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Abstract

Autonomous discovery and direct instruction are two extreme sources of
learning in children, but educational sciences have shown that intermedi-
ate approaches such as assisted discovery or guided play resulted in better
acquisition of skills. When turning to Artificial Intelligence, the above di-
chotomy can be translated into the distinction between autonomous agents,
which learn in isolation from their own signals, and interactive learning
agents which can be taught by social partners but generally lack auton-
omy. In between should stand teachable autonomous agents: agents that
learn from both internal and teaching signals to benefit from the higher
efficiency of assisted discovery processes. Designing such agents could re-
sult in progress in two ways. First, very concretely, it would offer a way to
non-expert users in the real world to drive the learning behavior of agents
towards their expectations. Second, more fundamentally, it might be a key
step to endow agents with the necessary capabilities to reach general intelli-
gence. The purpose of this paper is to elucidate the key obstacles standing
in the way towards the design of such agents. We proceed in four steps.
First, we build on a seminal work of Bruner to extract relevant features
of the assisted discovery processes happening between a child and a tutor.
Second, we highlight how current research on intrinsically motivated agents
is paving the way towards teachable and autonomous agents. In particular,
we focus on autotelic agents, i.e. agents equipped with forms of intrinsic
motivations that enable them to represent, self-generate and pursue their
own goals. We argue that such autotelic capabilities from the learner side
are key in the discovery process. Third, we adopt a social learning per-
spective on the interaction between a tutor and a learner to highlight some
components that are currently missing to these agents before they can be
taught by ordinary people using natural pedagogy. Finally, we provide a list
of specific research questions that emerge from the perspective of extending
these agents with assisted learning capabilities.

Introduction

From the etymology of the word, being autonomous means deciding by oneself (autos) of
its own rules (nomos). More generally, an agent can be said autonomous if it determines
its own sensorimotor behavior or if it makes its own decisions. Autonomy matters for
Artificial Intelligence (AI). Indeed, at first glance, for an agent to be intelligent, it has to
be autonomous in some sense: if we always had to tell an agent what to do at each step of
a sequential decision or control process, we would not consider such an agent as intelligent.
Let us temporarily consider a radical definition and call “truly autonomous” an agent which
would only decide what to do on its own, without any consideration for our needs or any
other constraints like expectations of its user or ethics. Most probably, such an agent would

1

ar
X

iv
:2

10
5.

11
97

7v
1 

 [
cs

.L
G

] 
 2

5 
M

ay
 2

02
1

https://orcid.org/0000-0002-8544-0229
https://orcid.org/0000-0003-2711-5732
https://orcid.org/0000-0003-0212-427X
https://orcid.org/0000-0001-8638-2107
https://orcid.org/0000-0002-1277-130X
https://orcid.org/0000-0002-2920-4539


not be useful. So at first glance, true autonomy and usefulness seem to be contradictory
requirements: if an autonomous agent decides what to do only on its own, how can it be
useful at all?

This apparently rhetorical question can be turned into a much more practical one: if a truly
autonomous agent decides its own, how can we influence it so that it can be useful anyways?
A solution, as put forward in Chakraborti et al. (2017), is that autonomous agents should
understand and adapt to human behavior much like humans adapt to the behavior of other
humans. But how can we obtain such an adaptation? Part of the answer can be found by
reading again the conclusion of the seminal paper of Alan Turing widely considered as the
first published paper about Artificial Intelligence, though the term does not appear:

“It can also be maintained that it is best to provide the machine with the
best sense organs that money can buy, and then teach to understand and
speak English. That process could follow the normal teaching of a child.”
Turing (1950)

Even if they are not always autonomous in the common sense—they may need caregivers to
fulfill their basic living requirements—children are definitely autonomous agents. Neverthe-
less, we can succeed in influencing their behavior in many ways including through “normal
teaching”.

But again, we cannot teach an agent if it is “truly autonomous” in a radical way. So, to
solve the contradiction between the “true autonomy” and the usefulness and teachability
requirements, we will relax the constraint on true autonomy. Rather, we will focus on the
weaker constraint of agents which can set their own goals and learn to achieve them, a
category that we call autotelic agents. Though an autotelic agent pursues its own goals, its
behavior can still be influenced by external signals. Such an agent could become appropriate
and useful if we succeed in convincing it to achieve our goals, rather than goals it has chosen
by itself.

Thus this paper proposes to reach useful autonomous agents by developing teachable au-
totelic agents—agents that set their own goals but can still benefit from teaching via natural
social interactions.

Putting autonomy aside, research about teachable agents already exists, in the field of
interactive learning. This research is driven by the fact that an agent immersed in the
everyday life of its users cannot be programmed in advance to meet all its user’s expectations,
neither in advance by a designer nor online by its user, as most users generally lack the
technical background to do so. Rather, these users should be able to communicate or teach
their preferences and expectations in a natural way, as they would do with children Vollmer
et al. (2016). But the way to teach agents is currently not natural enough. For instance, in
a state-of-the-art work about semi-supervised robot exploration Chen et al. (2020), the user
has to collect by hand a set of pictures showing the robot potential target contexts so as
to drive its exploration process, which is quite far from natural education. More generally,
interactive learning research relies a lot on Interactive Reinforcement Learning (RL), but
numerous papers have already shown that the way naive human users tend to teach an agent
is far from meeting the expectations of the RL framework Thomaz & Breazeal (2008a;b).
Using natural teaching methods such as language description of behaviors, instructions,
explanations and both verbal and non-verbal feedback to educate agents would contrast a
lot with the current necessary effort to drive their learning processes. In turn, this means
that these agents should be equipped with the appropriate capabilities to efficiently learn
from their users. We claim that having the capability to represent and pursue goals, to
autonomously imagine and select goals and to infer the goals of others and to interact with
them about these goals is one of these appropriate capabilities, as these goals can play a
pivotal role so that users can influence the behavior of autonomous agents towards their
preferences.

Moreover, all the Interactive RL research is restricted to a form of teaching where the
learning processes of the agent are directly driven by an external tutor. But children also
learn a lot on their own, driven by autonomous discovery processes. It would thus be more
efficient to let agents learn from their own curiosity, but to rely on education to drive this
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intrinsic tendency to learn in the direction of useful and acceptable behaviors. This would
result in assisted discovery processes, which have been shown to result in more efficient skill
acquisition than direct instruction Yu et al. (2018).

In themselves, these practical concerns for the feasibility and efficiency of agent teaching are
already strong enough incentives for laying the foundations of a dedicated research program.
But there are other reasons for doing so.

First, autonomous agents immersed in human societies will need to be endowed with the
sociocultural skills that are required in these ecosystems. The only way to acquire these
various skills specific to regions or groups of people is by learning them through practical
interactions with social partners. For these autonomous agents, being teachable means being
equipped with the core capabilities to acquire such skills.

Beyond this, a deeper, more fundamental reason for combining autonomy and teachability
stems from the endeavour of strong AI Lake et al. (2017). It might be the case, as put forward
by the social situatedness vision of researchers like Vygotsky Vygotsky (1978), Bruner Bruner
(1990; 1991; 2009b) and a few others Dautenhahn (1995); Zlatev (2001); Tomasello (2009)
that, in addition to the capability to pursue their own goals, interactions with caregivers,
tutors and mates are themselves necessary conditions for the emergence of sophisticated
forms of intelligence in agents, see Lindblom & Ziemke (2003) for a review. In particular,
these cultural interactions may play a crucial role in the acquisition of shared cognitive
representations making sense for agents and their human partners. From that perspective, to
obtain useful autonomous agents in a strong sense, we should focus on questions centered on
the role of verbal and nonverbal interactions in the acquisition of representational capabilities
compatible with those of social partners Vygotsky (1978); Tomasello (2009).

In this paper, as we said, we ground our view of autonomous systems in research dedicated
to intrinsically motivated agents, and particularly to the specific category of autotelic agents
Steels (2004) which determine and learn to pursue their own goals based on intrinsic mo-
tivations. In order to ground our investigation in developmental science, we start from a
classical work about the normal teaching of a child, namely “The role of tutoring in prob-
lem solving” Wood et al. (1976). As put forward in Vollmer & Schillingmann (2018), there
are numerous theories and guidelines on optimal teaching, but studies such as Wood et al.
(1976) on how teaching is done naturally are relatively scarce.

Though Wood et al. (1976) is most focused on tutoring processes and provides a lot of hints
on how to efficiently teach children, in this paper we focus more on the learner side of the
tutoring process. We leverage observations on how natural teaching is performed to extract
a list of properties one may expect from teachable autonomous agents. In Section 2, we
then describe current research on Interactive Reinforcement Learning from one side and
autotelic agents from the other side to show that the former provides teachable agents that
lack autonomy, whereas the latter mostly provides non-teachable autonomous agents. We
then outline in Section 3 the emergence of a new line of research striving to provide the best
of both worlds. In particular, we describe the imagine Colas et al. (2020a) and decstr
Akakzia et al. (2021) agents as examples of autotelic agent endowed with both problem
solving capabilities and primitive interactive learning capabilities in the form of sensitivity
to language. In Section 4, we investigate the properties that are missing to such agents
in order to become more teachable. In Section 5, we do the same about augmenting the
autonomous learning capabilities of these agents. Finally, in Section 6, we extract a list of
specific research questions that emerge from the perspective of extending autotelic agents
with interactive learning capabilities.

1 The normal teaching of a child

According to educational sciences, children can learn in three ways: unassisted discovery,
where children are left on their own to discover new things, direct instruction where a tutor
explicitly sets the learning goals of children step by step, and guided or assisted discovery,
where the tutor intervenes on the discovery process of children to make it more fruitful Yu
et al. (2018). In this paper, we focus on the latter form of education.
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“The role of tutoring in problem solving” Wood et al. (1976) is a classical developmental
psychology paper where the authors study the latter form of education. They describe
children as natural problem solvers and outline the importance for their development of
being assisted by social partners who are more skillful than themselves on the tasks they are
committing to. As the authors put it, “tutorial interactions are, in short, a crucial feature
of infancy and childhood.”

In their paper, they design a study of tutoring interactions in which children of age 3, 4
and 5 have to learn how to build a wooden pyramid from a set of wooden blocks with
sophisticated pairing constraints. A tutor can assist them in reaching this challenging goal.
The task can be achieved in 15 elementary actions and, under assistance, children take 40
actions on average to achieve it. The tutor can intervene mainly in two ways. From one
side, she can directly act on the setup, handing blocks to children, or providing partial
demonstrations by making pairs of blocks or taking blocks apart. From the other side, she
can interact with children through language, mostly pointing to errors by asking them to
compare two constructions, or motivating children by asking them to do more of what they
just did. Other non-verbal signals seem to exist without being explicitly studied in the
paper. Indeed, the authors mention the importance of providing a positive atmosphere or
refer to the role of encouraging the child to move to next steps without mentioning the way
these signals are fleshed out.

From this classical study and a few additional sources from the developmental psychology
literature, we highlight properties of the learning children and properties of the tutoring
process itself.

1.1 Properties of learning children

Children are autonomous

An extraordinary property of natural learning in children is that it is open-ended: the
child is capable of solving new problems of increasing difficulty up to becoming an adult and
keeps learning during a whole life. Processes of autonomous learning in infants have several
properties that are fundamentally different from many current machine learning systems.
Among them is autonomy, i.e. the capability to spontaneously explore their environments,
driven by an intrinsic motivation to discover and learn new tasks and problems that they
imagine and select by themselves Berlyne (1966); Gopnik et al. (1999); Chu & Schulz (2020).
Crucially, there is no engineer externally imposing one target goal that they should reach,
providing a curriculum for learning or a ready-to-use database of training examples. Rather,
children self-select their objectives within a large, potentially open-ended, space of goals they
can imagine, and collect training data by physically practicing these goals.

This tendency of children to pursue their own goals is central in Wood et al. (1976). In a
first stage of the study, children are left for a time with the blocks and can play with them
on their own. Subsequently, the authors list six scaffolding mechanisms which come into
play in the tutoring process, three of which explicitly deal with the fact that children tend
to attend to their own goals. Namely, these three mechanisms are recruitment, direction
maintenance and frustration control, which we further describe in Section 1.2.

Another key sign that children pursue goals is that, as the authors put it, “children under-
stand goals before being able to produce them.” To show this, the authors monitor the number
of times children take apart blocks that are either correctly or incorrectly paired together
during the problem solving process. They show that, though younger children consistently
fail to build the pyramid on their own, they can recognize whether a given pair of blocks is
a partial solution to the global problem, as they will less often take apart the correct ones
than the incorrect ones. The authors claim that their study shows that “comprehension
precedes production”. They explain that understanding the goal is necessary so that useful
feedback can be extracted from trying to achieving it. Furthermore, they emphasize that
the role of tutoring is more about helping children understand the goal than about helping
them physically achieving it.

Children are few shot learners
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Beyond the specific study of Wood et al. (1976), other developmental studies have revealed
that children explore goals in an organized manner, attributing to them values of interest
that evolve with time, and allowing them to self-define a learning curriculum that develop-
mental psychologists call a developmental trajectory Piaget (1977); Thelen & Smith (1996);
Smith & Gasser (2005). This self-generated learning curriculum makes them very sample
efficient: they avoid spending too much time on goals that are either too easy or too dif-
ficult, focusing on goals of the right level of complexity at the right time. Besides, while
children are learning, some tasks that were previously too hard become easier because chil-
dren can transfer what they learned from solving one task to solving another. Based on this
transfer process, children are also few shot learners: they can leverage what they learned
on previous tasks to learn in very few attempts new tasks that are now easier. Thus these
mechanisms allow children to discover highly complex skills such as biped locomotion, block
stacking or tool use, which would have been extremely difficult to learn if they had directly
addressed these goals before mastering simpler skills. Wood et al. (1976) do not focus on
these learning efficiency aspects as their main messages are more about the tutoring process.

Children are hierarchical learners

The idea that children are hierarchical learners is pervasive in the developmental psychology
literature Eppe et al. (2020). The elementary skills mastered by children are often stepping
stones for discovering how to learn other skills of increasing complexity. As Bruner says “the
acquisition of skill in the human child can be fruitfully conceived as a hierarchical program in
which component skills are combined into ‘higher skills’ by appropriate orchestration to meet
new, more complex task requirements.” Bruner (1973). Again, though this is not the focus
of Wood et al. (1976), the task used in their study is itself hierarchical in that it involves
several repetitions of the same assembly processes.

1.2 Properties of the tutoring process

Up to now, we have focused on the properties of children as efficient autonomous learners
as revealed by the studies of Wood et al. (1976) and beyond. We now investigate the
properties of the tutoring process itself as revealed from the same study. The purpose of
these investigations is not to model the tutoring process to design an artificial tutoring
agent, but to extract from this perspective the properties required from a teachable agent
so that it could respond to natural tutoring signals, coming either from a human or another
agent.

Showing in tutoring is not for being perfectly imitated

Wood et al. (1976) provide several cues showing that natural tutoring interactions do not rely
much on learning from demonstrations. They observe that, among the 30 children of their
study, “there was not a single instance of what might be called blind matching behaviour”.
Blind matching behavior is what would be observed if children where replaying the tutor’s
trajectory without understanding the goal. Second, the authors mention that the only acts
that children imitate are those they can already perform fairly well. That is, imitating the
tutor is not a way to learn how to perform the tutor’s current action, it is more probably a
way to move to the next step of the problem solving process.

Demonstrations help correcting imperfect attempts

Beyond showing what to do next, it seems that demonstrations can still play a role in
learning new skills. If they are not used for blind imitation, how do they help? Looking
more closely at instances of demonstrations helps understanding that they are intended to
communicate an explanation of how to perform the task. “Demonstrating or ‘modelling’
solutions to a task, [...] involves an ’idealization’ of the act to be performed and it may
involve completion or even explication of a solution already partially executed by the tutee
himself” Wood et al. (1976).

The authors further explain that the tutor is ‘imitating’ in idealized form an attempted
solution tried (or assumed to be tried) by children in the expectation that they will then
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‘imitate’ it back in a more appropriate form. That is, the tutor builds on the current
knowledge of the learner to communicate on the parts of the problem solving process that
are still inadequate.

It is tempting to conclude from these observations that providing demonstration is in fact
a non-verbal way to communicate about intermediate goals rather than about the way to
achieve them.

Tutoring is regulating the motivational system

Wood et al. (1976) outline that most tutoring interactions are in charge of regulating the
motivational system of children to keep them engaged in targeting the goal they are expected
to reach. In more detail, they identify three such processes. Through recruitment, the tutor
should find a way so that the child engages into building the pyramid rather than any of
its other own goals. Through direction maintenance, she should ensure that the child keeps
committing to that specific goal, providing incentives to make further progress towards the
goal. Finally, through frustration control, she should avoid that the child gets discouraged
and gives up pursuing the goal.

For efficient tutoring, the tutor needs a model of the tutee

The last point that we extract from Wood et al. (1976) is that, for performing well-chosen
demonstrations or efficiently regulating the motivational system of children, the tutor needs
to monitor a model of the knowledge, hypotheses and performance of children as well as a
model of the task itself: “The effective tutor must have at least two theoretical models to
which he must attend. One is a theory of the task or problem and how it may be completed.
The other is a theory of the performance characteristics of his tutee.”. These models help the
tutor interpreting what children are trying to do, so as to efficiently help them. The authors
go further and consider that this interpretation process consists in generating hypotheses
about the behavior of children, something at which the believe humans excel.

Finally, and symmetrically to the perspective of this paper about having teachable machine
learners, already in 1976 the authors had the visionary idea that tutoring could be performed
by a machine: “if a machine program is to be effective, it too would have to be capable
of generating hypotheses in a comparable way.”. These tutoring machines could also be
obtained from learning mechanisms. We now turn to AI work dedicated to the design of
these artificial learners.

2 Teachable versus Autonomous Agents

Reinforcement learning (RL) is a process by which an agent learns to solve sequential decision
problems from a reward signal Sutton et al. (1998). The learning agent does not know the
effect of its actions in its environment, thus it has to explore to discover which action leads
to which state and to obtain positive or negative rewards. It then repeats more often the
actions that have proven rewarding in some situations and avoids those which have led to
punishment. Initially, RL was a model of learning by trial-and-error in animals Thorndike
(1911). The RL framework was also shown to convincingly explain conditioning phenomena
at the neurosciences level in monkeys Schultz et al. (1997) and from there in many other
species including human subjects Daw & Doya (2006). Thus, RL seems to be a natural
framework for modelling learning to solve problems in children. However, this framework
suffers from several limitations, among which the lack of autonomy, boundedness, sample
inefficiency and focus on individual learning. We expand on those limitations below.

Lack of autonomy

The behavior of reinforcement learning agents is fully determined by a reward function. In
the standard framework, this reward function is externally provided by a human designer
with some specific goal in mind. In the absence of such an externally provided signal, RL
agents would learn nothing, thus they are fully dependent on the reward design. As we
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outlined in Section 1.1, this is to be contrasted with children who can set their own goals
and learn in full autonomy.

Boundedness

Reinforcement learning agents are designed to optimize a fixed reward function. Once
this fixed function is given, the behavior of the agent should converge to some optimum
determined by this function and stop changing. At first glance, the richer framework of
multitask RL Caruana (1997) and its derivatives such as meta-RL Finn (2018) seem to
improve over this situation but in the end, as long as the set of task is bounded, the behavior
of the agent should also converge to a steady optimum. To overcome these limitations, a
new line of AI research on open-ended learning has recently been proposed, where an agent
receives a potentially infinite sequence of unknown tasks Doncieux et al. (2018). But the
framework is not explicit on where the reward function of each task should come from. From
one side, it is unclear how they could be externally provided along time. From the other
side, it is hard to imagine an organized space of reward functions that an agent may explore
through time to account for all the activities a human adult could learn. As we outlined
in Section 1.1, this is to be contrasted with the open-ended learning process observed in
children who reward themselves from reaching a potentially infinite set of goals they set to
themselves in a rather organized manner, through following their own curriculum.

Sample inefficiency

Reinforcement learning is notoriously slow and sample inefficient Botvinick et al. (2019). The
groundbreaking successes that have made the field popular these last years, such as playing
Atari games at a human level Mnih et al. (2015), defeating world champions in difficult board
games Silver et al. (2018) and more complex strategic games Jaderberg et al. (2019); Vinyals
et al. (2019) or even solving difficult robotic dexterous manipulation problems Andrychowicz
et al. (2018); Akkaya et al. (2019) have all been obtained with weeks of heavily parallel
computation which would correspond to centuries of human training time. As we outlined
in Section 1.1, this is to be contrasted with the few shot learning capability of animals
Gruber et al. (2019) and humans, e.g. Csibra & Gergely (2009).

Focus on individual learning

The standard RL framework accounts for an agent learning in isolation. As we outlined in
Section 1.2, this is to be contrasted with children who benefit a lot from tutoring interactions.

Now that we have established these limitations of the standard RL framework, we describe
two lines of artificial agent learning research which separately overcome subsets of these
limitations, namely research on interactive reinforcement learners and research on isolated
autotelic agents.

2.1 Interactive Reinforcement Learners

Within AI, the field of interactive learning investigates and models the way a human tutor
guides the learning process of an agent by providing teaching signals Breazeal & Thomaz
(2008). More specifically, Interactive RL focuses on the case where the agent is an RL agent.
From the perspective adopted in this paper, Interactive RL can be seen as solving several
of the issues outlined above.

First of all, by definition, it is not restricted to individual learning. Second, one per-
spective on Interactive RL is that it attempts to address the sample inefficiency issue.
According to this perspective, teaching signals such as instructions Grizou et al. (2014),
advice Celemin & Ruiz-del Solar (2015), demonstrations Argall et al. (2009), guidance Na-
jar et al. (2016); Suay & Chernova (2011) and evaluative feedback Knox & Stone (2010);
Griffith et al. (2013); Najar et al. (2016) are all provided to the agent in addition to an
external reward function to accelerate its learning process.
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Another prominent form of interaction in Interactive RL research to accelerate learning is
called “Learning from Demonstration” (LfD) Argall et al. (2009). It can be seen as an
extremely simplified version of the natural situation where a tutor demonstrates a task
to a child. In this approach, an expert first performs highly rewarded trajectories in the
environment where the task is defined. Then, data from these trajectories are collected and
fed into the replay buffer—a sort of episodic memory—of the learning agent. From this data,
the agent learns an efficient policy as if it was its own memories Hester et al. (2018); Večeŕık
et al. (2017). Rather than using RL, an alternative approach called “Behavioral Cloning”
(BC) consists in performing regression—another kind of machine learning process—from
the same data to directly obtain a policy which behaves like the imitated one Torabi et al.
(2018). These methods are not realistic in several ways. First, they assume the experience
of the expert is directly transferred into the memory of the learning agent, which cannot
happen yet in real life given that both participants have a different viewpoint. Second,
they assume that the expert and the learning agent share the same state space, action
repertoire and dynamics of interaction with the environment, which is unlikely in real life
situations where imitating agents have to solve several correspondence problems to adapt
the state representation and actions of the demonstrator to their own context Nehaniv &
Dautenhahn (2002). Finally, they assume that the agent can perfectly observe the states
and actions of the demonstrator and imitate these actions, which raises several challenges
that we cover in Section 4.

Anyways, even if this method was a simplified version of natural learning from demonstra-
tion, we already outlined in Section 1.2 that this engineering approach is an unrealistic
model of how showing what to do is performed in natural tutoring interactions, as infants
do not perform “blind matching”. It is more likely that natural learners recognize the goals
of the partner and try on their own to produce the same goals rather than performing blind
imitation. This is known as goal emulation Tomasello (1998); Ugur et al. (2011) and this can
be accounted for in the RL framework through inverse RL processes Abbeel & Ng (2004).
Among other things, this approach can help solving the correspondence problem Nehaniv
& Dautenhahn (2002).

Beyond the research lines described above which are mostly dedicated to improving the
sample efficiency of RL, another line of Interactive RL research addresses the boundedness
limitation. In this approach, the tutor communicates to the agent some elements to help it
infer the reward function itself such as expert trajectories Abbeel & Ng (2004) or preferences
about outcomes Christiano et al. (2017) or a combination of both Ibarz et al. (2018); Pinsler
et al. (2018). By doing so, agents can recover open-ended learning properties, as a human
user may specify a potentially infinite set of increasingly more difficult tasks.

But we immediately see that this approach relies too much on the tutor to drive the learning
process and fails to account for the autonomy of children. First, it is too much load for the
tutor to always monitor the learning progress of an agent and to provide new tasks along a
potentially infinite learning trajectory. Second, this approach does not account for the fact
that children are also capable of learning new tasks on their own, by contrast with agents
studied in the next section. Thus this perspective is more related to the direct instruction
approach to education than to the assisted discovery processes that we investigate in this
paper.

2.2 Autonomous Reinforcement Learners

The extraordinary transition from the mental life of infants to the sophisticated intelligence
of human adults studied in the developmental psychology works outlined in Section 1.1 is
mostly modelled in the domain of developmental robotics Weng et al. (2001); Zlatev (2001);
Lungarella et al. (2003). A central line of research in the domain is interested in the design of
autotelic agents Steels (2004); Schembri et al. (2007). These embodied agents interact with
their environment at the sensorimotor level and are provided with the ability to represent
and set their own goals and rewarding themselves when they achieve them Oudeyer et al.
(2007); Forestier et al. (2017). By definition, they are endowed with a form of autonomy.
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Fundamentally, these agents are problem solvers. Implementing their learning capabilities
using RL is natural, since the RL framework provides the model of choice to account for
problem solving capabilities Sutton et al. (1998).

Most of such autotelic agents are equipped with one or several goal spaces and rely on goal-
conditioned RL Colas et al. (2020b) and automatic curriculum learning Portelas et al. (2020)
to learn to achieve those goals along an open-ended developmental trajectory. This endows
them with the capability to decide which goals to target and learn about as a function
of their current abilities Florensa et al. (2018); Fournier et al. (2019); Colas et al. (2019);
Racaniere et al. (2019). Thus, by contrast to Interactive RL agents, autotelic agents provide
a promising solution to the boundedness issue: if they explore an unbounded set of goals
of increasing complexity, they may end up accounting for the open-ended development of
children. As a side note, another process which is considered open-ended is evolution, and
some authors have suggested that one may account for open-ended evolution by optimizing
novelty in a population Lehman & Stanley (2008). It is of interest to realize that the
algorithms behind optimizing novelty in evolution, namely Novelty Search Lehman & Stanley
(2011) and behind addressing novel goals in autotelic agents learning, namely Intrinsically
Motivated Goal Exploration Processes Forestier et al. (2017), share similarities, see Sigaud
& Stulp (2019).

Nevertheless, as long as they address a finite set of goals, these algorithms may eventually
converge to a limited set of behaviors, as we have already outlined above for the case of
multitask learning. Addressing continuous goal spaces somewhat alleviates the problem,
but the process may still converge to a fixed point if the goal space itself is bounded. These
limitations have recently been partially overcome either through learning incrementally new
sensorimotor goal representations Laversanne-Finot et al. (2018); Etcheverry et al. (2020),
or by leveraging the compositional capability of language to represent goals in potentially
open abstract spaces, and imagine new goals from these open spaces Colas et al. (2020a).

Thus, similarly to children, isolated autotelic agents are able to learn to solve problems
on their own and to imagine an open-ended list of problems. However, by contrast with
children, they are not interactive. As a consequence, they cannot readily benefit from social
guidance.

3 First Steps Towards Teachable and Autotelic Agents

As we have outlined in the previous section, on one hand interactive reinforcement learners
are teachable, but they are not autonomous. On the other hand, isolated autotelic agents
are autonomous, but they are not teachable. To fully benefit from the efficiency of the
assisted discovery process described in Wood et al. (1976), agents should be simultaneously
teachable and autonomous. In this section we describe preliminary research in this direction
and we outline the limitations of the existing works in the domain.

3.1 Language-Augmented Autotelic Agents

Language was one of the two main tutoring media in Wood et al. (1976). More generally,
communication capabilities may be absolutely necessary for teaching agents in a natural
way, if not for endowing them with symbolic intelligence Bruner (2009a); Taniguchi et al.
(2018). If we want to teach them, it is thus mandatory to endow autotelic agents with the
capability to ground language in their sensorimotor experience Cangelosi et al. (2010). This
connection between sensorimotor behavior and language has recently emerged in the RL
community under the form of language-conditioned agents Chan et al. (2019); Bahdanau
et al. (2019); Cideron et al. (2019); Jiang et al. (2019); Luketina et al. (2019); Colas et al.
(2020a). However, all these approaches use language as a necessary input to sensorimotor
behavior and, for this reason, cannot account for the goal-directed behaviors observed in
preverbal infants Mandler (1999).

As far as we know, the first language-augmented autotelic agents have been proposed very
recently with the imagine Colas et al. (2020a) and decstr Akakzia et al. (2021) agents.
Both agents combine the key features of autotelic agents presented in Section 2.2: they
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rely on goal-conditioned policies and their choice of goals is driven by intrinsic motivations.
But they are additionally endowed with a basic language interaction capability on which we
focus below.

The IMAGINE agent

The imagine agent, illustrated in Figure 1, aims to discover and master possible interactions
in a Playground environment filled with procedurally-generated objects. As it freely explores
its world by pursuing its own goals, it receives simple linguistic descriptions of interesting
behaviors from a simulated caretaker. From these linguistic social interactions, imagine
leverages both the communicative and cognitive functions of language Colas et al. (2020a).

Agent

"Grasp red tree" 
+

"Grasp red algae"
+

"Grow blue algae"

"Grow red tree" 

"You grow blue algae"

2. Creative autonomous 
exploration: 

Imagining new goals by 
composing known sentences

1. Guided exploration with a 
social partner: 

Learning the meaning of sentences 
through interaction with a social peer

Agent

Social partner

Agent

Figure 1: The imagine architecture as a Vygostkian Deep RL system. The agent learns to
represent and understand language as a pre-existent social structure through social inter-
actions with a synthetic caretaker (left). This internalization of social language opens the
door to a cognitive use of language. The agent can now imagine new goals as systematic
recombinations of known sentences. As it pursues its own invented goals, imagine creatively
explores its environment (right). imagine also leverages Vygotsky’s notion of zone of prox-
imal development Doolittle (1997). In each episode, the caretaker sets the scene to provide
optimal challenges: it introduces the necessary objects for the agent to reach its goal (not
too hard), but generate them procedurally and add distracting ones (not too easy).

Let us first discuss the communicative function. If the agent hears “you grasped a red rose”,
it turns this description into a potential goal and will try to grasp red roses again. To do
so, it needs to understand what that means and to learn to replicate the interaction. The
just-received description is an example of aligned data: a trajectory and a corresponding
linguistic description. This data can be used to learn a goal-conditioned reward function, i.e.
a function that helps the agent recognize when the current state matches the linguistic goal
description. Given a few examples, the agent correctly recognizes when goals are achieved
and can learn a policy to perform the required interaction via standard RL using self-
generated goals and rewards. Here, imagine uses the communicative function of language,
it learns to represent the embedding of goals and goal-conditioned reward function from
linguistic social interactions. As the social partner decides to describe some interactions
and not others, it effectively guides the goal representations of the agent. imagine is thus
a teachable autonomous agent : its goal representations are influenced by social interactions
and, once they are formed, the agent can act autonomously without relying on caretakers.
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Now, imagine also uses a cognitive function of language. Once language has been grounded
as described above, imagine leverages the productivity of language to generate creative goals
falling outside of the domain of effects the agent already experienced. Language—and its
compositional properties—is here used as a cognitive tool to facilitate the composition and
imagination of novel goals. The mechanism is crudely inspired by usage-based linguistic the-
ories Tomasello & Olguin (1993); Tomasello (2000); Goldberg (2003). It detects recurring
linguistic patterns, labels words used in similar patterns as equivalent and uses language
productively by switching equivalent words in the discovered templates. This simple mech-
anism generates truly creative goals that are both novel and appropriate, two adjectives
used to define creativity—see discussion in Runco & Jaeger (2012). As the authors show,
this simple mechanism powers the creative exploration of the environment and enhances
the systematic generalization abilities of the agent. Whereas the communicative function
of language mostly help internalize the goal representations of social partners, the cognitive
function gives the agents its individuality and open-endedness: the agent can generate novel
creative goals that its caretakers did not know about.

Using descriptions rather than instructions in imagine is a deliberate choice given that
linguistic guidance through descriptions is a key component of how parents teach language to
infants Yoshida & Smith (2003); Tomasello (2009). This is in contrast with the instruction-
based approach which is dominant in language-conditioned agents research, but rarely seen
in real parent-child interactions Bornstein et al. (1992). Thus the imagine agent proposes
a model of language acquisition which contrasts with what is done in instruction-following
agents Hermann et al. (2017); Chan et al. (2019); Bahdanau et al. (2019); Cideron et al.
(2019); Jiang et al. (2019), where the social partner provides a linguistic instruction and
then a reward upon completion, see Luketina et al. (2019) for a review. Finally, the technical
cornerstone of this work is that it learns a goal-conditioned reward function where the goal
is learned as a language expression from data coming from the social partner. This removes
the need for a lot of feedback and presence for the social partner, which is one of the target
functionalities of autonomous teachable agents. More details about this work are presented
in Colas et al. (2020a).

The DECSTR agent

In the intrinsically motivated agents outlined in Section 2.2, just as in most goal-conditioned
RL algorithms Schaul et al. (2015); Andrychowicz et al. (2017); Colas et al. (2020b), the
space of goals is generally defined as a subset of the state space of the agents Nair et al.
(2018); Florensa et al. (2018); Pong et al. (2020); Nair et al. (2019). However, this approach
falls short of providing the level of abstraction necessary for natural communications with
social partners. The imagine agent addresses this concern by directly representing goals in
a language embedding space. But, doing so, it cannot account for the fact that infants learn
to target sensorimotor goals before they master language.

The decstr agent solves the latter issue by introducing an abstract goal representation
layer in the architecture where a goal is expressed as general predicates. At the sensorimotor
level, this helps targeting more abstract goals, opportunistically making profit of the current
situation to address the easiest concrete configurations fulfilling the goals. The decstr agent
interacts with blocks. So, for instance, having the red block “close to” the blue block can be
realized in an infinity of ways and the agent can find the simplest movement to move one of
the block so that it comes close to the other depending on the whole scene. At the language
level, the abstract goal representation layer also plays a key role in grounding language-
based descriptions into sensorimotor experience, as it simplifies the correspondence between
natural language instructions such as “put the red block close to the blue block” and the goals
the agent manipulates in practice.

More precisely, to ground language into its sensorimotor experience, the decstr agent relies
on a Language Goal Generator that takes a language expression as input and samples con-
crete goals matching the language expression. The way this component endows sensorimotor
autotelic agents with language sensitivity by relating language to behavior is depicted in
Figure 2. This is precisely through this Language Goal Generator that language is grounded
into sensorimotor goals.
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Figure 2: The decstr architecture as a Vygotskian Deep RL system. decstr learns to
ground linguistic descriptions of its trajectories provided by a synthetic caretaker into innate
semantic representations. This language grounding occurs in a language-conditioned goal
generator. Once trained, decstr uses language as a cognitive tool to guide the simulation
of possible future world configurations matching an input description (e.g. from the tutor
or self-generated). As it selects one of them as goal, decstr commits to turning the world
into this selected future.

The architecture of the decstr agent is depicted in Figure 3. It is designed to learn to
manipulate blocks in the Fetch Manipulate Tutoring environment, a benchmark which was
used in several recent works to train hierarchical RL agents Pierrot et al. (2020) and autotelic
agents Lanier et al. (2019); Colas et al. (2019); Li et al. (2019).

The decstr agent is tested in a three-step process. First, it learns to discover and master
all reachable block configurations expressed through a set of binary spatial predicates telling
whether blocks are close to or away from each other, and whether one is above the other
or not. In a second phase, similarly to the case of the imagine agent, a social partner
provides a simplified description of what the decstr agent did. It then learns to ground
these descriptions into its abstract representations of compatible goal configurations. More
precisely, the Language Goal Generator component is trained to generate a diversity of
compatible goals for each possible instruction. By doing so, it instantiates the embodied
simulation hypothesis by letting the agent project itself towards potential future states and
choosing one of them as goal Barsalou (2009), and it accounts for the fact described in
Wood et al. (1976) that children can understand a goal before being able to reach it. The
capability of generating a diversity of goals also results in an increased diversity of behaviors
displayed by the agent and a capability to retry to pursue the same goal in another way
Akakzia et al. (2021). In a third phase, the agent is finally instructed to move some block
using its learned set of skills, and can do so in a variety of ways.

In the first sensorimotor phase, the decstr agent successfully discovers and masters all
reachable configurations in its goal space. It first masters the easy goals, such as putting
blocks close or away to each other. Putting a block above another is more difficult and
takes more time to learn, as it requires the mastery of grasping and releasing the block at
the right place. After a while, the decstr agent finally learns to build pyramids and towers
of three blocks. Once becoming more expert, the decstr agent gets opportunistic, making
profit of the current configuration to reach its goal with as few block moves as possible.
More details about this work are presented in Akakzia et al. (2021).
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Figure 3: The decstr architecture in the Fetch Manipulate Tutoring environment. The
tutor can interact with the agent by setting the initial scene, providing descriptions or in-
structions. decstr uses aligned descriptions and trajectories to train a language-conditioned
goal generator mapping language to a set of matching configurations used as goals. The
agent either pursues language-conditioned goals or its own. In either case, it learns to
achieve them through intrinsically motivated goal-conditioned reinforcement learning.

3.2 Limitations of Language-Augmented Autotelic Agents

In both imagine and decstr studies, the social partner facilitates the sensorimotor self-
training process of the agents by setting up the environment in configurations where the goals
can be more easily reached so as to maintain them in their zone of proximal development
Vygotsky (1978). This process has an influence on how fast the agents learn to reach a
goal or another. For instance, the discovery of pyramids or stacks of three blocks is much
slower in decstr when the social partner is removed Akakzia et al. (2021). Thus imagine
and decstr can already be considered ‘teachable’ in a very elementary way. Besides, both
agents are endowed with a basic capability to interpret language. But they differ a lot in
terms of their capability to be taught through language.

In the case of the decstr agent, since language acquisition and instructions are decoupled
from sensorimotor learning, language obviously plays no role in the sensorimotor learning
process. Instructions are just used after sensorimotor learning to evaluate the responsivity
of the agent to language. In the case of the imagine agent, by contrast, the description of
actions plays a direct role in orienting the exploration process of the agent. The imagine
agent can thus be said ‘teachable’ through language in a stronger way than decstr. How-
ever, in all experiments performed in Colas et al. (2020a), the agent is only targeting its
own goals and the role of the social partner is limited to describing what the agent does,
without providing any direct incentive to target a particular goal rather than another. This
is to be contrasted with the studies of Wood et al. (1976) where the tutor is in charge of
making sure that children will build a pyramid. Thus the imagine agent has the potential
to receive instructions, but this potential has net been demonstrated.

Admittedly, some limitations of these language-augmented autonomous agents could be
overcome by combining the language grounding and instruction following capabilities of
the decstr agent with the capability of the imagine agent to imagine new goals and
couple sensorimotor learning to language acquisition. Somehow, achieving this could result
in displaying overlapping waves of sensorimotor and linguistic development Siegler (1998).
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However, such a combination would raise additional difficulties and would still suffer from
important limitations, which we investigate in the next section.

4 Towards more Teachable Autotelic Agents

The skill acquisition process of the decstr and imagine agents can be influenced in two
ways. First, the caretaker can interact with the agents through language. Second, in decstr
studies, the caretaker can set the scene at the beginning of each training episode by moving
blocks so that some goals get easier to reach than others. From this broad perspective,
we recognize the two main ways by which the tutor interacts with children in Wood et al.
(1976). However, when looking more closely, there are several discrepancies:

• As we just outlined, the role of verbal communication from the tutor in Wood et al.
(1976) is to maintain the motivation of the child towards building the pyramid,
whereas neither in decstr nor in imagine are the tutor’s utterances used to orient
the sensorimotor learning process of these agents towards a specific goal.

• The decstr and imagine agents start a new episode with an environment that has
already been prepared by the caretaker whereas children of Wood et al. (1976) can
observe the tutor intervening and may benefit from these observations.

• In imagine and decstr, language is used to describe goals or to ask the agent to
reach a goal. By contrast, in Wood et al. (1976), language interactions consist of
question-based corrective feedback (“isn’t this pair different from that one?”) or
direction maintenance (“do more of this”).

All these differences point to limitations in the capabilities of the decstr and imagine
agents. In the remainder of this section, driven by these differences, we investigate the
properties that are missing to these agents so that they can be taught in a more natural
way. For doing so, we start by adopting a general perspective about tutoring as a mutual
exchange between the tutor and the learner using two communication channels.

4.1 Tutoring as Communication

Interactions between a tutor and a learner, and more generally social learning processes
Bandura & McClelland (1977), can be conceptualized as a mutual exchange process using
two main communication channels, the social channel and the task channel, see Figure 4.

Figure 4: The general mutual exchange perspective using two communication channels. The
social channel is used for exchanging social signals such as feedback, requests, commitment
signals, etc. The task channel is used for exchanging task-related signals such as demon-
strations. Both participants can use both channels either as signal provider or recipient.

From one side, the tutor may use the social channel when providing instructions or non-
verbal feedback, and the task channel when providing demonstrations, either on purpose or
even without the intention to teach. From the other side, the learner may use the social
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channel when providing feedback on her understanding or asking questions, and the task
channel when imitating the tutor or performing the task to display her current capabilities.
As Figure 4 shows, the tutor and learner can either be the provider or the recipient of
the messages depending on the side of the communication. Also, both participants usually
alternate these roles, resulting in a mutual exchange. For example, when the learner executes
a task in order to obtain a feedback from the tutor, she is first the provider and then the
recipient.

From this general perspective, we can now reconsider various forms of tutoring. For instance,
when the provider is the tutor, she may use the social channel to provide instructions or
feedback, and the task channel to provide demonstrations. In that case, her behaviour is
modified with the intention to teach the recipient. She may also provide descriptions of the
activity of the agent, as we have seen in Section 3. Reciprocally, the learner can become the
provider using both the social and the task channels to inform the tutor about her current
understanding and capabilities. The learner can also be the provider when querying more
information, implementing a form of more active learning. We argue that, to be successful,
tutoring should exploit and combine the social and the task channels, resulting in various
“frames” of exchanges where both participants can use both channels and both roles. These
frames of exchanges are called “pragmatic frames” in Vollmer et al. (2016). Note that Wood
et al. (1976)do not study the communication signals from the child to the tutor. In that
respect, Wood et al. (1976) do not benefit from the mutual exchange perspective that we
adopt here and whose importance has been outlined in several later research works Thomaz
& Breazeal (2008a); Vollmer et al. (2016).

So far, the above paragraphs and Figure 4 provide a somewhat static view of the possible
exchanges between both participants of the tutoring process. Another dimension illustrated
in Figure 5 is more related to the way the mutual exchange process unfolds through time.
Generally speaking, when engaged in a complex task, both the tutor and the learner should
sustain the interaction using a sequence of the above exchanges Oertel et al. (2020). On
these temporal aspects, two dimensions must be distinguished. First, both participants have
goals, and the mutual exchange process is about the dynamics of these goals: how they are
maintained and how they evolve, how they can become aligned or misaligned between both
participants. The second dimension is about the dynamics of elementary exchanges and
the dynamics of attention of both participants: the way these exchanges and the attention
of participants unfold into patterns whose purpose is to successfully achieve their global
goals. As task-related behaviors, the successful interaction patterns can be learned from
experience and extracted into a set of efficient protocols that can then be reused to learn
various contents through similar interactions. These protocols are exactly the pragmatic
frames of Vollmer et al. (2016) and the challenge of automatically extracting such frames
from tutoring interactions is still unaddressed.

In the rest of this section, we build on this perspective to identify the key research questions
leading to the design of teachable autotelic agents. We first investigate interactions through
the task channel (Section 4.2): recognizing pedagogical signals, learning from demonstration,
observational learning and inference from indirect goal-related signals. Then, we cover
interactions through the social channel (Section 4.3): learning from feedback, instructions,
joint attention and engagement. Besides, maintaining this communication also requires the
use of mental models from both sides. From one side, the tutor needs models of the goal
and the learner’s current understanding of this goal, as put forward in Wood et al. (1976).
But from the other side, the learner also needs a model of the tutor’s models to provide
adequate feedback signals. These models of the partner are called a Theory of Mind Wellman
(1992) and again we outline the specific research challenges raised by the autotelic agent
perspective in Section 4.4. While covering these topics, we review pre-existing AI research
trying to account for some of the corresponding properties, even when these works do not
focus on autotelic agents. A few of the higher-level task-related cognitive capabilities that
autotelic agents should display to better account for learning in children are then covered
in Section 5.
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Figure 5: Sequence diagram of a pattern of exchanges. Blue: social channel; green: task
channel. From the mutual exchange perspective, the goal of these exchanges is to maintain
the dynamics of interaction so that both participants successfully reach their global goals.
Several such patterns can be abstracted away into pragmatic frames.

4.2 Learning from Task Channel Signals

As depicted in Figure 6, truly teachable autonomous agent that learn from observing the
behavior of the tutor should be able to recognize whether the tutor is adopting a pedagogical
stance or performing the task on his own, and may even infer information about the task
from indirect task channel signals. We cover the corresponding issues in the next paragraphs.

Recognizing Pedagogical Signals

From the framework sketched in Section 4.1, the pedagogical stance of a tutor should be
recognized from the general context of the initiated interaction and from the fact that the
action itself conveys communicative signals. As Csibra & Gergely (2009) put forward, in
natural pedagogy, the tutor shows the action with additional signals helping the learner
determine that a demonstration is given and identify what matters in this demonstration.
Through the task channel, the gestures are “speaking a language” called motionese Brand
et al. (2002); Nagai & Rohlfing (2007) and the agent has to sort out the communicative
part from the operative part of the action to understand the conveyed message. Despite
interesting attempts Ho et al. (2017), the capability to recognize these pedagogical signals
is overlooked both in Interactive RL agents and in autotelic agents, and the fact that the
latter set their own goal does not seem at first glance to make a difference in this respect.
This is more in the way these agents will reproduce the observed or demonstrated behaviors
that a difference appears.

16



Figure 6: Examples of task channel signals exchanged between the tutor and the learner.
Here, these signals consist of the task-related behaviour of the tutor, either as demonstra-
tions or as performance without a pedagogical intention.

Learning from Intentional Demonstrations

A striking capability of children is that, when the tutor adopts a pedagogical stance and
performs a unique demonstration, they are capable of generalizing from this unique demon-
stration to other contexts where what they have been shown is relevant Csibra & Gergely
(2009). This outstanding generalization capability is to be contrasted with what children
show when simply learning from observing someone else performing the task without a clear
pedagogical intent. The authors describe this sensitivity to pedagogy as an innate bias in
humans. Clearly, such a bias is missing in current teachable agents.

The key question, then, is to understand the nature of the information conveyed by a demon-
stration towards children. Since gestures are performed differently between the intentional
and the non-intentional demonstration cases, the message cannot be the trajectory itself to
be blindly reproduced Wood et al. (1976), but must be inferred from this trajectory. Fur-
thermore, demonstrations are often adapted with respect to the child’s previous mistakes, as
if the tutor was trying to convey an explanation about how to perform it Csibra & Gergely
(2009). A clear understanding of the nature of this explanation or more generally of the
conveyed message in a demonstration is currently missing Ho et al. (2016). But, following
Wood et al. (1976), understanding the goal of the demonstration is crucial in this process,
thus having goals as autotelic agents do is crucial to tackle this question.

Observational Learning

In natural interactions, the child can observe the tutor acting in the environment even when
no pedagogical intention is present, and still extracts a lot of information from these obser-
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vations, a process referred to as observational learning Varni et al. (1979); Meltzoff (1999);
Burke et al. (2010). In particular, learning can occur when the child tries to reproduce the
observed movements.

To design an agent learning from the reproduction of observed movements, we have to
account for four aspects: its attention towards the observed movement, its capability to
retain it, its ability to reproduce it and its motivation for doing so Bandura & McClelland
(1977).

In the Interactive RL literature, there are attempts to show that combining RL with LfD is
enough to account for observational learning, but these attempts are still limited, as they
do not consider that the observing agent may have its own goals Borsa et al. (2019).

Closer to our concerns, the autotelic clic agent imitates the behavior of other agents acting
in the environment without a pedagogical stance Fournier et al. (2019). An interesting
feature of clic is that it relies on a curriculum learning mechanism to decide which goal to
imitate from these agents depending on its current capabilities. However, the clic approach
to imitation still suffers from the same limits of the LfD and BC approaches as standard
interactive reinforcement learners that we already outlined in Section 2.1.

Rather than retaining the whole trajectory and adapting it to its own capabilities, the
learner may “imitate the goal” of the observed agent. This process called “goal emula-
tion” Tomasello (1998) has already been put forward in interactive agent design Nguyen &
Oudeyer (2012). This perspective is backed-up with neuroscience results, where researchers
studying how humans learn from the actions of others have found a dedicated and highly
sophisticated cognitive system based on mirror neurons Rizzolatti et al. (1996). These neu-
rons are believed to help trigger a mental motor simulation of observed actions as if the
observer was performing the action. However, though mirror neurons have been attributed
many roles in social cognition Gallese et al. (2004), there has been no direct evidence so far
of the direct involvement of mirror neurons in imitation Triesch et al. (2007). Thus, it might
be the case that these neurons are more involved in action understanding in the context of
a Theory of Mind (ToM) of the other agent (see Section 4.4) than responsible for the acti-
vation of an imitated sequence of actions Bonaiuto et al. (2007); Bonaiuto & Arbib (2010),
which would support the goal emulation perspective. Thus, to endow autotelic agents with
observational learning capabilities, it might be necessary to provide them a mental motor
simulation system and ToM-related capabilities.

Inference from Goal-Related Signals

When setting up the environment or handing a block to a child, the tutor’s intent is certainly
not limited to facilitating the child’s job in reaching a goal. Most probably, the tutor also
communicates information about the goal itself, even when the way to reach this goal is not
displayed. In that case, the learner has to infer information about the goal and the way to
reach it, a capability that is crucial to the social nature of humans Tomasello et al. (2005).

Indeed, children tend to consider the objects the tutor attends to as relevant to a potential
goal. More generally, they can infer the intent of the tutor and consider her intervention as
an implicit specification of the goal they are expected to pursue. Such implicit specification
can be further completed or reinforced by additional social signals such as gaze orientation,
posture, gesture exaggeration or even verbal signals.

Driven by the Interactive RL framework where agents learn from an external reward func-
tion, some works study how an agent can infer information about a reward function from
observed premises in the tutoring context Reddy et al. (2020); Bobu et al. (2020); Jeon et al.
(2020).

Moving to autotelic agents, similar processes could be transposed to infer a goal rather than
a reward function. A few recent works start addressing this issue by captioning the goal
of a demonstration through natural language and a goal generator Zhou & Small (2020);
Nguyen et al. (2021). We expect follow-up of such works to contribute to answering the key
question of the nature of the information conveyed by the tutor through the task channel
MacGlashan & Littman (2015); Ho et al. (2016; 2017).
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4.3 Learning from Social Channel Signals

As shown in Figure 7, feedback signals and instructions are exchanged through the social
channel. Together with demonstrations, these signals are the most covered teaching mecha-
nisms in the Interactive RL literature where agents do not have explicit goals but feedback
and instructions are just about elementary actions. Here, we investigate the differences it
makes to consider autotelic agents to deal with these signals.

Figure 7: Examples of social channel signals exchanged between the tutor and the learner.
The signals consists of verbal feedback such as instructions or feedback from the learner
or the tutor. This also includes non-verbal interaction signals used to maintain the learner
engaged into the learning activity, through gaze following for instance.

Learning from Tutor Feedback

Though the protocol of their study does not explicitly build on such aspects, Wood et al.
(1976) mention maintaining a positive atmosphere as a prerequisite for tutoring to be effec-
tive. Besides, the verbal feedback asking children to compare their constructions to positive
examples can be seen as a form of negative feedback whereas asking them to do “more of
the same” can be seen as positive feedback.

Reinforcement learning agents are explicitly designed to learn from a feedback signal which
can be either a reward or a punishment. Using feedback in Interactive RL is thus natural,
and papers doing so abound, see e.g. Lin et al. (2020) for a short review. But in isolated
RL agents, the signal is just a scalar value whose semantics (whether it is a reward or a
punishment) is immediately given by its sign. In the Interactive RL context, the feedback
signal can be more arbitrary, but the semantics is generally still considered given Cederborg
& Oudeyer (2014); Najar et al. (2020). Exceptions include Grizou et al. (2013), and Najar
et al. (2016), where an agent learns to interpret feedback signals based on their correspon-
dence to rewards received from the environment. However, autotelic agents do not receive
any reward from the environment. So how can they interpret arbitrary feedback? It might
be the case that humans and other animals are biased to interpreting some signals as re-
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ward or punishment without having to learn it. But without doubts, we can learn how to
interpret less immediate feedback signals such as the verbal ones in the work of Wood et al.
(1976). Do we do this by leveraging correlations to signals whose semantics is more innate?
How to account for these learning processes and transfer them into autotelic agents is still
an open question.

Besides, in Interactive RL, feedback is generally about the just performed action or sequence
of actions in the context of a single task. By contrast, according to Wood et al. (1976),
tutoring interactions are mostly dedicated to maintaining children on the right goal. For
instance, feedback can be used to re-engage or maintain the commitment of the child towards
the tutor’s goals. Thus, in contrast with Interactive RL agents, research on autotelic agents
could consider feedback about goal selection itself. We are not aware of such research,
though many phenomena could be studied, such as the fact that a disengaged child will
tend to ignore feedback about goals it is not attending to.

Finally, to benefit from feedback during sensorimotor learning, the architecture of a teach-
able autonomous agent should also contain an arbitration mechanism to combine external
and intrinsic reward signals. Our own evaluation about the way we achieved a goal and the
evaluation of a tutor may differ; if one is positive and the other negative, how this feedback
combination should influence behavior is unclear, resulting in interesting research questions.

Learning from Instructions

In the standard Interactive RL literature, instructions generally tell the agent which ele-
mentary action or eventually which sequence of such actions to take in the current context
to achieve a given task. By contrast, when considering autotelic agents who set their own
goals among many, instructions and feedback can be not only about the choice of immediate
actions, but also about the choice of more distant goals. Existing autotelic agents already
possess the necessary mechanisms to learn from instructions. For instance, the decstr
agent can translate an instruction into a set of potential goals. By learning on its own how
to reach these goals, it learns how to follow instructions. As we pointed in Section 3.1, the
imagine agent rather learns from descriptions but can then follow instructions characteriz-
ing behaviors close to the described ones.

As is the case with feedback, an agent learning from both intrinsic motivations and instruc-
tions would need an arbitration mechanism to choose between sticking to its own goal or
attending the ones of the tutor.

To conclude this part, in principle, autotelic agents should be able to deal with richer forms
of tutoring signals such as feedback and instructions. But they should also be endowed
with mechanisms to arbitrate between, from one side, their own goals and intrinsic learning
signals and, from the other side, those coming from the tutor. These arbitration mechanisms
should, in turn, endow these agents with a form of ‘personality’ where different agents with
different parameters would be more or less easily taught, exactly as in the normal teaching
of children.

Maintaining Commitment Through Gaze Following

The ability to engage in reciprocal exchanges is required for efficient interactions. Inter-
estingly, a lack of engagement or at least difficulties to engage with partners have been
identified as important predictors of several developmental disorders Dawson et al. (2004);
Ouss et al. (2014).

As outlined in Section 4.1, both partners in an interaction use social signals to start and
maintain engagement or to disengage. Among these forms of communication, joint attention
through gaze following and feedback from both sides play a crucial role. We now investigate
these engagement processes.

Let us first consider the ubiquitous role of gaze following. From one side, gaze following
is a required component of engagement, as it is necessary for the learner to attend the
goal the tutor is referring to. But achieving a task and observing the tutor performing a
demonstration also mobilize gaze. In that respect, an arbitration mechanism is necessary
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to decide where to attribute gaze resources. From another side, gaze following can support
learning under guidance of a tutor without the need for any additional external reward. For
instance, in the work of Fournier et al. (2017), an agent learns to achieve the task intended
by a tutor by leveraging a simple gaze following mechanism: it tends to engage in actions
towards objects it is looking at, and tends to look at the same objects as the tutor. Thus,
by watching the right objects at the right time, the tutor can drive the agent towards the
intended behavior. In a sense, this work is a precursor of using engagement in autotelic
agents, but the agent was lacking a goal representation capability.

Thus, again, we are not aware of any autotelic agent using gaze following to learn the right
behaviors under the guidance of a tutor, though these joint attention processes might be at
the heart of the mutual exchange processes described in Section 4.1.

Maintaining Commitment by Emitting Feedback

Emitting feedback is also essential from the learner to maintain commitment. It helps the
tutor acquiring a model of the learner’s current understanding of the task. For instance,
adding a transparency component in a learning agent behavior helps the tutor providing
more effective reward signals, resulting in improved training efficiency Thomaz & Breazeal
(2008b). On the same line, by providing feedback to improve transparency, a robot learner
influences the tutor’s movement demonstrations in the process of action learning and im-
proves the overall training efficiency Vollmer et al. (2014).

Adding transparency mechanisms to autotelic agents would be quite straightforward and
would significantly contribute to making them more easily teachable. But to decide what
to emit, one should endow these agents with a capability to learn a model of the mind of
their tutor, which we study in the next section.

4.4 Theory of Mind

Reading Wood et al. (1976) makes it clear that the tutor uses a model of the child’s under-
standing to manage the tutoring interaction. Reciprocally, a teachable autonomous agent
should be capable of understanding a goal from the behavior of the tutor, which relies
mostly on inferring the tutor’s expectation and then reasoning to figure out how to meet
this expectation. Thus, this process should clearly call upon a mental model of the tutor’s
expectation. Such a mental model is part of a larger model called a Theory of Mind (ToM),
as illustrated in Figure 8 and put forward in recent developmental psychology papers Vélez
& Gweon (2021); Gweon (2021). Having a theory of mind means being capable of reasoning
about other people’s mental states Jara-Ettinger (2019). The most common mental states
these theories refer to are beliefs, desires and intentions.

There has been recent attempts to account for the acquisition of a ToM through inverse
RL Jara-Ettinger (2019) and in the domain of multi-agent RL Nguyen et al. (2020a), but
these works generally suffer from the same limitations as Interactive RL approaches: they
do not consider explicit goals. In robotics, more convincing studies about having a ToM are
prominent in the domain of human-robot collaboration, as having a model of the teammate
seems mandatory for collaboration to be efficient Chakraborti et al. (2017). In particular,
these works can be organized along increasing capabilities from the agents as behavior-based,
goal-based, proactive and social agents, the latter being the only ones to have a full ToM.
Thus, one can see that all these types of agents but the first are autotelic.

However, none of the above works consider the specific case of a tutoring interaction. The
most interesting exception we are aware of is Rabinowitz et al. (2018), where the authors
design a machine learning algorithm endowing an agent with the capability to learn a model
of other agents. The algorithm belongs to a sub-field of RL called meta-reinforcement
learning where the goal is to “learn to learn”, that is to let the algorithm design its own
learning dynamics by using gradients over learning capabilities. Their specific instance
learns to distinguish between agents displaying different behaviors, to relate sub-optimal
behaviors to limitations in the perception of the agents, or even to interpret sub-optimal
behaviors in terms of false beliefs from these agents. Though the authors do not explicitly
mention this, the last point is of utmost interest when one considers an artificial tutor-
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Figure 8: In our context, the Theory of Mind states that the learner builds and maintains a
model of the tutor’s beliefs about what the agent knows and is capable of doing, its intentions
and desires. The tutor also has a model of the learner, and maintains it to provide adapted
teaching feedback along the learning phase.

learner interaction. From the side of the tutor, identifying a false belief raises the question
of finding the most adequate way to help the learner correct this belief. But, reciprocally,
the learner may also learn a theory of the beliefs of the tutor about itself, and find the
most adequate communicative signals to help the tutor correct these false beliefs or more
generally maintain a better model of the current knowledge of the agent.

To conclude this part, endowing artificial agents with the capability to learn a ToM in a
tutor-learner interaction raises a lot of interesting research questions which are widely open,
and which constitute avenues for further investigations towards teachable and autonomous
agents.

5 Towards more Autonomous Teachable Agents

Though we want to keep this paper focused on the interactive properties that an agent must
have so that it can be taught like a child, we have to admit that to account for a lot of
teaching phenomena such as the ones described by Wood et al. (1976), these agents must also
be endowed with task-related cognitive capabilities that are still missing. These capabilities
are not specific to teachability, but progress on modelling them will help design better
models of teachable agents. In this part we quickly list some of these missing capabilities.
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5.1 More natural language acquisition and language grounding

The study of Wood et al. (1976) being with children older than 3, it does not consider the
language acquisition and language grounding processes. In the language-augmented agents
described in Section 3.1, a simplified template-based language is learned using standard
machine learning tools without any effort to mimic the language acquisition processes of
infants. However, the developmental processes and constraints involved in language acquisi-
tion may play a crucial role in the more general acquisition of interaction capabilities. Thus,
more realistic models of language acquisition and learning of semantic predicates in infants
Goldstein et al. (2003); Kuhl (2004); Mandler (2012) may be required to better account
for these capabilities. Besides, communication itself could be extended to richer natural
language interactions Lynch & Sermanet (2020); Brown et al. (2020) so as to increase the
teachability of autotelic agents.

5.2 Mental comparison of complex configurations

In the work of Wood et al. (1976), some language interactions consists of question-based
corrective feedback under the form “isn’t this pair different from that one?”. For children
to use such a feedback, they need to be able to mentally compare their construction with
another, which requires the capability to build mental models of the two constructions and
perform a mental comparison. The use of such mental models are at the heart of cognitive
sciences Johnson-Laird (1983). However, despite fantastic progress on representation learn-
ing capabilities, machine learning research is still far for endowing learning agents with the
capabilities of using mental models displayed by humans Marcus (2018); Lake et al. (2017).
In particular, being capable of relating several models through abstract features, which is a
key capability in humans Gentner (1983); Gentner & Hoyos (2017); Gentner (2016), is only
an emerging question in machine learning Hill et al. (2019).

5.3 Hierarchy of goals and working memory

Children of Wood et al. (1976) are addressing a global goal configuration – the wooden
pyramid – but at any moment they can be addressing an intermediate goal such as taking
two blocks apart. This suggests that children can build and maintain in mind a hierarchy
of goals, a sophisticated cognitive process which has been related to executive control in
the Prefrontal Cortex (PFC) Koechlin & Summerfield (2007) and may account for working
memory properties of human subjects Baddeley (2000). In particular, private speech may
play a key role in maintaining goals and plans in working memory, as the phonological loop
may benefit from better short term memory properties Baddeley (1992; 2003).

In decstr, there is a unique goal-conditioned policy which targets a unique global config-
uration at a time. The way this global configuration unfolds into a sequence of elementary
actions is directly encoded into the weights of the neural policy and hard to reverse engineer.
Having an agent capable of maintaining a hierarchy of goals and to reach them sequentially
based on a hierarchy of policies would dramatically improve the learning capabilities and
the interpretability of the knowledge acquired by the agent, as is the case for instance of
the AlphaNPI-X agent Pierrot et al. (2020).

Besides, we have outlined in Sections 4.4 and 5.2 the need for endowing teachable au-
tonomous agents with specific model building capabilities such as building mental models
of observed objects and social partners. A teachable agent would thus certainly benefit
from the integration of more general model building capabilities Gentner & Stevens (2014);
Lake et al. (2017). Finally, combining hierarchical skill learning and hierarchical model
building is certainly the way to go to endow autonomous agents with more natural few-shot
generalization capabilities Eppe et al. (2020).

5.4 Causality and counterfactual thinking

A key aspect of human intelligence lies in the ability of understanding the causality of the
events that happen in the world, and also mentally generate alternatives in order to reason
about the right actions to choose, i.e. counterfactual thinking (“what would have happened

23



if I had chosen to move this block rather that this one?”). Reasoning about the world by
considering causal events and imagining alternatives that could have happened is a powerful
tool that could help agents to actively understand their experience with the world. It should
help them to more efficiently evaluate the feasibility of teaching instructions and, to better
understand feedback and to imagine goals more easily using their understanding of the
causal nature of the events that happen in their environments.

There is a current effort in developing machine learning algorithms directly incorporating
those abilities. Fundamental research questions about causality and counterfactual thinking
have been asked, notably by Pearl Pearl (2009); Pearl & Mackenzie (2018), and further
research efforts on how to apply those concepts to agent-environment scenarios are being
explored Forney et al. (2017); Zhu et al. (2020); Lee & Bareinboim (2020).

This naturally leads to the questions of interpretability and explainability, also investigated
by Pearl Pearl (2009); Pearl & Mackenzie (2018). Causality and counterfactual thinking are
essentially tools that allows humans to explain how and why events occur. These cognitive
abilities can efficiently help the agent to learn how to act in the world using limited experi-
ence, which relate to the few-shot learning ability of infants. This is already investigated in
the case of RL, where research has attempted to provide explainability of RL agents using
frameworks based on causality Madumal et al. (2020b;a).

5.5 Learning efficiency of autotelic agents

imagine and decstr, and more generally language-conditioned and autotelic agents, em-
ploy RL as a learning mechanism for deciding which actions to perform given current and
possibly past states. Thus, they rely on this learning paradigm that currently suffers from
sample inefficiency Buckman et al. (2018).

As mentioned in Section 2.1, when richer teaching signals are present, learning speed can be
increased, because agents can benefit from more information at each time step, compared
to the standard RL scenario where they only get the reward signal. However this is not
the only way to increase learning speed in the case of RL. In parallel, active research Xu
et al. (2020); Schmitt et al. (2020); Schrittwieser et al. (2020); Dorner (2021) aims at tack-
ling this issue without resorting to rich teaching signals, but rather by implementing novel
algorithmic modules or considering various approaches such as off-policy learning strategies
or model-based RL, which combines RL with self-supervised learning. These fundamen-
tal developments in the field of RL should improve the sample efficiency of teachable and
autonomous agents towards the goal of few-shot learning.

5.6 Planning and reasoning

Autonomous agents should be endowed with higher-level cognitive capabilities such as rea-
soning about their own goals Eppe et al. (2019) using language in the reasoning and planning
processes Nguyen et al. (2020b) or leveraging natural communication with the tutor about
these goals. Leveraging social interactions to acquire their own semantic representations is
certainly a crucial feature for autonomous agents if they are to account for the planning and
reasoning capabilities of children.

5.7 Local conclusion

Definitely, the short list of topics covered in this section does not exhaust the cognitive
capabilities that teachable autonomous agents should display to account for tutoring inter-
actions in children. But we consider that the state of the art in machine learning is close to
reaching these capabilities, hence we may soon see such agents. In turn, the tutoring of these
more capable autotelic agents will raise specific research questions such as defining learning
curricula taking into account the hierarchical relations between goals of the agents, arbi-
trating between learning a mental model of the task or of the tutor, or leveraging reasoning
capabilities to better communicate about learning difficulties.
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6 Discussion

Many efforts have been made to endow artificial agents with the capacity to learn from
humans, in a natural and unconstrained manner. However, for now, we are still far from
achieving “normal teaching of a child”, in reference to Turing’s view. In Section 4, we have
given an overview of some of the points that need to be addressed to increase the capability
of autonomous agents to be taught, and we have reviewed some of the existing work in the
corresponding directions. Then, in Section 5, we have pointed out fundamental research
questions that need to be addressed, or existing research that requires to be improved upon
for obtaining more autonomous learning agents. Now we first describe the next steps that
one can expect in the immediate future to push further the frontiers of research in the
domain from the integration of the corresponding works. Then, in a second part, we review
more fundamental questions that remain open and may lead to deeper scientific revolutions
in the design of the next generation of teachable autonomous agents.

6.1 Next steps

In Section 3.2, we already outlined the additional properties that one may expect from
the integration of the capabilities of the imagine and decstr agents into a single more
advanced agent. Such an agent would simultaneously learn how to act from its sensorimotor
interactions with its environment and ground these sensorimotor capabilities into linguistic
representations that would make it sensitive to the instructions of a tutor. Ultimately, this
agent could also be enriched with a capability to communicate about its own goals, giving
rise to some transparency in the tutoring interaction loop.

To benefit from the tutor’s instructions, the agent would also need to quickly guess their
meaning, which is more difficult in an incremental learning context than in the batch learning
approach used in decstr studies. For that, the enriched agent could leverage additional
gaze following and joint attention mechanisms which have already been used in artificial
agents Fournier et al. (2017).

Designing such richer teachable autotelic agents is just a matter of integrative effort. Simi-
larly, we see no fundamental issue behind extending these richer agents with capabilities to
learn and manipulate hierarchical skills as AlphaNPI-X does Pierrot et al. (2020).

Another direction in which some steps can easily be made is the integration of a basic theory
of mind, leveraging the meta-reinforcement learning methods described in Rabinowitz et al.
(2018) or the Bayesian inference processes proposed in Vélez & Gweon (2021).

We have also pointed to the lack of studies where feedback from the tutor is about the choice
of a goal from the learner, rather than about achievement of the current goal. Designing such
studies and augmenting teachable autonomous agents with the capability to make profit of
such feedback does not seem to raise any critical difficulty.

Integrating all these features into a single teachable autonomous agent would significantly
increase their flexibility, making it possible to leverage a more significant part of the vast
repertoire of interaction protocols or “pragmatic frames” used in human tutoring Vollmer
et al. (2016) and, more generally, opening the possibility to more natural, non template-
based interaction Zhou & Small (2020).

6.2 Open questions and prospects for designing agents

In contrast with the above steps which should be made soon given the current pace of learn-
ing agents research, throughout this work we have met a few more fundamental questions
which remain largely unaddressed. We give a short list below, without pretending to be
exhaustive:

• How can an autonomous agent learn to determine the positive or negative valence
of a sophisticated feedback signal such as attitudes or verbal signals?
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• How can the observed movement of the tutor be turned into a goal to reach? How
can we consider this movement as an explanation that helps the agent understanding
the goal?

• More generally, how can we endow an autonomous agent with the capability to learn
to reach goals just from the observation of intended or non intended demonstrations?

• How can an agent infer information about the goal by reasoning about the way the
environment is setup or by observing the behavior of the tutor?

• How can we endow agents with the capability to generalize immediately what they
have learned from an intended demonstration to other contexts?

Finally, while the decstr and imagine agents address several aspects of the language
grounding issue, there is still some remaining work before these agents can solve the harder
symbol grounding problem Harnad (1990). In short, language in decstr and imagine
is more indexical than symbolic because the language tokens do not form a system Nieder
(2009). The acquisition of symbolic behaviour is now an emerging topic Santoro et al. (2021)
which can be of fundamental importance for teachable autonomous agents as, from one side,
considering a social partner is necessary to establish conventional meaning and, from the
other side, such agents may need the flexibility of symbolic behaviour to appropriately learn
from natural tutors.

6.3 Prospects on developmental psychology and education

In the introduction, we have already mentioned that the design of teachable autonomous
agents would a lot improve the applicability of robots in interaction with non-expert users,
and could provide a set of fundamental capabilities towards stronger AI systems. Beyond
this, we believe these researches can have a strong impact on developmental psychology and
practical educational concerns, such as teaching to children suffering from autistic spectrum
disorders.

As was already the case for research on Reinforcement Learning (RL) for computational
neurosciences Daw & Doya (2006), research on teachable autonomous agents from an AI
perspective could be turned into research on computational modelling of developmental
psychology and educational sciences phenomena. As put forward in Vollmer & Schillingmann
(2018), using teachable agents or robots would help a lot performing studies about tutoring
processes with strictly controlled experimental conditions from the side of the learner, which
is not easy with children. However, for such studies to provide useful models of natural
teaching between a tutor and a child, the robot or agent has to be a convincing model
of a human learner. Currently, the existing agents and robots are far from meeting these
expectations, which mostly explains why there has been few studies focusing on human
tutoring processes in the context where a human subject is teaching a robot or an agent.
Among other things, current agents lack the autonomy and curiosity displayed by children.
Thus, more autonomous and better teachable agents could contribute to improving our
understanding and models of human tutoring processes, from the teacher and the learner
side. In turn, this would help a lot designing better teaching agents, finally resulting in
very fruitful synergies at the crossroad between developmental psychology, developmental
robotics and social robotics.

Finally, a teachable autonomous agent could be of interest in the context of practical edu-
cation when embodied into a robot. Children are often fond of robots and a robotic teacher
is a tool of interest for many reasons Vollmer & Schillingmann (2018). But a robotic learner
can also be of interest for practical education in the context of learning by teaching, which
as been shown to provide the best level of retention in children Leelawong & Biswas (2008);
Biswas et al. (2005); Zhu et al. (2018); Gargot et al. (2021). Indeed, similarly to robotic
teachers, a teachable autotelic robotic agent would provide an always available and motivat-
ing partner, even though engagement may not always result in better learning performance
Nasir et al. (2021). But, in the case of learning by teaching, it would also provide a valuable
learner for any person engaged in teaching activities, such as preschool children Council
et al. (2001) or children with an autism spectrum disorder Vismara & Rogers (2010). In-
deed, although results are mixed Tapus et al. (2012), research indicates that robots generate
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a high degree of motivation even in these children Boucenna et al. (2014). Given that their
behavior can easily be customized for specific needs, these robots could thus be valuable
interaction partners either as teachers or as learners, in the context of learning by teaching.

7 Conclusion

In this paper we have advocated for a line of research building on truly autonomous agents,
who decide what to do driven by their own goals, but endowing them with an additional
capability to be taught so that they choose their goals in accordance with what their users
are expecting from them.

By investigating the way children are taught in a classical developmental psychology work,
we claimed that considering autotelic agents endowed with a capability to set their own
goals was a better starting point towards teachable agents than sticking to standard RL.
We have then described some of the ongoing and immediate future work along this line of
research, and listed some of the central issues which must be overcome to get closer to the
way children are taught.

Though we have shown that a lot remains to be done, we believe that combining this better
starting point with the fast progress currently observed in the design of autonomous learning
agents can soon result in the availability of good enough teachable autonomous agents to
use them for quantitative analyses in developmental psychology studies and for a better
design of educational programs. We also believe that this starting point will a key move
towards artificial agents which are better inserted in the society, with improved capabilities
to communicate with and to adapt to their human users, which is one of the central concerns
of AI research.
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Forestier, Sébastien, Mollard, Yoan, and Oudeyer, Pierre-Yves. Intrinsically moti-
vated goal exploration processes with automatic curriculum learning. arXiv preprint
arXiv:1708.02190, 2017.

Forney, Andrew, Pearl, Judea, and Bareinboim, Elias. Counterfactual data-fusion for online
reinforcement learners. In Precup, Doina and Teh, Yee Whye (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp.
1156–1164. PMLR, 2017. URL http://proceedings.mlr.press/v70/forney17a.html.

Fournier, Pierre, Sigaud, Olivier, and Chetouani, Mohamed. Combining artificial curiosity
and tutor guidance for environment exploration. In Workshop on Behavior Adaptation,
Interaction and Learning for Assistive Robotics at IEEE RO-MAN, pp. 1–8, Lisbon, Por-
tugal, 2017.

Fournier, Pierre, Colas, Cédric, Chetouani, Mohamed, and Sigaud, Olivier. Clic: Cur-
riculum learning and imitation for object control in non-rewarding environments. IEEE
Transactions on Cognitive and Developmental Systems, 2019.

Gallese, Vittorio, Keysers, Christian, and Rizzolatti, Giacomo. A unifying view of the basis
of social cognition. Trends in cognitive sciences, 8(9):396–403, 2004.

Gargot, Thomas, Asselborn, Thibault, Zammouri, Ingrid, Brunelle, Julie, Johal, Wafa,
Dillenbourg, Pierre, Archambault, Dominique, Chetouani, Mohamed, Cohen, David, and
Anzalone, Salvatore M. ”it is not the robot who learns, it is me” treating severe dysgraphia
using children-robot interaction. Frontiers in Psychiatry, 12:5, 2021.

Gentner, Dedre. Structure-mapping: A theoretical framework for analogy. Cognitive science,
7(2):155–170, 1983.

Gentner, Dedre. Language as cognitive tool kit: How language supports relational thought.
American psychologist, 71(8):650, 2016.

Gentner, Dedre and Hoyos, Christian. Analogy and abstraction. Topics in cognitive science,
9(3):672–693, 2017.

Gentner, Dedre and Stevens, Albert L. Mental models. Psychology Press, 2014.

31

https://proceedings.neurips.cc/paper/2020/hash/33a5435d4f945aa6154b31a73bab3b73-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/33a5435d4f945aa6154b31a73bab3b73-Abstract.html
http://proceedings.mlr.press/v80/florensa18a.html
http://proceedings.mlr.press/v80/florensa18a.html
http://proceedings.mlr.press/v70/forney17a.html


Goldberg, Adele E. Constructions: A New Theoretical Approach to Language. Trends in
cognitive sciences, 7(5):219–224, 2003. Publisher: Elsevier.

Goldstein, Michael H, King, Andrew P, and West, Meredith J. Social interaction shapes
babbling: Testing parallels between birdsong and speech. Proceedings of the National
Academy of Sciences, 100(13):8030–8035, 2003.

Gopnik, Alison, Meltzoff, Andrew N, and Kuhl, Patricia K. The scientist in the crib: Minds,
brains, and how children learn. William Morrow & Co, 1999.

Griffith, Shane, Subramanian, Kaushik, Scholz, Jonathan, Jr., Charles L. Isbell, and
Thomaz, Andrea Lockerd. Policy shaping: Integrating human feedback with reinforce-
ment learning. In Burges, Christopher J. C., Bottou, Léon, Ghahramani, Zoubin,
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