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Abstract

Botnets such as Mirai use insecure home devices to conduct distributed denial of

service attacks on the Internet infrastructure. Although some of those attacks

involve large amounts of traffic, they are generated from a large number of

homes, which hampers their early detection. In this paper, our goal is to answer

the following question: what is the maximum amount of damage that a DDoS

attacker can produce at the network edge without being detected? To that aim,

we consider a statistical hypothesis testing approach for attack detection at the

network edge. The proposed system assesses the goodness of fit of traffic models

based on the ratio of their likelihoods. Under such a model, we show that the

amount of traffic that can be generated by a covert attacker scales according to

the square root of the number of compromised homes. We evaluate and validate

the theoretical results using real data collected from thousands of home-routers

connected to a mid-sized ISP.

Keywords: Hypothesis testing, Scaling laws, Gaussian mixture, Covertness,

DDoS attack, Home networks

1. Introduction

The Internet has become an indispensable commodity in the last several

years. This achievement was parallel to the growth of sophistication that home
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networks have undergone, nowadays hosting a variety of devices such as PCs,

tablets, mobile phones and specialized apparatus such as smart thermostats and

other Internet of things (IoT) devices. While these devices offer users an array of

services and conveniences, they come at the cost of increasing the attack surface

of the home network [1, 2, 3]. Because of the vulnerabilities of such devices,

they have been increasingly used as the source of Distributed Denial-of-Service

(DDoS) attacks [4]. According to the European Union Agency for Cybersecurity

the number of DDoS attacks has increased significantly in 2020 and the trend

continues [5]. These attacks are most harmful to services, and very costly to

organizations, both in terms of time and money, since they may cripple key

system’s resources.

DDoS attacks are difficult to prevent, because they are launched from a

large number of infected devices connected to the Internet, collectively known

as botnets. The attacker compromises devices by injecting malicious code (mal-

ware), which allows the attacker to perform actions at a later time using these

devices as sources of harmful traffic without knowledge of the device’s owner.

The traffic generated by some botnets is typically composed of millions of small

flows [1].

Despite all the continuing efforts to detect and mitigate these attacks, their

number have not decreased and it has been predicted that this number will

double from 2018 to 2023 [6]. In fact, the number of DDoS attacks drastically

increased in 2020 [7]. Roughly, DDoS attacks are produced by launching a burst

of packets simultaneously from a very large number of devices towards a given

target. Examples of common attack types include: (a) UDP-flood attacks: ports

of a remote host are flooded with UDP packets which can cripple the target by

draining resources to process the arriving packets; (b) ICMP-flood attacks: the

target is flooded with ICMP packets as fast as possible to produce a response

from the target which, in turn, may cause a considerable system slowdown; (c)

SYN-flood attacks: the victim is flooded with TCP SYN packets and, for each

packet received, a SYN-ACK is produced and the target waits for acknowledge-

ment from the source that will never arrive, committing resources for the faked

2



connection; (d) HTTP-flood attacks, which employ GET or POST requests to

a web service. In most cases, the attacker uses either a large number of control

packets to overwhelm the victim and exhaust its resources, or packets that do

not respect flow control and consume bandwidth resources in the neighborhood

of the target.

Needless to say, early identification of these attacks and their sources is of

prime concern of companies. However, it is also imperative to discover if there

are fundamental tradeoffs between the amount of damage an attacker can inflict

to services and the attacker’s ability to remain undetected. If these fundamental

laws exist, they could shed some light concerning covertness versus damage and

they could be used to help building effective DDoS countermeasures.

It should be evident that the objective of the attacker is to inflict as much

damage as possible by generating enough traffic (for instance, generating a large

amount of control packets) to wear out the victim’s resources and, consequently,

to disrupt user’s services. The malicious traffic originates from home network

devices with limited capacity. As such, the attack generated from a single

home is far from sufficient to cause any damage. Then, necessarily, the attacker

tries to use as many homes as possible, remotely activating a large number of

controlled devices (the bots) that have been previously infected. Furthermore, it

is advantageous for the attacker to remain covert (undiscovered) while attacking.

It is hard to differentiate attack traffic originating from a single home net-

work from the regular home user traffic. This is probably why most network-

based DDoS detection methods rely on detailed network traffic information (e.g.,

packet header data), which is in general computationally expensive and also

raises concerns about user privacy. To avoid these drawbacks, methods based

solely on metrics such as byte/packet counts should be preferred [8, 9]. A

lightweight approach that employs network interface byte/packet counts also

scales, and is oblivious to botnet-specific attack signatures and encryption.

Clearly, the larger the number of compromised devices in different home

networks, the greater the amount of damage the attacker who controls these

bots can potentially cause. The work of [8] proposes a method to detect an
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ongoing attack from a home-router without resorting to packet inspection, and

also shows that the likelihood of detecting a DDoS attack can be improved

with the number of participant bots in the attack. A fundamental question

then arises: Can a DDoS attack be covert and if so, what is the damage it is

expected to cause?

Goals. We want to avoid packet inspection as in [8]. Furthermore, it should

be evident that the damage caused by common DDoS attacks (such as Mirai) is

proportional to the number of infected devices (equivalently the number homes)

participating in the attack. In addition, from the administrator’s point of view,

the number of false alarms should be kept to a minimum, since there is no point

in detecting occasional attacks if the number of false alarms is unbearably high.

We then pose the following questions related to the attacker’s ability to cause

as much damage as possible and the likelihood to remain undetected:

1. Is there any fundamental limit on the damage an attacker can cause to

the victim while remaining covert?

2. If such limit exists, how is it related to the false alarm rate?

To answer the above questions, we propose an analytical model to capture

the essence of these attacks. The model comprises two components, character-

izing regular traffic and traffic when an attack is underway. In particular, we

focus on the simplest case wherein each component is associated with a single

feature, such as byte counts or packet counts observed per time slot.

At a high level, we posit that an attacker is covert if admin running a detector

(also known as a classifier) cannot determine if an attack is in progress by

observing the traffic (byte or packet rate) from a set of homes. Formally, consider

that admin runs an optimal statistical hypothesis test and uses it to compute

the probability of false alarm (pFA) and the probability of miss detection (pMD),

both probabilities formally defined in Section 2.2. In this setting, the sum of

errors pFA + pMD lies in [0, 1], as shown in Section 2.3. Following the definition

in [10], we then say (Definition 2.1) that an attack is covert if the attacker has a

strategy that makes the sum pFA+pMD arbitrarily close to one. We stress that
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our goal is not to devise a deployable detection method but rather to discover

fundamental laws that govern the covertness ‘game’ played between the attacker

and admin and to understand the limits on the damage an attacker can cause.

Our model assumptions are backed by real data collected at home-routers

from a mid-sized ISP, with whom we partnered to gather statistics about base-

line regular traffic. Our dataset includes packets and byte counts collected at

thousands of home-routers over several months. Our analysis of the dataset

shows that regular traffic can be modeled by a mixture of Gaussian distribu-

tions. We also use a dataset of attack traffic, generated by controlled experi-

ments using real botnet code [8]. The traffic distribution of the attack traffic

can also be approximately modeled by a mixture of Gaussian distributions.

We establish that the amount of traffic that an attacker can issue while

remaining covert grows as O(
√
n), where n is the number of compromised homes

controlled by the attacker in the network. We also obtain conditions under which

this bound is tight. We confirm these results using the real data mentioned

earlier.

Prior art. The covertness criterion considered in this paper was proposed

in the context of low probability of detection (LPD) communications. Although

there are a number of papers in this area [10, 11, 12, 13, 14], to the best of our

knowledge no previous work has discussed hypothesis testing methods for DDoS

detection in home networks, particularly focusing on covertness. We are also

unaware of prior work analyzing the fundamental laws of covert DDoS attacks

through theoretical bounds derived from optimal statistical hypothesis tests.

Contributions. In summary, our contributions are threefold:

• Analytical model to assess damage: We develop an analytical model

to assess the maximum damage that the attacker can cause from home

networks. Our results are based on statistical hypothesis testing under

the constraint that the attacker is covert (Section 3);

• Square root law: Under the proposed model, we show that the damage

caused by the attacker follows a square root law. The amount of mali-
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cious packets per time unit a covert attacker can inject during the attack

grows as the square root of the number of home-routers in large networks

(Section 4);

• Evaluation: The main theoretical results are asymptotic when the num-

ber of compromised home-routers goes to infinity. Using real traffic traces

collected from thousands of home-routers, we show that the asymptotic

results are robust when the number of comprimised homes is finite, for dif-

ferent system parameter values. Our evaluation considers two scenarios:

in the first, the administrator knows the attack traffic distribution and,

in the second, the administrator does not have any knowledge concerning

the distribution of the attack traffic (Section 5).

We describe the system under study in Section 2. Sections 3 to 5 follow

the outline presented in the summary of contributions above. Section 6 reports

related work and Section 7 concludes.

2. System Description and Background

In this section we describe the system that is the focus of our work. We follow

this with terminology and basic concepts pertaining to statistical hypothesis

tests and covertness.

2.1. System Description

As mentioned in the introductory section, an attacker injects data into the

network through previously compromised devices residing in homes. The at-

tacker installs malicious code (malware) at the devices and assumes remote

control over them. Examples of such devices include televisions, media stations,

etc. Henceforth, we will refer to a home wherein there are compromised devices

as a compromised home. A set of compromised homes forms a botnet.

The attacker controls the botnet, and may use all bots, or a fraction of them,

to issue attacks against its target. In the remainder of this work, we focus on
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Figure 1: System outline

home networks as the major source of attacks, referring to the compromised

homes that can be used by the attacker to issue DDoS attacks simply as homes.

The attacker faces the problem of determining which homes to activate and

at what rates to inject traffic into the network. Attack data is the traffic the

attacker transmits through the network, from selected homes to a target. The

attack rate is the rate at which the attacker transmits attack data, measured in

bytes or packets per second. Usually the attacker pushes as much traffic (UDP

packets or control packets) through the infected device’s interface as possible to

increase the damage a botnet can cause. However, in this work, we also allow

the attacker to control the rate at which it injects traffic as an additional option

to keep the attack covert. In summary, the attacker has two options – namely,

determining the number of homes to activate and/or the rate at which each

home should inject attack traffic into the network.

From the defense standpoint, monitors are typically installed at gateways

to protect against DDoS attacks. Usually they employ packet inspection and

keep track of different traffic features such as IP addresses and HTTP headers.

We focus on a lightweight approach avoiding any information typically obtained

from packet inspection as in [8] and rely only on packet (or byte) counts.

The system we study is shown in Figure 1. In the figure, the blue dotted

arrows represent measurement data collected at home routers and sent periodi-

cally to a data fusion center for analysis. In fact, the data that we had access to

and used in Section 5 was obtained by a measurement effort in which packet and
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byte counts of upload/download traffic are collected at participant home-routers

at minute intervals and sent to a fusion center. Blue arrows represent regular

upload traffic, and the widths of the arrows indicate distinct traffic statistics.

The botmaster can issue commands to the infected houses (in red) but, as shown

in the figure, the attacker can choose not to use all the houses he controls to

initiate an attack, to cause significant damage and yet remain covert.

2.2. Statistical Hypothesis Testing

Consider a collection of n homes where each, using its home-router, contin-

uously measures upload traffic during a time slot, and sends this information to

an ISP fusion center where detection takes place. We assume that there is an

attacker who may or may not launch an attack during a time window.

The system administrator (henceforth known as admin) performs a hypoth-

esis test on observations with the null hypothesis H0 being that the attacker

does not launch an attack and the alternate hypothesis H1 that he does launch

an attack. We are interested in the following question: can the attacker launch

an attack without being detected by admin and, if so, how large can such an

attack be?

Admin can tolerate some false positives, or cases when the statistical test

incorrectly concludes an attack is under way. When correct, this rejection of

H0 is known as a false alarm, and, following standard nomenclature, we denote

its probability by pFA. Admin’s test may also fail to indicate that an attack is

taking place. Acceptance of H0 when it is false is known as a missed detection,

and we denote its probability by pMD. Then, the sum pFA+pMD characterizes

the necessary tradeoff between false alarms and missed detections in the design

of a hypothesis test.

Denote the upload traffic probability distribution in the absence of an attack

(i.e. when H0 is true) as f0(x), and in presence of attack (i.e. when H1 is true)

as f1(x). When f0(x) and f1(x) are known to admin, he can construct an

optimal statistical hypothesis test (such as the Neyman-Pearson or likelihood
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ratio test) that minimizes the sum of error probabilities [15, Ch. 13],

SE := pFA + pMD. (1)

2.3. Covertness

Next, we formally introduce the covertness criterion used throughout this

work. This covertness criterion was proposed in the context of low probability

of detection (LPD) communications in [10].

Definition 2.1. An attack is covert provided that, for any ε > 0, the attacker

has a strategy for each n such that

lim inf
n

SE ≥ 1− ε. (2)

The justification for this definition is the following. Assume that the optimal

statistical hypothesis test that admin runs is such that SE > 1. Then,

SE = pFA + pMD = P(accept H1 |H0 is true) + P(accept H0 |H1 is true) > 1,

which yields

P(accept H1 |H0 is true) > P(accept H1 |H1 is true)

and

P(accept H0 |H1 is true) > P(accept H0 |H0 is true).

Such a statistical hypothesis test cannot be optimal as if the attacker decreases

the attack traffic the probability of errors calculated by admin should not in-

crease. Hence, SE ∈ [0, 1], which shows that Definition 2.1 ensures that the

maximal value of SE should be reached for covertness, which agrees with the

intuition.

Note that a sufficient condition for the attack not to be covert is if, for some

ε ∈ (0, 1), there exists a detector such that

lim sup
n

SE < ε. (3)

According to Definition 2.1 a successful attacker must be covert for any target

pFA.
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3. DDOS Model

We introduce our model to tackle the interplay between DDoS covert attacks

and lightweight defences. As described in Section 2.1, we consider a population

of n home-routers equipped with monitors, that periodically collect byte and

packet counts of upload/download traffic that flows through each home-router.

Time is divided into time slots (also called time windows) of duration of ∆ sec-

onds. At each time slot, one sample is collected from each home and transmitted

to a server (fusion center). We start by considering the problem of determining

the maximum damage that an attacker can cause without being detected.

Consider n observations collected during a time slot, where each observation

corresponds to a different home-router. The models of regular and attack traffic

at a given time slot are characterized by the following two random variables

(rvs). Here r = 1, . . . , n.

• Xr, the amount of regular traffic, measured in packets or bytes, uploaded

from the r-th home;

• Yr, the amount of attack traffic, measured in packets or bytes, uploaded

from the r-th home.

Given an attack takes place, let χr be a rv that takes value 1 if home r is

used by the botmaster in the attack (see Figure 1) and 0 otherwise, with

q(n) = P(χr = 1). (4)

Let Zr denote the amount of observed traffic at home-router r in a given

time slot,

Zr =

Xr if no attack occurs,

Xr + χrYr otherwise.

Intuitively, if the attacker is too aggressive the probability of error by the admin

detector will be zero. Alternatively, if the attacker is timid, he will not be

detected, but the average total amount of data that he injects, q(n)
∑n
r=1 E[Yr],

will be limited. The objective of this paper is to quantity these intuitions.
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To this end, we formulate DDoS detection as a statistical hypothesis testing

problem where the null and alternative hypotheses are given as follows,

• H0 (no attack taking place): Zr = Xr,

• H1 (attack taking place): Zr = Xr + χrYr.

Table 1 contains a glossary of notations used throughout this paper.

In order to derive achievability and converse results, we need to specify the

distribution of the regular and attack traffic. For achievability results we assume

that both traffic are modeled by Gaussian mixtures (see below). The Gaussian

mixture model is motivated by an exploratory analysis of the dataset we had

access to. A general traffic model will be allowed for the converse (see Section

4).

We now introduce both the regular and attack traffic models under which

our achievability results will be obtained (cf. Theorems 4.1-4.2). We assume

that the regular traffic Xr generated by home-router r in a time window is

modeled by a mixture of Ir Gaussians with probability density function (pdf)

given by

f0,r(x) =

Ir∑
i=1

w0,i,r√
2πσ2

0,i,r

e
−

(x−µ0,i,r)
2

2σ2
0,i,r , (5)

with

0 < w0,i,r < 1,

Ir∑
i=1

w0,i,r = 1, σ0,i,r > 0, i = 1, . . . , Ir. (6)

The pdf of the attack traffic Yr at home-router r is independent of r and is given

by the Gaussian mixture with pdf

v(x, n) =

J∑
j=1

w1,j√
2πσ2

1,j(n)
e
−

(x−µ1,j(n))2

2σ2
1,j

(n) , (7)

with 0 < w1,j < 1 for j = 1, . . . , J and
∑J
j=1 w1,j = 1. We assume that

infn≥1 σ
2
1,j(n) > 0 for j = 1, . . . , J . Notice in (7) the (potential) dependency on

n of the parameters of the attack traffic.

Denote by µ0,r = E[Xr] and σ2
0,r = var(Xr) the mean and variance of the

regular traffic generated in a time window by home-router r, and by µ1(n) =
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Table 1: Glossary of notations

Variable Description

n number of home-routers (compromised nodes)

q(n) probability a home-router participates in the attack

∆ time window (or slot) duration (= 1 minute)

f0,r(x) pdf under H0 of traffic injected in a slot by home-router r

v(x, n) pdf traffic injected in a slot by attacker

f1,r(x, n) pdf of regular and attack traffic injected in a slot by home-router r

gr(x, n) pdf under H1 of regular and attack injected in a slot by home-router r

µ0,r mean traffic injected in a slot by home-router r (packets)

σ2
0,r variance of traffic injected in a slot by home-router r

µ1(n) mean traffic injected in a slot by attacker (packets)

σ2
1(n) variance of traffic injected in a slot by attacker

Ir number of mixture components of traffic of home-router r, resp.

J number of mixture components for attack traffic

w0,i,r mixture weight for component i of regular traffic of home r (i = 1, . . . , k1)

w1,j mixture weight for component j of attack traffic (j = 1, . . . , J)

µ0,i,r mean of component i of traffic of home-router r

σ2
0,i,r variance of component i of traffic of home-routeur r

µ1,j(n) mean of component j of attack traffic

σ2
j (n) variance of component j of attack traffic

z̄ average overall traffic in a given time window
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E[Yr] and σ2
1(n) = var(Yr) the mean and variance of the attack traffic generated

in a time window. Notice that the derivation of the theoretical results do not

require the means µ0,r (r = 1, . . . , n) and µ1(n) to be nonnegative; in practice

these means will be strictly positive (cf. Section 5). These quantities are given

by µ0,r =
∑Ir
i=1 w0,i,rµ0,i,r, σ

2
0,r =

∑Ir
i=1 w0,i,rσ

2
0,i,r, µ1(n) =

∑J
j=1 w1,jµ1,j(n),

and σ2
1(n) =

∑J
j=1 w1,jσ

2
1,j(n).

The sum of the regular and attack traffic Xr +Yr at home-router r when an

attack takes place has pdf

f1,r(x, n) =

Ir∑
i=1

J∑
j=1

w0,i,rw1,j√
2π(σ2

0,i,r + σ2
1,j(n))

e
−

(x−µ0,i,r−µ1,j(n))2

2(σ2
0,i,r

+σ2
1,j

(n)) . (8)

Under H0, the total traffic Zr uploaded from home-router r has pdf f0,r(x)

and under H1 the pdf of the total traffic Zr uploaded from home-router r has

pdf gr(x, n) given by

gr(x, n) = (1− q(n))f0,r(x) + q(n)f1,r(x, n). (9)

To avoid unnecessary complications we require that all parameters in f0,r(x)

are uniformly bounded in r as n→∞, namely,

(a) max
r≥1

Ir <∞, (b) sup
r≥1
|µ0,r| <∞, (c) 0 < inf

r≥1
σ2
0,r ≤ sup

r≥1
σ2
0,r <∞.

(10)

Conditions in (10) together with (6) imply

0 < inf
1≤i≤Ir,r≥1

w0,i,r, sup
i=1,...,Ir,r≥1

|µ0,i,r| <∞ (11a)

0 < inf
i=1,...,Irr≥1

σ2
0,i,r ≤ sup

i=1,...,Ir,r≥1
σ2
0,i,r <∞. (11b)

Also under (10) (see Appendix F)

sup
r≥1

E[|Xr − µ0,r|3] <∞. (12)

In particular, conditions in (10)-(11) are satisfied if f0,r ∈ {ψi, i = 1, . . . ,K} for

all r ≥ 1, where ψi (i = 1, . . . ,K, K <∞) is the pdf of a Gaussian mixture or,

equivalently if home-routers belong to K different classes in terms of the traffic
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that they generate. Indeed, in this case all parameters of the Gaussian mixture

in (5) take a finite number of (finite) values.

Denote by f
(n)
0 the joint density of the mutually independent random vari-

ables (rvs) X1, . . . , Xn and by g(n)(x) the joint density of the mutually inde-

pendent rvs Z1, . . . , Zn. We have (cf. (5)-(8))

f
(n)
0 (x) =

n∏
r=1

f0,r(xr, n), g(n)(x) =

n∏
r=1

gr(xr, n). (13)

for x = (x1, . . . , xn) ∈ Rn.

Last, we consider two settings. The first is when admin knows the parameters

(i.e. pdf) of the attack model and the second is when these parameters are not

known to admin. We present a classifier for each of these in Section 5.2, Type

I for the case the attack model is completely known and Type II for the case

it is not known. The Gaussian mixture representation of the network traffic in

(5)-(7) is motivated and validated using real data in Section 5.

4. Theoretical Results

In this section we present our achievability and converse results.

4.1. Achievability

The first achievability result in Theorem 4.1 holds when both regular and

attack traffic have Gaussian distributions. The second and more general achiev-

ability result in Theorem 4.2 holds when both regular and attack traffic are

represented by mixtures of Gaussians. Both theorems exhibit square-root laws.

Theorem 4.1 (Achievability when home & attack traffic have Gaussian distri-

butions). Assume that Xr and Yr have Gaussian distributions, with mean

µ0,r and variance σ2
0,r for Xr and with mean µ1(n) and variance σ2

1(n) for Yr.

We assume that admin knows the distribution of the attack traffic. The attack

traffic is covert if

µ1(n) = O(1), 0 < sup
n
σ2
1(n) < inf

r≥1
σ2
0,r, (14)

14



and

q(n)µ1(n) = O(1/
√
n), q(n)σ2

1(n) = O(1/
√
n). (15)

Theorem 4.2 (Achievability when home & attack traffic are mixtures of Gaus-

sians). Assume that the pdfs of Xr and Yr are given in (5) and (7), respectively,

and that admin knows the parameters of the attack traffic distribution. Under

(10) the attack traffic is covert if (with j = 1, . . . , J)

µ1,j(n) = O(1), 0 < sup
1≤j≤J,n≥1

σ2
1,j(n) < inf

1≤i≤Ir,r≥1
σ2
0,i,r, (16)

and

q(n)µ1(n) = O(1/
√
n), q(n)σ2

1(n) = O(1/
√
n). (17)

When parameters of the attack traffic in (7) do not depend on n, Theorem

4.2 says that the attack is covert when

max
1≤j≤J

σ1,j
2 < inf

1≤i≤Ir,r≥1
σ2
0,i,r and q(n) = O(1/

√
n). (18)

Theorems 4.1 and 4.2 imply that the total amount of traffic that an informed

attacker can inject into the network grows as O(
√
n). As n grows, a covert

attacker must inject less traffic per home, but the total amount of traffic is still

unbounded as a function of the number of homes.

The proof of Theorem 4.1 is given in Appendix Appendix B. It uses the

same argument as the proof of the more general result in Theorem 4.2 – given in

Appendix Appendix C – but has the advantage of being much shorter. Before

sketching out these proofs let us introduce some intermediary results.

Theorem 4.3 below relates the minimum – denoted by S?E – of the sum of

error probabilities pFA and pMD to the total variance distance between pdfs f
(n)
0

and g(n). We recall that f
(n)
0 (x) =

∏n
r=1 f0,r(xr) is the joint pdf of Z1, . . . , Zn

under H0 and g(n)(x) =
∏n
r=1 gr(xr, n) is the joint pdf of Z1, . . . , Zn under H1

for x = (x1, . . . , xn) ∈ Rn – see Section 3.

Theorem 4.3. [Theorem 13.1.1 in [15]]

Using the observed values zn := (z1, . . . , zn) of Z1, . . . , Zn, any test accepting

H0 if f
(n)
0 (zn) < g(n)(zn) and rejecting H0 if f

(n)
0 (zn) > g(n)(zn) minimizes SE.
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Furthermore, the minimum SE is given by

S?E = 1− TV
(
f
(n)
0 , g(n)

)
,

where TV (u, v) :=
∫
|u(x) − v(x)|dx is the total variance distance between pdfs

u and v.

Following [10] we say that an attack is ε-covert (0 < ε < 1) if lim infn S
?
E ≥

1 − ε, or equivalently by Theorem 4.3, if lim supn TV

(
f
(n)
0 , g(n)

)
≤ ε. Calcu-

lating TV
(
u(n), v(n)

)
is usually very difficult and our problem is no exception.

Instead of working directly with TV

(
f
(n)
0 , g(n)

)
we use the upper bound re-

ported in the lemma below.

Lemma 4.1 (Upper bound on total variation distance).

For all n ≥ 1,

TV

(
f
(n)
0 , g(n)

)
≤ 1

2

√√√√ n∏
r=1

(1 + q(n)2Cr(n))− 1, (19)

where the nonnegative constant Cr(n), known as the Fisher information constant

[16], is defined by

Cr(n) = −1 +

∫
R

f1,r(x, n)

f0,r(x)
dx. (20)

The proof of Lemma 4.1 is given in Appendix Appendix A.

Corollary 4.1. Fix ε > 0. If
∑n
r=1 log

(
1 + q(n)2Cr(n)

)
= O(1) then

lim sup
n

TV

(
f
(n)
0 , g(n)

)
≤ ε, (21)

in which case the attack is covert by the definition of covertness in (2.1) and

Theorem 4.3.

Sketch of the proofs of Theorems 4.1 and 4.2: In Theorem 4.1 the Fisher

constant Cr(n) defined in (20) is given by (see (B.2))

Cr(n) = −1 + σ2
0,re

µ21(n)

σ20,r−σ
2
1(n) /

√
σ4
0,r − σ4

1(n).
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From this expression we show that nq2(n) sup1≤r≤n Cr(n) = O(1) under (14)-

(15) and the proof of Theorem 4.1 follows by invoking Corollary 4.1. The proof

of Theorem 4.2 is similar but the more complicated value obtained for Cr(n) in

(C.1) makes it more tedious.

4.2. Converse

Denote by z̄ the average traffic collected from the n homes in a given time

slot. Given that z̄ increases in the face of attacks, the test has the following

threshold structure,

z̄ ≷H1

H0
τ, (22)

where τ is a threshold to determine if there is an attack in the network based

on z̄.

The converse theorem below holds for any probability distribution of the

regular traffic Xr and of the attack traffic Yr.

Theorem 4.4 (Converse, general distributions).

Assume arbitrary probability distributions for the mutually independent rvs

X1, . . . Xn, with mean µ0,r and strictly positive variance σ2
0,r for Xr. We as-

sume that Y1, . . . , Yn are independent and identically distributed rvs with mean

µ1(n) and variance σ2
1(n). We assume that admin does not know the attack

distribution. We further assume that

sup
r≥1
|µ0,r| <∞, 0 < inf

r≥1
σ2
0,r ≤ sup

r≥1
σ2
0,r <∞, sup

r≥1
E[|Xr − µ0,r|3] <∞. (23)

The attacker is not covert if 1

lim
n

√
nq(n)µ1(n) = +∞, var(χrYr) = q(n)

(
σ2
1(n) + (1− q(n))µ2

1(n)
)

= O(1).

(24)

Let us specialize Theorem 4.4 to the case where Xr and Yr have pdfs given

in (5) and (7) and home-routers belong to a finite number of classes. In this

1First condition in (24) can be replaced by q(n)µ1(n) = ω(1/
√
n) if lim infn≥1 µ1(n) > 0.
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case, conditions (23) are satisfied (see discussion in Section 3) and Theorem 4.4

becomes,

Corollary 4.2 (Converse, mixture of Gaussian distributions).

Assume that Xr and Yr have pdfs given in (5) and (7) and that home-

routers belong to a finite number of classes. Assume admin does not know the

parameters of v(x, n) in (7). The attacker is not covert if

lim
n

√
nq(n)µ1(n) = +∞, var(χrYr) = q(n)

(
σ2
1(n) + (1− q(n))µ2

1(n)
)

= O(1).

(25)

The proof of Theorem 4.4 is given in Appendix Appendix G. Let us briefly

discuss it. It consists of finding an upper bound on the error experienced by the

classifier implementing threshold policy (22). To that aim, we first determine a

threshold τ such that the corresponding probability of false alarm, pFA, is upper

bounded by a constant α. Then, given τ we show that the probability of miss-

detection, pMD, can be made arbitrarily close to 0 as n grows to infinity provided

conditions in (25) hold. As the latter holds for any value of α, together those

two bounds imply that the sum of error probabilities SE can be made arbitrarily

close to 0 as n grows.

Note that the proof of tightness is constructive, in the sense that it follows,

in essence, the methodology to parametrize a Neyman-Pearson classifier [17].

The threshold selected by the Neyman-Pearson classifier is typically chosen to

satisfy a constraint on the probability of false alarms, noting that the probability

of miss-detection is minimized. As indicated above, we show that if conditions

in (25) hold such a minimum can be made arbitrarily close to 0 as n grows to

infinity, for any given upper bound on the probability of false alarm.

Theorems 4.2 and 4.4 highlight a phase transition at 1/
√
n which is apparent

through the first conditions in (17) and (25), namely, the attack is covert if the

expected attack traffic injected at a home-router in a slot behaves as 1/
√
n when

n is large whereas it is not convert if this quantity decreases to zero not as fast

as 1/
√
n; note, however, that the variance of the attack traffic also plays a role

(see second conditions in (17) and (25)) in the transition ‘covert - not covert’.
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Remark 1. If admin knows the attack distribution it can implement a test such

that H0 is accepted if f
(n)
0 (·) < g(n)(·) and H0 is rejected if f

(n)
0 (·) > g(n)(·) so

that Theorem 4.3 can be used to prove Theorems 4.1- 4.2. However, it should be

clear that these theorems keep holding when admin does not know the parameters

of attack traffic distribution as it cannot perform better with less knowledge.

Theorem 4.4 (and Corollary 4.2) has been obtained for the test in (22), a

test that does not use information on the attack traffic distribution. We used

this test for its simplicity (recall that to establish a converse result it is enough

to exhibit a test yielding non covertness). However, it should also be clear that

Theorem 4.4 keeps holding when admin knows the attack traffic distribution as

it cannot perform less effectively with more knowledge.

5. Evaluation

Results obtained in Section 4 are asymptotic results, holding when n, the

number of homes, goes to infinity. It is therefore interesting to investigate the

”robustness” of these results when n is finite as is always the case in practice. To

do so, we have relied on real data for the regular traffic and synthetic data for the

attack traffic. Real data was collected by a mid-sized ISP network, with whom

we partnered to collect traffic from home-routers.2 To carry out this program,

namely check the validity of Theorems 4.1, 4.2, and 4.4 when n is finite, we first

need to identify the regular and attack traffic distributions (Section 5.1) and

build detectors (Section 5.2) enabling admin to detect whether or not an attack

has taken place. Two detectors are considered: one that uses knowledge about

the distribution of the attack traffic and another where such knowledge is not

required. For finite values of n, SE sharply changes as a function of either the

fraction of homes used by the attacker or the amount of injected traffic (Section

5.3). These results are in agreement with the square root law we discovered,

allowing us to assess the minimum population size required to reach asymptotic

2To preserve anonymity, we will disclose the ISP in the final version of the paper.
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(a) (b) (c)

Figure 2: (a) Histogram of upload traffic (packet per second) measured in one minute slot,

kernel and Gaussian mixture models fit it; (b) five components of that mixture model; (c)

histogram of attack traffic, models, and three Gaussian components fit it.

results.

5.1. Regular and Attack Traffic Distributions

We use data collected from network interfaces of more than 5000 home-

routers. The selected home-routers were equipped with monitoring software to

conduct a data collection campaign at home gateways. These routers gather

information about network usage. For the purpose of this work, we use packet

counts. The measurements correspond to the traffics uploaded by every user at

all one-minute time slots between March 1st 2020 and April 30th 2020 (inclu-

sive). Figure 2(a) shows the histogram of measurements and how Gaussian mix-

ture distribution fits to it. Although the theory holds for the general case where

traffic from homes have different distributions, to facilitate our experiments we

assume that the home traffic distributions are identical (i.e. f0,r = f0,r′ for all

r, r′ ≥ 1).

We used the EM (Expectation-Maximization) algorithm [18] to fit data to a

Gaussian mixture model. Assessing goodness-of-fits using Kolmogorov-Smirnov

(KS) test [19], we observed that traffic data can be characterized by a mixture

of five Gaussian distributions (Figure 2(b)). Table 2 presents the estimates of

model parameters for each component of this mixture.

In addition to measurements collected from the ISP network, we used a
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Table 2: Weights and parameters of Gaussian mixture model fitted to regular traffic data

(pkts/sec).

i w0,i µ0,i σ0,i

1 0.26 7.69 5.09

2 0.15 253.19 122.75

3 0.30 30.90 14.97

4 0.26 88.09 39.37

5 0.03 1017.14 737.28

dataset for attack traffic generated by controlled experiments done in [8] using

real Mirai code and estimate the distribution of traffic generated by a typical

DDoS attack. The Mirai attacks use default parameters from one of its publicly

available source codes.3 Figure 2(c) shows the histogram of attack traffic in

packets, where a mixture of three Gaussians provides an excellent fit to it.

Motivated by the aforementioned attack in a controlled environment, we

generate attack traffic from a Gaussian mixture distribution with three compo-

nents, where

µ1,i(n) = δc1,in
−α and σ1,i(n)2 = δc2,in

−α, i = 1, 2, 3. (26)

Estimates of the other parameters are reported in Table 3.

When the attacker uses all homes (q(n) = 1), it sends on average a total

amount of 60 × δ
∑3
i=1 w1,ic1,in

1−α packets from the n homes per slot (recall

that each slot corresponds to 60 seconds). When considering an attacker that

issues an attack from a fraction of the homes, we let

q(n) = cqn
−β . (27)

Parameters α and β will vary according to our experimental goals.

It is worth mentioning that the regular traffic considered in our evaluation

is obtained directly from our real traces. We used Gaussian mixture models

3https://github.com/jgamblin/Mirai-Source-Code/pull/38

21



Table 3: Parameters of Gaussian mixture model fitted to attack traffic data (pkts/sec).

i w1,i c1,i c2,i

1 0.29 13.91 5.35

2 0.28 71.64 8.42

3 0.43 32.29 8.92

only to characterize attack traffic generated by Mirai (Eq. (26)) and to compute

the likelihood ratios needed to parametrize the first detector introduced in the

sequel.

5.2. Attack Identification

Once the data has been collected, we need a detector4 to decide whether or

not an attack has taken place. We will consider two detectors, one which uses

the attack traffic distribution (Type I) and another one which does not (Type

II).

Introduce the likelihood ratio

Λ(z1, . . . , zn) =


∏n
r=1 f0,r(zr)∏n
r=1 f1,r(zr,n)

, q(n) = 1,∏n
r=1 f0,r(zr)∏n
i=1 gr(zr,n)

, q(n) ∈ (0, 1),
(28)

where pdfs f0,r(x), f1,r(x, n), and gr(x, n) are defined in (5), (8), and (9), respec-

tively. The first case (i.e., q(n) = 1) accounts for when the attacker launches an

attack from all homes and the second case (i.e., q(n) ∈ (0, 1)) is when it chooses

a fraction of homes to launch an attack from. In (28) zr is one realization of

the rv Zr (see Section 3), the amount of traffic measured at home-router r in

one slot.

The Type I detector is given by the threshold policy

Λ(z1, . . . , zn) ≷H0

H1
τ, (29)

4Referred to as a test in the theoretical part of this work as is usually the case in hypothesis

testing theory.
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where τ is a threshold set to satisfy a desired probability of false alarm, pFA.

This detector is optimal from Neyman and Pearson Lemma [20, p. 491]. In the

following Λ(z1, . . . , zn) is denoted by Λ.

Algorithm 1: Computes τ when pFA = ζ.

Input : ζ (prefined value of pFA), number of homes n, counter M

Output: threshold τ

1 for i = 1→M do

2 generate z1, . . . , zn from real data (i.e. regular traffic only);

3 compute likelihood ratio Λ;

4 list(i) = Λ;

5 end

6 τ = the bζMc-th smallest value of list.

Given pFA is set to a predefined value ζ, the threshold τ is computed from

the Monte Carlo algorithm described in Algorithm 1 below. First, we generate

one sample of the traffic from the real data (line 2). Then, we compute the

corresponding likelihood ratio Λ from (28) (line 3). This process is repeated

M times and the collection of likelihood ratios is sorted in ascending order,

Λ(1) ≤ . . . ≤ Λ(M). This means that M0 := bζMc values of Λ have been incor-

rectly classified as an attack. The threshold τ is then set to be Λ(M0).

Once the threshold τ has been computed, we estimate the probability of

miss detection, pMD, also via a Monte Carlo iterative approach. The synthetic

attack traffic (see Section 5.1) is added to the regular traffic. At each iteration,

one sample z1, . . . , zn is collected from the data and Λ is calculated from (28).

This process is repeated L times. We then calculate the number of Λ’s that are

larger than τ , say L0, and pMD is obtained as pMD = L0/L.

The Type II detector does not have any knowledge on the attack traffic. We

will however assume that when admin uses it it will know if conditions in (23)

are satisfied. As already mentioned in Section 4 we will work with the Type II
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detector given by

z̄n ≷H1

H0
τ, (30)

with z̄n := 1
n

∑n
r=1 zr. Note that the null and alternative hypotheses subsumed

by this Type II detector corresponds to H0 : µ = µ0(n) and H1 : µ > µ0(n),

respectively. The threshold τ when the probability of false alarm is set is to

ζ can be determined by using Algorithm 1 upon replacing Λ by z̄n, and from

there one obtains pMD as explained for the Type I detector.

5.3. Phase Transition and Square Root Law

This section focuses on phase transition (transition from a regime wherein

the attacker is detected with high probability to a regime wherein the attacker

cannot be detected) and its square root law companion identified in the theo-

retical results in Section 4.

Figure 3(a) displays SE , the sum of pFA and pMD, when pFA = 0.01, as a

function of the fraction of infected homes used by the attacker, q(n) = n−β . We

let β vary from 0 to 1, δ = 4 and α = 0 so that the rate at which each active

home injects attack traffic does not depend on n (see (26)).

Figure 3(b) displays SE with pFA = 0.01 and δ = 2, this time as a function

of the total average attack traffic µ1(n) = 60 × 2 ×
∑3
i=1 w1,ic1,in

1−α injected

in a slot when α varies from 0 to 1 and when all homes are used by the attacker

(q(n) = 1).

Plots in each figure correspond to different values of n, the number of homes,

with n ∈ {102, 103, 104, 106}. Both figures have been obtained with the Type I

detector in (29).

To interpret the results we need to have in mind that very small values of SE

imply that the attack will be detected, otherwise the attack will be undetected.

The first observation is that all curves exhibit a ”phase transition”, which be-

comes sharper as n increases. For n ≥ 103 the transition occurs in Figure 3(b)

around α = 0.5 which corresponds to µ1(n) being of the order of 1/
√
n, in

agreement with the theory. For n = 106 the transition occurs in Figure 3(a)
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(a) (b)

Figure 3: Phase transition analysis for Type I detectors, with pFA = 0.01. (a): fraction

of homes used by attacker given by q(n) = n−β , α = 0, δ = 4; as β grows, total attack

traffic decreases and the sum of probabilities of errors (SE) transitions from 0 to 1. For

n = 106 phase transition occurs around β = 0.5, in agreement with square root law. (b):

all homes used by attacker (q(n) = 1), average total traffic injected by the attacker given

by 60 × δ
∑3
i=1 w1,ic1,in

1−α, where δ = 2; as α grows total attack traffic decreases, and

SE transitions from 0 to 1. For n ≥ 103, sharp phase transition occurs around α = 0.5, in

agreement with square root law.

around β = 0.5 corresponding to q(n) = 1/
√
n, again in agreement with the

theory.

Figure 4 reports results on the square root law and phase transitions ac-

counting for the Type II detector, in a reference scenario with δ = 20, cq = 1,

and pFA = 0.01. Figure 4(a) shows SE as a function of β, letting α = 0. As β

increases the total attack traffic decreases and SE transitions from 0 to 1. The

larger the number of homes, the sharper the transition. When n = 1000 the

phase transition is already noticeable, and when n = 106 the sharp transition

occurs at α = 0.5, which corresponds to q(n) = 1/
√
n, in agreement with the

square root law. Figure 4(b) shows the error probability accounting for an at-

tacker that issues the attack from all homes (β = 0 and q(n) = 1), and controls

the rate at which traffic is injected from each home. The average total traffic

injected by the attacker is given by 60 × δ
∑3
i=1 w1,ic1,in

1−α, where δ = 20.

As α increases, the attacker becomes less aggressive, and SE increases. When

n = 103 we already observe a sharp transition in the sum of probabilities of
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(a) (b)

Figure 4: Phase transition analysis for Type II detectors, with pFA = 0.01. (a): fraction

of homes used by attacker given by q(n) = n−β , α = 0, δ = 20; as β grows, total attack

traffic decreases and the sum of probabilities of errors (SE) transitions from 0 to 1. For

n = 103 phase transition occurs around β = 0.5, in agreement with square root law. (b):

all homes used by attacker (q(n) = 1), average total traffic injected by the attacker given

by 60 × δ
∑3
i=1 w1,ic1,in

1−α, where δ = 20; as α grows total attack traffic decreases, and

SE transitions from 0 to 1. For n ≥ 103, sharp phase transition occurs around α = 0.5, in

agreement with square root law.

errors (SE) at α = 0.5, which corresponds to µ1(n) being of the order of 1/
√
n,

again in agreement with the theory.

As Type I detectors make use of more information, the phase transition

occurs for small values of n. Indeed, for δ ≤ 4 the Type I detectors shown

in Figure 3 already exhibit asymptotic behavior for values of n greater than

104. Type II detectors, in contrast, require a larger number of homes to reach

asymptotic behavior in that setting (not shown in the paper). For this reason,

in Figure 4 we set δ = 20, which corresponds to a more aggressive attacker,

evidencing the phase transition for n ≥ 103.

Next, we consider an attacker that can jointly control the attack rate per

home and the fraction of active homes. The attacker controls the rate at which

each home injects traffic into the network and the fraction of homes issuing an

attack through parameters α and β (Eq. (26) and (27)), respectively. Noting

that the average amount of traffic injected into the network during an attack is

proportional to n1−α−β , Figure 5 shows the error probability as a function of α
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Figure 5: Joint control of fraction of active homes and rate per home, through α and β,

respectively, (i.e., q(n) = cqn−β , µ1,i ∝ δn−α, and σ1,i ∝ δn−α), accounting for Type II

detectors, with pFA = 0.01, cq = 1, δ = 20, and n = 103. There is a phase transition close to

the line where α+ β = 0.5, in agreement with the theory.

and β. It indicates a phase transition close to the line where α + β = 0.5. In

light of Type II detectors, the effect of α and β on the error probabilities occurs

through their sum α+ β, in agreement with the theory.

Finally, we examine a more realistic scenario where in each iteration of Al-

gorithm 1 (lines 1-5), the generated regular traffics z1, . . . , zn are restricted to

the real data of a random single time slot. Figures 6(a) and 6(b) show SE as

a function of α accounting for the Type I detector with δ = 1 and Type II

detector with δ = 20, respectively, where β = 0, cq = 1, and pFA = 0.01. We

observe that the phase transition is evident at α = 0.5, in agreement with the

square root law, although the distribution of the data during each single time

slot is not necessarily the same as the distribution of all data.

6. Related Work

In this section, we briefly review related literature on the three main topics

pertaining this work: volume-based DDoS attacks, covertness and statistical

hypothesis testing.
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(a) (b)

Figure 6: Phase transition analysis for (a) Type I detector with δ = 1 and (b) Type II detector

with δ = 20, where regular traffics correspond to the real data of random single time slots

and the attacker selects all homes.

6.1. DDoS Detection

The prevalence of volume-based DDoS attacks motivates a vast literature

on their properties [21, 22] and early detection [23, 24, 25]. Fundamental limits

of DDoS attacks have been investigated by Fu and Modiano [21] assuming a

graph topology comprising attackers and servers behind a load balancer. The

authors establish conditions under which attackers can make the network un-

stable, without accounting for covertness.

Machine learning is typically used for DDoS detection, e.g., for feature se-

lection [26] or to leverage specific aspects of control protocols used by bot-

nets [27, 28]. Most of the works in this line of research consider deep packet in-

spection as a viable alternative, a notable exception being [8]. In [8] the authors

consider lightweight strategies for attack detection solely based on statistics of

byte counts and packet counts. In this paper we focus on such privacy-preserving

methods that would still work with encrypted traffic, and study the covertness

of attackers against volume-based detectors.

6.2. Covertness

Our work is related to recent work on low probability of detection (LPD)

communications, which has been mostly studied in the realm of wireless com-
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munications [11, 12, 13, 10]. The LPD problem focuses on determining the

maximum amount of information that a party, Alice, can reliably transmit to a

receiver, Bob, subject to a constraint on the detection probability by a warden,

Willy [14].

Bash et al. [10] shows that LPD communication on wireless Gaussian chan-

nels yields a square root law. Although the square root law found in the wireless

setting is similar in spirit to the one derived in the present work, our work differs

from [10] in at least two aspects. In the communications setting, the assump-

tion is that Willy has complete information. The warden can design a classifier

with complete information about Alice’s power, which corresponds to our Type

I classifier. We account for a second type of classifier, that has no information

regarding the attack traffic other than that it is Gaussian Mixture distributed.

Second, our application is DDoS attacks and determining how much traffic an

attacker can inject into the network, whereas [10] considers users interested in

communicating through a wireless channel. In addition, our theoretical results

are evaluated and validated using real ISP traffic which is out of the scope

of [10].

In [29], we track a different setting where the admin can leverage several

network traffic features to improve detection accuracy. Then, under the as-

sumption that the joint distribution of those features is multivariate Gaussian,

we show that an DDoS attack is covert if its corresponding traffic features scale

according to the square root of the number of compromised homes.

6.3. Statistical Hypothesis Testing

Statistical hypothesis testing and its extensions, including sequential hypoth-

esis testing and sequential probability ratio tests (SPRT), are the pilars of sta-

tistical inference. SPRT has found its applications in the security field for port

scan detection [30] and detection of attacks in mobile wireless networks [31, 32],

to name a few.

One of the key ingredients of statistical hypothesis tests is a notion of dis-

tance between distributions, e.g., to determine if the normal traffic distribution
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is “close” to a given sample. The literature on detection systems based on

statistical hypothesis testing [33, 34, 35, 36, 37, 38] encompasses many notions

of distance between distributions, including those based on Hartley entropy,

Shannon entropy, Renyi entropy [39], and its variations [40], as well as KL di-

vergence [41] and other measures of information gap between distributions. In

this paper, we rely on the total variation distance, noting that future work in-

volves considering other measures to assess distance between distributions, e.g.,

to derive non-asymptotic bounds.

In its simplest form, statistical hypothesis testing involves the characteriza-

tion of the normal behavior of a system through a statistical model, followed by

statistical tests to determine if the unknown samples are well captured by the

model. In [30], for instance, the authors characterize port scans using random

walks. The detection of attacks is based on determining if an observed random

walk across the ports of a system can be well described by one of two stochastic

processes, corresponding to malicious or authorized remote hosts scanning the

network. In our work, we focus on the willingness of the attacker to remain

covert, reporting results that are complementary to [31, 32, 30].

7. Conclusion

Botnets have reached impressive sizes counting with thousands of compro-

mised nodes. Although an early detection of malicious traffic from those nodes

can potentially prevent them from producing spectacular attacks, the funda-

mental limits on the accuracy of traffic classifiers must be taken into account

when assessing their potential benefits. In this paper we established fundamen-

tal laws on the amount of traffic that an attacker can inject into a network, as

a function of the size of the botnet, while still remaining covert. In particu-

lar, we show that in a scenario where all traffic is encrypted, and volume-based

detectors are the sole viable solution, the amount of covert traffic can grow

as the square root of the size of the botnet. Through numerical experiments

parametrized with traffic collected from a mid-sized ISP, we have indicated that
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the established laws capture the behavior of the considered classifiers in realistic

settings, paving the way towards a foundational understanding of the intrinsic

DDoS attack regimes.
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Appendix A. Proof of Lemma 4.1

Throughout the proof (U1, . . . , Un) are mutually independent rvs with pdf

f0,r for Ur. Introduce

ρr(x) =
f1,r(x)

f0,r(x)
− 1, (A.1)

where f0,r and f1,r are defined in (5) and (8), respectively. The (possibly infi-

nite) constant

Cr = E[ρ2r(Ur)]

will play a key role in the following. It is known as the Fisher information

constant at origin [16] – hereafter simply called the Fisher constant – and can

be rewritten as

Cr =

∫
R

(f0,r(x)− f1,r(x))2

f0,r(x)
dx = −1 +

∫
R

f21,r(x)

f0,r(x)
dx. (A.2)

For later use, notice from (A.1) that

E[ρr(Zr)] = 0. (A.3)

Proof of Lemma 4.1. Lemma 4.1 is true if Cr =∞ for some r ≥ 1. Assume

from now on that supr≥1 Cr <∞ . We have (cf. (13), (9), (A.1)),

2TV

(
f
(n)
0 , g(n)

)
=

∫
Rn

∣∣∣ n∏
r=1

f0,r(xr)−
∏
r=1

gr(xr)
∣∣∣dx1 · · · dxn

=

∫
Rn

∣∣∣1− n∏
r=1

(1 + q(n)ρr(xr))
∣∣∣ n∏
r=1

f0(xr) dx1 · · · dxn

= E

[∣∣∣1− n∏
r=1

(1 + q(n)ρr(Ur))
∣∣∣] .
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Using the inequality E[|U |] ≤
√
E[U2], we obtain

(
2TV

(
f
(n)
0 , g(n)

))2
≤ E

(1−
n∏
r=1

(1 + qρ(Ur))

)2


= 1− 2E

[
n∏
r=1

(1 + qρr(Ur)

]
+ E

[
n∏
r=1

(1 + q(n)ρ(Ur))
2

]

= 1− 2

n∏
r=1

E[1 + q(n)ρ(Ur)] +

n∏
i=1

E
[
(1 + q(n)ρr(Ur))

2
]

=

n∏
r=1

E
[
(1 + q(n)ρr(Ur))

2
]
− 1 by using (A.3)

=

n∏
r=1

(
1 + q2(n)E[ρ2r(Ur)]

)
− 1 again by using (A.3)

=

n∏
r=1

(1 + q2(n)Cr)− 1,

which completes the proof.

Appendix B. Proof of Theorem 4.1

In the setting of Theorem 4.1 f0,r(x) = e
−(x−µ0,r)

2/2σ20,r√
2πσ2

0,r

and (obtained from

(8) when Ir = J = 1, µ0,1,r = µ0,r, σ
2
0,1,r = σ2

0,r, µ1,1(n) = µ1(n), and σ2
1,1(n) =

σ2
1(n))

f1,r(x, n) =
e
− (x−µ0,r−µ1(n))2

2(σ20,r+σ
2
1(n))√

2π(σ2
0,r + σ2

1(n))
.

The proof uses Corollary 4.1 in Section 4. We first calculate Cr(n) defined in

(20). We obtain

Cr(n) = −1 +

√
2πσ2

0,r

2π(σ2
0,r + σ2

1(n))

∫
R
e
− (x−µ0,r−µ1(n))2

σ20,r+σ
2
1(n)

+
(x−µ0,r)

2

2σ20,r dx

= −1 +

√
2πσ2

0,r

2π(σ2
0,r + σ2

1(n))
e

µ21(n)

σ20,r−σ
2
1(n)

×
∫
R
e
−

σ20,r−σ
2
1(n)

2σ20,r(σ
2
0,r+σ

2
1(n))

(
x−

µ0,r(σ
2
0,r−σ

2
1(n))+2µ1(n)σ20,r

σ20,r−σ
2
1(n)

)2

dx, (B.1)

37



which is well defined under the second condition in (14). With
∫
R e
−a(t−b)2dt =√

π/a we easily get from (B.1) that

Cr(n) = −1 +
σ2
0,r√

σ4
0,r − σ4

1(n)
e

µ21(n)

σ20,r−σ
2
1(n) . (B.2)

Define h(s, t) = 1√
1−t2 e

s
1−t and note that

Cr(n) = −1 + h
(
µ2
1(n)/σ2

0,r, σ
2
1(n)/σ2

0,r

)
. (B.3)

Since h has partial derivatives of all orders in R × (−1, 1), we know by Taylor

theorem that there exists θ ∈ (0, 1), depending on s and t, such that

h(s, t) = h(0, 0) +
∂

∂s
h(0, 0)s+

∂

∂t
h(0, 0)t

+
1

2

(
∂2

∂s2
h(θs, θt)s2 + 2

∂2

∂s∂t
h(θs, θt)st+

∂2

∂t2
h(θs, θt)t2

)
= 1 + s+

e
θs

1−θt

2
√

1− θ2t2

[
s2

(1− θt)2
+

2st

1− θt

(
1

1− θ2t2
+

1

1− θt
+

θs

(1− θt)2

)

+
3θ2t4

(1− θ2t2)2
− 2θ2st3

(1− θ2t2)(1− θt)2
− t2

1− θ2t2
+

2θst2

(1− θt)3
+

θ2s2t2

(1− θt)4

]

= 1 + s− t2

2(1− θ2t2)3/2
e

θs
1−θt +R(s, t), (B.4)

where

R(s, t) :=
e

θs
1−θt

2
√

1− θ2t2

[
s2

(1− θt)2
+

2st

1− θt

(
1

1− θ2t2
+

1

1− θt
+

θs

(1− θt)2

)

+
3θ2t4

(1− θ2t2)2
− 2θ2st3

(1− θ2t2)(1− θt)2
+

2θst2

(1− θt)3
+

θ2s2t2

(1− θt)4

]
. (B.5)

Define σ2
0,inf = infr≥1 σ

2
0,r and σ2

1,sup = supn≥1 σ
2
1(n). Note that σ2

1,sup <

σ2
0,inf under the second condition in (14). By setting s = µ2

1(n)/σ2
0,r and
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t = σ2
1(n)/σ2

0,r in (B.4) we obtain from (B.3)

nq2(n)Cr(n) =

nq2(n)µ2
1(n)

σ2
0,r

− nq2(n)σ4
1(n)

σ2
0,r e

θµ21(n)

σ20,r−θσ
2
1(n)

2(σ4
0,r − θσ4

1(n))
3
2

+ nq2(n)R(µ1(n), σ1(n))

≤ nq2(n)µ2
1(n)

σ2
0,inf

+ nq2(n)σ4
1(n)

σ2
0,sup e

µ21(n)

σ2
0,inf

−σ21,sup

2(σ4
0,inf − σ4

1,sup)
3
2

+ nq2(n)|R(µ1(n), σ1(n))|.

(B.6)

Assumptions in (14)-(15) imply that the first two terms in (B.6) areO(1); in par-

ticular, the first condition in (14) ensures that the exponent of the exponential is

O(1). It is also easily seen that under (14)-(15) nq2(n)|R(µ1(n), σ1(n))| = O(1),

which shows that nq2(n) sup1≤r≤n Cr(n) = O(1). The latter necessary implies

that q2(n) sup1≤r≤n Cr(n) = o(1). Hence,

n∑
r=1

log
(
1 + q2(n)Cr(n)

)
≤

n∑
r=1

log

(
1 + q2(n) sup

1≤r≤n
Cr(n)

)
= n log

(
1 + q2(n) sup

1≤r≤n
Cr(n)

)
∼n nq2(n) sup

1≤r≤n
Cr(n) since q2(n) sup

1≤r≤n
Cr(n) = o(1),

= O(1)

since nq2(n) sup1≤r≤n Cr(n) = O(1). The proof is concluded by invoking Corol-

lary 4.1.

Appendix C. Proof of Theorem 4.2

The proof is a generalization of the proof of Theorem 4.1 given in Section Ap-

pendix B. It consists of finding the limiting behavior of nq2(n) sup1≤r≤n Cr(n)

as n grows and of applying Corollary 4.1.

With (5)-(8) the Fisher constant Cr in (A.2) writes

Cr(n) = −1 +

∫
R

1

f0,r(x)

 Ir∑
i=1

J∑
j=1

w0,i,rw1,je
−

(x−µ0,i,r−µ1,j(n))2

2(σ2
0,i,r

+σ2
1,j

(n))√
2π(σ2

0,i,r + σ2
1,j(n))


2

dx. (C.1)
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To simplify the notation, from now on we drop the argument n in µ1,j(n)

and σ1,j(n). Define

hx,i,r(s, t) =
1√

2π(σ2
0,i,r + t)

e
−

(x−µ0,i,r−s)
2

2(σ2
0,i,r

+t) . (C.2)

From Taylor theorem there exists θx,i,r ∈ (0, 1), hereafter simply denoted by θ,

such that

hx,i,r(s, t) = hx,i,r(0, 0) +
∂

∂s
hx,i,r(0, 0)s+

∂

∂t
hx,i,r(0, 0)t

+
1

2

∂2

∂s2
hx,i,r(θs, θt)s

2 +
∂2

∂s∂t
hx,i,r(θs, θt)st+

1

2

∂2

∂t2
hx,i,r(θs, θt)t

2. (C.3)

This formula holds for all x, s ∈ R and for all t ∈ R such that t+ σ2
0,i,r > 0 for

i = 1, . . . , Ir, r ≥ 1, namely, for all t > − inf1≤i≤Ir,r≥1{σ2
0,i,r}. Easy algebra

gives

hx,i,r(0, 0) =
e
−

(x−µ0,i,r)
2

2σ2
0,i,r√

2πσ2
0,i,r

, (C.4)

∂

∂s
hx,i,r(0, 0) =

e
−

(x−µ0,i,r)
2

2σ2
0,i,r

√
2πσ4

0,i,r

(x− µ0,i,r),

∂

∂t
hx,i,r(0, 0) =

e
−

(x−µ0,i,r)
2

2σ2
0,i,r

2
√

2πσ4
0,i,r

(
(x− µ0,i,r)

2

σ2
0,i,r

− 1

)
, (C.5)

∂2

∂s2
hx,i,r(θs, θt) =

1√
2π

e
−

(x−µ0,i,r−θs)
2

2(σ2
0,i,r

+θt)

(σ2
0,i,r + θt)

3
2

(
(x− µ0,i,r − θs)2

σ2
0,i,r + θt

− 1

)
, (C.6)

∂2

∂s∂t
hx,i,r(θs, θt) =

1

2
√

2π

e
−

(x−µ0,i,r−θs)
2

2(σ2
0,i,r

+θt)

(σ2
0,i,r + θt)

5
2

(x− µ0,i,r − θs)

(
(x− µ0,i,r − θs)2

σ2
0,i,r + θt

− 3

)
, (C.7)

∂2

∂t2
hx,i,r(θs, θt) =

1

2
√

2π

e
−

(x−µ0,i,r−θs)
2

2(σ2
0,i,r

+θt)

(σ2
0,i,r + θt)

5
2

(
(x− µ0,i,r − θs)4

2(σ2
0,i,r + θt)2

− 3(x− µ0,i,r − θs)2

σ2
0,i,r + θt

+
3

2

)
.

(C.8)
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Introduce

∆r(x, n) :=

Ir∑
i=1

J∑
j=1

w0,i,rw1,j

(
1

2

∂2

∂s2
hx,i,r(θµ1,j , θσ

2
1,j)µ

2
1,j

+
∂2

∂s∂t
hx,i,r(θµ1,j , θσ

2
1,j)µ1,jσ

2
1,j +

1

2

∂2

∂t2
hx,i,r(θµ1,j , θσ

2
1,j)σ

4
j,1

)
, (C.9)

αr(x) :=

Ir∑
i=1

w0,i,r

σ4
i,0

√
2π

(x− µ0,i,r) e
−

(x−µ0,i,r)
2

2σ2
0,i,r , (C.10)

βr(x) :=
1

2

Ir∑
i=1

w0,i,r

σ4
i,0

√
2π

(
(x− µ0,i,r)

2

σ2
0,i,r

− 1

)
e
−

(x−µ0,i,r)
2

2σ2
0,i,r . (C.11)

We have

Ir∑
i=1

J∑
j=1

w0,i,rw1,j√
2π(σ2

0,i,r + σ2
1,j)

e
−

(x−µ0,i,r−µ1,j)
2

2(σ2
0,i,r

+σ2
1,j

)

=

Ir∑
i=1

J∑
j=1

w0,i,rw1,jhx,i,r(µ1,j , σ
2
1,j) by (C.2),

= f0,r(x) + αr(x)µ1(n) + βr(x)σ2
1(n) + ∆r(x, n), (C.12)

by using (C.4)-(C.11), so that by (C.1)

Cr(n) = −1 +

∫
R

1

f0,r(x)
(f0,r(x) + αr(x)µ1(n) + βr(x)σ2

1(n) + ∆r(x, n))2dx

= µ2
1(n)

∫
R

α2
r(x)

f0,r(x)
dx+ σ4

1(n)

∫
R

β2
r (x)

f0,r(x)
dx

+ 2µ1(n)σ2
1(n)

∫
R

αr(x)βr(x)

f0,r(x)
dx+ σ4

1(n)Kr(n), (C.13)

where

Kr(n) :=
1

σ4
1(n)

∫
R

∆r(x, n)

f0,r(x)
(2f0,r(x)+2µ1(n)αr(x)+2σ2

1(n)βr(x)+∆r(x, n))dx.

(C.14)

To derive (C.13) we have used that
∫
R αr(x)dx =

∫
R βr(x)dx = 0. Therefore,

sup
1≤r≤n

Cr(n) ≤ µ2
1(n) sup

1≤r≤n

∫
R

α2
r(x)

f0,r(x)
dx+ σ4

1(n) sup
1≤r≤n

∫
R

β2
r (x)

f0,r(x)
dx (C.15)

+ 2µ1(n)σ2
1(n) sup

1≤r≤n

∣∣∣∣∫
R

αr(x)βr(x)

f0,r(x)
dx

∣∣∣∣+ σ4
1(n) sup

1≤r≤n
|Kr(n)|.

(C.16)
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It is shown in Appendix Appendix D that the coefficients of µ2
1(n) and σ4

1(n)

in (C.15) and the coefficient of µ1(n)σ2
1(n) in (C.16) are all O(1) quantities,

and in Appendix Appendix E that sup1≤r≤n |Kr(n)| = O(1). Hence, by

multiplying both sides of (C.15)-(C.16) by nq2(n) and by (17) we obtain that

nq2(n) sup1≤r≤n Cr(n) = O(1). The same argument used to conclude the proof

of Theorem 4.1 in Section Appendix B can be duplicated to conclude the proof

of Theorem 4.2.

Appendix D. Uniform boundedness of the three integrals in (C.13)

Define ai,r =
w0,i,r√
2πσ2

0,i,r

, bi,r =
w0,i,r

σ4
0,i,r

√
2π

, and let i?r := argmaxi=1,...,Ir{σ
2
0,i,r}.

Since
w0,i,r√
2πσ2

0,i,r

e
−

(x−µi,0,r)
2

2σ2
0,i,r ≥ 0 for all x ∈ R and i = 1, . . . , Ir, the definition

of f0,r(x) in (5) implies

f0,r(x) ≥ ai?r ,re
−

(x−µ0,i?r,r
)2

2σ2
0,i?r,r , ∀x ∈ R. (D.1)

Hence,∫
R

αr(x)2

f0,r(x)
dx

=

∫
R

1

f0,r(x)

∑
1≤i,l≤Ir

bi,rbl,r(x− µ0,i,r)(x− µ0,l,r)e
−

(x−µ0,i,r)
2

2σ2
0,i,r

−
(x−µ0,l,r)

2

2σ2
0,l,r dx

≤ 1

ai?r ,r

∑
1≤i,l≤Ir

bi,rbl,r

∫
R

(x− µ0,i,r)(x− µ0,l,r)

× e
−(x−µ0,i,r)

2

2σ2
0,i,r

−
(x−µ0,l,r)

2

2σ2
0,l,r

+
(x−µ0,i?r,r

)2

2σ2
0,i?r

,r
dx. (D.2)

The coefficient of x2 in the exponential in (D.2) is − 1
2 (σ2

0,i?r ,r
(σ2

0,i,r + σ2
0,l,r) −

σ2
0,i,rσ

2
0,l,r); it is strictly negative from the definition of i?r since σ2

0,i?r ,r
≥ σ2

0,i,r ≥

σ2
0,i,r ×

σ2
0,l,r

σ2
0,i,r+σ

2
0,l,r

for all i, l. This shows that the integral
∫
R
αr(x)

2

f0,r(x)
dx is finite

for each r ≥ 1. Under conditions in (10) and their consequences in (12) it is

easily seen that sup1≤r≤n,n≥1
∫
R
αr(x)

2

f0,r(x)
dx = O(1).

Similarly, one can show that the second and third integrals in the r.h.s. of

(C.13) are uniformly bounded for n ≥ 1.
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Appendix E. Proof that
√

sup1≤r≤n |Kr(n)| = O(1)

∆(x, n) defined in (C.9) can be written as

∆r(x, n) = ∆1,r(x, n) + ∆2,r(x, n) + ∆3,r(x, n), (E.1)

with

∆1,r(x, n) :=
1

2
√

2π

Ir∑
i=1

w0,i,r

J∑
j=1

w1,jµ
2
1,j

e
−

(x−µ0,i,r−θµ1,j)
2

2(σ2
0,i,r

+θσ2
1,j

)

(σ2
0,i,r + θσ2

1,j)
3
2

×

(
(x− µ0,i,r − θµ1,j)

2

σ2
0,i,r + θσ2

1,j

− 1

)

∆2,r(x, n) :=
1

2
√

2π

Ir∑
i=1

w0,i,r

J∑
j=1

w1,jµ1,jσ
2
1,j

e
−

(x−µ0,i,r−θµ1,j)
2

2(σ2
0,i,r

+θσ2
1,j

)

(σ2
0,i,r + θσ2

1,j)
5
2

×(x− µ0,i,r − θµ1,j)

(
(x− µ0,i,r − θµ1,j)

2

σ2
0,i,r + θσ2

1,j

− 3

)

∆3,r(x, n) :=
1

4
√

2π

Ir∑
i=1

w0,i

J∑
j=1

w1,jσ
4
1,j

e
−

(x−µ0,i,r−θµ1,j)
2

2(σ2
0,i,r

+θσ2
1,j

)

(σ2
0,i,r + θσ2

1,j)
5
2

×

(
(x− µ0,i,r − θµ1,j)

4

2σ4
0,i,r

− 3(x− µ0,i,r − θµ1,j)
2

σ2
0,i,r + θσ2

1,j

+
3

2

)
.

Introducing (E.1) into (C.14) gives

Kr(n)

=
1

σ1(n)4

∫
R

∆1,r(x, n)

f0,r(x)
[2f0,r(x) + 2µ1(n)α(x) + 2σ2

1(n)β(x) + ∆r(x, n)]dx

+
1

σ1(n)4

∫
R

∆2,r(x, n)

f0,r(x)
[2f0,r(x) + 2µ1(n)α(x) + 2σ2

1(n)β(x) + ∆r(x, n)]dx

+
1

σ1(n)4

∫
R

∆3,r(x, n)

f0,r(x)
[2f0,r(x) + 2µ1(n)α(x) + 2σ2

1(n)β(x) + ∆r(x, n)]dx.

(E.2)
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Denote by J1,r(n), J2,r(n), and J3,r(n) the three integrals in the r.h.s. of (E.2).

By using the bound in (D.1) we obtain

|J1,r(n)| ≤ 1

σ1(n)4
·

√
2πσ2

0,i?r ,r

w0,i?r ,r
· 1

2
√

2π

Ir∑
i=1

w0,i,r

σ3
0,i,r

J∑
j=1

w1,jµ1,j(n)2

×

[∫
R
|2f0,r(x) + 2µ1(n)α(x) + 2σ2

1(n)β(x) + ∆r(x, n)|

× e
−

(x−µ0,i,r−θµ1,j(n))2

2(σ2
0,i,r

+θσ21(n))
+

(x−µ1(n))2

2σ2
0,i?r,r

(
(x− µ0,i,r − θµ1(n))2

σ2
0,i,r

+ 1

)
dx

]
. (E.3)

Under the second condition in (16), the coefficients of x2 in the various exponen-

tials in (E.3) are always strictly negative, which shows that the integral in (E.3)

is finite for every r and n. We conclude from that and conditions in (10)-(11)

and in (16) that sup1≤r≤n |J1,r(n)| = O(1).

A similar analysis yields sup1≤r≤n |J2,r(n)| = O(1) and sup1≤r≤n |J3,r(n)| =

O(1).

Appendix F. E[|U − E[U ]|3] if U is a mixture of Gaussians

Assume that the pdf of U is

u(x) =

I∑
i=1

wj√
2πσ2

i

e
− (x−µi)

2

2σ2
i ,

with 0 < wi < 1,
∑I
i=1 qi = 1, and σi > 0. Note that E[U ] =

∑I
i=1 wiµi := µ.

Let V be a Gaussian rv with mean α and variance β2. Then [42, Formula

(18)]

E[|V − α|ν ] =

√
2νβ2ν

π
Γ

(
ν + 1

2

)
,

for ν > −1, where Γ(z) =
∫∞
0
tz−1e−tdt. In particular,

E[|V − α|] =

√
2β2

π
, E[|Z − α|2] = β2, E[|Z − α|3] = 2

√
2β6

π
. (F.1)
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Therefore (Hint: |a+ b|3 ≤ |a|3 + 3a2|b|+ 3|a|b2 + |b|3),

E[|U − µ|3] =

I∑
i=1

wi√
2πσ2

i

∫ ∞
−∞
|x− µ|3e

− (x−µi)
2

2σ2
i dx

=

I∑
i=1

wi√
2πσ2

i

∫ ∞
−∞
|(x− µi) + (µi − µ)|e

− (x−µi)
2

2σ2
i dx

≤
I∑
i=1

wi√
2πσ2

i

∫ ∞
−∞
|x− µi|3e

− (x−µi)
2

2σ2
i dx

+ 3

I∑
i=1

wi√
2πσ2

i

|µi − µ|
∫ ∞
−∞

(x− µi)2e
− (x−µi)

2

2σ2
i dx

+ 3

I∑
i=1

wi√
2πσ2

i

(µi − µ)2
∫ ∞
−∞
|x− µi|e

− (x−µi)
2

2σ2
i dx

+

I∑
i=1

wi√
2πσ2

i

|µi − µ|3
∫ ∞
−∞

e
− (x−µi)

2

2σ2
i dx

= 2

√
2

π

I∑
i=1

wi

√
σ6
i + 3

I∑
i=1

wi|µi − µ|σ2
i

+ 3

√
2

π

I∑
i=1

wi(µi − µ)2
√
σ2
i +

I∑
i=1

wi|µi − µ|3 <∞.

Appendix G. Proof of Theorem 4.4

The proof uses the Berry-Esseen theorem (see e.g. [43, Theorem 2, p. 544])

which we state below for sake of completeness.

Lemma Appendix G.1 (Berry-Esseen theorem).

Let W1, . . . ,Wn be mutually independent rvs with finite expectation, and

strictly positive and finite variance, and assume that E[|Wi − E[Wi]|3] is finite

for i = 1, . . . , n. For all x and n,∣∣∣∣∣P
(∑n

i=1(Wi − E[Wi])√∑n
i=1 var(Wi)

< x

)
− Φ(x)

∣∣∣∣∣ ≤ 6
∑n
i=1 E[|Wi − E[Wi]|3]

(
∑n
i=1 var(Wi))

3/2
,

where Φ(x) = 1√
2π

∫ x
−∞ e−

1
2 t

2

dt is the cdf of the standard normal distribution.

Denote by Φ̄(x) = 1√
2π

∫∞
x
e−

1
2 t

2

dt the ccdf of the standard normal distri-

bution.
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Proof of Theorem 4.4: Recall that Zr is the upload traffic generated by

home r = 1, . . . , n in a given time window. Define Z̄n = Z1+···+Zn
n .

The detector is z̄n < M(n) + U under H0 and z̄n > M(n) + U under H1,

with z̄n the observed value of the rv Z̄n and M(n) := 1
n

∑n
r=1 µ0,r the average

regular traffic generated by a home in a given time window. We have

pFA = P(Z̄n > M(n) + U |H0)

= P

(
1

n

n∑
r=1

Xr > M(n) + U

)

= P

∑n
r=1(Xr − µ0,r)√∑n

r=1 σ
2
0,r

>
nU√∑n
r=1 σ

2
0,r


≤

∣∣∣∣∣∣P
∑n

r=1(Xr − µ0,r)√∑n
r=1 σ

2
0,r

>
nU√∑n
r=1 σ

2
0,r

− Φ̄

 nU√∑n
r=1 σ

2
0,r

∣∣∣∣∣∣
+Φ̄

 nU√∑n
r=1 σ

2
0,r

 .

Under Assumptions in (23) and the strict positiveness of σ2
0,r the Berry-Esseen

Theorem applies to {Xr}r, to give

pFA ≤
6
∑n
r=1 E[|Xr − µ0,r|3](∑n

r=1 σ
2
0,r

)3/2 + Φ̄

 nU√∑n
r=1 σ

2
0,r

 . (G.1)

Since ∑n
r=1 E[|Xr − µ0,r|3](∑n

r=1 σ
2
0,r

)3/2 =
1√
n
×

1
n

∑n
r=1 E[|Xr − µ0,r|3](
1
n

∑n
r=1 σ

2
0,r

)3/2 , (G.2)

the last two conditions in (23) imply that the r.h.s. of (G.2) can be made

arbitrarily small by increasing n. Therefore, for any α ∈ (0, 1) there exists n1

such that

pFA <
α

2
+ Φ̄

 nU√∑n
r=1 σ

2
0,r

 (G.3)

for all n > n1. Using now the inequality Φ̄(x) ≤ 1√
2π

e−
1
2
x2

x , we get from (G.1)

that

pFA ≤
α

2
+

1√
2π

√
V (n)√
nU

e−
nU2

2V (n) ,
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with V (n) := 1
n

∑n
r=1 σ

2
0,r.

For n fixed, the equation α
2 = 1√

2π

√
V (n)

y e−
y2

2V (n) has a single root in y ∈

(0,∞). Call it c(n). Existence and uniqueness of the solution follow from the

fact that the mapping y → 1√
2π

√
V (n)

y e−
y2

2V (n) is strictly decreasing in (0,∞)

with limy→0
1√
2π

√
V (n)

y e−
y2

2V (n) = +∞ and limy→+∞
1√
2π

√
V (n)

y e−
y2

2V (n) = 0.

Take U = c(n)√
n

. Then,

pFA ≤ α,

for n > n1.

Observe that supn≥1 c(n) <∞. Indeed, by definition of c(n),

α

2
=

1√
2π

√
V (n)

c(n)
e−

c(n)2

2V (n) . (G.4)

If lim c(n) =∞ the second condition in (23) would imply that the r.h.s. of (G.4)

goes to 0 as n→∞, which would contradict the fact that c(n) solves (G.4) for

all n. This shows that supn≥1 c(n) <∞.

Let Wr := Xr + χrYr. Recall that the quantities E[Xr] = µ0,r, var(Xr) =

σ2
0,r, E[|Xr − µ0,r|3], E[Yr] = µ1(n), var(Yr), and E[|Yr − µ1(n)|3] are finite,

that the rvs Xr and Yr are independent, and that conditions (23) and (24) are

assumed to hold.

Let us now focus on pMD, the probability of miss-detection. It is given by

pMD = lim
n

P
(
Z̄n < M(n) +

c(n)√
n
|H1

)
= lim

n
P
(∑n

r=1Wr

n
< M(n) +

c(n)√
n

)
= lim

n
P

(∑n
r=1 (Wr − E[Wr]))√∑n

r=1 var(Wr)
<

√
nc(n)− nq(n)µ1(n)√∑n

r=1 var(Wr)

)
,

by using E[Wr] = µ0,r + q(n)µ1(n).

Let us show that the Berry-Esseen Theorem applies to the rvs {Wr}r. We

have E[Wr] = µ0,r + q(n)µ1(n) which is finite and var(Wr) = σ2
0,r + var(χrYr)
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which is also finite since var(Yr) is finite and χr ∈ {0, 1}. Last,

E[|Wr − E[Wr]|3| = E[|(Xr − µ0,r) + (χrYr − q(n)µ1(n))|3

≤ E[|Xr − µ0,r|3] + 3var(Xr)E[|χrYr − q(n)µ1(n)|]

+ 3E[|Xr − µ0,r|]var(χrYr) + E[|χrYr − q(n)µ1(n)|3]

by using the inequality |a+b|3 ≤ |a|3+3a2|b|+3|a|b2+ |b|3. From the inequality

E[|U |] ≤
√
E[U2] we find

E[|Wr − E[Wr]|3] ≤ E[|Xr − µ0,r|3] + 3var(Xr)
√

var(χrYr)

+ 3
√

var(Xr)var(χrYr) + E[|χrYr − q(n)µ1(n)|3] (G.5)

= O(1) + E[|χrYr − q(n)µ1(n)|3] (G.6)

by using the second condition in (23) (which says that supn var(Xr) <∞) and

the second condition in (24). Let us show that E[|χrYr − q(n)µ1(n)|3]) is finite.

We have (Hint: var(U + a) = var(U) for any constant a and E[|U ] ≤
√
E[U2])

E[|χrYr − q(n)µ1(n)|3] = E[|(χr(Yr − µr) + (χr − q(n))µ1(n)|3]

≤ q(n)E[|Yr − µ1(n)|3] + 3q(n)µ1(n)var(Yr)E[|χr − q(n)|]

+ 3q(n)µ2
1(n)

√
var(Yr)E[(χr − q(n))2] + q3(n)µ3

1(n)E[|χr − q(n)|3] (G.7)

which is finite since |χr − q(n)| ≤ 1. This proves that E[|Wr − E[Wr]|3] is finite

and shows that the Berry-Esseen Theorem applies to the rvs {Wr}r.

Similarly to the derivation of (G.1), Berry-Esseen inequality yields

pMD ≤ lim
n

6
∑n
r=1 E[|Wr − E[Wr]|3]

(
∑n
r=1 var(Wr))

3/2
+ lim

n
φ

(√
nc(n)− nq(n)µ1(n)√∑n

r=1 var(Wr)

)

= lim
n

6√
n
×

1
n

∑n
r=1 E[|Wr − E[Wr]|3](

1
n

∑n
r=1 σ

2
0,r + var(χrYr))3/2

)
+ lim

n
φ

 c(n)−
√
nq(n)µ1(n)√

1
n

∑n
r=1 σ

2
0,r + var(χrYr)

 . (G.8)

The second condition in (23) together with the finiteness of supn≥1 c(n) shown

above, shows that

lim
n

 c(n)−
√
nq(n)µ1(n)√

1
n

∑n
r=1 σ

2
0,r + q(n)σ2

1(n) + q(n)(1− q(n))µ2
1(n)

 = −∞
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when both conditions in (24) hold; hence

lim
n
φ

 c(n)−
√
nq(n)µ1(n)√

1
n

∑n
r=1 σ

2
0,r + q(n)σ2

1(n) + q(n)(1− q(n))µ2
1(n)

 = φ(−∞) = 0,

(G.9)

by continuity of the mapping φ.

We now show that the term
1
n

∑n
r=1 E[|Wr−E[Wr]|3]

( 1
n

∑n
r=1 σ

2
0,r+var(χrYr))

3/2 in (G.8) is finite. The

second conditions in (23) and (24) imply that the denominator is O(1). By

(G.5),

1

n

n∑
r=1

E[|Wr − E[Wr]|3] ≤ 1

n

n∑
r=1

E[|Xr − µ0,r|3] +
3

n

n∑
r=1

var(Xr)×
√

var(χrYr)

+
3

n

n∑
r=1

√
var(Xr)× var(χrYr) + E[|χrYr − q(n)µ1(n)|3]

= O(1)×

(
1 +

3

n

n∑
r=1

σ0,r

)
(G.10)

from the second and third conditions in (23) and the second condition in (24),

and where the finiteness of E[|χrYr − q(n)µ1(n)|3] was shown in (G.7). From

the inequality
√
x ≤ 1 + x, we conclude from the second condition in (23) and

(G.10) that 1
n

∑n
r=1 E[|Wr − E[Wr]|3] = O(1). This concludes the proof that

limn pMD = 0 and proves the theorem.
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