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Abstract. Landmark detection in medical images is important for many
clinical applications. Learning-based landmark detection is successful at
solving some problems but it usually requires a large number of the an-
notated datasets for the training stage. In addition, traditional methods
usually fail for the landmark detection of fine objects. In this paper,
we tackle the issue of automatic landmark annotation in 3D volumetric
images from a single example based on a one-shot learning method. It
involves the iterative training of a shallow convolutional neural network
combined with a 3D registration algorithm in order to perform automatic
organ localization and landmark matching. We investigated both qual-
itatively and quantitatively the performance of the proposed approach
on clinical temporal bone CT volumes. The results show that our one-
shot learning scheme converges well and leads to a good accuracy of the
landmark positions.

Keywords: One-shot learning · Landmarks detection · Deep Learning

1 Introduction

Landmarks detection for target object localization plays a pivotal role in many
imaging tasks. Automatic landmark detection can alleviate the challenges of
image annotation by human experts and can also save time for many image
processing tasks. The difficulty of landmark detection in clinical images may
come from anatomical variability, or changes in body position which can lead to
large differences of shape or appearance. The literature on automatic landmarks
detection approaches can be roughly split into learning based versus non-learning
based algorithms.

Non-Learning based landmarks detection in [1] is proposed the augmentation of
the scale-invariant feature transform (SIFT) to arbitrary n dimensions (n-SIFT)
for 3D-MRI volumes. However, the computation cost for 3D SIFT features is
heavy as their complexity is a cubic function of the image size. Wörz et al. [2]
leverage parametric intensity models for image landmarks detection. Ricardo et
al. [3] use log-Gabor filters to extract frequency features for 3D Phase Congru-
ency (PC) applied to detect head and neck landmarks.
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Fig. 1. Overview of the proposed framework.

Learning based landmarks detection Probabilistic graphical models were used for
bones landmark labelling in [4] and [5]. Potesil et al. [6] use joint spatial priors
and parts based graphical models to improve the landmarks detection accuracy
of organs. Shouhei et al. [7] proposed a Bayesian inference of landmarks through
a parametric stochastic landmark detector of the candidates. Donner et al. [8]
applied random forest and Markov Random Field (MRF) for vertebral body
landmarks detection. Mothes et al. [9] proposed a one-shot SVM based land-
marks tracking method for X-Ray image landmark detection. Suzani et al. [10]
proposed to train a convolutional neural network (CNN) with an annotated
dataset for automatic vertebrae detection and localization. Liang et al. [11] pro-
posed a two-step based residual neural network for landmarks detection. Deep
reinforcement learning for landmarks detection was investigated by Ghesu et
al. [12] where landmarks localization is considered as a navigation problem.

The main drawback of the above deep learning based landmarks detection
methods is that the creation of manually annotated dataset with 3D landmarks
is time consuming and in practice very difficult to collect. To tackle this problem,
Zhang et al. [13] proposed a deep learning based landmarks detection method
that can be used a limited number of annotated medical images. Their framework
consists of two CNNs: one for regressing the patches and the second to predict the
landmark positions. Yet, this method like the rest of the learning-based methods
are not suited when only one annotated image is available. Another source of
difficulties is to detect landmarks that are concentrated on a small part of the
image. A typical example is the detection of cochlear landmarks from CT images
since the human cochlea is a tiny structure.In this paper, we tackle the problem
of automatic determination of 3D landmarks in a volumetric image from a single
example consisting of a reference image with its landmarks. We propose a one-
shot learning approach that first localizes a Structure Of Interest (SOI) (e.g. the
cochlea in a CT image of the inner ear) which lies next to the landmarks. A
2D CNN is trained offline by generating arbitrary oriented slices of a reference
image with the binary mask of the SOI. Given a target image, the location of
the SOI is iteratively estimated by applying the 2D CNN on 3 orthogonal sets of
slices. After aligning the orientations of the two SOI on the target and reference
images, a non-rigid registration algorithm is applied to propagate the landmarks
to the target image. We apply this approach on 200 CT images of the temporal
bone to locate 3 cochlear landmarks and show that the positioning error is within
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the intra-rater variability. To the best of our knowledge, this is the first one-shot
learning method for landmark detection which makes it highly applicable for
several clinical problems.

2 Method

2.1 Overview

The proposed approach is described in Fig.1. The algorithm requires as input a
reference image Iref where a set of landmarks Lref are positioned. In addition,
we require that a binary mask of a visible anatomical or pathological structure
Sref ⊂ Iref including the landmarks Lref ∈ Sref be provided. Given a target im-
age Itarget, landmarks Ltarget are estimated by applying an image registration
algorithm between an image patch Pref ⊂ Iref centered on the reference land-
marks and an image patch Ptarget ⊂ Itarget extracted on the target image. The
main challenge is to automatically extract the target image patch Ptarget such
that it is roughly aligned in position and orientation with the reference image
patch in order to ease the non-rigid image registration task. To extract the cen-
tered target image patch, we first train a 2D CNN to segment the mask Sref

on random slices of the reference image. This stage is performed offline and also
requires an additional validation image Ival where the same visible structure Sval

has been segmented. Given a target image, the localization stage extracts the
target image patch Ptarget by iteratively applying the segmentation network to
find the center of mass of the structure and by aligning its axis of inertia. The
last stage applies a registration algorithm to estimate the position of landmarks
Ltarget.

2.2 Offline one-shot CNN training

The objective is to train an algorithm that can roughly segment the structure
of interest Sref ⊂ Iref . That structure must include the landmarks or must lie
in the vicinity of the landmarks Lref . It should also be present in all target
images and must be easy to detect int the image with some visible borders.
One issue of one-shot learning is the limited amount of training data that can
easily lead to overfitting [14, 15]. To this end, we chose to train a shallow 2D
U-net fω segmentation network in order to segment the SOI that surrounds the
landmarks. The training set consists of slices of the reference image Iref along
arbitrary rotations and translation offsets together with the associated binary
masks created by slicing accordingly the reference segmentation Sref . The 2D
CNN is trained by minimizing the Binary Cross-Entropy (BCE) loss function.
To limit the risk of overfitting, we use a validation set consisting of another
volumetric image Ival and its segmentation Sval. The training is stopped when
the segmentation performance of fω on the 3 orthogonal slices of Ival start to
decrease. The details of the training procedure are provided in algorithm 1. The
CNN training can be performed offline and the 2D random image slices are
centered on the center of mass Cref (for T = 0) of the segmented structure of
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Algorithm 1: One-shot training of CNN

Inputs: image: Iref , Ival, segmentation: Sref , Sref

Output: CNN parameters ω
Initialize: fω, ∆T,∆R;
while Lval decreases do

T ← (U(−1, 1)∆T )3; ; // Uniform Random Translation

R← (U(−1, 1)∆R)3 ; // Uniform Random Rotation

Itrans ← Resample(Iref , R, T ) ; // Transformed Image

Strans ← Resample(Sref , R, T ) ; // Transformed Segmentation

for i = 1; i < K; i+ + do

fω
ω←− Itrans[i]|Strans[i] ; // Train the CNN

end
Lval ← loss(Sval, fcnn(Ival)) ; // Validation loss

end

interest Sref . Furthermore, the 2D image size of the CNN input is chosen as to
cope with the translation ∆T and rotation ∆R offsets such that random slices
do not include any missing pixel values.

2.3 Online Structure Detection

Given an input image Itarget, we seek to locate the structure of interest Starget

with the proper translation and orientation offsets in order to ease the last image
registration stage.

Translation offset estimation To determine the 3D translation offset between
Itarget and Iref , we propose to align the centers of the mass corresponding to
the structures of interest Starget and Sref . We rely on the trained CNN fω() to
determine Starget given Itarget. However, with the limited training set of fω(),
we need to cope with its possible poor performance. To this end, we propose
an iterative method described in algorithm 2 and Fig.2, where the estimation of
the translation offset is progressively refined. We write as fω(Ixtarget[k])[i, j] the
output of the CNN applied on the slice k in the X direction of the volumetric
image Itarget which is a 2D probability map. We apply the CNN on the slices of
Itarget extracted along the X,Y,Z directions. To improve the robustness of the
center of mass estimation of Itarget, we combine their output by multiplying the
3 probabilities outputs for each voxel. The joint output of the network at voxel
[i, j, k] is then written as :

p[i, j, k] = fω(IZtarget[k])[i, j] · fω(IYtarget[j])[k, i] · fω(Ixtarget[i])[j, k] (1)

The product of the 3 probability maps favors the pixels where the 3 outputs
agree. This helps to filter out the false positive pixels produced by the network
that are not correlated on the 3 slice orientations. The center of mass Ctarget
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is then simply estimated as the barycenter of the image voxels weighted by the
joint probability p[i, j, k]:

Ctarget=
(
∑

i,j,k x[i,j,k]∗p[i,j,k],
∑

i,j,k y[i,j,k]∗p[i,j,k],
∑

i,j,k z[i,j,k]∗p[i,j,k])
T∑

i,j,k p[i,j,k]
(2)

The target image is then cropped around the detected center Ctarget which is

written as P̃target. When the translation offset between the target and reference
images is large, the CNN segmentation performances tend to degrade since it has
been trained with slices roughly centered on the center of Sref . This is why we
propose to iteratively apply the same approach on Itarget after being centered on
Ctarget. This way, we expect the centered image to be more and more accurately
segmented by the neural network since it sees slices that resemble more and more
to its training set. We stop the process when the changes in the detected center
Ctarget become smaller than a threshold.

Algorithm 2: Iterative center of mass localization

Inputs: image: Itarget, CNN: fω(·)
Output: Center of structure in target image Ctarget

Initialize: ε;
Ctarget ← Cref ;
while |Cold −Ctarget| < ε do

P̃target ← Crop(Itarget,Ctarget) ; // Patch centered on Ctarget

while o ∈ {X,Y, Z} do
for i = 1; i < K[o]; i+ + do

out[o][i]← fomega(P̃ o
target[i]); // apply CNN on slices

end

end
p← out[X] · out[Y ] · out[Z]; // Combine probability maps as Eq.1

Cold ← Ctarget;
Ctarget ← Eq. 2; // Update center of mass

end

P̃target ← Crop(Itarget,Ctarget) ; // Patch centered on Ctarget

Rotation offset estimation After having aligned the center of mass of the two
structures of interest, the rotation offset is determined by aligning the moments
of inertia of Sref and Starget. More precisely, the matrix of inertia captures the
ellipsoid appearance of each structure and it determines the structure orientation
unambiguously if that structure does not have any axis of symmetry. Therefore
the alignment of the matrices of inertia consists in applying a rotation to Starget

such that the eigenvectors of the 2 matrices coincide [16,17] when they are sorted
according to their eigenvalues. The moments of inertia of Starget are computed
based on the combined probability p[i, j, k] as computed in Eq.1. Thus, after
performing the eigenvalue decomposition of the 2 matrices, the rotation matrix
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Fig. 2. Iterative determination of the center of mass of the structure of interest. Steps
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of the center of mass from the joint probability maps; (5) The target image is cropped
around the center of mass.

centered on Ctarget is applied on the image patch P̃target to get the final target
image patch Ptarget.

2.4 Online Image Patch Registration

After the two previous stages, the estimation of the landmarks Ltarget is achieved
by performing a non-rigid registration of the reference image patch Pref onto
the target image patch Ptarget. The two image patches have the same size, are
both centered on the structure of interest and their orientation roughly coincide.
This is a good initialization for applying the standard diffeomorphic demons
algorithm [18] as implemented in ”itk::DiffeomorphicDemonsRegistrationFilter”.
This algorithm starts with a multi-resolution rigid registration followed by the
non-rigid transformation parameterized by a stationary velocity field. It assumes
that intensity distribution matches between the two images patches with a sum
of square difference as similarity measure. The reference landmarks Lref are then
transported to the target image patch Ptarget through the estimated non-rigid
transformation. Finally, the landmarks Ltarget on the original target image Itarget
are positioned by inverting the rigid transforms and cropping performed during
the first two stages of the method.

3 Experiment

3.1 Dataset

The dataset consists of 200 volumetric CT images of the left temporal bones
acquired by a GE LightSpeed CT scanner at the Nice University Center Hospital.
The image dimensions are (512, 512, 160) in 3D with corresponding spacing of
(0.25mm, 0.25mm, 0.24mm). In this case, the structure of interest is the cochlea,
a relatively small bone having a spiral shape similar to a snail shell and without
any axis of symmetry. The cochlea is easily visible on CT images. Two volumetric
images were randomly selected to serve as reference and validation images and
their cochlea was then segmented by an expert in a semi-automatic fashion.
Three landmarks corresponding the cochlea top, center and round window were
manually set on the reference image as shown in Fig. 1.
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Fig. 3. (a) Positions of the center of mass of the cochlea during 3 iterations of the
translation offset determination. The 3 cross marks in red, white, green correspond to
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whole image Itarget; Row (c) zooms on the detected landmarks before applying the last
registration stage; Row (d) zooms on the generated landmarks (’x’ marks) after the
registration stage and the manually positioned landmarks (‘+’ marks) by an expert.

3.2 Network architecture and training details

We use a 2D U-net like network [19] for segmenting the cochlea in 2D images.
The network structure is shown in Fig:1 and is relatively shallow in order to
minimize its complexity. The network input size is [·, 100, 100, 1] followed with 4
convolutional layers (shape: [·, 100, 100, 64]). Feature maps are convoluted with
a group of halved size layers but doubled in channels (shape: [·, 50, 50, 128]).
Up-sampling layer applied to recover the size of the feature maps to merged
with the jump concatenates feature maps (shape:[·, 100, 100, 64 + 128]). Finally,
5 convolutional layers (shape:[·, 100, 100, 64], chn = 64 for middle layers, chn =
1 for the last layer) are used for generating the final feature map. An Adam
optimizer is used with a learning rate initialized to lr = 0.1 and decreasing with
the number of epochs. The neural network was implemented with Tensorflow 2.0
framework and trained on one NVIDIA 1080 Ti GPU. The offline stage of the
CNN takes less than 1h for training and the online stages takes around 30s.

4 Results
The proposed approach was evaluated qualitatively and quantitatively. In Fig: 3(a),
we show the position of the center of mass of the segmented cochlea Ctarget dur-
ing three iterations of Algorithm 2. We see that the 3 points are getting closer
to each other after each iteration thus demonstrating the convergence of the
algorithm. In practice, we found that between 2 to 6 iterations are necessary to
get a change of mass center position between two iterations less than 1mm.

For a quantitative assessment of performance, an expert positioned twice the
3 landmarks on 20 additional volumes in order to estimate the positioning er-
ror and the intra-rater variability. In addition, we also try to employ a naive
registration-based landmarks detection method without the iterative localiza-
tion. The setup of the naive method shares the same registration conditions as
the registration steps in the proposed framework.

In Fig: 3(d) we show the 3 landmarks generated by our algorithm with the
same landmarks positioned by the expert. Clearly those points are very close to
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Table 1. Position errors of the 3 cochlear landmarks ( centre, top and window) auto-
matically generated landmarks (AUTO), a second set of manual (MANU) ones, and
automatically generated landmarks of registration based naive method (REG).

Image ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 µ/σ

CEN AUTO 0.88 0.28 0.49 0.7 0.72 0.57 0.19 0.49 0.49 0.39 0.65 0.84 0.87 0.67 0.72 0.72 0.73 0.54 0.33 0.39 0.58±0.19mm
TOP AUTO 0.7 1.33 0.56 0.73 0.72 0.37 0.31 0.78 0.35 0.2 1.63 1.15 1 0.26 1.04 0.67 0.8 1.23 0.55 0.39 0.73±0.39mm
WIN AUTO 0.86 0.65 0.84 0.55 0.65 1.12 1.35 0.31 0.6 0.49 0.26 1.06 1.54 0.72 0.88 0.81 0.54 0.34 1.43 0.88 0.79±0.36mm

CEN MANU 0.28 0.56 0.53 1.06 0.65 0.59 0.45 0.57 0.25 1.09 0.94 0.84 1.09 0.53 0.37 0.5 0.25 0.54 0.59 0.3 0.60±0.27mm
TOP MANU 0.43 0.38 0.49 0.25 0.31 0.25 0.31 0.19 0.24 1.09 0 0.5 0.75 0.25 0.31 0.19 0.6 0.42 0.33 0.66 0.40±0.24mm
WIN MANU 0.69 0.62 1.11 1.1 0.31 1.07 0.31 0.77 0.43 0.57 0.79 1.22 0.91 0.77 0.97 0.75 0.9 1.01 1.18 1.25 0.84±0.29mm

CEN REG 4.42 10.95 15.78 16.49 12.83 13.04 14.28 15.09 9.66 16.21 6.82 12.91 11.06 6.96 22.69 6.16 2.22 11.68 17.79 9.74 11.84±4.97mm
TOP REG 1.11 8.85 13.73 14.12 10.47 11.25 12.69 12.90 7.55 14.29 4.30 9.56 7.28 4.84 20.27 3.77 0.25 12.88 15.33 13.65 9.95±5.18mm
WIN REG 2.21 2.82 8.62 9.73 4.15 5.67 5.37 7.44 2.51 7.89 1.09 6.42 3.46 1.45 15.33 1.77 4.91 16.20 9.40 16.77 6.66±4.85mm

each other on the 3 views. In Table 1(top), we list the average position error of
the 3 landmarks on the 20 images with respect to one set of landmarks manually
positioned by an expert, and in the bottom rows, we show the corresponding
results obtained by the naive registration based method.

In average, the position error of Ltarget is around 0.6mm which corresponds
to a difference of position of 2 to 3 voxels. This result is satisfactory when
considering the small size of the cochlea (width: 6.53 ±0.35mm, height: 3.26
±0.24mm [20]) within the full CT volume (128mm× 128mm× 55mm). In con-
trast, the naive method is almost unusable for cochlea landmarks detection as the
relative error (on average 9.48mm) is too large in comparison with the size of
the cochlea. For a better assessment, we also provide the intra-expert landmark
position error in Table 1(middle). It shows that the algorithm error is similar to
the intra-expert variability, with a lower error for two (the center and window
landmarks) out of the three landmarks. When computing the landmark position
error with the second set of landmarks made by the expert, or with the average
of the 2 annotations, we also found that the algorithm was performing simi-
larly to the expert. Since the intra-rater variability is in most cases lower than
inter-rater variability, we believe that the proposed method is an effective way
to automate landmark positioning around the cochlea on CT images. Note that
the mean landmark position errors reported by Zhang et al. [13] also correspond
between 2.5 to 3 times the voxel size whereas Grewal et al. [21] after training on
168 scans reports errors between 2 to 9 times the voxel size (2− 9mm).

5 Conclusion

To the best of our knowledge, the proposed method is the first one-shot learning
approach for 3D landmarks detection in volumetric images. We showed that
the proposed approach was effective in localizing 3D landmarks in the cochlea
from CT images of the inner ear. It relies on a segmentation stage and the
registration of a single user-defined image patch which makes it easy explainable
and interpretable. The approach is generic and could be applied to the detection
of landmarks in CT imaging and other imaging modalities. In the future, we
plan to use more complex image similarity measures in the final registration
algorithm and to introduce more annotated data (few-shot learning) to address
challenging landmark detection problems. Other network architectures proposed
in the literature for one-shot deep learning such as [22–25] can be explored.
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