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Context
Passive BCI (pBCI) has recently gained in popularity through its applications, e.g. workload and
attention assessment1,2. Nevertheless, one of the main limitations remains the important intra- and
inter-subject variability2. We propose a robust approach relying on ensemble learning, grounded in
functional connectivity and Riemannian geometry to mitigate the high variability of the data with a
large and diverse panel of classifiers.

Methods
Riemannian geometry
The use of Riemannian geometry (RG) has raised a growing interest within the BCI community in the
last ten years to become the gold standard in specific paradigms such as motor imagery-based BCI3,4.
Recent works have also used RG in the context of passive BCI5.

The approach consists in estimating the covariance matrix of each epoch. Covariance
matrices are symmetric positive definite (SPD), i.e. symmetric matrices with strictly positive
eigenvalues. In Riemannian geometry, the distance between two SPD matrices and is:δ Σ
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A simple classifier for SPD matrices is the Minimum Distance to Mean (MDM) that could be combined
with a geodesic filter. It is also possible to use any standard classifier in the tangent space.

The Riemannian geometry was applied on SPD matrices extracted from spatial covariances. In
a contribution on motor imagery-based BCI, we adopted an alternative approach by computing SPD
matrices from functional connectivity estimators that gave promising results6. In this submission, we
aimed at applying this method in the frame of passive BCI.

Functional connectivity
Functional connectivity (FC) gives an estimation of the interaction between brain areas7. Such an
approach has been proved to discriminate subjects’ mental states and to elicit neurophysiological
patterns of BCI training8. In this submission, for a given trial, we took into account the whole time
window to estimate the FC and we averaged the FC values within two frequency bands: 𝛼-β (8-35Hz)
and low-𝛾 (30-45Hz) bands. In the following paragraphs, we defined the metrics computed between
two given signals referred as s1(t) and s2(t) between two EEG sensors. We computed three
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complementary FC estimators: the coherence (Coh), the imaginary coherence (ImCoh), and the
phase-locking value (PLV).

Coh and ImCoh are both computed from the coherency, defined as the normalized
cross-spectral density obtained from two given signals. More specifically, they can be obtained as
follows:
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PLV gives access to the phase synchrony between s1(t) and s2(t). It corresponds to the

absolute value of the mean phase between s1 and s2, defined as follows9:
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and s2 and , represents the analytic signal obtained by applying the Hilbert𝑧 𝑡( ) = 𝑠 𝑡( ) + 𝑖. ℎ(𝑠(𝑡))
transform on the signal s(t).ℎ

Ensemble learning
No specific feature space emerges from the literature on workload and, in this challenge, an
examination of the individual performance of classifiers shows that their performances are highly
variable. We decided to combine the best classifiers (first-level) using an ensemble ridge classifier
(second-level) as shown on Fig. 1: Those 10 first-level classifiers are: 6 filters Common Spatial Patterns
+ Support Vector Machine (CSP+SVM), Source Power Comodulation + ElasticNet (SPoC+EN), geodesic
filtering MDM (fgMDM) on covariance for 𝛼-β band, fgMDM on covariance for low-𝛾 band, fgMDM
on coherence for 𝛼-β band, fgMDM on coherence for low-𝛾 band, ElasticNet in tangent space (EN)
for imaginary coherence in 𝛼-β band, EN for imaginary coherence in low-𝛾 band, EN for PLV in in 𝛼-β
band and EN for PLV in low-𝛾 band. We used all electrodes available.

Fig. 1: Proposed architecture for ensemble learning.

Classification results for S1 & S2
The results obtained on training sessions, S1 and S2, are displayed below. The Fig. 2.A shows the
balanced accuracy obtained with the ensemble classifier and each first-level classifier. The top rain
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plot displays the accuracy when training on S2 and testing on S1, the bottom plot displays the results
for training on S1 and testing on S2. The performances of subjects with the ensemble classifier are
shown on Fig. 2.B for each session.

Fig. 2: Results obtained from the first two sessions. (A) Group-level results associated with all the
tested classifiers. On the top, we classified the data from S1 by considering data from S2 as a training
set. On the bottom, data from S2 were classified by considering S1 as the training set. (B)
Individual-level results. Here we only presented results obtained from the ensemble classifier.
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