably require the use of another tool to check its necessary assembly boot sequence correct. As such,
VCC[7], Verifast[16] and refinedC[28] allow to verify C or Java programs annotated with pre- and post-conditions.
These conditions however introduce a heterogeneous syntax of annotations that rapidly scales in proportion to the
source code to verify. For instance, a 14 lines long C program may require about 20 lines of annotations in refinedC
[28, Sec. 2.2]. Another choice to formally verify a bootloader is to homogeneously express the implementation and
verification conditions in a proof assistant, e.g. SABLE[8] in Isabelle/HOL[21] or the the first-stage bootloader of [29] in
Coq[5]. Although these specifications may automatically be generated by using VST[1], verification conditions still

2021. Manuscript submitted to ACM

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

require to undergo a time-consuming process of mechanized proof. In fact, the first-stage bootloader only proves part
of a Sanctum-like bootloader functionally correct.

In this paper, we adopt a verified programming methodology to implement and verify a real-world bootloader. Our
approach gains both proof automation while maintaining homogeneous specifications and implementations in the
F★[30] programming environment. We implement a verified riotboot[26], the bootloader of a friendly Operating System
for IoT devices, RIoT[4], together with the ARM Cortex-M architecture of its target platform(s).

The source code of riotboot is a mixture of C and assembly code. The C code can be modeled in Low★[22], a low-level
subset of F★ that renders this C-like memory model and enjoys a translation to C that doesn’t require a runtime library
using the KreMLin compiler[32]. The hardware-dependent part of riotboot, written in assembly code, may however not
be modeled using existing F★ libraries. The most related project, VALE [6, 11], only supports the verification of x84/x64
architectures in F★. Hence, this paper presents the following contributions:

• ARM-F★: We define a complete F★model of an instruction set available in most ARM platforms, including modes,
conditionals and suffixes. Our model includes 1/ the formal syntax and operational semantics of the chosen ISA in F★,
2/ a formal specification of its critical properties (as explained in the ARM assembly user guide), and 3/ a series of
lemmas in F★ to automate verification of programs.

• Verified riotboot: We use Low★ and our library ARM-F★ to model riotboot and verify its functional correctness and
memory safety in the F★ environment. Our workflow contains: 1/ a model of riotboot’s C modules in Low★ and of its
assembly code in ARM-F★, 2/ a functional correctness proof of riotboot in the F★ environment, and 3/ extracted C
and assembly code from our F★model.

• Evaluation: We show potential faults and vulnerabilities found with our F★/Low★model, compare it with existing
formally verified bootloaders by highlighting an optimized amount of required specification and, foremost, the high
degree of proof automation gained.

As a result, we benefit from bare-metal executable code verified against all critical requirements at minimal specifica-
tion cost and development time (i.e. one month). Our workflow provides a principled type-driven approach allowing IoT
developers to specify and verify system- and application-specific properties in a way that maximizes proof automation
while facilitating specification, that could further be minimized by using static analysis [10], that could further be
extended to deal with physical and hardware constraints [31].

The rest of the article is organized as follows. Section 2 gives a short introduction to verified programming in F★.
Section 3 briefly introduces the modules of Riotboot. Section 4 formalizes the ARM assembly documentation [20] in
F★. Section 5 specifies riotboot in F★/Low★, verifies its functional correctness, and evaluates our model. Sections 6-7
conclude by discussing related and future works.

2 A BRIEF OVERVIEW OF F★AND LOW★

F★ is a general-purpose functional programming language that, in the spirit of Liquid Haskell or Agda, is meant
at verifying programs. In this aim, F★ supports a dependent-type system allowing to express type refinements
of both pure and imperative functions with logical properties pertaining to their value domain, pre- and post-
conditions. For instance, the type of the tot(al) function abs accepts any integer and returns its absolute value:
v:int -> Tot v:int{v>=0} is its type. The st(ateful) function get, reading the value v of a reference r in the memory
heap h has type r:ref a -> ST v:a, pre-condition requires fun h -> (contains h r), saying that hmusts contain
r, and post-condition ensures fun h v _ -> v = (sel h r), saying that the returned value v is exactly that of the

2

https://fstar-lang.org/

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

sel(ected) heap location. Low★ can be seen as a domain-specific language embedded in F★whose purpose is to render
the computational model of imperative system languages like C. As a result, Low★ enjoys the powerful specification
and proof capabilities of F★while can generate verified C code readily usable without resource-hungry runtime library.

Subroutines used during the image validation process are typical Low★ programs. For instance, considering function
rb_hdr_t2uint16_t in details, it marshals header struct(ure) into an uint16_t buffer for input to the fletcher32
image validation algorithm. It consists of a type and logical specification with a val declaration, and an implementation
with a let declaration. It takes two arguments s and d whose types are specified between arrows: rb_hdr_t and
d:B.buffer UInt16.t. The first one is just the data-type of a riotboot header data-structure. The second is a Low★
buffer (i.e. B.buffer) containing 16bits unsigned integers with type refinement behind brackets {} saying that the length
of buffer B.length d should be larger than the value of the constant UInt16.v offset_chksum.

1 val rb_hdr_t2uint16_t: rb_hdr_t -> d:B.buffer UInt16.t{B.length d > UInt16.v offset_chksum} -> ST unit

2 (requires (fun h0 -> B.live h0 d)) (ensures (fun h0 v h1 -> (M.modifies (M.loc_buffer d) h0 h1) /\ B.live h1 d))

3 let rb_hdr_t2uint16_t s d =

4 d.(0ul) <- uint32_to_uint16(s.magic_number); d.(1ul) <- uint32_to_uint16(s.magic_number >>^ 16ul); .../...;

5 d.(5ul) <- uint32_to_uint16(s.start_addr >>^ 16ul); ()

The function body behind the let sequentially marshals the raw header data from s into the buffer d by performing a
series of assignments and shifts. The function returns nothing, but has side-effects: it populates buffer d. Its assumptions
and guarantees are specified by predicates in the monad ST. The pre-condition is defined by a function with the initial
memory state h0 as a parameter. By stating B.live h0 d, it requires d to be a live memory area in h0. The post-condition
is stated as a function taking the result v and initial and final memory states h0 and h1 as parameters. It says that the
function returns a modified and live memory buffer d. To obtain this guarantee, the effect of each statement in the
sequence is collected from a sentence to the next one by using monadic binding. This propagated information is then
checked against the declared post-condition.

3 RIOTBOOT OVERVIEW

The bootloader of RIoT: riotboot, expects flash memory to be supplied and formatted in slots to host operating system
images. The core of riotboot consists of two modules: choose_image and cpu_jump_to_image.

1 void kernel_init(void){

2 uint32_t version = 0; int slot = -1;

3 for (unsigned i = 0; i < riotboot_slot_numof; i++){ //choose_image beginning

4 const riotboot_hdr_t *riot_hdr = riotboot_slot_get_hdr(i);

5 if (riotboot_slot_validate(i)) { continue; }

6 if (riot_hdr->start_addr != riotboot_slot_get_image_startaddr(i)) { continue; }

7 if (slot == -1 || riot_hdr->version > version) { version = riot_hdr->version; slot = i;} } //choose_image ending

8 if (slot != -1) { riotboot_slot_jump(slot); } //cpu_jump_to_image

9 while (1) {} }

Function choose_image consists of a for-loop that chooses a suitable image from a list of slots in flash memory.
It first selects an image header in that list (lines 3-4) and validates its header (line 5) using the fletcher32 checksum
algorithm (below). If no valid image is present, kernel_init falls into an infinite loop (line 9) whose behavior may actually
be reduced to nop by an optimizing compiler. If several valid images are present in the list, it chooses that with the
latest version number (line 7).

3

https://fstarlang.github.io/lowstar/html/

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

Function cpu_jump_to_image is written in Cortex-M assembly code and performs a "long jump" to execute the
imaged system. Line 2 sets the stack pointer (MSP) to the image address. Line 3 skips the image header. Lines 4-5 set the
destination address and force the processor state to Thumb mode. Finally, line 6 branches execution at the destination.
Such operations cannot be performed in a system language: a tempting (*image_addr)() in C would result in sharing
the memory space of the bootloader with the image.

1 static inline void cpu_jump_to_image(uint32_t image_addr) {

2 __set_MSP(*(uint32_t*) image_addr);

3 image_addr += 4;

4 uint32_t destination = *(uint32_t*) image_addr;

5 destination |= 0x1;

6 __asm("BX %0" :: "r" (destination)); }

Our workflow starts with the definition of the ARM ISA in F★: its syntax, operational semantics and properties Then,
the choose_image function is modelled in F★/Low★ and the cpu_jump_to_image function is expressed in ARM-F★. The
model’s functional correctness is automatically verified by F★ using the Z3 SMT-solver, and the verified model is used
to extract executable C code by the Kremlin compiler and ASM assembly code using the ARM-F★ print module. The
synthesis of extraction result finally produces a verified riotboot.

4 FORMALIZING THE ARM ISA IN F★

This section selects a general ARM instruction set, defines its syntax and semantics and proves its properties derived
from the ARM ASM user guide to provide useful lemmas.

4.1 Syntax

The syntax of the ARM assembly language is shown in Fig.1. It comprises of three kinds of instructions1:

• Twelve arithmetic instructions from the ‘Add with Carry‘ adc to the ‘Store‘ instruction str.
• The logical instructions mov and four bitwise operations: conjunction and, disjunction orr and orn, exclusion eor.
• The shift instructions: Arithmetic Shift Right asr, Logical Shift Left lsl, Logical Shift Right lsr and Rotate Right ror.

𝑐𝑖 ::= {𝑐𝑜𝑛𝑑} 𝑖 | {𝑠} 𝑖 | {𝑠} {𝑐𝑜𝑛𝑑} 𝑖
𝑖 ::= adc 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | add 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | bx 𝑟𝑑 | cmn 𝑟𝑛 𝑜𝑝2 | cmp 𝑟𝑛 𝑜𝑝2 | ldr 𝑟𝑑 𝑟𝑛 𝑜

| mul 𝑟𝑑 𝑟𝑛 𝑟𝑚 | neg 𝑟𝑑 𝑟𝑛 | nop | sub 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | str 𝑟𝑑 𝑟𝑛 𝑜

| mov 𝑟𝑑 𝑜𝑝2 | and 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | eor 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | orn 𝑟𝑑 𝑟𝑛 𝑜𝑝2 | orr 𝑟𝑑 𝑟𝑛 𝑜𝑝2
| asr 𝑟𝑑 𝑟𝑛 𝑟𝑠 | lsl 𝑟𝑑 𝑟𝑛 𝑟𝑠 | lsr 𝑟𝑑 𝑟𝑛 𝑟𝑠 | ror 𝑟𝑑 𝑟𝑛 𝑟𝑠

𝑐𝑜𝑛𝑑 ::= 𝐸𝑄 | 𝑁𝐸 | 𝐶𝑆 | 𝐶𝐶 | 𝑀𝐼 | 𝑃𝐿 | 𝑉𝑆 | 𝑉𝐶 | 𝐿𝑇 | 𝐿𝐸 | 𝐺𝑇 | 𝐺𝐸 | 𝐴𝐿
𝑟 ::= 𝑟0 | 𝑟1 | . . . | 𝑟12 | 𝑠𝑝 | 𝑙𝑟 | 𝑝𝑐

𝑜𝑝2 ::= 𝑐 | 𝑟 | 𝑟 𝑠𝑜𝑝
𝑠𝑜𝑝 ::= 𝐴𝑆𝑅𝑠ℎ𝑖 𝑓 𝑡 𝑠ℎ2 | 𝐿𝑆𝐿𝑠ℎ𝑖 𝑓 𝑡 𝑠ℎ1 | 𝐿𝑆𝑅𝑠ℎ𝑖 𝑓 𝑡 𝑠ℎ2 | 𝑅𝑂𝑅𝑠ℎ𝑖 𝑓 𝑡 𝑠ℎ1
𝑠ℎ𝑛 ∈ [1, 30 + 𝑛], 𝑜, 𝑐 ∈ 𝐼𝑛𝑡32, 𝑠 ∈ 𝑆𝑡𝑟𝑖𝑛𝑔

Fig. 1. Core syntax of the ARM assembly language

Conditional instructions execute when a condition flag is set by a prior instruction. A compound conditional instruction
can be built by composing a simple one with a condition or a suffix or both condition and suffix.

Conditional code cond defines the condition that must be met for an instruction to execute. It can be equal (EQ),
unequal (NE), negative (MI), positive or zero (PL), etc.
1The classification follows the same flags update principle: str and adc use the same function to update flags, while mov and bitwise instructions adopt
another. Please refer to the ARM ASM user guide for details.

4

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

Optional suffix, if specified, sets the condition flag after the instruction is executed. Otherwise, the instruction has no
effect on the condition flags.

General purpose registers are 𝑟0-𝑟12 and three special registers:the stack pointer register (sp), the link register(lr) and
the program counter register (pc). The Application Program Status Register (APSR) holds the program status flags.

Operands and shifts are found as second operand 𝑜𝑝2 of many ARM arithmetic and logical instructions. They can be
a constant 𝑐 , a register 𝑟 or a register with a shift value.

4.2 Machine state

In the spirit of the VALE project [6, 11], we represent the machine state as a record (named arm_state) consisting of:

• mem: addr -> int32, as a map from physical addresses to bytes,
• regs: reg -> int32, as functions mapping register names to values,
• flags: flag, as the negative (N), zero (Z), carry (C), and overflow (V) condition flags of the APSR register.
• isa_mode: mode, three kinds of ISA modes: ARM, Thumb16 and Thumb32,
• ok: bool, a Boolean field ok representing the processor state.

A valid state (ok = true) indicates that the machine has safely executed until the current state, e.g. no segmentation
fault occurred. While an invalid memory access or update would make the machine crash (ok = false).

4.3 Operational Semantics

We now define the operational semantics of key instructions from Fig. 1 in F★ by employing the methodology of VALE.
The complete definition of the operational semantics of ARM instructions can be found in a GitLab repository[34].
Firstly some auxiliary functions are defined to check the validity of ARM instructions (as per the reference manual
[20]). Then the rules of the operational semantics are defined, as shown in Figure 2.

Valid functions. Most ARM instructions have constraints regarding the usage of registers and operands, e.g., the
destination register of most instructions can not be the program counter. This paper defines validity functions to
constrain the parameters of each instruction. In F★ and VALE, they can be modeled as predicates and enforced as
pre-conditions to using the instructions.

Semantics. We first introduce the key operational semantics rules of the simple ARM instructions used for the
bootloader, i.e., add, bx,mov, orr. Then, we introduce a special rule: the memory_unsafe rule. Fig 2 exemplifies these
rules for selected instructions. The predicate valid(r) defines the validity condition of the related argument 𝑟 .

All rules in Fig 2 satisfy two premises: the memory flag ok is true and all operands are valid. Then,

• (add) adds the values in 𝑟𝑛 and 𝑜𝑝2, stores the result in 𝑟𝑑 and updates the pc register.
• (bx*) causes a branch to the address stored in 𝑟𝑑 and switches the instruction set: (bx1) If bit(0) is 0, then the processor
changes to ARM state; (bx2) if bit(0) is 1, the processor remains in Thumb state.

• (mov) copies the value of 𝑜𝑝2 into 𝑟𝑑 and updates the pc register.
• (orr) performs a bit-wise OR operation on 𝑟𝑛 and 𝑜𝑝2, stores the result in 𝑟𝑑 and updates the pc.

If an operand is invalid, the memory flag is cleared (ok=false). If the memory flag is false, the processor aborts.
¬𝑠𝑡 .𝑜𝑘 ∨ ¬𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝)
(𝑖𝑛𝑠, 𝑠𝑡) → abort

(𝑚𝑒𝑚𝑜𝑟𝑦_𝑢𝑛𝑠𝑎𝑓𝑒)

5

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑 ↦→ 𝑟𝑛 + 𝑜𝑝2, 𝑝𝑐 ↦→ 𝑝𝑐 + 1]

(𝑎𝑑𝑑)

𝑠𝑡 .𝑜𝑘 ∧ 𝑟𝑑.𝑏𝑖𝑡 (0) = 0 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒 ↦→ 𝑇ℎ𝑢𝑚𝑏16, 𝑝𝑐 ↦→ 𝑟𝑑]

(𝑏𝑥1)

𝑠𝑡 .𝑜𝑘 ∧ 𝑟𝑑.𝑏𝑖𝑡 (0) = 1 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒 ↦→ 𝐴𝑅𝑀, 𝑝𝑐 ↦→ 𝑟𝑑]

(𝑏𝑥2)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑀𝑂𝑉 𝑟𝑑 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑 ↦→ 𝑜𝑝2, 𝑝𝑐 ↦→ 𝑝𝑐 + 1]

(𝑚𝑜𝑣)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑂𝑅𝑅 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑 ↦→ 𝑟𝑛 | 𝑜𝑝2, 𝑝𝑐 ↦→ 𝑝𝑐 + 1]

(𝑜𝑟𝑟)

. . .

Fig. 2. Semantics of the simple ARM instruction set

4.3.1 Conditional Instructions. All simple ARM instructions can be executed conditionally by relying on the condition
code c of the instruction and the value of the condition flags in the APSR, i.e. the memory state st. The condition
function cond(c,st) states the condition c that must be met for an instruction to execute in the state st, Fig. 3.

𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) def
=

(𝑠𝑡 .𝑓 𝑙𝑎𝑔𝑠) .𝑧 𝑖 𝑓 𝑐 = 𝐸𝑄 (∗𝐸𝑞𝑢𝑎𝑙∗)
𝑛𝑜𝑡 ((𝑠𝑡 .𝑓 𝑙𝑎𝑔𝑠) .𝑧) 𝑖 𝑓 𝑐 = 𝑁𝐸 (∗𝑁𝑜𝑡 𝑒𝑞𝑢𝑎𝑙∗)
...

𝑡𝑟𝑢𝑒 𝑖 𝑓 𝑐 = 𝐴𝐿 (∗𝐷𝑒𝑓 𝑎𝑢𝑙𝑡∗)

Fig. 3. The 𝑐𝑜𝑛𝑑 function for conditional instructions

For instance, code EQ expects condition equality, which corresponds to the flag Z set to true. Code NE expects condition
inequality and flag Z to false. Hence, a conditional instruction 𝑖𝑛𝑠 demands two rules:

• The cond_true rule: if the conditional instruction satisfies both the premises of the simple instruction rule and
𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) is true, then the conditional instruction performs the expected operation, referred to as 𝑖𝑛𝑠𝑝𝑟𝑒 for premises
and 𝑖𝑛𝑠𝑝𝑜𝑠𝑡 for conclusion from, e.g., Fig.2.

• The cond_false rule: if the conditional instruction meets the premise of the simple instruction rule but 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) is
false, then the instruction only updates the value of pc.

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑖𝑛𝑠𝑝𝑟𝑒

(𝑖𝑛𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑖𝑛𝑠𝑝𝑜𝑠𝑡]
(𝑐𝑜𝑛𝑑_𝑡𝑟𝑢𝑒)

𝑠𝑡 .𝑜𝑘 ∧ ¬𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑖𝑛𝑠𝑝𝑟𝑒

(𝑖𝑛𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑝𝑐 ↦→ 𝑝𝑐 + 1] (𝑐𝑜𝑛𝑑_𝑓𝑎𝑙𝑠𝑒)

4.3.2 Instructions with Condition Suffix. When suffix s is specified, conditional flags are updated after performing the
default action of the instruction 𝑖 . The N and Z flags update according to the result of 𝑖 , while the other two relate to
specific instructions. Three update functions are defined to classify the scenarios:

• The upd_arithmetic function updates the four condition flags according to the result of an instruction, e.g. adc.
• The upd_logical function is used to update N, Z and C flags after performingmov or bitwise instructions.
• The upd_shift function updates the three flags when shift operations (i.e. asr, lsl, lsr and ror) are performed.

Fig. 4 shows the semantics of the add instruction with condition suffix.Compared to rules in Fig. 2, instructions with
condition suffixes mainly add flags to the updated memory state. For instance, the adds rule calls the upd_arithmetic to
update the N, Z, C and V flags according to the result.

6

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷𝑆 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑 ↦→ 𝑟𝑛 + 𝑜𝑝2, 𝑓 𝑙𝑎𝑔𝑠 ↦→ 𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 (𝑟𝑛 +𝑖 𝑜𝑝2), 𝑝𝑐 ↦→ 𝑝𝑐 + 1] (𝑎𝑑𝑑𝑠)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑 ↦→ 𝑟𝑛 + 𝑜𝑝2, 𝑓 𝑙𝑎𝑔𝑠 ↦→ 𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 (𝑟𝑛 +𝑖 𝑜𝑝2), 𝑝𝑐 ↦→ 𝑝𝑐 + 1] (𝑎𝑑𝑑𝑠𝑐1)

𝑠𝑡 .𝑜𝑘 ∧ ¬𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑝𝑐 ↦→ 𝑝𝑐 + 1] (𝑎𝑑𝑑𝑠𝑐2)

Fig. 4. Semantics of instructions with condition suffix

In addition, if a conditional instruction has both condition and suffix, its semantic rule is composed with the
aforementioned ones. For instance, the add instruction has two rules, Fig.4. addsc1 is derived from the adds and
cond_true rules. addsc2 is an instance of the cond_false rule.

4.4 Properties of the ARM ISA

Based on the semantics of ARM instructions defined in ARM-F★, we specify the correctness requirements of isolation,
branch, and no-effect listed in the ASM manual [20] and formalize them as Lemmas. Doing so allows us to prove the
correctness of any ARM assembly code sequence modeled in F★. These lemmas are summarized in Tab 1.

Table 1. ASM properties from the ARM Compiler User Guide

Name Specification

Isolation A processor in one instruction set state cannot execute instructions from another instruction set.
Branch Transformations between different modes only depend on the jump instruction [i.e. BX in the paper].
No-effect If the condition test of a conditional instruction fails, the instruction has no effect.

Let 𝑖 be the instruction that is to be executed next, 𝑠𝑡0 be the current memory state, 𝑠𝑡1 (i.e. 𝐸𝑣𝑎𝑙 (𝑖, 𝑠𝑡0)) be the next
memory state after executing 𝑖 , and 𝑆𝑥 be an instruction set in 𝑥 mode. Theorem 1 says that the ARM operational
semantics should ensure the processor never receives any instruction of the wrong instruction set in the current state.

Theorem 1 (Isolation) If 𝑠𝑡0 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒 = 𝑥 , 𝑠𝑡0 .𝑜𝑘 and 𝑠𝑡1 .𝑜𝑘 then 𝑖 ∈ 𝑆𝑥

Most instructions can execute in all modes, only orn is available in the Thumb32 mode. So the isolation property is
equivalent to saying the validity holds if 𝑠𝑡0 .𝑜𝑘 and 𝑠𝑡1 .𝑜𝑘 are true.

Theorem 2 says that, if executing an instruction results in a memory state of a different mode as the current one,
then the instruction can only be the jump instruction bx.

Theorem 2 (Branch) If 𝑠𝑡0 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒 ≠ 𝑠𝑡1 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒 then 𝑖 = 𝑏𝑥 .

The formalization and proof of this property in F★ proceed by case analysis base on the definition of mode.
Theorem 3 says that, if the condition test of a conditional instruction fails, the instruction 1/ does not execute, 2/

does not write a value in the destination register, 3/ does not change any flag, and 4/ does not raise an exception.

Theorem 3 (No-effect) Let 𝑐, 𝑟𝑑 be the condition code and the destination register (if present) of the instruction 𝑖 . If

𝐶𝑜𝑛𝑑 (𝑐, 𝑠𝑡) = 𝑓 𝑎𝑙𝑠𝑒 , then 𝑠𝑡1 .𝑝𝑐 = 𝑠𝑡0 .𝑝𝑐 + 1, 𝑠𝑡1 .𝑟𝑑 = 𝑠𝑡0 .𝑟𝑑 , 𝑠𝑡1 .𝑓 𝑙𝑎𝑔𝑠 = 𝑠𝑡0 .𝑓 𝑙𝑎𝑔𝑠 and 𝑠𝑡1 .𝑜𝑘 = 𝑠𝑡0 .𝑜𝑘 .

We firstly say that nop and nopc have the same effect on a memory state. and then state the equivalence of a failed
conditional instruction with nop. This way, the property is easily proved together with the lemmas of nop.

Along the way, we prove some auxiliary lemmas which will be useful for the verification of our case study. First,
we can formalize the memory safety of an executed list of instructions 𝐿. Let 𝑠𝑡0 be the initial memory state and 𝑠𝑡1

7

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

(i.e.𝐸𝑣𝑎𝑙𝐿(𝐿, 𝑠𝑡0)) the final memory one, the 𝑙𝑖𝑠𝑡_𝑜𝑘 𝐿 𝑠𝑡0 function says that no instruction in 𝐿 generates an exception
if its current state is memory-safe.

Lemma 1 (List Memory Safety) If 𝑠𝑡0 .𝑜𝑘 and (𝑙𝑖𝑠𝑡_𝑜𝑘 𝐿 𝑠𝑡0) then 𝑠𝑡1 .𝑜𝑘 .
Assuming a memory-safe initial state, the list memory safety lemma in F★ stipulates that no instruction in the list

produces an unsafe state, and that the final state is memory-safe, by induction on the list 𝐿.
Additionally useful lemmas apply to specific instructions, such as 𝑛𝑜𝑝_𝑒𝑞𝑢𝑖𝑣_𝑛𝑜𝑝𝑐 and the ‘load after store‘ lemma.
Lemma 2 (Load after Store) Let 𝑠𝑡1 = 𝐸𝑣𝑎𝑙 ((str, 𝑟𝑑 , 𝑟𝑛, 𝑜), 𝑠𝑡0) and 𝑠𝑡2 = 𝐸𝑣𝑎𝑙 ((ldr, 𝑟𝑑 , 𝑟𝑛, 𝑜), 𝑠𝑡1), then 𝑠𝑡0 .𝑟𝑑 =

𝑠𝑡1 .𝑟𝑑 = 𝑠𝑡2 .𝑟𝑑 .
It stipulates that the destination register always remains unchanged when the processor first executes the store

instruction 𝑠𝑡𝑟 with some registers and operands, and only executes the load instruction 𝑙𝑑𝑟 with the same parameters.

5 EVALUATION CASE STUDY

Our goal is to specify the riotboot protocol and verify its correctness in F★. We first give the details of its implementa-
tion and verification. Next, we evaluate our formal model from the following perspectives: Bug-fixing/optimization,
verification cost, and comparison with existing verified bootloaders.

5.1 Implementation & Verification

The riotboot in F★ has the same structure as its C version: choose_image and cpu_jump_to_image. For instance,
cpu_jump_to_image corresponds to the ARM assembly code below. The input 𝑖𝑚𝑎𝑔𝑒_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 is stored in 𝑅0. 𝑖0 copies
the input to 𝑅1, 𝑖1 is to set MSP, 𝑖2 is to skip 𝑠𝑝 register (by 1 int32 word instead of 4bits in ASM). 𝑖3 is to set thumb bit,
i.e. bit[0] of 𝑅0 is 1. 𝑖4 causes a branch to the address contained in 𝑅0 and changes the instruction set to Thumb mode.

1 let i0: ins = LDR R1 R0 (OConst 0l)

2 let i1: ins = MOV SP (OReg R1)

3 let i2: ins = LDR R0 R0 (OConst 1l)

4 let i3: ins = ORR R0 R0 (OConst 1l)

5 let i4: ins = BX R0

6 let cpu_jump_to_image_ins = [i0; i1; i2; i3; i4]

Theorem 4 (Functional Correctness) If riotboot finds a suitable image i, then 1/ i should be fletcher32-valid and
be latest comparing with all valid images (functional_correctness_aux0) and 2/ the registers satisfy 𝑠𝑝 = 𝑖 .𝑠𝑡𝑎𝑟𝑡_𝑎𝑑𝑑𝑟 ,
𝑝𝑐 = 𝑖 .𝑠𝑡𝑎𝑟𝑡_𝑎𝑑𝑑𝑟 | 0𝑥1 and the processor mode is Thumb (functional_correctness_aux1).

Functional correctness is defined by two auxiliary lemmas according to the code structure of riotboot: choose_image

requires the images is available and ensures the first lemma, while cpu_jump_to_image assumes the liveness of the
selected image and guarantees the second lemma.

Theorem 5 (Memory Safety) riotboot requires an initially safe memory state and yields a safe final memory state.
Since Low★’s hyper-stack memory model guarantees memory safety of choose_image, we only need to prove that

cpu_jump_to_image is memory-safe. The list_memory_safety lemma is useful for inductively proving this property.

5.2 Discussion

Building the riotboot case study in Low★ based on our ARM-F★ opens to interesting discussions regarding the memory
models of Low★ and the ARM model, the validity of the booted image, and the extracted C and assembly code.

Memory Model. The choose_image module is encoded in Low★. It is based on its hyper-stack memory model while
the cpu_jump_to_image function uses the ARM ISA memory model: a map from physical addresses to bytes. Hence
a potential problem to compose the specification and factor the verification of two modules with different memory

8

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

models. The technique used in VALE [11] can be reproduced to reconcile them by constraining the interface between the
two modules: it defines a correct simulation relation that states that a Low★memory is simulated by a VALE memory,
and proves that store operations in VALE preserve this relation. Since cpu_jump_to_image does not contain any store
instruction (’str’), it is hence trivial to prove that the assembly code sequence of riotboot never modifies memory.

Validity of the booted image. riotboot uses the fletcher32 algorithm to validate the checksum of the selected image. In the
case study, a refinement type is introduced to prove the termination of fletcher32. To guarantee functional correctness
of the algorithm, a solution is to add a predicate to the postcondition of the Low★ code relying on HACSPEC [14] to
verify the functional correctness of cryptographic algorithms encoded in a Rust-like specification language from which
F★ can be generated and used as the basis for proofs. In the present case study, we relied on the verified implementation
of the fletcher32 algorithm provided by HACSPEC to trust image validation.

Extracted Code. riotboot is modeled in Low★ and ARM-F★. Code extraction relies on Low★’s KreMLin compiler to
generate C code and on VALE to generate assembly code. They are composed as a standalone program.

5.3 Evaluation

Our F★/Low★ bootloader implementation relates to the RIOT [24] and RIOT in Rust[25] projects as part of Inria’s
Future-Proof IoT Challenge[15].

Monadic type checking improvements. We rapidly spotted an infinite loop in the original C&Rust versions of riotboot
preventing code generation from Low★, as it would be given the Div(ergent) monad. Instead, we introduced an if
statement (for the case no valid image is found). Strong typing in F★ also allowed us to spot and correct comparisons
of header sequence numbers (i.e. versions) with header start addresses in the Rust version of riotboot[27]. Refine-
ment types also allowed optimizations in riotboot while maintaining a verified equivalence with its unoptimized
translation. For example, the if-statement on line 6 of kernel_init (Sec 3) has an unnecessary condition that can be
omitted: the left part of the condition is equal to the statement riotboot_slot_get_hdr(i)->start_addr according
to the definition of riot_hdr (line 4). But the right part is also equal to that statement according to the definition of
riotboot_slot_get_image_startaddr.

Verification Cost. Our case study demonstrates that the verified programming workflow presented in the paper has
a major impact on validation costs as most verification conditions generated by its type checker can automatically
be discharged by F★’s companion SMT solver Z3. Verification conditions in riotboot are easy to define and express in
F★/Low★. The number of refinement types, pre- and post- conditions we specified are listed in Table 2:

Table 2. Data Statistics of verification conditions
Module Refinement Type Pre-/Post-condition

Choose Image 14 11 / 18
Cpu Jump to Image 0 11 / 26

Refinement types in riotboot are used to set the length or scope of some parameters and can be directly derived from
the source code. e.g. an input variable i, representing an index in an image table, should be less than the table’s length.
Our F★/Low★ implementation expresses the requirement 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ − 1] by a refinement type.

Most pre/post-conditions in Choose Image concern the liveness of buffer pointers holding image headers, because
Low★ requires a pointer to reference a live memory buffer before operation. The preconditions of Cpu Jump to Image

express this memory safety condition and the post-conditions enforce them for all intermediate states.
9

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

Comparison. Table 3 compares our F★model with related verified bootloaders.
Table 3. Comparison of verified bootloaders

Name SourceCode Model Proofs Language
SABLE 600+ 250+ 400+ Isabelle/HOL

First-stage 200+ n.a. n.a. Coq
riotboot 150+ 180+ 12 F★/Low★

n.a.no artifact or data available.

To our knowledge, SABLE is the first formally verified bootloader. It uses the methodology of seL4[17] and adopts
the Isabelle/HOL proof assistant. Its source code is over 600 lines and its formal specification 250 lines. The verification
effort of SABLE represents more than 400 lines of proof.

The first-stage bootloader, another verified bootloader, formally verifies Sanctum’s secure boot[9] (more than 200
lines of C) down to its RISC-V instruction semantics in Coq. Currently, this project is carrying on the whole correctness
proof and, at the time of writing, no data or artifact are available for comparison.

Compared with related works, our verified implementation of riotboot with about 150 lines of C code in F★/Low★.
The formal specification has a similar code size, and verification benefits a high degree of proof automation using the
Z3 SMT solver. To prove the riotboot functional correctness and memory safety, only 7 auxiliary lemmas needed to be
defined and 12 lines of manual proof declared.

6 RELATEDWORKS

6.1 Bootloaders

Secure boot and trusted boot are two well-known features of bootloaders not to conflate with the verified programming
of a bootloader. Secure boot is a valuable feature to help maintain the integrity of a platform at runtime, for example
Android’s Verified Boot. Trusted boot, defined by Trusted Computing Group (TCG), is a process to let a running
application check if the system has booted into a trusted environment, e.g., ARM’s Trusted Boot. While designed with
the highest engineering skills, neither secure or trusted boot have provers’ verified implementations. In this paper, our
goal is to additionally propose a method to guarantee the functional correctness of a bootloader at minor additional
engineering costs. Although some tools, like BootStomp[23], allow to identify bootloader vulnerabilities, our method
allows to formally verify the absence thereof (up to the considered memory model).

Coreboot[33] is an open-source firmware platform delivering a lightning fast and secure boot. Some libraries of
Coreboot, e.g. libgfxinit, written in the SPARK language, can automatically be proved to have no runtime errors, but
most of Coreboot, written in C and assembly, is unverified.

Instead, SABLE is a formally verified bootloader developed using Isabelle/HOL. SABLE’s method proves that the
formalized behavior of bootloader’s implementation, in C, satisfies its abstract specification requirements. Compared to
our approach, the proof scale is quite important (more than 400 lines of proof) and compilation from C to machine code
still remains is unverified (which it could using, e.g., CompCert). It considers Sanctum system’s bootloader deployed on
the RISC-V architectures and verify the first stage of boot. One advantage of this approach is to reuse existing Coq
libraries, for instance the riscv-coq project[13], which implements the RISC-V ISA specification in Coq. However, this
method requires a fully mechanical proof in Coq, and has, at the time of writing and the best of our knowledge, not
delivered a complete and available correctness theorem.

Our method improves related works by employing verified programming to enforce functional correctness properties
at compile-time in a way that maximizes proof automation, as presented in Sec 5.3.

10

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

6.2 Verified assembly languages

Pioneering works such as CompCert[19], seL4 and Sail[3] have formalized many architecture specifications, such as the
x86/x64, ARM and RISC-V ISAs, allowing embedded systems designers to verify the expected properties of low-level
programs using the artifacts of these projects, and complete detailed manual proofs using Isabelle/HOL or Coq.

To the best of our knowledge, the closest and only related work to ARM-F★, presented in this paper is the verified
assembly language environment VALE. VALE is a tool to formally verify high-performance applications written in
assembly language by relying on existing verification frameworks, such as Dafny[18] and F★. Currently, it includes a
limited ARM ISA for the Dafny verification framework and doesn’t support the verification of ARM assembly code in
F★. Our ARM-F★model covers a complete ARM ISA as found in practical applications like riotboot, which comprises
registers (e.g. sp), advanced instructions like orr and bx, and mode transformations between ARM and Thumb ISAs. The
ARM-F★model also formalizes the correctness requirements listed in the ASMmanual and provides both a methodology
and useful lemmas for reuse in practical applications.

7 CONCLUSION AND FUTUREWORKS

In this paper, we have formalized the ARM instruction set in F★, and developed a verified implementation of the RIoT

bootloader. Our formalization of the ARM ISA supports a general instruction set available in most ARM platforms.
We also specify the correctness requirements from the ARM ASM manual and prove them as Lemmas in F★. Next, we
model the RIoT bootloader in Low★, and verify functional correctness and memory safety of its main components.
Our evaluation shows that, not only strong typing in the verified riotboot fixes potential vulnerabilities, provides an
optimized code structure, but most importantly gains from a high degree of proof automation.

Our next project is to verify RIoT’s rBPF subsystem[35] using the same methodology as for riotboot. We expect that
an F★-verified rBPF will provide a more industrial-size experience to highlight the effectiveness of our workflow. Our
final goal is to build useful libraries for the F★/Low★ community to verify low-level embedded programs, and also
provide a set of verified subsystems for the RIoT community.

ACKNOWLEDGMENT

This work is partially supported by the Inria challenge RIOT-fp. The authors are grateful to Kaspar Schleiser and
Emmanuel Baccelli for valuable information and help with riotboot, and to members of the HACSPEC project for
providing a verified model of riotboot’s fletcher32 checksum function.

REFERENCES
[1] Andrew W. Appel. 2011. Verified Software Toolchain. In European Symposium on Programming (Saarbrücken, Germany) (ESOP’11/ETAPS’11).

Springer-Verlag, Berlin, Heidelberg, 1–17.
[2] ARM. 2021. Arm Trusted Firmware. https://github.com/ARM-software/arm-trusted-firmware
[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon

French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS.
Proc. ACM Program. Lang. 3, POPL, Article 71 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290384

[4] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and
Matthias Wählisch. 2018. RIOT: An open source operating system for low-end embedded devices in the IoT. IEEE Internet of Things Journal 5, 6
(2018), 4428–4440.

[5] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, Berlin, Heidelberg.

[6] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson.
2017. Vale: Verifying High-Performance Cryptographic Assembly Code. In 26th USENIX Security Symposium (USENIX Security 17). USENIX

11

https://github.com/ARM-software/arm-trusted-firmware
https://doi.org/10.1145/3290384

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

Association, Vancouver, BC, 917–934. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
[7] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009.

VCC: A practical system for verifying concurrent C. In International Conference on Theorem Proving in Higher Order Logics. Springer, Springer Berlin
Heidelberg, Berlin, Heidelberg, 23–42.

[8] Scott D Constable, Rob Sutton, Arash Sahebolamri, and Steve Chapin. 2018. Formal Verification of a Modern Boot Loader. Technical Report. Electrical
Engineering and Computer Science.

[9] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal hardware extensions for strong software isolation. In 25th USENIX
Security Symposium USENIX Security 16). USENIX Association, Austin, TX, 857–874.

[10] Lucas Franceschino, David Pichardie, and Jean-Pierre Talpin. 2021. Verified functional programming of an abstract interpreter. In Static Analysis
Symposium. ACM, Springer, Cham, Chicago, United States, 1–20.

[11] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem Rastogi, and Nikhil Swamy. 2019. A verified, efficient embedding of a
verifiable assembly language. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30.

[12] GOOGLE. 2021. Verifying Boot. https://source.android.com/security/verifiedboot/verified-boot.html
[13] MIT PLV Group. 2021. riscv-coq:RISC-V Specification in Coq. https://github.com/mit-plv/riscv-coq
[14] hacspec. 2021. A specification language for crypto primitives in Rust. https://github.com/hacspec/hacspec
[15] Inria. 2021. RIOT-fp. https://future-proof-iot.github.io/RIOT-fp/about
[16] Bart Jacobs and Frank Piessens. 2008. The VeriFast program verifier. Technical Report. Citeseer.
[17] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,

Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. SeL4: Formal Verification of an OS Kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09). Association for Computing Machinery, New York, NY, USA, 207–220.

[18] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 348–370.

[19] Xavier Leroy. 2020. The CompCert C verified compiler: Documentation and user’s manual. Intern report. Inria. 1–78 pages.
[20] ARM Limited. 2016. ARM Compiler armasm User Guide v5.06. https://developer.arm.com/documentation/dui0473/m
[21] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL: a proof assistant for higher-order logic. Vol. 2283. Springer Science &

Business Media, Berlin, Heidelberg.
[22] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-

Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017. Verified Low-Level Programming Embedded in F*.
PACMPL 1, ICFP (Sept. 2017), 17:1–17:29. https://doi.org/10.1145/3110261

[23] Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. 2017. BootStomp: On the Security of Bootloaders in Mobile Devices. In 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC, 781–798. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini

[24] RIoT. 2021. RIOT-OS. https://github.com/RIOT-OS/RIOT
[25] RIoT. 2021. RIOT-rs. https://github.com/future-proof-iot/RIOT-rs
[26] RIoT. 2021. riotboot. https://github.com/RIOT-OS/RIOT/tree/master/bootloaders/riotboot
[27] RIoT. 2021. riotboot-rs. https://github.com/kaspar030/riotboot-rs
[28] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Automating the

Foundational Verification of C Code with Refined Ownership Types. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. Association for Computing Machinery, New York, NY, USA, 158–174. https://doi.org/10.1145/3453483.3454036

[29] Zygimantas Straznickas. 2020. Towards a verified first-stage bootloader in Coq. Ph. D. Dissertation. Massachusetts Institute of Technology.
[30] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed programming with

value-dependent types. ACM SIGPLAN Notices 46, 9 (2011), 266–278.
[31] Jean-Pierre Talpin, Jean-Joseph Marty, Shravan Narayan, Deian Stefan, and Rajesh Gupta. 2019. Towards verified programming of embedded devices.

In DATE 2019 - 22nd IEEE/ACM Design, Automation and Test in Europe. IEEE, Florence, Italy, 1445–1450. https://doi.org/10.23919/DATE.2019.8715067
[32] FStar Team. 2021. KreMLin. https://github.com/FStarLang/kremlin
[33] The Coreboot Development Team. 2021. Coreboot. https://www.coreboot.org/
[34] Shenghao YUAN and Jean-Pierre Talpin. 2021. verified riotboot in FStar. https://gitlab.inria.fr/syuan/verified-riotboot
[35] Koen Zandberg and Emmanuel Baccelli. 2020. Minimal Virtual Machines on IoT Microcontrollers: The Case of Berkeley Packet Filters with rBPF. In

9th IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks. IEEE, Berlin / Virtual, Germany, 1–6.

12

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://source.android.com/security/verifiedboot/verified-boot.html
https://github.com/mit-plv/riscv-coq
https://github.com/hacspec/hacspec
https://future-proof-iot.github.io/RIOT-fp/about
https://developer.arm.com/documentation/dui0473/m
https://doi.org/10.1145/3110261
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini
https://github.com/RIOT-OS/RIOT
https://github.com/future-proof-iot/RIOT-rs
https://github.com/RIOT-OS/RIOT/tree/master/bootloaders/riotboot
https://github.com/kaspar030/riotboot-rs
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.23919/DATE.2019.8715067
https://github.com/FStarLang/kremlin
https://www.coreboot.org/
https://gitlab.inria.fr/syuan/verified-riotboot

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

APPENDIX

This appendix lists parts of our implementation of riotboot referenced in this article. As already mentioned, the
complete implementation can be downloaded from a GitLab repository for evaluation purposes: https://gitlab.inria.fr/
syuan/memocode-riotboot.

Section 4.3 defines valid functions to describe the constraints of most ARM instructions: The exception_pc function
says that 𝑟𝑑 can be pc only for a Thumb32 instruction and with a constant 𝑐 in range 0-4095; The 𝑣𝑎𝑙𝑖𝑑 (𝑖, 𝑟𝑛,𝑚) function
says users are suggested to use 𝑝𝑐 or 𝑠𝑝 as the first operand in most ARM instructions;

𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛_𝑝𝑐 (𝑖, 𝑟𝑑)
def
=

0 ≤ 𝑛 ≤ 4095 𝑖 𝑓 𝑟𝑑 = 𝑝𝑐 𝑎𝑛𝑑 𝑖.𝑜𝑝2 = 𝑐

𝑓 𝑎𝑙𝑠𝑒 𝑖 𝑓 𝑟𝑑 = 𝑝𝑐

𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣𝑎𝑙𝑖𝑑 (𝑖, 𝑟𝑛,𝑚) def
=

𝑟𝑛 ≠ 𝑝𝑐 && 𝑟𝑛 ≠ 𝑠𝑝 𝑖 𝑓 𝑖 = adc 𝑎𝑛𝑑 𝑚 = 𝐴𝑅𝑀

𝑟𝑛 ≠ 𝑝𝑐 && 𝑟𝑛 ≠ 𝑠𝑝 𝑖 𝑓 𝑖 = add 𝑎𝑛𝑑 𝑚 = 𝐴𝑅𝑀

...

𝑣𝑎𝑙𝑖𝑑 (𝑖, 𝑜𝑝2,𝑚) def
=

𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑝𝑐, 𝑜𝑝2)
&& 𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑠𝑝, 𝑜𝑝2) 𝑖 𝑓 𝑖 = adc |add ...

𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑝𝑐, 𝑜𝑝2)
&& 𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑠𝑝, 𝑜𝑝2)
&& 𝑛𝑜_𝑟𝑒𝑔_𝑠ℎ𝑖 𝑓 𝑡 (𝑜𝑝2) 𝑖 𝑓 𝑖 = and 𝑎𝑛𝑑 𝑚 = 𝐴𝑅𝑀

𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑝𝑐, 𝑜𝑝2)
&& 𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑠𝑝, 𝑜𝑝2)
&& 1 ≤ 𝑖 .𝑠ℎ ≤ 32 𝑖 𝑓 𝑖 = asr 𝑎𝑛𝑑 𝑚 = 𝑇ℎ𝑢𝑚𝑏𝑖

...

𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑 (𝑟𝑒𝑔, 𝑜𝑝2)
def
=

{
𝑡𝑟𝑢𝑒 𝑖 𝑓 𝑜𝑝2 = 𝑐

𝑟𝑒𝑔 ≠ 𝑟 𝑖 𝑓 𝑜𝑝2 = 𝑟 | |𝑟 𝑠𝑜𝑝

𝑛𝑜_𝑟𝑒𝑔_𝑠ℎ𝑖 𝑓 𝑡 (𝑜𝑝2)
def
=

{
𝑟 ≠ 𝑝𝑐 𝑖 𝑓 𝑜𝑝2 = 𝑟 𝑠𝑜𝑝

𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣𝑎𝑙𝑖𝑑 (𝑜,𝑚) def
=

−4095 ≤ 𝑜 ≤ 4095 𝑖 𝑓 𝑚 = 𝐴𝑅𝑀

−255 ≤ 𝑜 ≤ 4095 𝑖 𝑓 𝑚 = 𝑇ℎ𝑢𝑚𝑏32
0 ≤ 𝑜 ≤ 124 𝑖 𝑓 𝑚 = 𝑇ℎ𝑢𝑚𝑏16

𝑣𝑎𝑙𝑖𝑑 (𝑖,𝑚) def
=

{
𝑚 ≠ 𝐴𝑅𝑀 &&𝑚 ≠ 𝑇ℎ𝑢𝑚𝑏16 𝑖 𝑓 𝑖 = orn
𝑡𝑟𝑢𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Fig. 5. The valid functions and related functions

The 𝑣𝑎𝑙𝑖𝑑 (𝑖, 𝑜𝑝2,𝑚) function says if the second operand is a register, it should not be 𝑝𝑐 or 𝑠𝑝 (i.e. 𝑟𝑒𝑔_𝑛𝑜𝑡_𝑖𝑛_𝑜𝑝𝑒𝑟𝑎𝑛𝑑
(𝑟𝑒𝑔, 𝑜𝑝2)), and if it is a register with a shift, the shift register should not be 𝑝𝑐 (i.e. 𝑛𝑜_𝑟𝑒𝑔_𝑠ℎ𝑖 𝑓 𝑡 (𝑜𝑝2)); The 𝑣𝑎𝑙𝑖𝑑 (𝑜,𝑚)
function says the offset in ARM mode should be in range [-4095,4095], in Thumb32 mode is [-255,4095] and in Thumb16
should be [0,124]; The 𝑣𝑎𝑙𝑖𝑑 (𝑖,𝑚) says ORN is only available in the Thumb32 instruction set.

.1 Semantics of the ARM instruction set

This section details the complete operational semantics of the ARM instruction set as outline in Figures 7-9 in the style
of a state transition system subject to the validity preconditions.

13

https://gitlab.inria.fr/syuan/memocode-riotboot
https://gitlab.inria.fr/syuan/memocode-riotboot

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

.1.1 Semantics of the simple ARM instruction set.

Mode. The processor must be in the correct instruction set state for the ARM instructions it is executing. ARM
instructions are 32 bits wide. Thumb instructions are 16 or 32-bits wide. This paper models three kinds of modes in F★:

1 type mode = ARM | Thumb32 | Thumb16

Condition Flags. The APSR register is a record (flag) holding the negative (N), Zero (Z), Carry (C), and Overflow (V)
condition flags. The processor uses them to determine whether or not to execute conditional instructions.

1 type flag = { (*true => 1; false => 0*)

2 n : bool; (*Negative*)

3 z : bool; (*Zero*)

4 c : bool; (*Carry*)

5 v : bool; (*Overflow*) }

Auxiliary Definitions. The memory model in ARM assembly is exposed by four operations declared as total functions
in F★.

• eval_mem: reads from memory at given address.
• upd_mem: writes into memory at given address.
• eval_reg: reads from a given register ([[reg]]).
• upd_reg: writes into given register (reg/val).

‘[[_]]‘ is also overloaded to get the value of condition flags, for instance [[flags.c]] returns the Carry value. In F★,
these operations are encoded as follows:

1 unfold let eval_mem (addr: int32) (s:arm_state): Tot int32 =

2 load_mem addr s.mem

3 let upd_mem (a:int32) (v:int32) (s:arm_state):Tot arm_state=

4 {s with mem = store_mem a v s.mem}

5 unfold let eval_reg (r:reg) (s:arm_state) : Tot int32 =

6 s.regs r

7 let upd_reg (r:reg) (v:int32) (s:arm_state): Tot arm_state =

8 {s with regs = regs_make (fun (r':reg) ->

9 if r = r' then v else s.regs r') }

Some symbols used in the Fig. 7 and Fig. 8 are explained below:

• +, −, ×, ¬ designate operations in range [−231, 231 − 1].
• &, |, ⊗, and ∼ are bitwise AND, OR, exclusive OR and NOT operations respectively.
• ≫𝑎 is the arithmetic right shift operation.
• ≪ is the logical left shift operation.
• ≫𝑙 is the logical right shift operation.
• ≫𝑟 is the rotate right shift operation.

The unit of a memory cell is a 32-bit integer, so the pc register usually increases by 1 (i.e. 4 bytes).
In order to better explain the shift operations, Fig. 6 shows four examples, where

• ASR #n moves the left-hand 32-n bits of a register to the right by n places, into the right-hand 32-n bits of the result.
It copies the original bit(31) of the register into the left-hand n bits of the result.

14

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

Fig. 6. Four shift operation: examples.

• LSR #n moves the left-hand 32-n bits of a register to the right by n places, into the right-hand 32-n bits of the result.
It sets the left-hand n bits of the result to 0.

• LSL #n moves the right-hand 32-n bits of a register to the left by n places, into the left-hand 32-n bits of the result. It
sets the right-hand n bits of the result to 0.

• ROR #n moves the left-hand 32-n bits of a register to the right by n places, into the right-hand 32-n bits of the result.
It also moves the right-hand n bits of the register into the left-hand n bits of the result.

Note that the shift operations don’t modify the Carry flag if the instruction lacks the condition flag suffix.

.1.2 Instructions with Condition Suffix. Most instructions can update the condition flags when the suffix s is specified.
But there are two special cases: the instructions cmp and cmn always update this flag, while the instructions bx, ldr,
neg, nop and str never do (they don’t support that suffix). This section mainly discusses the semantics of instructions
with condition suffix, i.e. of the form ‘{𝑠} 𝑖‘.

Three update functions are defined to classify the scenarios:

• The upd_arithmetic function updates the four condition flags according to the result of an instruction.
– C = 1 if an addition instruction (adc/add/cmn) produces a carry, or a subtraction instruction (cmp/sub) produce a
borrow, otherwise C = 0.

– V = 1 if the result of a signed add, subtract, or compare is greater than or equal to 231, or less than -231

• The upd_logical function is used to update N, Z and C flags after performing the mov instruction or bitwise
instructions.
– C: updates the flag during calculation of 2𝑛𝑑 operand.
– V: does not affect the flag.

• The upd_shift function updates the three flags.
– C: The flag is updated to the last bit shifted out.
– V: does not affect the flag.

Fig. 9 shows the semantics rules of some instructions with condition suffix.

.2 Functional correctness of the assembly boot code

This section is the proof of functional correctness of the core assembly boot sequence code of the bootloader.

15

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐶 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]]+[[𝑓 𝑙𝑎𝑔𝑠.𝑐]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑑𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑑𝑑)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝑁𝐷 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]&[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑛𝑑)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐴𝑆𝑅 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/𝑟𝑛 ≫𝑎 𝑟𝑠 , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑠𝑟)

𝑠𝑡 .𝑜𝑘 ∧ [[𝑟𝑑]] .𝑏𝑖𝑡 (0) = 0 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒/𝑇ℎ𝑢𝑚𝑏16 , 𝑝𝑐/[[𝑟𝑑]]]

(𝑏𝑥1)

𝑠𝑡 .𝑜𝑘 ∧ [[𝑟𝑑]] .𝑏𝑖𝑡 (0) = 1 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒/𝐴𝑅𝑀 , 𝑝𝑐/[[𝑟𝑑]]]

(𝑏𝑥2)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐶𝑀𝑁 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ ([[𝑟𝑛]]+[[𝑜𝑝2]]) , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑐𝑚𝑛)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐶𝑀𝑃 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ ([[𝑟𝑛]]−[[𝑜𝑝2]]) , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑐𝑚𝑝)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐸𝑂𝑅 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ⊗ [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑒𝑜𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜)
(𝐿𝐷𝑅 𝑟𝑑 𝑟𝑛 𝑜, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/{{ [[𝑟𝑛]]+[[𝑜]] }}, 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑑𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝐿 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≪[[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑠𝑙)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝑅 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≫𝑙 [[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑠𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑀𝑂𝑉 𝑟𝑑 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑚𝑜𝑣)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑚)
(𝑀𝑈𝐿 𝑟𝑑 𝑟𝑛 𝑟𝑚, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑑]]×[[𝑟𝑚]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑚𝑢𝑙)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑚)
(𝑁𝐸𝐺 𝑟𝑑 𝑟𝑚, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/¬[[𝑟𝑚]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑛𝑒𝑔)

𝑠𝑡 .𝑜𝑘

(𝑁𝑂𝑃, 𝑠𝑡) → 𝑠𝑡 [𝑝𝑐/[[𝑝𝑐]]+1]
(𝑛𝑜𝑝)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒)
(𝑂𝑅𝑁 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | (∼[[𝑜𝑝2]]) , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑜𝑟𝑛)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑂𝑅𝑅 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑜𝑟𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝑅𝑂𝑅 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ≫𝑟 [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑟𝑜𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜)
(𝑆𝑇𝑅 𝑟𝑑 𝑟𝑛 𝑜, 𝑠𝑡) → 𝑠𝑡 [{[[𝑟𝑛]] + [[𝑜]]}/[[𝑟𝑑]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑠𝑡𝑟)

𝑠𝑡 .𝑜𝑘 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑆𝑈𝐵 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]−[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑠𝑢𝑏)

Fig. 7. Semantics of the simple ARM instruction set

16

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐶𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]]+[[𝑓 𝑙𝑎𝑔𝑠.𝑐]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑑𝑐𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑑𝑑𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝑁𝐷𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]&[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑛𝑑𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐴𝑆𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/𝑟𝑛 ≫𝑎 𝑟𝑠 , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑎𝑠𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ [[𝑟𝑑]] .𝑏𝑖𝑡 (0) = 0 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋𝐶 𝑐 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒/𝑇ℎ𝑢𝑚𝑏16 , 𝑝𝑐/[[𝑟𝑑]]]

(𝑏𝑥𝑐1)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ [[𝑟𝑑]] .𝑏𝑖𝑡 (0) = 1 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑)
(𝐵𝑋𝐶 𝑐 𝑟𝑑, 𝑠𝑡) → 𝑠𝑡 [𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒/𝐴𝑅𝑀 , 𝑝𝑐/[[𝑟𝑑]]]

(𝑏𝑥𝑐2)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐸𝑂𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ⊗ [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑒𝑜𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜)
(𝐿𝐷𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/{{ [[𝑟𝑛]]+[[𝑜]] }}, 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑑𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝐿𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≪[[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑠𝑙𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≫𝑙 [[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑙𝑠𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑀𝑂𝑉𝐶 𝑐 𝑟𝑑 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑚𝑜𝑣𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑚)
(𝑀𝑈𝐿𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑚, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑑]]×[[𝑟𝑚]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑚𝑢𝑙𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑚)
(𝑁𝐸𝐺𝐶 𝑐 𝑟𝑑 𝑟𝑚, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/¬[[𝑟𝑚]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑛𝑒𝑔𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡)
(𝑁𝑂𝑃𝐶 𝑐, 𝑠𝑡) → 𝑠𝑡 [𝑝𝑐/[[𝑝𝑐]]+1]

(𝑛𝑜𝑝𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒)
(𝑂𝑅𝑁𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | (∼[[𝑜𝑝2]]) , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑜𝑟𝑛𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑂𝑅𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑜𝑟𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝑅𝑂𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ≫𝑟 [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑟𝑜𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜)
(𝑆𝑇𝑅𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜, 𝑠𝑡) → 𝑠𝑡 [{[[𝑟𝑛]] + [[𝑜]]}/[[𝑟𝑑]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑠𝑡𝑟𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑆𝑈𝐵𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]−[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1]

(𝑠𝑢𝑏𝑐)

Fig. 8. Semantics of conditional ARM instruction sets

1 val functional_connectness_aux2_0: st:arm_state -> Lemma

2 (requires (st.ok=true))

3 (ensures (let st0 = eval_cond_ins i0 st in

4 let r0' = eval_reg R0 st in

5 let r0 = eval_reg R0 st0 in

6 let r1_0 = eval_reg R1 st0 in

17

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐶𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]]+[[𝑓 𝑙𝑎𝑔𝑠.𝑐]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]] +𝑖 [[𝑓 𝑙𝑎𝑔𝑠.𝑐]])]

(𝑎𝑑𝑐𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝐷𝐷𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]+[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑎𝑑𝑑𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐴𝑁𝐷𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]&[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑎𝑛𝑑𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐴𝑆𝑅𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/𝑟𝑛 ≫𝑎 𝑟𝑠 , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]], [[𝑟𝑠])]

(𝑎𝑠𝑟𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝐸𝑂𝑅𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ⊗ [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑒𝑜𝑟𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝐿𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≪[[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]], [[𝑟𝑠])]

(𝑙𝑠𝑙𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝐿𝑆𝑅𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑑 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]≫𝑙 [[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]], [[𝑟𝑠])]

(𝑙𝑠𝑟𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑀𝑂𝑉𝑆𝐶 𝑐 𝑟𝑑 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ([[𝑜𝑝2]])]

(𝑚𝑜𝑣𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑚)
(𝑀𝑈𝐿𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑚, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑑]]×[[𝑟𝑚]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ([[𝑟𝑛]] +𝑖 [[𝑟𝑚]])] (𝑚𝑢𝑙𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑠𝑡 .𝑖𝑠𝑎_𝑚𝑜𝑑𝑒)
(𝑂𝑅𝑁𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | (∼[[𝑜𝑝2]]) , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑜𝑟𝑛𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑂𝑅𝑅𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] | [[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑜𝑟𝑟𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑠)
(𝑅𝑂𝑅𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑟𝑠, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]] ≫𝑟 [[𝑟𝑠]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑢𝑝𝑑𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ([[𝑟𝑛]], [[𝑟𝑠]])]

(𝑟𝑜𝑟𝑠𝑐)

𝑠𝑡 .𝑜𝑘 ∧ 𝑐𝑜𝑛𝑑 (𝑐, 𝑠𝑡) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑑) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑟𝑛) ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑜𝑝2)
(𝑆𝑈𝐵𝑆𝐶 𝑐 𝑟𝑑 𝑟𝑛 𝑜𝑝2, 𝑠𝑡) → 𝑠𝑡 [𝑟𝑑/[[𝑟𝑛]]−[[𝑜𝑝2]] , 𝑝𝑐/[[𝑝𝑐]]+1, 𝑓 𝑙𝑎𝑔𝑠/𝑢𝑝𝑑_𝑎𝑟𝑖𝑡ℎ([[𝑟𝑛]] +𝑖 [[𝑜𝑝2]])]

(𝑠𝑢𝑏𝑠𝑐)

Fig. 9. Semantics of conditional ARM instructions with condition suffix

7 r1_0 == (eval_mem r0' st) /\

8 r0 == r0'

9))

10 let functional_connectness_aux2_0 st = ()

11

12 val functional_connectness_aux2_1: st:arm_state -> Lemma

13 (requires (st.ok=true))

14 (ensures (let st1 = eval_cond_ins i1 st in

15 let r0' = eval_reg R0 st in

16 let r0 = eval_reg R0 st1 in

17 let r1' = eval_reg R1 st in

18 let r1 = eval_reg R1 st1 in

19 let sp = eval_reg SP st1 in

20 sp == r1 /\

21 r1 == r1' /\

22 r0 == r0'

23))

24 let functional_connectness_aux2_1 st = ()

25

18

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

26 val functional_connectness_aux2_2: st:arm_state -> Lemma

27 (requires (st.ok=true))

28 (ensures (let st2 = eval_cond_ins i2 st in

29 let r0' = eval_reg R0 st in

30 let r0 = eval_reg R0 st2 in

31 let r1' = eval_reg R1 st in

32 let r1 = eval_reg R1 st2 in

33 let addr = Int32.int_to_t (add_mod (Int32.v r0') (Int32.v 1l)) in

34 let sp' = eval_reg SP st in

35 let sp = eval_reg SP st2 in

36 r0 == eval_mem addr st /\

37 r1 == r1' /\

38 sp' == sp

39))

40 let functional_connectness_aux2_2 st = ()

41

42 val functional_connectness_aux2_3: st:arm_state -> Lemma

43 (requires (st.ok=true))

44 (ensures (let st3 = eval_cond_ins i3 st in

45 let r0' = eval_reg R0 st in

46 let r0 = eval_reg R0 st3 in

47 let r1' = eval_reg R1 st in

48 let r1 = eval_reg R1 st3 in

49 let sp' = eval_reg SP st in

50 let sp = eval_reg SP st3 in

51 bit_n (Int32.v r0) 31 == true /\

52 r0 == Int32.int_to_t (logor (Int32.v r0') (Int32.v 1l)) /\

53 r1 == r1' /\

54 sp' == sp

55))

56

57 #push-options "--ifuel 50 --fuel 50 --z3rlimit 320"

58 let functional_connectness_aux2_3 st = ()

59 #pop-options

60

61 val functional_connectness_aux2_4: st:arm_state -> Lemma

62 (requires (st.ok=true /\

63 (let r0 = eval_reg R0 st in

64 bit_n (Int32.v r0) 31 == true)

65))

66 (ensures (let st4 = eval_cond_ins i4 st in

67 let pc = eval_reg PC st4 in

68 let r0' = eval_reg R0 st in

69 let r0 = eval_reg R0 st4 in

70 let r1' = eval_reg R1 st in

71 let r1 = eval_reg R1 st4 in

72 let sp' = eval_reg SP st in

73 let sp = eval_reg SP st4 in

74 st4.isa_mode == Thumb16 /\

75 sp == sp' /\

76 r0 == r0' /\

19

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

77 r1 == r1' /\

78 pc == r0

79))

80 let functional_connectness_aux2_4 st = ()

81

82 val functional_connectness_aux1: st:arm_state -> Lemma

83 (requires (st.ok = true))

84 (ensures (let st' = eval_list_ins cplist st in

85 let st0 = eval_cond_ins i0 st in

86 let st1 = eval_cond_ins i1 st0 in

87 let st2 = eval_cond_ins i2 st1 in

88 let st3 = eval_cond_ins i3 st2 in

89 let st4 = eval_cond_ins i4 st3 in

90 st' == st4

91))

92 let functional_connectness_aux1 st = ()

93

94 val functional_connectness_aux2: st:arm_state -> Lemma

95 (requires (st.ok = true))

96 (ensures (let st0 = eval_cond_ins i0 st in

97 let st1 = eval_cond_ins i1 st0 in

98 let st2 = eval_cond_ins i2 st1 in

99 let st3 = eval_cond_ins i3 st2 in

100 let st4 = eval_cond_ins i4 st3 in

101 let r0' = eval_reg R0 st in

102 let addr = Int32.int_to_t (add_mod (Int32.v r0') (Int32.v 1l)) in

103 let sp = eval_reg SP st4 in

104 let r1 = eval_mem r0' st in

105 let pc = eval_reg PC st4 in

106 let r0 = eval_reg R0 st4 in

107 st4.isa_mode == Thumb16 /\

108 sp == r1 /\

109 r0 == Int32.int_to_t (logor (Int32.v (eval_mem addr st)) (Int32.v 1l)) /\

110 pc == r0

111))

112

113 #push-options "--ifuel 50 --fuel 50 --z3rlimit 320"

114 let functional_connectness_aux2 st =

115 let st0 = eval_cond_ins i0 st in

116 let st1 = eval_cond_ins i1 st0 in

117 let st2 = eval_cond_ins i2 st1 in

118 let st3 = eval_cond_ins i3 st2 in

119 functional_connectness_aux2_0 st;

120 functional_connectness_aux2_1 st0;

121 functional_connectness_aux2_2 st1;

122 functional_connectness_aux2_3 st2;

123 functional_connectness_aux2_4 st3

124 #pop-options

125

126 val functional_connectness: st:arm_state -> Lemma

127 (requires (st.ok=true))

20

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

128 (ensures (let st1 = eval_list_ins cplist st in

129 let r0' = eval_reg R0 st in

130 let sp = eval_reg SP st1 in

131 let r0 = eval_reg R0 st1 in

132 let addr = Int32.int_to_t (add_mod (Int32.v r0') (Int32.v 1l)) in

133 let pc = eval_reg PC st1 in

134 let r1 = eval_mem r0' st in

135 r0 == Int32.int_to_t (logor (Int32.v (eval_mem addr st)) (Int32.v 1l)) /\

136 sp == r1 /\

137 pc == r0

138))

139

140 #push-options "--ifuel 50 --fuel 50 --z3rlimit 320"

141 let functional_connectness st =

142 functional_connectness_aux1 st; functional_connectness_aux2 st

143 #pop-options

.3 Validated choose_image function

Finally, this section lists the verified fletcher32 and choose_image functions of the bootloader.

1 type fletcher = (pub_uint32 & pub_uint32)

2 type header = (pub_uint32 & pub_uint32 & pub_uint32 & pub_uint32)

3

4 let riotboot_magic : pub_uint32 =

5 pub_u32 0x544f4952

6 let new_fletcher () : fletcher =

7 (pub_u32 0x0, pub_u32 0x0)

8 let max_chunk_size () : uint_size =

9 usize 360

10

11 let reduce_u32 (x_0 : pub_uint32) : pub_uint32 =

12 ((x_0) &. (pub_u32 0xffff)) +. ((x_0) `shift_right` (pub_u32 0x10))

13

14 let combine (lower_1 : pub_uint32) (upper_2 : pub_uint32) : pub_uint32 =

15 (lower_1) |. ((upper_2) `shift_left` (pub_u32 0x10))

16

17 let update_fletcher (f_3 : fletcher) (data_4 : seq pub_uint16) : fletcher =

18 let max_chunk_size_5 = max_chunk_size () in

19 let (a_6, b_7) = f_3 in

20 let (a_6, b_7) =

21 foldi (usize 0) (seq_num_chunks (data_4) (max_chunk_size_5)) (fun i_8 (

22 a_6,

23 b_7

24) ->

25 let (chunk_len_9, chunk_10) =

26 seq_get_chunk (data_4) (i_8) (max_chunk_size_5)

27 in

28 let intermediate_a_11 = a_6 in

29 let intermediate_b_12 = b_7 in

21

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

30 let (intermediate_a_11, intermediate_b_12) =

31 foldi (usize 0) (chunk_len_9) (fun j_13 (

32 intermediate_a_11,

33 intermediate_b_12

34) ->

35 let intermediate_a_11 =

36 (intermediate_a_11) +. (

37 cast U32 PUB (array_index

38 (**) #pub_uint16 #chunk_len_9

39 (chunk_10) (j_13)))

40 in

41 let intermediate_b_12 = (intermediate_b_12) +. (intermediate_a_11) in

42 (intermediate_a_11, intermediate_b_12))

43 (intermediate_a_11, intermediate_b_12)

44 in

45 let a_6 = reduce_u32 (intermediate_a_11) in

46 let b_7 = reduce_u32 (intermediate_b_12) in

47 (a_6, b_7))

48 (a_6, b_7)

49 in

50 let a_6 = reduce_u32 (a_6) in

51 let b_7 = reduce_u32 (b_7) in

52 (a_6, b_7)

53

54 let value (x_14 : fletcher) : pub_uint32 =

55 let (a_15, b_16) = x_14 in

56 combine (a_15) (b_16)

57

58 let header_as_u16_slice (h_17 : header) : seq pub_uint16 =

59 let (magic_18, seq_number_19, start_addr_20, _) = h_17 in

60 let magic_21 = u32_to_be_bytes (magic_18) in

61 let seq_number_22 = u32_to_be_bytes (seq_number_19) in

62 let start_addr_23 = u32_to_be_bytes (start_addr_20) in

63 let u8_seq_24 = seq_new_ (pub_u8 0x0) (usize 12) in

64 let u8_seq_25 =

65 seq_update_slice (u8_seq_24) (usize 0) (magic_21) (usize 0) (usize 4)

66 in

67 let u8_seq_26 =

68 seq_update_slice (u8_seq_25) (usize 4) (seq_number_22) (usize 0) (usize 4)

69 in

70 let u8_seq_27 =

71 seq_update_slice (u8_seq_26) (usize 8) (start_addr_23) (usize 0) (usize 4)

72 in

73 let u16_seq_28 = seq_new_ (pub_u16 0x0) (usize 6) in

74 let (u16_seq_28) =

75 foldi (usize 0) (usize 6) (fun i_29 (u16_seq_28) ->

76 let u16_word_30 =

77 array_from_seq (2) (

78 seq_slice (u8_seq_27) ((i_29) * (usize 2)) (usize 2))

79 in

80 let u16_value_31 = u16_from_be_bytes (u16_word_30) in

22

Verified functional programming of an IoT operating system’s bootloader MEMOCODE ’21, Nov 20–22, 2021, Beijing, China

81 let u16_seq_28 = array_upd u16_seq_28 (i_29) (u16_value_31) in

82 (u16_seq_28))

83 (u16_seq_28)

84 in

85 u16_seq_28

86

87 let is_valid_header (h_32 : header) : bool =

88 let (magic_number_33, seq_number_34, start_addr_35, checksum_36) = h_32 in

89 let slice_37 =

90 header_as_u16_slice (

91 (magic_number_33, seq_number_34, start_addr_35, checksum_36))

92 in

93 let result_38 = false in

94 let (result_38) =

95 if (magic_number_33) = (riotboot_magic) then begin

96 let fletcher_39 = new_fletcher () in

97 let fletcher_40 = update_fletcher (fletcher_39) (slice_37) in

98 let sum_41 = value (fletcher_40) in

99 let result_38 = (sum_41) = (checksum_36) in

100 (result_38)

101 end else begin (result_38)

102 end

103 in

104 result_38

105

106 let choose_image (images_42 : seq header) : (bool & pub_uint32) =

107 let image_43 = pub_u32 0x0 in

108 let image_found_44 = false in

109 let (image_43, image_found_44) =

110 foldi (usize 0) (seq_len (images_42)) (fun i_45 (image_43, image_found_44

111) ->

112 let header_46 = array_index

113 (**) #header #(seq_len images_42)

114 (images_42) (i_45)

115 in

116 let (magic_number_47, seq_number_48, start_addr_49, checksum_50) =

117 header_46

118 in

119 let (image_43, image_found_44) =

120 if is_valid_header (

121 (magic_number_47, seq_number_48, start_addr_49, checksum_50

122)) then begin

123 let change_image_51 =

124 not ((image_found_44) && ((seq_number_48) <=. (image_43)))

125 in

126 let (image_43, image_found_44) =

127 if change_image_51 then begin

128 let image_43 = start_addr_49 in

129 let image_found_44 = true in

130 (image_43, image_found_44)

131 end else begin (image_43, image_found_44)

23

MEMOCODE ’21, Nov 20–22, 2021, Beijing, China Yuan and Talpin.

132 end

133 in

134 (image_43, image_found_44)

135 end else begin (image_43, image_found_44)

136 end

137 in

138 (image_43, image_found_44))

139 (image_43, image_found_44)

140 in

141 (image_found_44, image_43)

24

	Abstract
	1 Introduction
	2 A brief overview of F and Low
	3 Riotboot overview
	4 Formalizing the ARM ISA in F
	4.1 Syntax
	4.2 Machine state
	4.3 Operational Semantics
	4.4 Properties of the ARM ISA

	5 Evaluation Case Study
	5.1 Implementation & Verification
	5.2 Discussion
	5.3 Evaluation

	6 Related Works
	6.1 Bootloaders
	6.2 Verified assembly languages

	7 Conclusion and Future Works
	References
	.1 Semantics of the ARM instruction set
	.2 Functional correctness of the assembly boot code
	.3 Validated choose_image function

