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Abstract. Cardiac electrophysiology models achieved good progress in
simulating cardiac electrical activity. However, it is still challenging to
leverage clinical measurements due to the discrepancy between idealised
models and patient-specific conditions. In the last few years, data-driven
machine learning methods have been actively used to learn dynamics
and physical model parameters from data. In this paper, we propose a
principled deep learning approach to learn the cardiac electrophysiology
dynamics from data in the presence of scars in the cardiac tissue slab. We
demonstrate that this technique is indeed able to reproduce the trans-
membrane potential dynamics in situations close to the training context.
We then focus on evaluating the ability of the trained networks to gen-
eralize outside their training domain. We show experimentally that our
model is able to generalize to new conditions including more complex
scar geometries, multiple signal onsets and various conduction velocities.

Keywords: Electrophysiology · Deep learning · Simulation.

1 Introduction

Mathematical modelling of the heart has been an active research area for the
last decades, and it is now more and more coupled with artificial intelligence ap-
proaches, see for instance [12]. Among the multi-physics phenomena involved in
the cardiac function, cardiac electrophysiology models can accurately reproduce
electrical behaviour of cardiac cells. However, it is still challenging to lever-
age clinical measurements due to the discrepancy between idealised models and
patient-specific conditions. Machine learning (ML) approaches could help alle-
viate these difficulties.

The idea of leveraging ML methods in order to learn data-driven models of
dynamical systems is not new: [14] gives a thorough introduction to the closely
related field of Nonlinear System Identification while [6] gives an early example
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of such endeavours. More recently, those questions have seen a renewed interest
with works such as [16,15,20] proposing to use Deep Neural Network models for
solving differential equations while [1,19,22] use alternative statistical learning
tools such as Gaussian Processes and sparse linear regressions to learn the ex-
plicit form of differential equations. In the last few years, Neural Networks have
been increasingly used in order to learn dynamical models from data: [11,10]
endow neural layers with additional structure, useful for learning PDEs while
[5,2] use the adjoint method to learn differential equations parametrised with
neural models and learn them in fully and partially observable settings. More
generally, [21] propose a broader survey of ML in physics-based modeling.

We propose a framework for learning cardiac electrophysiology dynamics
from data and we experimentally evaluate its ability to forecast cardiac dy-
namics on new conditions, unseen during training. Our models are trained and
evaluated using data simulated from an electrophysiology model [13]. This is
a classical experimental setting in the domain [7] which, although offering a
simplification over real cardiac data, allows us to assess our framework using
controlled conditions. This work builds on initial results [2,3] that were evalu-
ated in an idealised setting with simple boundary conditions corresponding to a
healthy slab of cardiac tissue with a uniform conductivity and a single onset of
transmembrane potential.

(a) (b)

Fig. 1: Example of transmembrane potential (yellow) propagation in the cardiac
tissue slab in absence (a) and presence (b) of scar tissue, through successive time
steps.

Our extension here introduces more complex conditions. First, we consider
diffusion in tissues with ischaemic (non conductive) regions denoted scars in the
following. In clinical practice it is essential to be able to recognise and to estimate
the impact of scars because they are the main cause of cardiac arrhythmias. For
example, in Fig. 1 we can clearly see the changes in the dynamics of the depolar-
isation wave in the presence of scar tissue (black area). Second, we introduce in
our simulations multiple onsets and colliding fronts, as it is a classical situation
in cardiac electrophysiology. The focus of the paper is on the evaluation of the
ability of our model to generalise to unseen conditions. The model is then trained
on simulated data corresponding to relatively simple context (one type of scar,
one front and set of several discrete conduction velocities) and its generalisation
ability is evaluated on more challenging contexts like more complex scars, multi-
ple fronts and any real conduction velocity sampled from a given interval. Fig. 2
presents the general experimental setting used in the manuscript.
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Forecast

Sequence of first 4 input frames with: 
- one or multiple onsets 
- any conduction velocity

Test scar area mask (with scar of any
shape)

EP-Net 2.0 Model
Trained 

on frames of:
 - one onset

- set of 5 discrete
conduction velocities

-scar area mask with scars
of rectangular shape

...

Fig. 2: General setting used throughout the manuscript. Once trained, the EP-
Net 2.0 model takes as input a context consisting of a few (4 here) observations
plus an indication of the scar area (left), and forecasts the depolarization wave
dynamics (right).

2 Problem Formulation and Learning Framework

We used the Mitchell–Schaeffer model [13] for cardiac electrophysiology simu-
lation. This two variables model has been successfully used in patient–specific
modelling [18]. The variable v in equation 1 represents normalised (v ∈ [0, 1])
dimensionless transmembrane potential while the ”gating” variable h controls
the repolarisation:

∂tv = div (σI∇v) +
hv2(1− v)

τin
− v

τout
+ Jstim

∂th =

{
1−h
τopen

if v < vgate
−h
τclose

if v > vgate

(1)

In practice, since h is a hidden variable, it is difficult to measure. Only the
measurement of the potential v is available. Therefore, as in [3], we modify
the system (1) by replacing variable h with an observation operator H which
extracts the corresponding information from the current state Xt. This allows
us to rewrite this model in a vector form:

X0 = gθ(V−k)

dXt

dt
= Fθ(Xt)

Vt = H(Xt)

(2)

where X = (V,H)T is a spatio–temporal two–dimensional vector field over
the domain Ω ⊂ R2, gθ and Fθ are parameterised functions which allow to model
the ODE governing the dynamics of X and V−k = (V−k+1, ..., V0) is the sequence
of past observations of transmembrane potential.

We then introduce a constraint corresponding to the presence of the scar:

Ωscar ⊂ Ω ⊂ R2 : (Xt)Ωscar
≡ 0 (3)
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Note that in our setting, scars are considered as binary masks for simplification.

In order to enforce the constraints (2) and (3), we compare the sequence of
observations Vt generated by the parameterised model to data simulated from
the actual equations and minimise the following loss:

L(V, Ṽ ) = Lobs(V, Ṽ ) + λscarLscar(Ṽ ), (4)

where: Lobs(V, Ṽ ) =

∫ T

0

‖Vt − Ṽt‖2dt, Lscar(Ṽ ) = ‖Ωscar � Ṽt‖2

with� the element-wise product and λscar a hyper-parameter used to balance
the losses. We can then frame the statistical learning problem as:

minimize
θ

EV ∈DatasetL(V,H(Xθ))

subject to
dXt

dt
= Fθ(Xt),

X0 = gθ(V−k)

(5)

Learning Method Operators F, g in problem (5) are implemented via Deep
Neural Networks. We chose to use a ResNets [8] (illustrated in Fig. 3) to param-
eterise both F and g. Optimisation is performed via stochastic gradient descent,
precisely ADAM algorithm [9], according to the following algorithm:

0. Randomly initialise θ (denoting the parameters of F and g);

1. Solve the forward state equation 2 to find Xθ with an explicit differentiable
solver (Euler scheme);

2. Get the gradient of θ −→ EV ∈Dataset

[
J (V,X θ)

]
with automatic differentia-

tion tools and update θ;

3. Repeat from step 1 until convergence.

Down-samplings ResNet blocks Up-samplings

Fig. 3: The ResNet architecture used in EP-Net 2.0. It has 5 input frames (mask
frame plus 4 frames of transmembrane potential) and 1 output frame of forecast.
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3 Experiments

Data collection. We generated 2D data frames using the Lattice Boltzmann
method to solve the EP model [17] on a Cartesian grid. The Mitchell-Schaeffer
model parameters are taken as in the original paper [13]: τin = 0.3, τout = 6,
τopen = 120, τclose = 150, vgate = 0.13. The computational domain represents
a slab of cardiac tissue of size 24 × 24 mm2 discretised with 1 mm2 pixels. A
stimulation current was applied for 10 ms to initiate the propagation in selected
pixels (Jstim). We superposed a mask with randomly generated rectangular area
(with random size and position) of excluded domain to simulate the cardiac
scars. Training was performed with 5 different discrete conduction velocities,
each corresponding to a given parameter of conductivity (σ = 1, 2, 3, 4, 5) in
equation 1. The conductivity was applied uniformly on whole cardiac slab except
scar area. One value of σ is used per simulation. The simulations were conducted
for 30 ms, with a discrete time step of 0.1 ms, and stored every ms. Then random
sequences of 10 data frames (one data sample) were extracted at different time
points for training / validation data. Overall we have a database of 30000 training
and 12000 validation samples.

Training settings. Parameter λscar in loss (4) was set to 0.1 and a learning
rate for ADAM optimiser was set to 10−3. We use ResNet with 64 filters at the
initial stage, three downsampling initial layers and three intermediary blocks and
start with a reweighted orthogonal initialisation for its parameters. We also use
exponential scheduled sampling [4] with parameter 0.9999 during training. We
trained our EP-Net 2.0 model until full model convergence (about 5000 epochs).
In each training (and validation) sequences of data frames we used the first 4
frames for initialisation and the rest (6 frames) to compute the losses.

3.1 Results

Tests were performed in two situations: first with scar and current distributions
similar to the training set, second with different scars and initial current onsets
distributions in order to test the model ability to generalise to new situations.

Testing environment similar to the training one: scars of rectangular
shape. Figure 4 illustrate the behaviour of our trained EP-Net 2.0 model in
test conditions similar to the training ones: rectangular scars with random size
and position plus one onset only. The figure 4a shows the forecast over 9 time
frames (9 ms) after assimilating the first 4 frames (not presented in the Fig. 4a).
We observe very good agreement with the ground truth on this forecast, which
represents an important part of cardiac dynamics within this virtual slab of
tissue, from early depolarisation to full depolarisation. Figure 4b shows that
EP-Net 2.0 model has a very good precision on depolarization during more than
50 ms, an equilibrium state for the model, but cannot predict a repolarisation
(Fig. 4c). Quantitative results provided in the table 1 for different forecasting
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horizons T (6, 12 and 24 ms) show excellent performance, while the training
time horizon was only 6 ms.
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Fig. 4: (a) Results of trained EP-Net 2.0 model (9 ms of forecast, cardiac slab
conductivity σ = 2). (b,c) Transmembrane potential graph at the leftmost upper
point (0,0) and the rightmost bottom point (23,23) in the slab with different
forecasting horizons.

Generalisation ability of EP-Net 2.0: scars of various shapes and mul-
tiple onsets. Our objective is to train models able to generalise to conditions
outside the training environment. This is important since for example different
patients will have different characteristics. In order to evaluate the capability of
our model to generalise we performed two types of tests, one with scars with
different shapes when training was performed only with rectangular shapes, and
one with multiple onset when training considered only one onset.

As for the generalisation to different scar shapes, we evaluated our model
with triangular, circular and complex scars (see Fig. 5). Table 1 shows that
the model performs well on the different shapes. The errors are slightly larger
than for the rectangular scars used for training, but remain low. They however
increase for long term prediction (24 ms here). Figure 5 illustrates the behaviour
of the model for typical test sequences.

We also performed tests with multiple onsets. The model shows good re-
sults for forecasting of multiple depolarisation waves on one cardiac slab tissue



EP-Net 2.0: Out-of-Domain Generalisation 7

(Fig. 6), which is essential to capture correctly for ventricular tachycardia simu-
lation. As one can see from the table 2, relative mean-squared error is larger for
multiple onsets than for one onset (as it was used for training) but still accept-
able. However, this error does not increase proportionately to time of forecast
(like in the table 1), because the virtual slab reaches faster the full depolarisation
with multiple onsets, an equilibrium state for EP-Net 2.0 model.

Table 1: Relative mean-squared error (MSE) of transmembrane potential fore-
casting in presence of scars of various forms for different forecasting horizons
(cardiac slab conductivity σ = 2).

MSE (6 ms) MSE (12 ms) MSE (24 ms)

Rectangular shape 1.8 ∗ 10−4 4.45 ∗ 10−4 6, 8 ∗ 10−4

Triangular shape 3.1 ∗ 10−4 8 ∗ 10−4 1.36 ∗ 10−3

Circular shape 2.7 ∗ 10−4 8.2 ∗ 10−4 3.4 ∗ 10−3

Complex shape 4.6 ∗ 10−4 1.9 ∗ 10−3 6.36 ∗ 10−3
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Fig. 5: Results of trained EP-Net 2.0 model on scar with circular (top three
rows) and complex (bottom three rows) shape (9 ms of forecast, cardiac slab
conductivity σ = 2).

Generalisation ability of EP-Net 2.0: various conduction velocities To
estimate the ability of EP-Net 2.0 model to learn the conduction velocity of
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Table 2: Relative mean-squared error (MSE) of potential forecasting in presence
of multiple onsets and scar of rectangular form for different forecasting horizons
(cardiac slab conductivity σ = 2).

MSE (6 ms) MSE (12 ms) MSE (24 ms)

One Onset 1.8 ∗ 10−4 4.45 ∗ 10−4 6, 8 ∗ 10−4

Multiple Onsets 4.7 ∗ 10−4 5.8 ∗ 10−4 6.9 ∗ 10−4
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Fig. 6: Results of trained EP-Net 2.0 model with two stimulation currents ap-
plied on different pixels and at different times (9 ms of forecast, cardiac slab
conductivity σ = 2).
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Fig. 7: Results of EP-Net 2.0 model on scar with circular shape and cardiac slab
conductivity σ = 3.8 (top three rows), and on scar with triangular shape, two
onsets and cardiac slab conductivity σ = 1.5 (bottom three rows).
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Table 3: Relative mean-squared error (MSE) of potential forecasting in presence
of various conduction velocities of cardiac slab and scar of rectangular form for
different forecasting horizons.

MSE (6 ms) MSE (12 ms) MSE (24 ms)

σ = 0.7 4.65 ∗ 10−4 3.95 ∗ 10−3 1, 9 ∗ 10−2

σ = 2 1.8 ∗ 10−4 4.45 ∗ 10−4 6, 8 ∗ 10−4

σ = 2.5 3.5 ∗ 10−4 1.4 ∗ 10−3 1, 6 ∗ 10−4

σ = 6 2 ∗ 10−3 4.7 ∗ 10−3 3 ∗ 10−3

cardiac tissue we performed tests with with various cardiac slab conductivities
(σ). The tests have been performed with sigma values used for training (σ ∈
1, 2, 3, 4, 5), and sigma values uniformly sampled from the interval [0.7, 6]., i.e.
outside the training set.

As shown in the figure 7, EP-Net 2.0 model keeps the capability to generalise
to unseen conditions, such as scars of various shapes and multiple onsets. Quan-
titative results provided in the table 3 show that model achieves a good precision
in forecasting depolarisation waves in cardiac tissue slabs for any conductivity
(real number) from the interval [0.7, 6].

3.2 Limitations and Discussion

The section 3.1 shows the ability of model to learn the local dynamics and to
generalise to unseen conditions.

Although our approach can achieve compelling results in many cases, there
are still limitations. For example, as shown in the figure 8, EP-Net 2.0 model
does not work properly on thin scars (thickness less than 2 pixels) and produces
additional transmembrane potential diffusion through the scar from generated
noise. The current model has been trained only to model depolarization of the
cardiac slab tissue and cannot predict its repolarisation (see Fig. 4c). This is left
for future work.
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Fig. 8: Results of trained EP-Net 2.0 model on thin scar with circular shape.
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4 Conclusion and Future Work

In this paper, we proposed the EP-Net 2.0 Deep Learning model to learn the
cardiac electrophysiology dynamics in presence of complex initial boundary con-
ditions (like scar area, multiple onsets and various conduction velocities). The
obtained results show a great generalisation ability of this model to unseen con-
ditions. Despite training on data with scars of only rectangular shape and one
onset activation, EP-Net 2.0 model works on data with scars of any possible
geometric shape and multiple onsets, even when normalised transmembrane po-
tential stimulations were applied at different moments6.

We believe that in future our approach can help upgrade and personalise
mathematical model via additional data. However in clinical practice tissue prop-
erties are not binary and real data is always noised and sparse, future work
includes looking into more complex formulations considering model parameter
identification for continuously varying cardiac tissue properties and into possible
strategies to complete real data via simulation data.

5 Acknowledgments

This work has been supported by the French government, through the 3IA Côte
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