
WIP: Domain Specific Debugging by using
RUNSTAR

Ryana Karaki, Ludovic Marti, Julien Deantoni
Université Côte d’Azur

CNRS/I3S/INRIA Kairos
Sophia Antipolis, France

Emails: (Ryana.Karaki | Ludovic.Marti)@inria.fr, Julien.Deantoni@univ-cotedazur.fr

Abstract—The following work in progress aims to assist lan-
guage designers by giving them the ability to specify the domain
decoration of concrete program representations while debugging,
thanks to the RUNSTAR domain-specific language. Two addons
are developed alongside in the GEMOC Studio, exploring the
possibilities offered by the Xtext and KLighD frameworks.

I. INTRODUCTION

Nowadays, writing a program is no more restricted to
computer scientists and there are more and more stakeholders
aiming to write specific programs in many fields, such as busi-
ness, mathematics, or physics to name a few. General Purpose
programming Languages (GPLs) are usually inappropriate for
them, being too far from their domain of expertise. Usually,
such stakeholders are using languages that are tailored syntac-
tically and semantically to their domain of use; i.e., they use
Domain Specific Languages (DSLs). To help in the creation
of DSL, Language Workbenches (LW) are tools that make
the development of new languages and their IDE affordable,
i.e., where the creation of language tooling (e.g., editor, parser,
checker, interpreter, debugger) is partially automated, typically
by using a tooled metalanguage [1]. Debuggers are a crucial
part of the tooling and help the user to understand the runtime
state of its program during its execution. However, they are
supported only by few LWs [2], [3], [4], [5]; and consequently
require extra work with few support of the LW.

The proposed debug services, when provided by LW, are
often generic and not related to the concrete syntax defined
by the DSL, e.g., current values of variables are shown in
a distinct view without customisable support. Thereby, the
debugger displays information the same way no matter the
DSL and these representations are orthogonal to the concrete
syntax of the DSL. When compared to dedicated debuggers of
GPLs, we can often notice that several interesting features are
missing, specially the ones that render debugging information
directly as annotation of the concrete syntax. For instance,
during a debug session, the IntelliJ IDEA [6] IDE adds
the current value of data in non-invasive comments at the
currently executed line; also the Eclipse Java Development
environment allows inspecting data in a program by hovering it
directly in the program editor. It is also frequent to see helpful
graphical animation of diagrams for graphical languages [7],
[8]. However, all these services are encoded without real
support of LWs.

To make these services available as a service of the LW, we
study the use of a new meta language that defines how the
concrete representation of a program should be annotated to
represent the runtime state of the program. By using our meta
language, a language designer can define the representations
of the runtime state that fits best its language. Our meta
language is tooled so that the representations are automatically
applied to the concrete representation(s) of a program during
a debugging session. We experimented this approach based on
the debugger offered by the GEMOC Studio [3] and realized
an ongoing integration with two different concrete syntax
technologies: textual concrete syntaxes written in Xtext 1 and
graphical concrete syntaxes written with KLighD [9].

II. PROPOSITION

Since language designers define domain specific languages,
the proposed approach offers them the ability to specify the
domain specific way the runtime state of a program should
be represented, directly on the concrete representation of a
program, during a debugging session. A language designer
can thus decide what are the available representations in the
generated IDE to help a user of its language to understand
what is happening during the execution of a program. For
instance, considering a language that defines the concept of
Variable, the language designer can decide to put focus on
it when its current value changed. Finally, depending on the
framework used to specify the concrete syntax of its language,
the language designer may be more precise and decide to
display, for instance, the current value as a comment in the
text, or in a hover as a graph of its evolution along the ten
last values.

We explored the realization of this goal by defining a
new DSL, named RUNSTAR, to specify the representations
of the runtime state of a program during its execution; and
by developing an application that, given a program and a
specification in RUNSTAR, modifies the representation of a
program during an execution. To be able to be used on
different DSLs, we need RUNSTAR and the application to
be independent of the DSL under development. Also, to ease
the adoption of our approach with existing languages, the
proposed approach should not require to modify the original

1http://eclipse.org/xtext

http://eclipse.org/xtext


Fig. 1. Integration of our approach into the GEMOC Studio LW

definition of the DSL (at least not manually or in a non-
revertible way).

From a technological point of view, we integrated our
approach with the GEMOC studio LW [3]. It provides support
for the definition of the semantics for languages written in
the Eclipse Modeling Framework and consequently integrates
well with different concrete syntax technologies. Additionally,
it proposes an addon mechanism allowing an application to
register to the execution of a program and to be notified
each time a step is realized. Concerning the concrete syntax
technologies, we chose to work with a textual one, Xtext
and a graphical one, KLighD. We consequently defined two
distinct GEMOC addons, both configured with a RUNSTAR
specification.

A. RUNSTAR, a DSL to define the runtime state representa-
tion of a program

In the context of GEMOC Studio, the language designer
defines explicit artifacts for the definitions of the abstract
syntax and the runtime data. These artifacts need to be
imported in a RUNSTAR specification to be able to explicitly
refer to the runtime data and their context of definition, as
shown in Figure 1.

A RUNSTAR specification contains a list of runtime
Variable which specifies what property of a concept from
the language under development is tracked and when the
update of its value should occur. For instance, to track the
currentState of a StateMachine concept each time
the update event occurs, a language designer can write :
let theCS be StateMachine::currentState when update

The same variable can have multiple Representations,
such as text or JavaScript code inside a hover, and/or a dy-
namic label next to your graphical representation. For instance:
create Hover on theCS
create Label on theCS

Representations can be customized as wished by the lan-
guage designer, For instance with colors, images, comments
or shapes in order to create the most appropriate runtime
representation. Default decoration parameters are used if they
are not specified.

B. Current Tooling Status

Xtext proposes many customizable features to enhance your
DSL such as syntax coloring, highlighting and hovers. After

investigating how these features work, it became possible
to cherry-pick parts of their behavior and create the right
components at the right time. For instance, RUNSTAR hovers
are customized SWT widgets. We used these workarounds
to avoir modifying the existing DSL definition. Instead we
provision our components at runtime, when a debug session
starts, and remove them once finished.

The KLighD framework provides a graphical representation
of the program [9]. The graphical representation is itself a
model, and it is possible to modify it at runtime. Additionally,
KLighD gives access to most of the user interface functional-
ities, allowing many modifications of an existing representa-
tion. These modifications can be directly done by navigating
through the established model and by adding or changing the
representations of language concepts. Many possibilities have
already been implemented, but more may come with new case
studies.

the RUNSTAR development is still work in progress but
the language definition and the GEMOc addons are already
available here: https://gitlab.inria.fr/kairos/gemocbackends.

III. CONCLUSIONS AND FUTURE WORK

This paper presents a DSL named RUNSTAR that allows a
language designer to specify the representation of the runtime
state of a program during a debug session. This is done by
giving modification intentions, which are used to configure
technology-specific addons, which in turn modifies the con-
crete representation of a program. This is currently a work in
progress, but early demos are convincing. Many future works
are envisioned, for instance to allow registering to external
services like graph or time series representations.

REFERENCES

[1] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “The state of the
art in language workbenches,” in International Conference on Software
Language Engineering. Springer, 2013, pp. 197–217.

[2] A. Chiş, T. Gı̂rba, and O. Nierstrasz, “The moldable debugger: A frame-
work for developing domain-specific debuggers,” in Software Language
Engineering, B. Combemale, D. J. Pearce, O. Barais, and J. J. Vinju, Eds.
Cham: Springer International Publishing, 2014, pp. 102–121.

[3] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution framework of the GEMOC studio (tool
demo),” in Proc. ACM SIGPLAN Int’l Conference on Software Language
Engineering (SLE’16), 2016, pp. 84–89.

[4] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry,
“Omniscient Debugging for Executable DSLs,” pp. 261–288, 2018.
[Online]. Available: https://hal.inria.fr/hal-01662336/document

[5] D. Pavletic, S. A. Raza, M. Voelter, B. Kolb, and T. Kehrer, “Extensible
debuggers for extensible languages,” GI/ACM WS on Software Reengi-
neering, 2013.

[6] “IntelliJ IDEA,” https://www.jetbrains.com/idea/, JetBrains.
[7] “Yakindu Statechart Tools,” https://www.itemis.com/en/yakindu/

state-machine/, Itemis.
[8] S. Prochnow, “Efficient development of complex statecharts,” Ph.D.

dissertation, 2008.
[9] C. Schneider, M. Spönemann, and R. von Hanxleden, “Just

model!—putting automatic synthesis of node-link-diagrams into
practice,” in 2013 IEEE Symposium on Visual Languages and Human
Centric Computing. IEEE, 2013, pp. 75–82.

https://gitlab.inria.fr/kairos/gemocbackends
https://hal.inria.fr/hal-01662336/document
https://www.jetbrains.com/idea/
https://www.itemis.com/en/yakindu/state-machine/
https://www.itemis.com/en/yakindu/state-machine/

	Introduction
	Proposition
	RunStaR, a DSL to define the runtime state representation of a program
	Current Tooling Status

	Conclusions and future work
	References

