
HAL Id: hal-03361644
https://hal.inria.fr/hal-03361644

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing

Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, Gilles Muller

To cite this version:
Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Processing. NSDI’21 - 18th USENIX Symposium on
Networked Systems Design and Implementation, Apr 2021, Virtual event, United States. pp.487-501.
�hal-03361644�

https://hal.inria.fr/hal-03361644
https://hal.archives-ouvertes.fr

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack
Processing

Yoann Ghigoff
Orange Labs

Sorbonne Université, LIP6, Inria

Julien Sopena
Sorbonne Université, LIP6

Kahina Lazri
Orange Labs

Antoine Blin
Gandi

Gilles Muller
Inria

Abstract
In-memory key-value stores are critical components that

help scale large internet services by providing low-latency
access to popular data. Memcached, one of the most pop-
ular key-value stores, suffers from performance limitations
inherent to the Linux networking stack and fails to achieve
high performance when using high-speed network interfaces.
While the Linux network stack can be bypassed using DPDK
based solutions, such approaches require a complete redesign
of the software stack and induce high CPU utilization even
when client load is low.

To overcome these limitations, we present BMC, an in-
kernel cache for Memcached that serves requests before the
execution of the standard network stack. Requests to the BMC
cache are treated as part of the NIC interrupts, which allows
performance to scale with the number of cores serving the
NIC queues. To ensure safety, BMC is implemented using
eBPF. Despite the safety constraints of eBPF, we show that it
is possible to implement a complex cache service. Because
BMC runs on commodity hardware and requires modification
of neither the Linux kernel nor the Memcached application, it
can be widely deployed on existing systems. BMC optimizes
the processing time of Facebook-like small-size requests. On
this target workload, our evaluations show that BMC improves
throughput by up to 18x compared to the vanilla Memcached
application and up to 6x compared to an optimized version
of Memcached that uses the SO_REUSEPORT socket flag.
In addition, our results also show that BMC has negligible
overhead and does not deteriorate throughput when treating
non-target workloads.

1 Introduction

Memcached [22] is a high-performance in-memory key-value
store used as a caching-service solution by cloud providers [1]
and large-scale web services [3, 38]. Memcached allows such
services to reduce web request latency and alleviate the load
on backend databases by using main memory to store and
serve popular data over the network.

Memcached, however, is prone to bottlenecks introduced
by the underlying operating system’s network stack, includ-
ing Linux’s [14, 34], since the main goal of general purpose
operating systems is to provide applications with flexible ab-
stractions and interfaces. To achieve high throughput and low
latency, user applications can give up using the standard ker-
nel interfaces by using kernel-bypass technologies such as
DPDK [4] which allow an application to program network
hardware and perform packet I/O from userspace. The ap-
plication that has control of the network hardware is then
responsible for implementing a network stack that fits its
specific needs [12, 26]. However, kernel-bypass comes with
drawbacks. First, it eliminates security policies enforced by
the kernel, such as memory isolation or firewalling. Specific
hardware extensions, i.e. an IOMMU and SR-IOV [13, 18],
or software-based isolation are then required to maintain stan-
dard security levels. Second, kernel-bypass relies on dedi-
cating CPU cores to poll incoming packets, trading off CPU
resources for low latency. This prevents the cores from being
shared with other applications even when the client load is low.
Third, kernel-bypass requires an extensive re-engineering of
the existing application in order to achieve high performance
with a dedicated network stack.

In this paper, we propose BPF Memcached Cache (BMC)
to address the kernel bottlenecks impacting Memcached.
BMC focuses on accelerating the processing of small GET
requests over UDP to achieve high throughput as previous
work from Facebook [11] has shown that these requests make
up a significant portion of Memcached traffic. Contrary to
hardware-specific accelerators, BMC runs on standard hard-
ware and thus can be deployed on infrastructure with het-
erogeneous hardware. BMC relies on a pre-stack processing
approach that consists in intercepting requests directly from
the network driver, before they are delivered to the standard
network stack, and processing them using an in-kernel cache.
This provides the ability to serve requests with low latency
and to fall back to the Memcached application when a re-
quest cannot be treated by BMC. BMC can leverage modern
network card features such as multi-queues to process multi-

ple requests in parallel (see Figure 1). In addition, the BMC
cache uses a separate lock for each entry to introduce minimal
overhead and allow performance to scale with the number of
cores.

Running BMC at the kernel level raises safety issues as a
bug in its implementation could put the entire system at risk.
To address this issue, BMC is implemented using eBPF. The
Berkeley Packet Filter (BPF) [35], and its extended version,
eBPF, is a bytecode and a safe runtime environment offered
by the Linux kernel to provide userspace an approach to in-
ject code inside the kernel. The Linux kernel includes a static
analyzer to check that the injected code is safe before it can
be executed, which limits the expressiveness of the injected
code. We show how to circumvent this limitation by parti-
tioning complex functionality into small eBPF programs and
by bounding the data that BMC processes. Using eBPF also
allows BMC to be run without requiring any modification to
the Linux kernel or to the Memcached application, making
it easy to deploy on existing systems. The eBPF bytecode of
BMC is compiled from 513 lines of C code and is JIT com-
piled by the Linux kernel. This results in BMC introducing a
very low overhead into the OS network stack.

RX
core

RX
core

RX
core

Network
driver

Network
driver

Network
driver

BMCBMCBMC

Network
stack

Network
stack

Network
stack

Memcached

Socket API

Network
stack

BMC

Network
driver

RX
core

Network interface card

Figure 1: General architecture

The main results of this paper include:

• The identification of the bottlenecks of Memcached
when processing requests over UDP. We propose Mem-
cachedSR, a modified version of Memcached that uses
the SO_REUSEPORT socket option to scale with the
number of threads, improving throughput by 3x com-
pared to the vanilla Memcached.

• The evaluation of BMC under our target workload con-
sisting of small requests. In this setting, BMC im-
proves the throughput by up to 6x with respect to Mem-
cachedSR and by up to 18x with respect to vanilla Mem-
cached.

• The evaluation of BMC under a non-target workload
that consists of large requests not processed by BMC. In
this setting, BMC has negligible overhead and does not
deteriorate throughput with respect to MemcachedSR.

• The comparison of BMC with a dummy cache that shows
that BMC’s design is well suited for high throughput
performance as it does not introduce unnecessary com-
plexity.

• The comparison of Memcached running with BMC
against a Memcached implementation based on Seastar,
a networking stack for DPDK [4]. Our results show that
Memcached with BMC achieves similar throughput to
Seastar but uses 3x less CPU resources.

The rest of this paper is organized as follows. Section 2
provides background on Memcached and the OS network
stack bottlenecks it suffers from. Section 3 describes BMC
and its design. Section 4 discusses implementation details.
Section 5 presents the experimental results. Section 6 dis-
cusses the generalization of BMC and its memory allocation
challenges. Section 7 presents related work. Finally, Section 8
concludes the paper.

2 Background and motivation

This section describes the limitations of Memcached that
motivate our work, and describes the eBPF runtime used to
implement BMC.

2.1 Memcached
Memcached [8] is a mature in-memory key-value store tradi-
tionally used as a cache by web applications in a datacenter
environment to speed up request processing and reduce the
load on back-end databases. Because of its popularity, a lot
of work has been put into optimizing it [33, 42].

A Memcached server operates on items, which are objects
used to store a key and its associated value and metadata.
Clients send requests to a Memcached server using a basic
command-based protocol, of which GET and SET are the
most important commands. A GET key command retrieves
the value associated with the specified key if it is stored by
Memcached and a SET key value command stores the spec-
ified key-value pair. A GET command can also be used as
a multiget request when a client needs to retrieve multiple
values at once. Requests can be sent using either the TCP or
the UDP transport protocol.

The data management of Memcached has been well op-
timized and relies on slab allocation, a LRU algorithm and
a hash table to allocate, remove and retrieve items stored in
memory. Previous studies [14, 28] have shown that Mem-
cached performance and scalability are heavily impaired by
OS network stack bottlenecks, especially when receiving a
large number of small requests. Since Facebook’s production

workloads show a 30:1 distribution between GET and SET
commands, Nishtala et al. [38] proposed using UDP instead of
TCP for GET commands to avoid the cost of TCP processing.

To gain additional insight into the performance of a Mem-
cached server using UDP to receive GET requests, we pro-
filed the CPU consumption while trying to achieve maximum
throughput (experimental setup is described in Section 5). As
shown in Figure 2, more than 50% of Memcached’s runtime
is spent executing system calls. Moreover, the CPU usage
of both sys_recvfrom and sys_sendmsg increases as more
threads are allocated to Memcached. When eight threads are
used by Memcached, the total CPU usage of these three sys-
tem calls reaches 80%.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

of threads

C
PU

us
ag

e
(%

)

sys_epoll_wait sys_recvfrom sys_sendmsg

Figure 2: CPU usage of the three most used system calls by
Memcached

Figure 3 shows the throughput of the vanilla Memcached
application when varying the number of threads (and cores).
The results show that vanilla Memcached does not scale
and that its performance even deteriorates when more than
four threads are used. Table 1 shows the top ten most time
consuming functions measured by the perf tool while run-
ning Memcached with eight threads, all of them are ker-
nel functions. The native_queued_spin_lock_slowpath and
__udp_enqueue_schedule_skb functions account for a total
of 28.63% of the processing time of our machine under test
and are used to push packets to the UDP socket queue. The
kernel’s socket queues are data structures shared between the
Memcached threads and the kernel threads responsible for the
execution of the network stack, and therefore require lock pro-
tection. In case of Memcached, a single UDP socket is used
and its queue is shared between the cores receiving packets
from the NIC and the cores running the application, leading
to lock contention. This lock contention is then responsible
for the decrease in Memcached throughput.

To allow Memcached to scale with the number of threads,
we have modified the version 1.5.19 of Memcached to use
the SO_REUSEPORT socket option. The SO_REUSEPORT
option allows multiple UDP sockets to bind to the same port.
We refer to this modified Memcached as MemcachedSR in
the rest of the paper. We use this option to allocate a UDP
socket per Memcached thread and bind each socket to the
same port. Received packets are then equitably distributed
between each socket queue by the Linux kernel which reduces

lock contention. As shown in Figure 3, MemcachedSR scales
with the number of threads and achieves a throughput that is
up to 3 times higher than the vanilla version of Memcached.

Despite the scalability of MemcachedSR, there is still room
for improvement as Memcached requests still have to go
through the whole network stack before they can be processed
by the application.

Function % CPU utilization
native_queued_spin_lock_slowpath 17.68%
__udp_enqueue_schedule_skb 10.95%
clear_page_erms 5.04%
udp4_lib_lookup2 3.23%
_raw_spin_lock 3.04%
fib_table_lookup 2.90%
napi_gro_receive 2.27%
nfp_net_rx 1.97%
i40e_napi_poll 1.32%
udp_queue_rcv_one_skb 1.14%

Table 1: Top ten most CPU-consuming functions on a Mem-
cached server under network load

1 2 3 4 5 6 7 8
0

200
400
600
800

1,000
1,200

of threads and cores

T
hr

ou
gh

pu
t(

K
R

eq
/s

)

vanilla Memcached MemcachedSR

Figure 3: Vanilla Memcached vs. MemcachedSR

2.2 BPF
The Berkeley Packet Filter (BPF) [35] is an in-kernel inter-
preter originally designed to run packet filters from userspace
using a reduced instruction set. BPF has evolved into the ex-
tended BPF (eBPF), which introduces a new bytecode and
just-in-time compilation for improved performance. An eBPF
program can be loaded from userspace by the Linux kernel
and triggered by a specific kernel event. The eBPF program
is then run whenever the event is triggered.

eBPF programs can maintain and access persistent memory
thanks to kernel data structures called BPF maps. Maps are
designed to store arbitrary data structures whose size must be
specified by the user application at creation time. They can be
used for communicating between different eBPF programs or
between eBPF programs and user applications. Furthermore,
eBPF programs can call a restricted set of kernel functions,
called helpers, allowing eBPF programs to interact with the
system and access specific kernel data (e.g. map data, time

since boot up). Tail calls allow an eBPF program to call
another eBPF program in a continuation-like manner. The
eBPF bytecode backend is supported by the Clang/LLVM
compiler toolchain, which allows using the C language to
write eBPF programs in a high-level language.

Because running user-space code inside the kernel can
impact the system’s security and stability, the Linux kernel
calls the in-kernel eBPF verifier every time it loads an eBPF
program to check if the program can be safely attached and
executed. The goal of the verifier is to guarantee that the
program meets two properties: safety, i.e., the program neither
accesses unauthorized memory, nor leaks kernel information,
nor executes arbitrary code, and liveness, i.e., the execution
of the program will always terminate.

To analyze an eBPF program, the verifier creates an abstract
state of the eBPF virtual machine [7]. The verifier updates its
current state for each instruction in the eBPF program, check-
ing for possible out of bounds memory accesses or jumps.
All conditional branches are analyzed to explore all possible
execution paths of the program. A particular path is valid if
the verifier reaches a bpf exit instruction and the verifier’s
state contains a valid return value or if the verifier reaches a
state that is equivalent to one that is known to be valid. The
verifier then backtracks to an unexplored branch state and
continues this process until all paths are checked.

Because this verification process must be guaranteed to
terminate, a complexity limit is enforced by the kernel and an
eBPF program is rejected whenever the number of explored
instructions reaches this limit. Thus, the verifier incurs false
positives, i.e. it can reject eBPF programs that are safe. In
Linux 5.3, the kernel version used to implement BMC, this
limit is set to 1 million instructions. Other parameters, such
as the number of successive branch states, are also used to
limit path explosion and the amount of memory used by the
verifier. Since Linux 5.3, the verifier supports bounded loops
in eBPF programs by analyzing the state of every iteration of
a loop. Hence, the verifier must be able to check every loop
iteration before hitting the previously mentioned instruction
complexity limit. This limits the number of loop iterations as
well as the complexity of the instructions in the loop body.
Moving data of variable lengths between legitimate memory
locations requires a bounded loop and conditional instructions
to provide memory bounds checking, which in turn increase
the complexity of an eBPF program. Finally, eBPF does not
support dynamic memory allocation, instead eBPF programs
have to rely on eBPF maps (array, hashmap) to hold a fixed
number of specific data structures.

Because of all these limitations, eBPF is currently mostly
used to monitor a running kernel or to process low-layer pro-
tocols of network packets (i.e. L2-L4). Processing application
protocols is more challenging but is required to allow the
implementation of more complex network functions [36].

3 Design

In this section, we present the design of BMC, a safe in-kernel
accelerator for Memcached. BMC allows the acceleration of a
Memcached server by caching recently accessed Memcached
data in the kernel and by relying on a pre-stack processing
principle to serve Memcached requests as soon as possible
after they have been received by the network driver. This
approach allows BMC to scale to multicore architectures by
leveraging modern NIC’s multi-queue support to run BMC on
each individual core for each received packet. The execution
of BMC is transparent to Memcached, and Memcached does
not need any modification to benefit from BMC. In the rest of
this section, we first present the pre-stack processing approach.
We then describe the BMC cache and how its coherence is
insured.

3.1 Pre-stack processing
BMC intercepts network packets at the network-driver level
to process Memcached requests as soon as possible after they
have been received by the NIC. BMC filters all network pack-
ets received by the network driver based on their destination
port to only process Memcached network traffic. It focuses
on processing GET requests using the UDP protocol and SET
requests using the TCP protocol. Figure 4 illustrates how pre-
stack processing allows BMC to leverage its in-kernel cache
to accelerate the processing of Memcached requests.

When processing a GET request (4a), BMC checks its in-
kernel cache and sends back the corresponding reply if it finds
the requested data. In that case, the network packet containing
the request is never processed by the standard network stack,
nor the application, freeing CPU time.

SET requests are processed by BMC to invalidate the cor-
responding cache entries and are then delivered to the ap-
plication (4b). After a cache entry has been invalidated, a
subsequent GET request targeting the same data will not be
served by BMC but rather by the Memcached application.
BMC always lets SET requests go through the standard net-
work stack for two reasons. First, it enables reusing the OS
TCP protocol implementation, including sending acknowledg-
ments and retransmitting segments. Second, it ensures SET
requests are always processed by the Memcached application
and that the application’s data stays up-to-date. We choose
not to update the in-kernel cache using the SET requests in-
tercepted by BMC because TCP’s congestion control might
reject new segments after its execution. Moreover, updating
the in-kernel cache with SET requests requires that both BMC
and Memcached process SET requests in the same order to
keep the BMC cache consistent, which is difficult to guarantee
without a overly costly synchronization mechanism.

When a miss occurs in the BMC cache, the GET request
is passed to the network stack. Then, if a hit occurs in Mem-
cached, BMC filters the outgoing GET reply to update its
cache (4c).

NIC

BMC

Memcached

Network
stack

Hit

Get UDP

(a) Lookup

NIC

BMC

Memcached

Network
stack

Invalidate

Set TCP

Set

(b) Invalidation

NIC

BMC

Memcached

Network
stack

Miss

Write

Hit

Get UDP

(c) Update

Figure 4: BMC cache operations

Pre-stack processing offers the ability to run BMC on mul-
tiple cores concurrently. BMC can benefit from modern NIC
features such as multi-queue and RSS to distribute process-
ing among multiple CPU cores. The set of cores used to
run BMC can also be fine-tuned in order to share a precise
memory level (CPU caches, NUMA node, etc.). The perfor-
mance of BMC can efficiently scale by configuring NICs
to use multiple RX queues and mapping them to different
cores. Pre-stack processing also enables running specialized
code without having to modify existing software. Contrary to
kernel-bypass, this approach does not require a whole NIC
to be given to a userspace process and other applications can
share the network hardware through the kernel network stack
as usual.

3.2 BMC cache

The BMC cache is designed as a hash table indexed by Mem-
cached keys. It is a direct-mapped cache, meaning that each
bucket in the hash table can only store one entry at a time.
BMC uses the 32-bit FNV-1a [19] hash function to calculate
the hash value. Because this is a rolling hash function that
operates on a single byte at a time, it allows BMC to compute
the hash value of a key while parsing the Memcached request.
The hash value is reduced to an index into the cache table
by using the modulo operator. Each cache entry contains a
valid bit, a hash value, a spin lock, the actual stored data and
the size of the data. This cache design offers constant-time
complexity for lookup, insertion and removal operations. To
validate a cache hit, BMC checks that the valid bit of a cache
entry is set and that the stored key is the same as that of the
processed request.

The BMC cache is shared by all cores and and does not
require a global locking scheme since its data structure is
immutable. However, each cache entry is protected from con-
current access using a spin lock.

4 Implementation
This section explains how BMC deals with the eBPF limita-
tions to meet the required safety guarantees.

4.1 Bounding data
The verification of a loop contained in a single program may
hit the maximum number of eBPF instructions the verifier can
analyze. Loop complexity depends on the number of itera-
tions and the complexity of the body. To make the verification
of loops possible, BMC bounds the data it can process. It
first limits the length of Memcached keys and values. BMC
uses a loop to copy keys and values from a network packet
to its cache, and vice-versa. For every memory copy, BMC
must guarantee that it neither overflows the packet bounds nor
overflows the cache memory bounds using fixed data bounds.
Bounds checking then increases the loop complexity. To en-
sure the complexity of a single eBPF program does not exceed
the maximum number of instructions the verifier can analyze,
we empirically set the maximum key length BMC can process
to 250 bytes and the maximum value length to 1000 bytes.
Requests containing keys or values that exceed these limits
are transmitted to the Memcached application. We also limit
to 1500 the number of individual bytes BMC can read from
a packet’s payload in order to parse the Memcached data,
bounding the complexity of this process. According to Face-
book’s workload analysis [11], about 95% of the observed
values were less than 1000 bytes. Moreover, the Memcached
protocol sets the maximum length of keys to 250 bytes. Hence,
bounding the BMC data size does not have a big practical
impact.

4.2 Splitting complex functions
In order to avoid reaching the limits of the eBPF verifier,
BMC’s functional logic is separated into multiple small eBPF
programs, as each eBPF program is checked for safety in-
dependently. Each program then relies on tail calls to jump
to the next program and continue packet processing without
interruption. Linux limits the maximum number of successive
tail calls to 32, preventing infinite recursion. However BMC
uses at most three successive tail calls.

BMC is implemented using seven eBPF programs that are
written in C code and are compiled to eBPF bytecode using
Clang and LLVM version 9. The processing logic of BMC is
split into two chains: one chain is used to process incoming
Memcached requests and the other is used to process outgoing
Memcached replies. Figure 5 illustrates how BMC’s eBPF
programs are divided. BMC’s eBPF programs consist of a
total of 513 lines of C code.

4.2.1 Incoming chain

The incoming chain is composed of five eBPF programs.
It is attached to the XDP [25] driver hook and is executed

Program name # of eBPF instructions # of analyzed instructions analysis time (µs) # of CPU instructions

rx_filter 87 31 503 11 130 152
hash_keys 142 787 898 290 588 218

prepare_packet 178 181 47 212
write_reply 330 398 044 132 952 414

invalidate_cache 163 518 321 246 788 224
tx_filter 61 72 43 104

update_cache 125 345 332 95 615 188

Table 2: Complexity of BMC’s programs. Column 2 represents the number of eBPF bytecode instructions of the program
compiled from C code. Columns 3 and 4 respectively show the number of eBPF bytecode instructions processed by the Linux
verifier and the time spent for this analysis. Column 5 shows the number of CPU instructions after JIT compilation.

Network stack

Network Device Driver

write_reply

prepare_packet tx_filter

Trafic Control hook

Memcached

BMC Hit
hash_keys invalidate_cache

rx_filter

XDP hook

BMC
BMC Miss

update_cache

Figure 5: Division of BMC into seven eBPF programs

whenever a new packet is processed by the network driver.
This hook is the earliest point in the network stack at which
an eBPF program can be attached and allows BMC to use pre-
stack processing to save the most CPU cycles by responding
to Memcached requests as soon as possible.

rx_filter. The goal of this first eBPF program is to filter
packets corresponding to the Memcached traffic using two
rules. The first rule matches UDP packets whose destina-
tion port corresponds to Memcached’s and whose payload
contains a GET request. The second rule matches TCP traf-
fic whose destination port also corresponds to Memcached’s.
The incoming chain branches based on which rule matches. If
neither rule matches, the packet is processed by the network
stack as usual.

hash_keys. This program computes hashes for every Mem-
cached GET key contained in the packet. It then checks the
corresponding cache entries for any cache hit and saves the
key hashes that have been hit in a per-cpu array used to store
context data for the execution of the chain.

prepare_packet. This eBPF program increases the size
of the received packet and modifies its protocol headers to
prepare the response packet, swapping the source and des-
tination Ethernet addresses, IP addresses and UDP ports. It
then calls the last eBPF program of this branch of the chain.

The maximum number of bytes BMC can add to the packet is
limited by the network driver implementation. In our current
implementation of BMC, this value is set to 128 bytes based
on the different network drivers BMC attaches to, and it can
be increased to a higher value to match other network driver
implementations.

write_reply. This eBPF program retrieves a key hash saved
in the per-cpu array to copy the corresponding cache entry to
the packet’s payload. If the table contains multiple key hashes,
this eBPF program can call itself up to 30 times to copy as
many items as possible in the response packet. Finally, this
branch of the incoming chain ends by sending the packet back
to the network.

invalidate_cache. The second branch of the incoming
chain handles Memcached TCP traffic and contains a sin-
gle eBPF program. This program looks for a SET request
in the packet’s payload and computes the key hash when it
finds one to invalidate the corresponding cache entry. Packets
processed by this branch of the incoming chain are always
transmitted to the network stack so that Memcached can re-
ceive SET requests and update its own data accordingly.

4.2.2 Outgoing chain

The outgoing chain is composed of two eBPF programs to
process Memcached responses. It is attached to the Traffic
Control (TC) egress hook and is executed before a packet is
sent to the network.

tx_filter. The first eBPF program of this chain serves as a
packet filter and applies a single rule on outgoing packets. The
rule matches UDP packets whose source port corresponds to
Memcached’s. In this case the second eBPF program of the
chain is called, otherwise the packet is sent to the network as
usual.

update_cache. The second eBPF program checks if the
packet’s payload contains a Memcached GET response. If
positive, its key is used to index the BMC cache and the re-
sponse data is copied in the corresponding cache entry. The
network stack then carries on its execution and the Mem-
cached response is sent back to the network.

Table 2 provides complexity metrics for each eBPF pro-
gram. For the most complex ones, the number of eBPF in-
structions the Linux verifier has to analyze to ensure their
safety is a thousand times higher than their actual number of
instructions. The table also shows that it is necessary to divide
BMC’s logic into multiple eBPF programs to avoid reaching
the limit of 1,000,000 instructions that can be analyzed by the
Linux verifier.

5 Evaluation

In this section, we evaluate the performance of MemcachedSR
running with BMC. We aim to evaluate the throughput gain
offered by BMC and how performance scales with the number
of cores when processing a target workload that consists of
small UDP requests. We also evaluate MemcachedSR with
BMC on a non-target workload to study the overhead and
impact of BMC on throughput when it intercepts Memcached
requests but does not cache them. We show that the increase
in throughput can be obtained without allocating additional
memory, and that the cache memory can be partitioned be-
tween the Memcached application and BMC. We compare
BMC with a dummy cache implementation and show that its
design is efficient for high performance. Finally, we compare
MemcachedSR running with BMC to Seastar, an optimized
networking stack based on DPDK. We study their perfor-
mance using our target workload and a workload that uses
both TCP and UDP requests. We also measure their CPU
resource consumption for an equivalent client load and show
that BMC allows saving CPU resources.

5.1 Methodology
Platform. Our testbed consists of three machines: one acting
as the Memcached server under test, and two as the clients.
The server machine is equipped with a dual socket mother-
board and two 8-core CPUs (Intel Xeon E5-2650 v2 @ 2.60
GHz) with HyperThreading disabled, 48 GB of total memory
and two NICs (one Intel XL710 2x40GbE and one Netronome
Agilio CX 2x40GbE). The other two machines are used as
clients to send traffic and are equipped with the same Intel
Xeon CPU and an Intel XL710 2x40GbE NIC. One client is
connected back to back to the server using its two network
ports while the other client is connected using a single port. In
total, the server machine uses three network ports to receive
traffic from the clients. In all experiments, the server machine
runs Linux 5.3.0.
Target workload and Method. Our target workload is the
following: the client applications generate skewed workloads
based on established Memcached traffic patterns [11]. Clients
use a non-uniform key popularity that follows a Zipf distri-
bution of skewness 0.99, which is the same used in Yahoo
Cloud Serving Benchmark (YCSB) [17]. MemC3 [21] is an
in-memory key-value store that brings carefully designed al-
gorithms and data structures to Memcached to improve both

its memory efficiency and scalability for read-mostly work-
loads. Similarly to the evaluations performed in the MemC3
paper, our workload consist of a population of 100 million
distinct 16-byte keys and 32-byte values. By default, we al-
locate 10 GB of memory for the Memcached cache and 2.5
GB for the BMC cache. With this amount of memory, the
Memcached cache can hold about 89 million items while the
BMC cache can hold 6.3 million. Hence, some items can be
missing from both the BMC and the Memcached cache. The
memory allocated to both Memcached and BMC is not only
used for keys and values but also stores metadata. For each
cache entry in BMC, 17 bytes are used as metadata. Before
each experiment, the clients populate Memcached’s cache by
sending a SET request for every key in the population. Note
that this does not populate BMC’s cache as it is only updated
when the application replies to GET requests.

The client applications send requests at the rate of 12 mil-
lion requests per second (Req/s) in an open-loop manner in
order to achieve the highest possible throughput and highlight
bottlenecks. A total of 340 clients are simulated to efficiently
distribute requests among multiple cores on the server by
leveraging the NICs’ multi-queue and RSS features. We fur-
ther refer to these cores as RX cores. We limit our evaluations
to a maximum of 8 RX cores on a single CPU to enforce
NUMA locality with the NICs.

Table 3 summarizes this target workload as well as other
default evaluation settings that are used in the following ex-
periments unless otherwise specified.

Key distribution Zipf (0.99)
Key size 16 bytes
Value size 32 bytes
Key population 100 million
BMC to Memcached cache size ratio 25%
Number of Memcached application threads 8
Number of RX cores 8

Table 3: MemC3-like evaluation settings

5.2 Throughput
Target workload. We evaluate the throughput of Memcached
under three configurations: vanilla Memcached alone, Mem-
cachedSR alone and MemcachedSR with BMC. We also eval-
uate how these three configurations scale with the number
of cores. We allocate the same CPU resources for all three
configurations. For all configurations, we vary the number
of threads the application uses to process requests simulta-
neously and dedicate cores to the application by pinning its
threads. For MemcachedSR with BMC, we also vary the num-
ber of queues configured on each of the server’s NICs and
use the same cores to handle interrupts. This allows BMC to
be executed by each core serving interrupts in parallel. For

the vanilla Memcached application alone and MemcachedSR
alone, 8 cores are used to execute the network stack.

Figure 6 shows the throughput achieved by these three
configurations. As mentioned in Section 2.1, the vanilla Mem-
cached application does not scale due to the socket lock con-
tention; at best it achieves 393K requests per second using 4
cores. MemcachedSR offers better scalability and achieves
1.2M requests per second when using 8 cores. For Mem-
cachedSR with BMC, the overall system throughput is split
between requests answered using the BMC cache and re-
quests handled by the application. When running on a single
core, MemcachedSR with BMC achieves 1M requests per sec-
ond, which is 6x the throughput of both vanilla Memcached
and MemcachedSR. When BMC runs on 8 cores, the server
achieves a throughput of 7.2M requests per second, 6.3 mil-
lion being processed by BMC, the rest being processed by
Memcached. This is 18x better performance with respect to
vanilla Memcached and 6x with respect to MemcachedSR.

1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7

of cores

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

vanilla Memcached alone MemcachedSR alone
MemcachedSR BMC

Figure 6: Throughput of BMC

Worst-case workload. We now change our workload to
use 8KB Memcached values instead of 32 bytes. This is
BMC’s worst-case workload since the Memcached requests
are still analyzed by BMC but the values are too large to be
stored in its cache, thus the Memcached application is always
used to serve the requests. To study the impact of the addi-
tional processing of BMC, we compare the throughput of
the MemcachedSR application alone and that of the Mem-
cachedSR application running with BMC. Figure 7 shows
that BMC’s additional processing has negligible overhead and
does not significantly deteriorate the application throughput.

1 2 3 4 5 6 7 8
0

100

200

300

of threads

T
hr

ou
gh

pu
t

(K
R

eq
/s

)

MemcachedSR alone MemcachedSR with BMC

Figure 7: Throughput under a worst-case workload

We now modify the workload so that part of it are requests

that BMC targets while the rest is for 8KB values. We then and
evaluate how varying the ratio of the target requests affects
throughput. As shown in Figure 8, BMC improves throughput
by 4x compared to MemcachedSR alone when the workload
consists of 25% of targeted requests even though it does not
speed up the majority of requests received. This shows that
BMC is valuable even when the workload contains few target
requests and that BMC further improves throughput as the
ratio of target requests increases.

0 25 50 75 100
0

2

4

6

8

% of target requests

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

MemcachedSR alone MemcachedSR BMC

Figure 8: MemcachedSR vs. MemcachedSR with BMC
throughput for varying request size distributions.

5.3 Cache size
We then evaluate the impact of BMC’s cache size on through-
put. In this experiment, we use a total of 10 GB of memory
and split it between the Memcached cache and the BMC
cache, varying the distribution from 0.1% of memory allo-
cated to BMC to a maximum of 40%. The latter corresponds
to a size of 4 GB for the BMC cache, which is the maximum
size accepted by the Linux kernel for the allocation of a sin-
gle eBPF map [5]. The results are shown in Figure 9 where
the total system throughput is broken down into hits in the
BMC cache, and hits and misses in the application cache.
For all distribution schemes tested, there is an increase in
performance compared to running MemcachedSR alone. The
best throughput is achieved when BMC uses 25% of the total
memory. In this case, the BMC cache size is well-suited to
store the hottest items of the Zipf distribution. Throughput de-
creases from 25% to 40% because the Memcached cache hit
rate shrinks from 89% to 43% as its cache gets smaller. This
causes the BMC cache hit rate to diminish as well because
only responses from Memcached cache hits allow entries of
the BMC cache to be updated. When only 0.1% (10 MB) of
the memory is used by the BMC cache, throughput is mul-
tiplied by 2.3 compared to the best throughput achieved by
MemcachedSR alone, showing that BMC offers good perfor-
mance even with minimal memory resources.

5.4 BMC processing latency
We now evaluate the overhead induced by a BMC cache miss,
which characterizes the worst-case scenario since BMC pro-
cesses a request and executes additional code that does not
lead to any performance benefit. To characterize this overhead,

0.1 1 5 10 25 40

1
2
3
4
5
6
7

% of the total memory allocated to BMC

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

BMC MemcachedSR hit MemcachedSR miss

Figure 9: System throughput under various memory partition
schemes

we use kprobes to measure the total time required to receive,
process and reply to a Memcached request. The nfp_net_rx
and nfp_net_tx driver functions are respectively instrumented
to record the time at which a request is received and the corre-
sponding reply is sent back to the network. In this experiment,
a single client machine is used to send requests to the server
and a single Memcached key is used to ensure that a cache
result is always either a hit or a miss. After sending a request,
the client always waits for the server’s reply to make sure the
server does not process more than one request at a time.

Figure 10 shows the time distribution of 100,000 measure-
ments for cache hits and misses separately. Figure 10a shows
the distributions of MemcachedSR running with BMC as well
as BMC hits. For Memcached hits, the valid bit of BMC’s
cache entries is never set to ensure BMC lookups result in a
cache miss and that the request is always processed by the
Memcached application. However, the BMC cache is still
updated to measure additional data copies. The median of the
distribution of BMC cache hits is 2.1 µs and that of Mem-
cached cache hits and misses are respectively 21.8 and 21.6 µs.
Hence, a BMC cache hit can reduce by 90% the time required
to process a single request. Running the same experiment on
MemcachedSR without BMC (Figure 10b) shows that the
processing time of both Memcached hits and misses is lower
by about 1 µs. This shows that BMC has a negligible pro-
cessing overhead compared to the total time required for the
execution of the Linux network stack and the Memcached ap-
plication. Moreover, this additional processing time is entirely
recovered by a single BMC cache hit.

Next we study the impact of the processing time of the ker-
nel cache on its throughput. To do so we have implemented
a dummy cache that always replies the same response and
whose processing time can be parameterized using a empty
loop. This dummy cache is implemented using a single eBPF
program and is attached to the XDP network-driver hook just
like BMC. Figure 11 shows the throughput of the dummy
cache while varying its processing time and compares it with
the actual BMC cache perfoming cache hits. This experiment
demonstrates that the cache throughput is highly dependent
on its processing time: increasing the processing time from
100 ns to 2000 ns decreases throughput by a factor of 4.5. The

BMC
hit

Memcached
hit

Memcached
miss

2.11
5

10

15

20

25

30

(a) with BMC

Ti
m

e
(µ

s)

Memcached
hit

Memcached
miss

(b) without BMC

Figure 10: Time to receive, process and reply to a request.

average time to perform a cache hit in BMC is fairly close to
the time of the dummy cache with no additional processing
time; this shows that choosing simple and fast algorithms for
BMC’s cache design introduces little processing overhead
and contributes to its high throughput performance. Imple-
menting overly complex algorithms may lead to a sharp drop
in performance. Hence, adding new features to BMC, such
as an eviction algorithm, must be well thought out to result
in an improved hit rate that compensates for the additional
processing time.

0 500 1,000 1,500 2,000
0

5

10

15

20

Execution time (ns)

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

Dummy cache BMC (hit)

Figure 11: Execution time impact on throughput.

5.5 Impact on concurrent network applica-
tions.

As BMC intercepts every network packet before the OS net-
work stack, its execution may have a performance impact on
other networking applications running on the same host. To
study this impact, we use iperf to transfer 10GB of data over
TCP from one client machine to the server machine while
serving Memcached requests, and measure the time required
to complete this transfer. This experiment is conducted for
MemcachedSR alone and MemcachedSR with BMC, while
varying clients’ request throughput. Figure 12 shows the re-
sults. When there is no load, the baseline transfer time is 4.43
seconds. When the Memcached load rises, the time required
to complete the data transfers increases since the cores are
busy processing incoming Memcached traffic in addition to

the iperf traffic, which leads to an increase in TCP retrans-
mission rate and UDP packet drops. When using BMC, the
transfer time is lowered when the server is under load as CPU
resources are saved when BMC processes Memcached re-
quests in place of the application. For a Memcached load of
5000K Req/s, BMC allows iperf to complete its transfer 83%
faster compared to the configuration in which Memcached
processes the requests alone and the OS network stack is
always executed.

0 100 250 500 1000 2500 5000
0

10

20

30

MemcachedSR throughput (KReq/s)

ip
er

ft
ra

ns
fe

rt
im

e
(s

ec
)

iperf alone Memcached alone
Memcached with BMC

Figure 12: Time required to transfer 10GB of data using iperf
under client load.

5.6 Kernel-bypass comparison
We now compare MemcachedSR with BMC against the Mem-
cached implementation from Seastar [2], a framework for
building event-driven applications that comes with its own
network stack built on top of DPDK.

Target workload. In this experiment, we evaluate the
throughput of Seastar and compare the results with Mem-
cachedSR running with BMC. We perform the experiment
using a single client to generate our target UDP workload as
Seastar does not support multiple network interfaces. This
single client alone generates 4.5 million requests per second.
Figure 13 shows the throughput of Seastar and MemcachedSR
with BMC when varying the number of cores. BMC is able to
process the workload generated by a single client machine us-
ing 4 cores. Using the same number of cores, Seastar achieves
443K requests per second. Seastar’s throughput increases to
946K requests per second when using 8 cores. We are not
sure why Seastar’s throughput drops when using 2 cores; our
investigations revealed that this only happens when Seastar
receives UDP packets and that Seastar performs best when it
processes Memcached requests over TCP.

Workload mixing UDP and TCP requests. As our pre-
liminary investigation shows that Seastar performs best on
TCP, we change our workload to send half of the Memcached
requests with TCP while the other half keeps using UDP. This
workload coincides with a Memcached deployment for which
the protocol used by clients cannot be anticipated. Figure 14
shows that the throughput of both configurations scales with
the number of cores. Seastar’s high-performance TCP stack
enables its Memcached implementation to process 2.3 million
requests per second when using 8 cores. Accelerating the pro-
cessing of UDP requests allows MemcachedSR with BMC

1 2 3 4 5 6 7 8
0

1

2

3

4

5

of cores

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

Seastar MemcachedSR BMC

Figure 13: Seastar vs. BMC throughput

to achieve similar throughput when using 3 cores. Increasing
the number of cores does not increase the throughput of Mem-
cachedSR with BMC as the client TCP workload generation
becomes the bottleneck.

1 2 3 4 5 6 7 8
0

0.5
1

1.5
2

2.5

of cores

T
hr

ou
gh

pu
t

(M
R

eq
/s

)

Seastar MemcachedSR BMC

Figure 14: Seastar vs. BMC throughput when mixing TCP
and UDP requests

CPU usage. We then measure the CPU usage of both Mem-
cachedSR with BMC and Seastar for different client loads. In
both configurations we use a total of 8 CPU cores to process
the workload. For MemcachedSR with BMC, we use 6 RX
cores and pin the Memcached threads to the two remaining
cores. This configuration offers the best performance and
allows us to measure the CPU usage of the Memcached appli-
cation and the network stack (including BMC) separately. The
CPU usage is measured on each core for 10 seconds using
the mpstat tool. Figure 15 shows the average CPU core usage
per core type (Seastar, MemcachedSR and BMC). The results
show that Seastar always uses 100% of its CPU resources,
even when throughput is low. This is because DPDK uses
poll mode drivers to reduce the interrupt processing overhead
when packets are received by the NIC. The CPU usage of
MemcachedSR with BMC scales with the load thanks to the
interrupt-based model of the native Linux drivers BMC builds
upon. As shown in Figure 14, Seastar can process 2.3 million
requests per second when using 8 cores, Figure 15 shows that
MemcachedSR with BMC consumes 33% of the CPU (91%
of the two Memcached cores and 13% of the six RX cores)
to achieve similar throughput. Therefore, using Memcached
with BMC saves CPU resources that can be used by other
tasks running on the same system when the workload is low.

100 250 500 1000 2500 5000 7500
0

20

40

60

80

100

Throughput (KReq/s)

C
PU

co
re

s
us

ag
e

(%
)

Seastar cores BMC cores MemcachedSR cores

Figure 15: CPU usage of BMC compared to Seastar

6 Discussion

Although the BMC cache is fairly generic and can store any
datatype, most of BMC is specialized to filtering and pro-
cessing Memcached requests. Applying in-kernel caching to
another key-value store like Redis [9] would then require
implementing new BPF programs to process Redis’s RESP
protocol. The main challenge of adapting BMC to Redis is to
ensure compatibility with the TCP protocol. Because Redis
requests are only transmitted over TCP, it its mandatory to ei-
ther send acknowledgements or reuse the existing TCP kernel
implementation by intercepting packets past the TCP stack.
As Redis is more focused on functionality and Memcached
on performance, an in-kernel cache for Redis will need to
use more BPF programs to implement the minimal subset of
Redis commands required to ensure cache coherence with
the application. Just like BMC, some of the functionalities
can be left to the application to focus on accelerating the
most frequent request types. Redis usually performs worse
than Memcached when processing a large volume of requests
because it is single-threaded, hence we expect the throughput
speed-up to be even higher than for Memcached.

Although static memory allocation enables the verification
of BMC’s eBPF programs, it also wastes memory. BMC suf-
fers from internal fragmentation because each cache entry is
statically bounded by the maximum data size it can store and
inserting data smaller than this bound wastes kernel mem-
ory. The simplest approach to reduce memory fragmentation
would be to fine-tune the bound of the cache entries to min-
imize the amount of fragmented memory. A more flexible
approach would be to reuse fragmented memory to cache
additional data. Each cache entry would then be able to store
multiple data, making BMC a set-associative cache for which
the number of slots varies according to the size of the stored
data to reduce memory fragmentation. The fact that BMC is
a non-exclusive cache also leads to memory loss since some
data is duplicated between the BMC cache and Memcached.
This duplication occurs for the majority of data that is not
frequently accessed. On the other hand, frequently accessed
data are eventually discarded from the application by Mem-
cached’s LRU algorithm because the BMC cache is used

instead. Ideally, BMC should directly access the application’s
cache memory to avoid any duplication, however, this requires
browsing Memcached data structures which could create se-
curity vulnerabilities.

The XDP driver hook leveraged by BMC requires support
in the NIC driver. With no XDP driver support, BMC can
still be used with the generic Linux kernel hook but its per-
formance will not be as high. However, this is not a critical
concern as most of the drivers for high-speed network inter-
faces support XDP.

7 Related Work

This section discusses the most relevant related work in the
field of optimization of the network stack and Memcached.

Programmable hardware switches. Recent advances in
programmable hardware switches with languages like P4 [39]
have raised significant interest on offloading network pro-
cessing operations into the network. NetCache [27] imple-
ments an in-network key-value cache on Barefoot Tofino
switches [10]. NetCache uses switch lookup tables to store,
update and retrieve values. To access the key-value store,
clients have to use a specific API to translate client requests
into NetCache queries. Switch KV [30] and FlairKV [41]
leverage programmable ASICs to implement a caching solu-
tion also acting as a load balancer. Switch KV uses an efficient
routing algorithm to forward client queries to the right server.
The OpenFlow protocol is used to install routes to cached ob-
jects and invalidate routes to recently modified ones. FlairKV
accelerates GET queries by intercepting every SET query and
the corresponding reply to detect unmodified objects. While
these approaches leverage ASIC optimizations to offer high
throughput and low latency, they consume switch memory,
TCAM and SRAM, which is an expensive resource primary
reserved for packet forwarding. Thus, using lookup table re-
sources to store key-value data exposes the entire network to
bottlenecks and failures.

FPGA and NIC offloading. Examples of key-value store
applications offloaded to FPGA include TSSP [32] which
implements part of the Memcached logic, i.e., the processing
of GET requests over UDP, on a Xilinx Zynq SoC FPGA. A
more complete FPGA Memcached implementation [15] sup-
ports processing of SET and GET requests over both TCP and
UDP protocols. Similar work [16] deployed and evaluated an
FPGA Memcached application within the public Amazon in-
frastructure. These approaches achieve high throughput with
up to 13.2 million RPS with 10GbE link but they are con-
strained by the FPGA programming model, which requires re-
placing the Memcached protocol by more FPGA-compatible
algorithms. KV-Direct [29] leverages Remote Direct Memory
Access (RDMA) technology on NICs to update data directly
on the host memory via PCIs. With this approach, KV-Direct
alleviates CPU bottlenecks at the expense of PCI resources.
NICA [20] introduces a new hardware-software co-designed

framework to run application-level accelerators on FPGA
NICs. NICA enables accelerating Memcached by serving
GETs directly from hardware using a DRAM-resident cache
and achieves similar performance to BMC since it still re-
quires host processing to handle cache misses. NICached [40]
proposes to use Finite State Machines as an abstract program-
ming model to implement key-value store applications on
programmable NICs. With this abstraction, NICached can be
implemented with different languages and platforms: FPGA,
eBPF, P4 and NPU-based NICs. NICached is the closest work
to BMC but it targets NICs and does not propose an imple-
mentation of this model.

Compared to hardware approaches, BMC offers competi-
tive performance, does not make use of expensive hardware
resources such as SRAM and does not require hardware in-
vestment and software re-engineering.

Kernel-bypass. A kernel-bypass version of Memcached
has been built on top of StackMap [44], an optimized net-
work stack that achieves low latency and high throughput by
dedicating hardware NICs to userspace applications. Using
StackMap improves vanilla Memcached throughput by 2x
in the most favorable scenario. MICA [31] employs a full
kernel-bypass approach to process all key-value store queries
in user space. MICA avoids synchronization by partitioning
hash-maps among cores. MICA relies on a specific protocol
that requires client information to map queries to specific
cores and is not compatible with Memcached. To the best of
our knowledge, MICA is the fastest software key value store
application with a throughput of 77 million RPS on a dual-
socket server with Intel Xeon E5-2680 processors. MICA is
built with the DPDK library making MICA inherit most of
DPDK’s constraints: dedicated CPU cores to pull incoming
packets, reliance on the hardware for isolation and requiring
entirely re-engineering existing applications.

Compared to MICA, BMC achieves lower throughput but
keeps the standard networking stack, does not implement any
modification of clients and saves CPU resources.

Memcached optimizations Prior works [33, 42] have pro-
posed to change the locking scheme of a former Memcached
version to remove bottlenecks that impacted performance
when running a large number of threads. To scale Memcached
network I/O, MegaPipe [24] replaces socket I/O by a new
channel-based API. Hippos [43] uses the Netfilter hook with
a kernel module to serve Memcached requests from the Linux
kernel, but does not ensure the safety of its kernel module and
requires modifications to Memcached’s source code to update
its kernel cache.

eBPF verification. Gershuni et al. [23] have proposed a
new verifier based on abstract interpretation in order to scale
the verification of eBPF programs with loops. The authors
showed that they could verify programs with small bounded
loops and eliminate some false positives, however, their im-
plementation has a time complexity about 100 times higher
than the current Linux verifier, and uses from 100 to 1000

times more memory. Serval [37] introduces a general pur-
pose and reusable approach to scale symbolic evaluation by
using symbolic profiling and domain knowledge to provide
symbolic optimizations. However, Serval does not consider
domain specific symbolic evaluation. For example, the Linux
verifier is capable of inferring register types based on the at-
tach type of an eBPF program. Type inference then allows the
Linux verifier to check the type correctness of the parameters
passed to a helper function. Without this specific symbolic
evaluation, Serval cannot ensure a precise analysis of eBPF
programs and therefore cannot be used in place of the Linux
verifier.

eBPF usage. The excitement around eBPF led the Linux
community to put effort into the development of bpfilter, an
eBPF alternative to iptables. Bpfilter automatically translates
iptable rules into eBPF programs. Rules are written and sup-
plied by users in C code, then translated to eBPF programs
and attached to different kernel hooks including the XDP
hook. eBPF is also extensively used in industry for fast packet
processing. Cloudflare uses eBPF to replace their complex in-
frastructure filtering rules by eBPF programs. As an example,
Cloudflare’s DDoS mitigation solution uses XDP in L4Drop,
a module that transparently translates iptable DDoS mitiga-
tion rules into eBPF programs [6]. These eBPF programs
are pushed to the edge servers located in Cloudflare’s Points
of Presence (PoPs) for automatic packet filtering. Facebook
developed Katran, an XDP based L4 Load balancer. Katran
consists of a C++ library and an XDP program deployed in
backend servers in Facebook’s infrastructure PoPs.

8 Conclusion

We present BMC, an in-kernel cache designed to improve
performance of key-value store applications. BMC intercepts
application queries at the lowest point of the network stack
just as they come out of the NIC to offer high throughput
and low latency with negligible overhead. When compared to
user space alternatives, BMC shows comparable performance
while saving computing resources. Moreover, BMC retains
the Linux networking stack and works in concert with the user
space application for serving complex operations. We believe
that the BMC design can motivate the emergence of new
system designs that make it possible to maintain the standard
Linux networking stack while offering high performance.

BMC focuses on the optimization of Memcached because
it is a performance-oriented key-value store. As a future work,
we plan to apply the design of BMC to other popular key-
value store applications such as Redis.

Acknowledgments

We thank Julia Lawall, Paul Chaignon, Antonio Barbalace,
and the anonymous reviewers for their valuable feedback.

References

[1] Amazon ElastiCache - In-memory data store and
cache, 2020. URL: https://aws.amazon.com/
elasticache.

[2] GitHub - scylladb/seastar: High performance server-
side application framework, 2020. URL: https://
github.com/scylladb/seastar.

[3] GitHub - twitter/twemcache: Twemcache is the Twit-
ter Memcached, 2020. URL: https://github.com/
twitter/twemcache.

[4] Home - DPDK, 2020. URL: https://www.dpdk.org/.

[5] kernel/bpf/syscall.c - Linux source code (v5.6) - Bootlin,
2020. URL: https://elixir.bootlin.com/linux/
v5.6/source/kernel/bpf/syscall.c#L373.

[6] L4Drop: XDP DDoS Mitigations, 2020. URL:
https://blog.cloudflare.com/l4drop-xdp-ebpf-
based-ddos-mitigations.

[7] Linux Socket Filtering aka Berkeley Packet Filter
(BPF) — The Linux Kernel documentation, 2020.
URL: https://www.kernel.org/doc/html/latest/
networking/filter.html#ebpf-verifier.

[8] memcached - a distributed memory object caching sys-
tem, 2020. URL: https://memcached.org/.

[9] Redis, 2020. URL: https://redis.io/.

[10] Tofino Page - Barefoot Networks, 2020. URL:
https://barefootnetworks.com/products/
brief-tofino/.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’12, Lon-
don, United Kingdom, June 11-15, 2012, pages 53–64.
ACM, 2012. doi:10.1145/2254756.2254766.

[12] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014,
pages 49–65. USENIX Association, 2014. URL:
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/belay.

[13] M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger,
L. Van Doorn, J. Nakajima, A. Mallick, and E. Wahlig.
Utilizing IOMMUs for virtualization in Linux and Xen.
In OLS’06: The 2006 Ottawa Linux Symposium, pages
71–86. Citeseer, 2006.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. T. Morris, and N. Zeldovich. An
Analysis of Linux Scalability to Many Cores. In 9th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, October 4-6, 2010, Van-
couver, BC, Canada, pages 1–16. USENIX Associa-
tion, 2010. URL: http://www.usenix.org/events/
osdi10/tech/full_papers/Boyd-Wickizer.pdf.

[15] S. R. Chalamalasetti, K. T. Lim, M. Wright, A. AuY-
oung, P. Ranganathan, and M. Margala. An FPGA
memcached appliance. In The 2013 ACM/SIGDA In-
ternational Symposium on Field Programmable Gate
Arrays, FPGA ’13, Monterey, CA, USA, February 11-
13, 2013, pages 245–254. ACM, 2013. doi:10.1145/
2435264.2435306.

[16] J. Choi, R. Lian, Z. Li, A. Canis, and J. H. Anderson.
Accelerating Memcached on AWS Cloud FPGAs. In
Proceedings of the 9th International Symposium on
Highly-Efficient Accelerators and Reconfigurable Tech-
nologies, HEART 2018, Toronto, ON, Canada, June 20-
22, 2018, pages 2:1–2:8. ACM, 2018. doi:10.1145/
3241793.3241795.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, pages 143–154. ACM, 2010.
doi:10.1145/1807128.1807152.

[18] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan.
High performance network virtualization with SR-IOV.
J. Parallel Distributed Comput., 72(11):1471–1480,
2012. doi:10.1016/j.jpdc.2012.01.020.

[19] D. Eastlake, T. Hansen, G. Fowler, K.-P. Vo, and L. Noll.
The FNV Non-Cryptographic Hash Algorithm. 2019.

[20] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silber-
stein. NICA: an infrastructure for inline acceleration of
network applications. In 2019 USENIX Annual Techni-
cal Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019, pages 345–362. USENIX Association,
2019. URL: https://www.usenix.org/conference/
atc19/presentation/eran.

[21] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In Proceedings of the

https://aws.amazon.com/elasticache
https://aws.amazon.com/elasticache
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache
https://www.dpdk.org/
https://elixir.bootlin.com/linux/v5.6/source/kernel/bpf/syscall.c#L373
https://elixir.bootlin.com/linux/v5.6/source/kernel/bpf/syscall.c#L373
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations
https://www.kernel.org/doc/html/latest/networking/filter.html#ebpf-verifier
https://www.kernel.org/doc/html/latest/networking/filter.html#ebpf-verifier
https://memcached.org/
https://redis.io/
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://doi.org/10.1145/2254756.2254766
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
http://www.usenix.org/events/osdi10/tech/full_papers/Boyd-Wickizer.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Boyd-Wickizer.pdf
https://doi.org/10.1145/2435264.2435306
https://doi.org/10.1145/2435264.2435306
https://doi.org/10.1145/3241793.3241795
https://doi.org/10.1145/3241793.3241795
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1016/j.jpdc.2012.01.020
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/atc19/presentation/eran

10th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013, pages 371–384. USENIX Association,
2013. URL: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/fan.

[22] B. Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004(124):5, 2004.

[23] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska,
J. A. Navas, N. Rinetzky, L. Ryzhyk, and M. Sagiv.
Simple and precise static analysis of untrusted Linux
kernel extensions. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019, pages 1069–1084. ACM, 2019. doi:
10.1145/3314221.3314590.

[24] S. Han, S. Marshall, B. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scal-
able Network I/O. In 10th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI 2012, Hollywood, CA, USA, October
8-10, 2012, pages 135–148. USENIX Association,
2012. URL: https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/han.

[25] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The
eXpress data path: fast programmable packet process-
ing in the operating system kernel. In Proceedings
of the 14th International Conference on emerging Net-
working EXperiments and Technologies, CoNEXT 2018,
Heraklion, Greece, December 04-07, 2018, pages 54–66.
ACM, 2018. doi:10.1145/3281411.3281443.

[26] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation,
NSDI 2014, Seattle, WA, USA, April 2-4, 2014,
pages 489–502. USENIX Association, 2014. URL:
https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/jeong.

[27] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In Proceedings
of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 121–136.
ACM, 2017. doi:10.1145/3132747.3132764.

[28] J. Leverich and C. Kozyrakis. Reconciling high server
utilization and sub-millisecond quality-of-service. In

Ninth Eurosys Conference 2014, EuroSys 2014, Ams-
terdam, The Netherlands, April 13-16, 2014, pages 4:1–
4:14. ACM, 2014. doi:10.1145/2592798.2592821.

[29] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC.
In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28-31,
2017, pages 137–152. ACM, 2017. doi:10.1145/
3132747.3132756.

[30] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman. Be Fast, Cheap and in Control with
SwitchKV. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016,
Santa Clara, CA, USA, March 16-18, 2016, pages
31–44. USENIX Association, 2016. URL: https://
www.usenix.org/conference/nsdi16/technical-
sessions/presentation/li-xiaozhou.

[31] H. Lim, D. Han, D. G. Andersen, and M. Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA, USA,
April 2-4, 2014, pages 429–444. USENIX Association,
2014. URL: https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/lim.

[32] K. T. Lim, D. Meisner, A. G. Saidi, P. Ranganathan,
and T. F. Wenisch. Thin servers with smart pipes: de-
signing SoC accelerators for memcached. In The 40th
Annual International Symposium on Computer Architec-
ture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, pages
36–47. ACM, 2013. doi:10.1145/2485922.2485926.

[33] J. Lozi, F. David, G. Thomas, J. L. Lawall, and
G. Muller. Remote Core Locking: Migrating Critical-
Section Execution to Improve the Performance of
Multithreaded Applications. In 2012 USENIX An-
nual Technical Conference, Boston, MA, USA, June
13-15, 2012, pages 65–76. USENIX Association,
2012. URL: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/lozi.

[34] I. Marinos, R. N. M. Watson, and M. Handley. Net-
work stack specialization for performance. In ACM
SIGCOMM 2014 Conference, SIGCOMM’14, Chicago,
IL, USA, August 17-22, 2014, pages 175–186. ACM,
2014. doi:10.1145/2619239.2626311.

[35] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture.
In Proceedings of the Usenix Winter 1993 Technical
Conference, San Diego, California, USA, January 1993,
pages 259–270. USENIX Association, 1993. URL:

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://doi.org/10.1145/3281411.3281443
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/2592798.2592821
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-xiaozhou
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-xiaozhou
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-xiaozhou
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/2485922.2485926
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://doi.org/10.1145/2619239.2626311

https://www.usenix.org/conference/usenix-
winter-1993-conference/bsd-packet-filter-
new-architecture-user-level-packet.

[36] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V.
Bernal. Creating Complex Network Services with
eBPF: Experience and Lessons Learned. In IEEE
19th International Conference on High Performance
Switching and Routing, HPSR 2018, Bucharest, Roma-
nia, June 18-20, 2018, pages 1–8. IEEE, 2018. doi:
10.1109/HPSR.2018.8850758.

[37] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak,
and X. Wang. Scaling symbolic evaluation for auto-
mated verification of systems code with Serval. In
Proceedings of the 27th ACM Symposium on Oper-
ating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, pages 225–242. ACM,
2019. doi:10.1145/3341301.3359641.

[38] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. Scaling Memcache at Facebook. In
Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation,
NSDI 2013, Lombard, IL, USA, April 2-5, 2013,
pages 385–398. USENIX Association, 2013. URL:
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/nishtala.

[39] B. Pat, D. Dan, I. Martin, M. Nick, R. Jennifer, T. Dan,
V. Amin, V. George, and W. David. Programming
Protocol-Independent Packet Processors. ACM SIG-

COMM Computer Communication Review, 44, 12 2013.
doi:10.1145/2656877.2656890.

[40] G. Siracusano and R. Bifulco. Is it a SmartNIC or a Key-
Value Store?: Both! In Posters and Demos Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pages 138–140. ACM,
2017. doi:10.1145/3123878.3132014.

[41] H. Takruri, I. Kettaneh, A. Alquraan, and S. Al-
Kiswany. FLAIR: Accelerating Reads with Consistency-
Aware Network Routing. In 17th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020, pages 723–737. USENIX Association,
2020. URL: https://www.usenix.org/conference/
nsdi20/presentation/takruri.

[42] A. Wiggins and J. Langston. Enhancing the scalability
of memcached. Intel document, unpublished, 2012.

[43] Y. Xu, E. Frachtenberg, and S. Jiang. Building a high-
performance key-value cache as an energy-efficient ap-
pliance. Perform. Evaluation, 79:24–37, 2014. doi:
10.1016/j.peva.2014.07.002.

[44] K. Yasukata, M. Honda, D. Santry, and L. Eg-
gert. StackMap: Low-Latency Networking with
the OS Stack and Dedicated NICs. In 2016
USENIX Annual Technical Conference, USENIX
ATC 2016, Denver, CO, USA, June 22-24, 2016,
pages 43–56. USENIX Association, 2016. URL:
https://www.usenix.org/conference/atc16/
technical-sessions/presentation/yasukata.

https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1145/3341301.3359641
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3123878.3132014
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://www.usenix.org/conference/nsdi20/presentation/takruri
https://doi.org/10.1016/j.peva.2014.07.002
https://doi.org/10.1016/j.peva.2014.07.002
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata

	Introduction
	Background and motivation
	Memcached
	BPF

	Design
	Pre-stack processing
	BMC cache

	Implementation
	Bounding data
	Splitting complex functions
	Incoming chain
	Outgoing chain

	Evaluation
	Methodology
	Throughput
	Cache size
	BMC processing latency
	Impact on concurrent network applications.
	Kernel-bypass comparison

	Discussion
	Related Work
	Conclusion

