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Computational outlier detection methods in
sliced inverse regression

Hadrien Lorenzo and Jérôme Saracco

Abstract Sliced inverse regression (SIR) focuses on the relationship between a de-
pendent variable y and a p-dimensional explanatory variable x in a semiparametric
regression model in which the link relies on an index x ′β and link function f . SIR
allows to estimate the direction of β that forms the effective dimension reduction
(EDR) space. Based on the estimated index, the link function f can then be nonpara-
metrically estimated using kernel estimator. This two-step approach is sensitive to
the presence of outliers in the data. The aim of this paper is to propose computational
methods to detect outliers in that kind of single-index regressionmodel. Three outlier
detection methods are proposed and their numerical behaviors are illustrated on a
simulated sample. To discriminate outliers from “normal” observations, they use IB
(in-bags) or OOB (out-of-bags) prediction errors from subsampling or resampling
approaches. These methods, implemented in R, are compared with each other in a
simulation study. An application on a real data is also provided.

1 Introduction

On one hand, classical linear regression or more generally parametric regression
have achieved resounding success in many real problems whose goal is to investigate
the relationship between a response variable y ∈ R and a covariate x ∈ Rp . However
it can be argued that assuming specific structural constraints on the link function
of y on x is too stringent. On the other hand, nonparametric regression is clearly
a more flexible approach, but it is well-known that it typically suffers from the
curse of dimensionality, i.e., a poor rate of convergence when the dimension p of
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x increases. To address these problems from purely parametric or nonparametric
approaches, several authors studied single-index or multiple-index models. This
kind of regression models can be viewed as an alternative semiparametric approach
based on sufficient dimension reduction. So, in a dimension reduction setting, many
authors suppose that x can be replaced by a linear combination of its components,
β′x, without losing information on the conditional distribution of y given x. One
way to express this assumption is:

y ⊥ x | β′x (1)

where the notation v1 ⊥ v2 | v3 means that the random variable v1 is independent of
the random variable v2 given any values for the random variable v3. One can write
(1) as, for instance, the following single-index model with an additive error:

y = f (β′x) + ε, (2)

where f is an unknown real-valued function, the distribution of ε is arbitrary and
unknown, and ε ⊥ x. Since f is unknown, the p-dimensional parameter β is not
totally identifiable, but the subspace spanned by β is identifiable. This subspace is
referred to as the effective dimension reduction (EDR) subspace following Duan
and Li [15] in their original presentation of sliced inverse regression (SIR). Li [26]
consider a multiple-index regression model. The Euclidean parameter β is now a
p × K matrix: β = [β1, . . . , βK ] where the vectors βk are assumed to be linearly
independent. The EDR subspace is then the K-dimensional linear subspace of Rp

spanned by the βk’s.
Note that the dimension reduction is very useful in an exploratory stage of data

analysis since model (1) relies on very few structural assumptions. For instance, it
is not assumed that the indices act additively as often assumed in multiple-index
models. It is likewise not necessary to assume that the error term is additive on
mean (as for the model (2)), thus heteroscedastic model are potentially included
in this modelling. Note also that sufficient dimension reduction of the regression
leads to summary plot of y versus estimated indices which provides useful graphical
modelling information.

In a second step, to study the relationship between the response variable and
the few estimated indices, standard nonparametric approaches (such as kernel or
spline smoothing) can be used. This stage usually involves additional assumptions
such as an additive error term (as in model (2)) to get consistent properties of the
corresponding estimate of the link function f .

In the statistical literature, different methods have been developed with the aim
of estimating the EDR subspace. SIR, SIR-II, SIRα, SAVE (sliced average variance
estimation) and pHd (principal Hessian directions) approaches are the most popular,
see [2, 5, 6, 7, 9, 18, 21, 22, 25, 27, 28, 29, 34, 35, 38, 39, 40] among others. The
important question of the determination of the EDR space dimension in SIR and
related methods has also been much studied, see for example [17, 30].
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SIR is known to be a relevant technique for the purpose of dimension reduction.
Several properties of SIR have been extensively studied and numerous extensions
have been already proposed. However little attention has been paid to sensitivity of
SIR to outliers or to robustness aspects. Since SIR theory is based on conditional
expectation and covariance matrix properties (see Sect. 2 for details), it is obvious
that SIR can be severely influenced by outliers in the data, see [19] or [10] for
instance. In [32, 33], the detection of influential observations on the estimation of
the dimension reduction subspaces returned by SIR, SIR-II and SAVE have been
studied using the notion of influence functions of single observations. However, the
proposed empirical influence values are very sensitive to the choice of the num-
ber H of slices (introduced in the next section) in detecting influential observations,
which makes this approach complicated to use in practice. Robust SIR methods were
then developed and only focused on the estimation of the EDR space (regardless of
the estimation of the link function f ). For example, in [8] the inverse regression
formulation of SIR is therefore extended to non-Gaussian errors with heavy-tailed
distributions (Student). The underlying Expectation-Maximization algorithm was
tested in presence of outliers and provided good numerical results. [14] also men-
tioned that classical sufficient dimension reduction methods are sensitive to outliers
present in predictors, and may not perform well when the distribution of the pre-
dictors is heavy-tailed. Two robust inverse regression methods which are insensitive
to data contamination (weighted inverse regression estimation and sliced inverse
median estimation) were then introduced and they demonstrated very interesting
numerical performances in the presence of potential outliers. In the same spirit, [3]
proposed sliced inverse median difference regression to robustify SIR methodology
at the presence of outliers. In [13], robust SIR extensions were presented through
robust estimates of the covariance matrix.

The goal of this paper is to propose computational methods to detect outliers in a
single-index regression model, comprising EDR space estimation using SIR and link
function estimation based on kernel smoothing. In practice, it is always interesting
to detect outliers (rather than only developing robust methods), to isolate them and
to understand why these observations are aberrant (wrong numerical values, unusual
individuals, ...). Once the dataset has been cleaned, it is then possible to implement
the usual methodology, SIR followed by a non-parametric estimation of f .

In Sect. 2 a brief overview of usual SIR is given. Three outlier detection methods,
named MONO, TTR and BOOT hereafter, are presented in Sect. 3. They use IB
(in-bags) or OOB (out-of-bags) prediction errors from subsampling or resampling
approaches in order to discriminate outliers from “normal” observations. These
methods have been implemented in R. How these methodologies work is described
on a simulated example in Sect. 4. Sect. 5 provides a more extensive simulation study
that compares the numerical performances of the proposed methods. A real dataset
is also used to illustrate these approaches in Sect. 6. Finally concluding remarks are
given in Sect. 7.
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2 A brief review of usual SIR

In order to estimate the EDR space, various methods based on the use of inverse
regression are widely available in literature. In order for inverse regression to be
useful in estimating the EDR space, some of them, like SIR or SAVE or principal
Hessian direction, need additional conditions on the marginal distribution of the
covariate x. In this paper, we focus the usual SIR approach which relies on the
following linearity condition (LC) on x:

For all b ∈ Rp,E [b′x | β′x] is linear in x ′β. (3)

Note that the LC is required to hold only for the true Euclidean parameter β. Since β
is unknown, it is not possible in practice to verify a priori this assumption. Therefore
we can assume that LC holds for all possible values of β, this is equivalent to
assume an elliptical symmetry of the distribution of x: for instance the well-known
multivariate normal distribution satisfies this condition. Finally, following [20], the
LC is not a severe restriction because this LC holds to a good approximation in many
problems as the dimension p of the predictors increases. Interesting discussions on
the LC can also be found in [7, 25] for instance.

Let us now consider a monotone transformation T . Under model (1) and LC, [15]
showed that the centered inverse regression curve satisfies:

E[x | T(y)] − µ ∈ Span(Σβ), (4)

where µ := E[x] and Σ := V(x). Therefore the space spanned by the centered inverse
curve, {E[x | T(y)] −E[x] : y ∈ Y} whereY is the support of response variable y,
is a subspace of the EDR space, but it does not guarantee equality. A pathological
model, often called symmetric dependent model, has been identified in the literature,
and is model for which the centered inverse regression curve is degenerated. To solve
this problem, specific methods (based on higher order inverse moments), such as
SIR-II, SIRα or SAVE, have been developed.

When the model is not pathological (which is often the case in pratice), the
centered inverse regression curve can be used to recover the EDR space from (4).
Indeed, a direct consequence of this result is that the covariance matrix of this curve,

Γ := V(E[x | T(y)]),

is degenerate in any direction Σ-orthogonal to β (i.e. to the βk’s for a multiple-index
model). Therefore, the eigenvectors associated with the non null eigenvalues of Σ−1Γ
are EDR directions, which means that they span the EDR space E .

In the slicing step of SIR, the range of y is partitioned into H non-overlapping
slices {s1, . . . , sH }. With such slicing, the covariance matrix Γ can be straightfor-
wardly written as

Γ :=
H∑
h=1

ph(mh − µ)(mh − µ)
′
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where ph = P(y ∈ sh) and mh = E[x | y ∈ sh].
Let us now consider a random sample {(xi, yi), i = 1, . . . , n} generated from the

single-index regression model (2). By substituting the empirical versions of µ, Σ, ph
and mh for their theoretical counterparts, we obtain an estimated basis of E spanned
by the eigenvector b̂SIR associated with the largest eigenvalue of the estimate Σ̂−1

n Γ̂n

of Σ−1Γ where

Σ̂n =
1
n

n∑
i=1
(xi − x̄n)(xi − x̄n)′ and Γ̂n =

H∑
h=1

p̂h,n(m̂h,n − x̄n)(m̂h,n − x̄n)′,

with x̄n = 1
n

∑n
i=1 xi, n̂h,n =

∑n
i=1 I[yi ∈sh ], p̂h,n =

n̂h,n
n , m̂h,n =

1
n̂h,n

∑
i∈sh xi, the

notation I[.] standing for indicator function. This approach is the one proposed by
[15, 26] when they initially introduced the SIR approach. Since the early 1990s, the
SIR method has been extensively studied by many authors, see for instance all the
references mentioned in the introduction.

The link function f of model (2) can then be estimated by the usual kernel
estimator (see for example [36]) based on the sample {(x ′i b̂SIR, yi), i = 1, . . . , n}
where the x ′i b̂SIR’s are the values of the estimated index. For a given value x0 of x,
the kernel estimation of f (β′x0) is given by

f̂n(b̂′SIRx0) =

∑n
i=1 K

(
x′i b̂SIR−x

′
0 b̂SIR

hn

)
yi∑n

i=1 K
(
x′i b̂SIR−x

′
0 b̂SIR

hn

) ,

where K is the kernel and hn is the bandwidth. The kernel is usually a positive
symmetric weighting function with integral equal to 1. In the rest of the paper, the
chosen kernel is the density of the normal distribution N(0, 1), called the Gaussian
kernel. The bandwidth hn > 0 is called the smoothing parameter in kernel regression
because it controls variance and bias of the estimator. This parameter must therefore
be correctly tuned using cross-validation for instance:

hopt
n = arg min

hn>0

1
n

n∑
i=1

(
yi − f̂ (−i)n (b̂′SIRx0)

)2
,

where f̂ (−i)n (b̂′SIRx0) stands for the estimation of f (β′x0) based on the sample
{(x ′j b̂SIR, yj), j , i}.

When the underlying regression model is a multiple-index model, the estimated
EDRspace is spanned by the eigenvectors associatedwith the largestK eigenvalues of
the estimate Σ̂−1

n Γ̂n. Let B̂SIR be the p×K matrix of theseK eigenvectors. The estimated
indices x ′i B̂SIR’s are now K-dimensional and the kernel estimation of f (β′x0) is then
based on multivariate kernel. For example K can be the density of the multivariate
normal distribution N(0K, IK ) where 0K (resp. IK ) stands for the null vector of
dimension K (resp. the identity matrix of order K), and the associated smoothing
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parameter hn can be K-dimensional. Another way is to consider the following kernel
estimator

f̂n(B̂′SIRx0) =

∑n
i=1 K

(
| |x′i B̂SIR−x

′
0 B̂SIR | |

hn

)
yi∑n

i=1 K
(
| |x′i B̂SIR−x

′
0 B̂SIR | |

hn

) ,

where | |.| | stands for a chosen norm in RK and the bandwidth hn is unidimensional.

3 Outlier detection methods in SIR

Three outlier detection methods for single-index regression model (2) are presented.
Let us consider a sample S = {(xi, yi), i = 1, . . . , n} of n individuals among which
some may be outliers.

For each of the three methods, the parameter β (more properly, the EDR direction
b) is estimated by the usual SIR method (with the number of slices H = 10) and the
link function f is estimated using the kernel estimator with the Gaussian kernel and
the bandwidth tuned via cross-validation.

3.1 A naive method

This naive method relies on the following three steps.
Step 1. Estimation the EDR direction from the sample S.

The usual SIR provides the estimate b̂SIR of b. The corresponding indices
{b̂′SIRxi, i = 1, . . . , n} are then calculated.

Step 2. Estimation of the adjusted value f (β′xi)’s.
From the sample {(b̂′SIRxi, yi), i = 1, . . . , n, the adjusted values are obtained via
the kernel estimator based on the Gaussian kernel and the bandwidth tuned via
cross-validation. Let ŷi = f̂n(b̂′SIRxi) for i = 1, . . . , n.

Step 3. Evaluation of the error associated with the model estimation and outlier
detection.
The errors considered are naturally the residuals: for i = 1, . . . , n, êi = yi − ŷi .
The detection of potential outliers is simply based on the definition of outliers in
the boxplot of the absolute error |êi |’s, i.e. the outliers correspond to individuals
whose values are greater than the value of the 3rd quartile plus 1.5 times the
inter-quartile interval.
Note that, in the same spirit, the bootstrap histogram of "mean - trimmed mean"
for a suitable trimming numberwas proposed by [37] as a nonparametric graphical
tool for detecting outlier(s) in a dataset. The bootlier-plot was introduced and it
is shown that the multimodality in the bootlier plot is caused by outlier(s) in the
sample.
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This naive method is called MONO hereafter. The name MONO stands for a single
use of the initial sample S and a single estimate of the underlying single-indexmodel.
In the numerical example of Sect. 4, Fig. 1 allows to visualize the position of the
outliers in the corresponding boxplot.

3.2 TTR method

This method relies on training sample and test sample replications for evaluating the
“stability” of the estimated model, hence the name TTR of the method for Training
Test Replications.

The TTR approach works in two major steps. Let R be the number of replications
chosen by the user. In practice R = 2000 is more than enough for reasonable sample
sizes, i.e. n ≤ 500. Let α ∈ [0, 1] be the proportion of the sample which will
constitute the test sample. In the rest of the paper, the parameter is fixed to α = 0.1,
thus 90% of the sample S is used as the training sample Strain and the remaining 10%
of the sample S constitutes the test sample Stest. Note that individuals are drawn with
equal weight and without replacement.

Step 1. For each replication r (with r = 1, . . . , R),

1.a. Split the initial sample S into a training sample S(r)train and a test sample S(r)test

containing respectively (1 − α)% and α% of the individuals.
1.b. Using S(r)train, calculate the estimated EDR direction b̂(r)SIR and the associated

indices {(b̂(r)SIR )
′xi, i ∈ S(r)train}.

1.c. For all the individuals i∗ ∈ S(r)test , calculate the error of prediction of the
response variable y as follows:

ê(r)i∗ = yi∗ − f̂ (r)n

(
(b̂(r)SIR )

′xi∗
)
,

where the estimate f̂ (r)n (.) is based on the sample {((b̂(r)SIR )
′xi, yi), i ∈ S(r)train}.

Step 2. Evaluation of the error means.
For each i∗ = 1, . . . , n, calculate the associated error mean over the R replications
(when the individual i∗ is present in the corresponding test sample):

ei∗ =

∑R
r=1

��� ê(r)i∗
��� I
[i∗∈S

(r )
test ]∑R

r=1 I[i∗∈S(r )test ]

.

Step 3. Detection of the outliers via a change point detection.
The idea is to find a single change point position in the sequence of the errors’
means {e(i∗), i∗ = 1, . . . , n} ordered by decreasing values (where the subscript (i∗)
enclosed in parentheses indicates the i∗th order statistic of the sample). Indeed,
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if there are no outlier in the data, no change points should clearly appear in this
sequence of ordered absolute mean errors. On the other hand, in the presence of
outliers, the corresponding mean absolute errors should naturally be significantly
larger than the errors associated with other individuals. Thus, looking for a single
change point in mean and variance in this sequence should intuitively allow us to
separate outliers from other observations.
Many authors have proposed a single search method to detect change points.
Recently, [23] have developed theR package changepoint that helps to detect the
location of different change points. For single or multiple change point detection,
the approach allows to estimate the points at which the statistical properties of
a sequence of observations change. Within this package, several change in mean
methods are available as well as methods focusing on detection of change in
variance and methods searching a change in both mean and variance. Briefly, let
us give an overview of the underlying approach. Let z1:n = (z1, . . . , zn) be the
ordered sequence of the errors’ means and τi:m = (τ1, . . . , τm) the positions of the
m change points (each change point position is between 1 and n − 1, τ0 = 0 and
τm+1 = n). The idea is to minimize

m+1∑
i=1
[C(z(τi−1+1):τi )] + γg(m) (5)

where C is a cost function (for instance negative log-likelihood ratio test statistic)
and γg(m) is a penalty to guard against over fitting. This package implements
several algorithms to minimize (5): binary segmentation [16], segment neigh-
borhood [1] and pruned exact linear time (PELT) [24]. Here the changepoint
package is used to detect only one change point (m = 1) in mean and vari-
ance with the binary segmentation algorithm in the ordered sequence of means
{e(i∗), i∗ = 1, . . . , n}. In the numerical example of Sect. 4, Fig. 2 (top left)
visualizes the position of the estimated single change point.
An individual associated with an ordered error’s mean before the single change
point position is then considered as an outlier.

Remark. In the associated R code, the bandwidth is tuned only once in step 1.c
for the kernel estimation of each iteration. This “optimal” bandwidth is obtained
via cross-validation using the whole sample of the yi’s versus the estimated indices
x ′i b̂SIR. This is a reasonable choice if one assumes that there are no outlier in the xi’s
and thus in the x ′i b̂’s or in the x ′i b̂

(r)’s. Note that the presence of visible outliers in
the xi’s would have been detected in a preliminary step and the dataset would then
have been cleaned. This choice of only one tuned bandwidth clearly saves calculation
time for the TTR method. Finally, note also that, in each iteration of step 3 for the
TTR method, it is easy to integrate an automatic optimal bandwidth selection in the
R code. The same strategy is used for the BOOT method in step 1.c presented in the
following section.
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3.3 BOOT method

The MONO method deals with in-bag (IB) errors and the TTR method with out-
of-bag (OOB) errors. While MONO risks overfitting, TTR risks significance loss
of statistical power (since the train sample is a subsample of the initial sample) but
cannot quantify the impact of IB individuals. The current BOOT method uses IB
errors in that objective.

Isolated individuals that are not outliers, in the plot of the estimated index versus
the response y are usually hard to predict especially if those individuals are not in
the training dataset. However, if any of those individuals are included in the training
dataset, it has a beneficial effect on the built model. Indeed, those individuals are
therefore better predicted while the non isolated individuals are still well predicted
since those isolated individuals are in line with the regression model. For those
isolated individuals, the OOB error is then high while the IB error is potentially
low. They are denoted as “borderline” observations in the following. On the other
hand, the “outliers” are always badly predicted with high IB and OOB errors and the
“normal” individuals are always well predicted with low IB and OOB errors (see an
illustration of these comments in Figure 4 that gives examples of those three types
of observations).

The BOOT method is based on two simple decision rules to discriminate be-
tween these three types of individuals (“normal” observation, “borderline” observa-
tion,“outlier”) using the IB error and its logarithmic transformation. This method
relies on bootstrap samples of S. Let B be the number of bootstraps chosen by the
user. In practice B = 2000 is more than enough for reasonable sample sizes, i.e.
n ≤ 500. Note that individuals are drawn with equal weight and with replacement.

Step 1. For b = 1, . . . , B,

1.a. Draw a bootstrap sample S(b) from the initial sample S. Let n(b)i denote the
number of times the observation i is present in the bootstrap sample S(b).

1.b. Using S(b), calculate the corresponding estimated EDR direction b̂(b)SIR and
the associated indices {(b̂(b)SIR )

′xi, i ∈ S(b)}.
1.c. For all the individuals i ∈ S(b), calculate the IB error of prediction of the

response variable y as follows:

ê(b)i = yi − f̂ (b)n

(
(b̂(b)SIR )

′xi
)
,

where the estimate f̂ (b)n (.) is based on the sample {((b̂(b)SIR )
′xi, yi), i ∈ S(b)}.

Note that, even if they are not used in Steps 2 and 3, the OBB errors (for all the
individuals i < S(b)) have also been calculated since they are used in graphical
representations (see Fig.4).

Step 2. Evaluation of the error means.
For each i = 1, . . . , n, calculate the associated error mean over the B replications
(when the individual i is present at least once in the corresponding bootstrap
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sample):

e(i) =

∑B
b=1

��� ê(b)i

��� I
[i such that n(b)i ≥1]∑B

b=1 I[i such that n(b)i ≥1]

.

Step 3. Detection of outliers and “bordeline” observations
The idea here is to first identify among the errors {e(i), i = 1, . . . , n} those which
are particularly high and which will naturally correspond to these “big” outliers.
For this purpose, the log scale was used to detect these outliers. Then, in a second
step, the usual scale is used in order to identify other possible “small” remaining
outliers which are then called “borderline” observations.

3.a. The detection of potential outliers is based on the definition of outliers in
the boxplot1 of the log

(
e(i)

)
’s. The corresponding observations are plotted in

blue in Fig. 3 (on the left).
3.b. The detection of potential “borderline” observations is based on the definition

of outliers in the boxplot of the e(i)’s, these “current outliers” are plotted with
orange triangle in Fig. 3 (in themiddle). The “borderline” observations are thus
defined as the current detected outliers not identified as outliers in the previous
step 3.a. (plotted with blue circle behind the orange triangle in this graphic).
The corresponding “borderline” observations are therefore those represented
only in orange on the graphic in Fig. 3 (on the right).

Remark. In Step 3.a., the log transformation is used by default to detect the
potential outliers. However, the relevant transformation of the considered errors,
e(i), i = 1, . . . , n, is probably not always log but that it may depend on the link
function f itself and on the distribution of ε in the regression model (2).

4 A numerical example

Let us consider a simulated sample to clearly illustrate how the previous three
outlier detection methods (MONO, TTR and BOOT) work. Note that steps 3 of the
different methods (MONO, TTR and BOOT) are interchangeable with each other
and thus they can be used after any of the error calculation steps (steps 1 and 2). In
Sections 4 and 5, only theMONO, TTR and BOOTmethods are compared with each
other, not ideally all possible combinations. Thus, we are well aware that this will
make it difficult to identify whether the success of the method is due mainly to the
different error calculation processes (steps 1 and 2) or to the technique of detecting
“abnormally large” errors (step 3).

1 already described in the presentation of the MONO method
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4.1 Description of the simulated dataset

The following single-index regression model is used in all numerical studies in
Sections 4 and 5:

y =
(x ′β)3

100
+ ε, (6)

where β = (2, 2, 1,−2,−3, 0, . . . , 0)′ ∈ Rp , x follows the p-dimensional uniform
distribution on [−2; 2]p , and ε ∼ N(0, σ2 = 0.25) is independent of x. In a first
step, ñ = 200 observations {(xi, yi), i = 1, . . . , ñ} are generated from model 6 with
p = 5. Then in a second step, ˜̃n = 10 new individuals are generated as follows: for
i = ñ + 1, . . . , ñ + ˜̃n,
• xi is drawn from the uniform distribution on [−2; 2]p ,
• yi is drawn (independently from xi) from the uniform distribution on the support

of the first ñ values of y.
These ˜̃n new observations are then “potential” outliers for the model (6) since
their yi’s are not linked to the xi’s via this model. Note that these observations
are not outliers regarding the distribution of the xi’s (resp. of the yi’s). The term
“potential” refers to the fact that an observation (xi, yi) (for an i ∈ {ñ+ 1, . . . , ñ+ ˜̃n}
may be close, just by chance, to the “true” structure of the data (based on the
underlying model (6)). The objective is to detect these potential ˜̃n outliers in the
sample S = {(xi, yi), i = 1, . . . , n} where n = ñ + ˜̃n and then to estimate as best as
possible the relationship between y and x through the single-index x ′β.

4.2 Numerical results

In a first step, based on the available sample S = {(xi, yi), i = 1, . . . , n}, the EDR
direction b is estimated by b̂SIR using the usual SIRmethod (with the number of slices
H = 10) and the link function f is estimated by f̂n(.) using the kernel estimator with
the Gaussian kernel and the bandwidth tuned via cross-validation. The distance
between the true EDR space and the estimated one is defined as

d2(E, Ê) = 1 −
Trace(PEPÊ )

K
∈ [0, 1],

where PE = β(β
′β)−1β′ (resp. PÊ ) is the orthogonal projector onto E (resp. Ê) with

K the dimension of the EDR space (here K = 1 for a single-index model). The closer
this distance is to zero, the better the estimation Ê of E . On the simulated sample,
we have d2(E, Ê) = 0.0093. The corresponding MSE (mean squared error) defined
as

MSE =
1
n

n∑
i=1

(
yi − f̂n(x ′i b̂SIR)

)2

is equal to MSE = 12.99.
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Using the naive MONO method, 15 outliers have been detected, see Fig. 1 (left)
for the boxplot of the absolute residual errors (with outliers in blue) and Fig. 1
(right) for the visualization of these outliers on the plot of the estimated indices
x ′i b̂SIR versus the yi’s. Note that all the ˜̃n = 10 generated outliers have been identified.
Among these 15 detected outliers, 5 are false positive, however the individual 21
(at the top right of the plot of Fig. 1(right)) can be considered as an “extreme”
observation. An “extreme” observation may obviously be detected as an outlier by
the method because the nonparametric estimation of f by the kernel method is based
on local smoothing. Thus since an “extreme” observation is too isolated in the plot
of the estimated indices (x ′i b̂SIR, i = 1, . . . , n) versus the yi’s, its kernel prediction is
difficult due to the lack of observations around it (this is the problem of data sparsity
in nonparametric regression). Using the initial sample without these 15 outliers, the
associated MSE is now equal to 0.24, and we have d2(E, Ê) = 0.00361. These two
quantities clearly show the benefits of removing the detected outliers.
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Fig. 1 MONO method description. Left graphic provides the boxplot of the absolute errors, the
detected outliers are in blue. On the plot of the estimated indices x′i b̂SIR versus the yi ’s (right
graphic), these outliers are also plotted in blue, red points correspond to the ˜̃n (true) potential
outliers. The kernel estimations of the link function are superimposed for both the original dataset
(in light blue) and the dataset without the detected outliers (in dark blue).

Using the TTR method with R = 3000, 11 outliers have been detected, see Fig. 2
(top left) for the detection of the unique change point position in the sequence of
the ordered errors’ means, {e(i∗), i∗ = 1, . . . , n}. Fig. 2 (top right) provides the
visualization of these outliers on the plot of the estimated indices x ′i b̂SIR versus the
yi’s. Among these 11 outliers, only 2 are false positive: observations 10 and 21 (at
the bottom left and at the top right of the plot of Fig. 2 (top right)) can naturally be
considered as “extreme” observations but they are still selected as outliers for the
same reasons of nonparametric kernel estimation as those mentioned for the MONO
method. Note also that observation 206 (in red) has not been detected as an outlier
by TTR method, but its projection is very close to the “true data” (in black, i.e.
that is those generated by the underlying model) and thus this observation is not
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really a significant outlier. Using the initial sample without these 11 outliers, the
associated MSE is now equal to 0.29, and we have d2(E, Ê) = 0.00367. The benefits
of removing these detected outliers is again very clear. Fig. 2 (bottom) provides the
plot of the estimated indices x ′i b̂SIR versus the yi’s considering the dataset without the
detected outliers. The kernel estimation of the link function (in blue) is superimposed
on the plot. One can observe the very good fit of the data to the underlying model.
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Fig. 2 TTR method description. Top-left graphic shows the ordered means errors with the red
vertical line providing the estimated single change point position.On the plot of the estimated indices
x′i b̂SIR versus the yi ’s (top-right graphic), these outliers are also plotted in blue, red points correspond
to the ˜̃n (true) potential outliers. The kernel estimations of the link function are superimposed for
both the original dataset (in light blue) and the dataset without the detected outliers (in dark blue).

Using the BOOT method with B = 3000, 9 out of the ˜̃n = 10 outliers were
detected, and 4 “bordeline” observations have been identified. Fig. 3 (right) provides
the visualization of the outliers (in blue) and of the “borderline” observations (in
orange) on the plot of the yi’s versus the estimated indices x ′i b̂SIR. The boxplot on
the right allows to detect the outliers while the boxplot in the middle identifies
the “borderline” observations. The individual 206 (simulated as an outlier) is here
detected as a “bordeline” observation. Note that there is no false positive. Graphics
in Fig. 4 provide the plot of the n(b)i ’s versus the |e(b)i |’s (for b = 1, . . . , B) for three
individuals. The horizontal line on each plot represents the corresponding error mean
|e(i) | over the B replications (when the individual i was present at least once in the
corresponding bootstrap sample). One can observe that:

• for observation 1 (which is a “normal” observation), the corresponding mean
|e(1) | is low,

• for observation 21 (which is characterized as a “borderline” observation”), the
corresponding mean |e(21) | is intermediate. The model learns its position and
modifies its tail, which explains the fall in error between n(b)

(21) = 0 and n(b)
(21) = 1,



14 Hadrien Lorenzo and Jérôme Saracco

• for observation 209 (which was detected as an outlier), the corresponding mean
|e(209) | is clearly higher than the previous ones, no matter the number of times
that observation is present in the bootstrap sample.
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Fig. 3 BOOT method description. The two graphics on the left correspond to the boxplots of the
logmean absolute errors (defining outliers, in blue) and of the mean absolute errors (defining “bor-
derline” observations, in orange). Selected outliers (in blue) and selected “borderline” observations
(in orange) are showed on the plot of the estimated indices x′i b̂SIR versus the yi ’s (right graphic), the
red points correspond to the ˜̃n (true) potential outliers. The kernel estimations of the link function
are superimposed for both the original dataset (in light blue) and the dataset without the detected
outliers and “ borderline” observations in dark blue).

Using the initial sample without these 9 outliers and 4 “bordeline” observations,
the associated MSE is now equal to 0.32 and we have d2(E, Ê) = 0.00172, which
highlights the high effectiveness of the BOOT method. Finally, let us remark that, in
the computation of the mean descriptors, we chose to consider only the (absolute)
error values for which each individual is represented at least once in the bootstrap
sample as to prevail from selecting “extreme” observations, as discussed in the
comments of the previous two methods.

5 Simulation results

In this simulation study, N = 100 replications of samples from model (6) have been
generated with various values of the sample size ñ (= 100, 200, 300), various values
of the dimension p (= 5, 20) of the covariate x, and two numbers of potential outliers
˜̃n (= 3, 10). For each generated sample and each outlier detection method (MONO,
TTR with R = 2000 and BOOT with B = 2000), the following quantities were
calculated:
• the quality of the estimated EDR direction d2(E, Ê) where Ê is the estimated

EDR space based on the complete sample (unique for all the three methods),
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Fig. 4 For the BOOT method, plots of the |e(b)
(i)
|’s versus the n

(b)
i ’s (for b = 1, . . . , B) for three

individuals: a “normal” individual (i = 1) on the left, a “borderline” individual (i = 21) in the
middle, and an outlier (i = 209) on the right. Colored (resp. black, orange and blue) segments show
their corresponding computed IB error means |e(i) | (for n(b)i ≥ 1). The last plot at the bottom

provides a density estimation of the |e(i) |’s with these three individuals showed through colored
vertical lines. Since the OOB errors (for n(b)i = 0) are not used, individual i = 21 (in orange) is not
considered as outlier but as “borderline” observation.

• the MSE evaluated on the complete sample (unique for all the three methods),
• the number of detected outliers (and the number of “borderline” observations for

the BOOT method),
• the number of false positives,
• the quality of the estimated EDR direction d2(E, Ê?) where Ê? is the estimated

EDR space based on the sample without the outliers (and the “borderline” obser-
vations) detected by the method ?,

• the MSE evaluated on the sample without the detected outliers (and the “border-
line” observations for BOOT method).

To visualize and easily compare all these indicators, boxplots were used. According
to results available on Fig. 5, all the three methods allow to reduce the distance to
the true model. All methods, and even the model based on the complete dataset (in
yellow), naturally perform better if the size of the available sample (ñ+ ˜̃n) increases.
If the number of outliers is ˜̃n = 10, the model based on the complete dataset shows
poorer results whatever the number ñ. Note that, for a given number ˜̃n of outliers, the
proportion of outliers naturally decreases as the sample size increases. BOOT seems
to suffer from a large proportion of outliers only when the sample size is small.

Fig. 6 shows the MSE’s for all the proposed methods for p = 5 and ˜̃n = 10.
Other simulations have been conducted and results are not provided because of
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Fig. 6 Root MSE for the different methods. Visualizations of the errors for the complete dataset
model (in yellow) and for the three outlier detection methods have been split in two graphics since
scales are different. Here p = 5 and ˜̃n = 10 have been detailed.

redundancy in the associated comments. Errors are larger for the complete dataset
model (in yellow) than for any of the threemethods but tend to decrease as ñ increases
and thus the proportion of outliers decreases. TTR seems to provide the best results
for large sample sizes (and thus for low proportions of outliers), while BOOT shows
larger errors, especially when ñ is small (and thus when the proportion of outliers is
high). An explanation of the phenomenon is that MSE is computed on the sample
without the outliers. In that context, theMONO and TTRmethods that select extreme
(or “borderline”) observations as outliers tend to get smaller MSE. On the contrary,
the BOOT approach does not exclude these “borderline” observations which are
more difficult to predict correctly, leading to a larger MSE. The MSE descriptor
must be interpreted with this remark in mind, as well as by taking into account the
number of false positives of each method, which is done thanks to Fig. 7.
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Fig. 7 Number of detected outliers (left column) and number of false positive detections (right
column) for different values of p, ñ and ˜̃n = 10.

Whatever the sets of parameters in Fig. 7, BOOT is the only method that seems
to be able to select the true outliers without selecting too many false positives (i.e.
individuals detected as outliers when they are not). BOOT seems to be the most
efficient method by showing the lowest number of false positives for all ñ. The
number of false positives stays somewhat constant over the sample size ñ for BOOT
but increases with ñ for the other two methods. MONO and TTR methods seem
to have a sensibility to ñ with an increase of the numbers of detected outliers and
false positives as the sample size increases (and thus as the proportion of outliers
decreases since their number ˜̃n is fixed at 10).

6 A real data application

Daily measurements of meteorological variables and ozone concentration are avail-
able in the dataset “ozone” (Source: [11]). More precisely, this dataset contains
n = 112 daily measurements of meteorological variables (wind speed, temperature,
rainfall, cloudiness) and ozone concentration recorded in Rennes (France) in summer
2001. In this study, an individual is a day. Eleven numerical variables are measured
with no missing values:

• maxO3: maximum of daily ozone concentration measured in gr/m3,
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• T9, T12, T15: daily temperatures measured in degree Celsius at 9, 12 and 15h
(called “temperature” variables hereafter),

• Ne9, Ne12, Ne15: cloudiness measured at 9, 12 and 15h (called “cloudiness”
variables hereafter),

• Vx9, Vx12, Vx15: wind speed (E-W component) measured at 9, 12 and 15h
(called “wind” variables hereafter),

• maxO3v: maximum concentration of ozone measured the day before.

The initial objective is to explain the maximum of daily ozone concentration (the
response variable y is thus maxO3) by the p = 10 variables available (T9, T12,
T15, Ne9, Ne12, Ne15, Vx9, Vx12, Vx15, maxO3v). Hereafter, let x be the
vector of these ten covariates. To do this, the semiparametric regression model (2),
is used and the EDR space E = Span(β) is estimated by the usual SIR method (with
the number of slices H = 10) while the link function f is estimated using the kernel
estimator with the Gaussian kernel and the bandwidth tuned via cross-validation.
Our aim is here to detect the presence or absence of outliers in this dataset. The
proposed three outlier detection methods (MONO, TTR with R = 1000 and BOOT
with B = 1000) are compared.

The naive MONO method does not detect outliers. The TTR method provides 9
outliers and the BOOT method identify 4 “borderline” observations and no outlier
(see the corresponding plots in Fig. 8 respectively at the top left and at the top right).
Among the 9 TTR’s outliers, 4 of them are the BOOT’s “borderline” observations.
These 4 observations correspond to specific days in terms of road traffic, since these
are days of major departures or returns from summer holidays in France. It is known
that ozone pollution is also due to car traffic, but the built model is based only on
weather data and does not take into account this important source of pollution. It
is therefore quite natural that these 4 days correspond to individuals outside the
model’s standards. The 5 other specific TTR’s outlier observations are closer to the
scatterplot structure and they correspond to the days of early June, mid-June (music
festival on the first day of summer), late July (end of a week) and mid September.

In order to improve the final model, the method introduced by [22] for selecting
the relevant variables based on variable importance is now applied on the sam-
ple without the outliers (TTR method) or the “borderline” observations (BOOT
method). Only the following p∗ = 4 covariates are then selected: a temperature
variable, T12, a cloudiness variable, Ne9, a wind variable, Vx9 and the maximum
concentration of ozone measured the day before, maxO3v. This is not surprising
since the 3 variables of temperature (resp. cloudiness, wind speed) are strongly
correlated with each other. The corresponding EDR directions are very close:
b̂TTR

SIR = (0.778,−0.565, 0.258, 0.094)′ and b̂BOOT
SIR = (0.660,−0.724, 0.175, 0.094)′.

Finally, for the outlier detection method TTR (resp. BOOT), the plot of the
estimated indices x ′i b̂

TTR
SIR (resp. x ′i b̂

BOOT
SIR ) versus the yi’s for the corresponding samples

without outliers (resp. “borderline” observations) and the associated estimated link
function (solid blue curve) are provided in Fig. 8 (at the bottom, on the right, resp. on
the right). These two graphics are very similar and show an increasing link between
the estimated index and the response variable maxO3. Then, it is possible to interpret
the coefficients of the estimated EDR direction b̂TTR

SIR (or similarly b̂BOOT)
SIR using their
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Fig. 8 Study of Ozone dataset. Top-Left: Selected outliers with TTR method. Top-Right: Selected
“borderline” observations with BOOT method. Bottom-Left: plot of the yi ’s (values of maxO3)
versus the final estimated indices based on the n∗TTR = n − 9 observations, i.e. removing the 9
selected outliers. Bottom-Right: plot of the yi ’s (values of maxO3) versus the final estimated indices
based on the n∗BOOT = n − 4, removing the 4 selected “borderline” observations. The corresponding
estimated link functions (solid blue curve) are superimposed on the last two plots.

signs. The variable T12 (resp. Vx9 and maxO3v) has a positive coefficient which
means that an increase in daily temperatures at 12h (resp. of the wind speed at 9h, or
of maximum concentration of ozone measured the day before) implies an increase of
the estimated index and this then implies (not surprisingly) an increase of maximum
of daily ozone concentration. On the contrary, the variable Ne09 has a negative
coefficient and then an increase of its values leads to a decrease in the maximum of
daily ozone concentration, which is relevant from an air pollution point of view.

7 Concluding remarks and extensions

Three computational outlier detection approaches for sliced inverse regression have
been presented. In this work, the original idea is to consider potential outliers that are
outliers only in the SIR model and that are not detectable outliers by studying only
their distribution in x or y. Thus considering the plot of the estimated indices versus
the dependent variable, only outliers can appear in y. The case of outliers in x or in y

are not considered here since the corresponding observations should be detectable as
outliers in an early stage before the SIRmodeling step, and the dataset should then be
cleaned up accordingly. TheMONO, TTR and BOOT approaches were implemented
in R and the code is available on https://github.com/hlorenzo/outlierSIR.
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The philosophy of these approaches does not rely neither on the SIR method
used in the first estimation step nor on the nonparametric regression used in the
second estimation step. For example, instead of the usual SIR method, it is possible
to use the SIR-II, SIRα or SAVE methods among others. Moreover, the proposed
approaches are also easily generalizable to the multiple-index model framework, i.e.
when the dimension of the EDR space is equal to K > 1. All SIR-related methods,
as well as non-parametric regression methods (like multivariate kernels), work well
in this framework . However the non-parametric regression methods might suffer
from the well-known curse of dimensionality. Note that the choice of the dimension
K of this EDR subspace should be then discussed. Finally, these outlier detection
approaches can also be extended to a q-dimensional response variable y. Several
authors developed SIR-based methods to estimate the EDR space that is common
to the q components of the multivariate response variable, see for instance [4, 12,
28, 31, 35] among others. However, the concept of an outlier in this multivariate
framework must be first clarified since it is not entirely natural.
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