

Sacral Anterior Root Stimulation (SARS) and Visceral Function Outcomes in Spinal Cord Injury–A Systematic Review of the Literature Over Four Decades

Thomas Guiho, Christine Azevedo Coste, Luc Bauchet, Claire Delleci, Jean-Rodolphe Vignes, David Guiraud, Charles Fattal

▶ To cite this version:

Thomas Guiho, Christine Azevedo Coste, Luc Bauchet, Claire Delleci, Jean-Rodolphe Vignes, et al.. Sacral Anterior Root Stimulation (SARS) and Visceral Function Outcomes in Spinal Cord Injury–A Systematic Review of the Literature Over Four Decades. World Neurosurgery, 2021, 10.1016/j.wneu.2021.09.041. hal-03375512

HAL Id: hal-03375512 https://hal.inria.fr/hal-03375512

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Title page

1) Publication Title

Sacral Anterior Root Stimulation (SARS) and visceral function outcomes in spinal cord injury – a systematic review of literature over four decades

2) Running Title

Forty years of sacral anterior roots stimulation

3) Authors

Thomas Guiho PhD^{1,2*}; Christine Azevedo-Coste PhD¹; Luc Bauchet MD, PhD³; Claire Delleci MD⁴; Jean-Rodolphe Vignes MD, PhD⁵; David Guiraud PhD¹; Charles Fattal MD, PhD⁶.

4) Affiliations

¹INRIA, Centre Sophia Antipolis, CAMIN team, Montpellier, Occitanie, France

²Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK

³Department of neurosurgery, Gui de Chauliac Hospital, CHU Montpellier, Montpellier University Medical Center, Montpellier, Occitanie, France

⁴Department of physical medicine and rehabilitation, Pellegrin Hospital, CHU Bordeaux, Bordeaux University Medical Center, Bordeaux, Nouvelle Aquitaine, France ⁵Department of neurosurgery, Pellegrin Hospital, CHU Bordeaux, Bordeaux University

Medical Center, Bordeaux, Nouvelle Aquitaine, France

⁶Centre Bouffard-Vercelli, Pôle Santé Roussillon, 66000 Perpignan, France

5) Corresponding author

Thomas Guiho

<u>Email</u>

thomas.guiho@inria.fr / thomas.guiho@ncl.ac.uk

<u>Adress</u>

Thomas Guiho

INRIA – Campus Saint Priest, Bat. 5

860 Rue de St Priest

34095 Montpellier cedex 5 – France

6) Keywords

Literature review, Neuroprosthesis, Spinal Cord Injury, Visceral fonctions, Sacral Anterior Root Stimulation.

Accepted for publication in World Neurosurgery the 8th of September 2021

1	Sacral Anterior Root Stimulation (SARS) and visceral function outcomes in spinal cord
2	injury – a systematic review of literature over four decades
3	Thomas Guiho PhD ^{1,2*} ; Christine Azevedo-Coste PhD ¹ ; Luc Bauchet MD, PhD ³ ; Claire Delleci MD ⁴ ;
4	Jean-Rodolphe Vignes MD, PhD ⁵ ; David Guiraud PhD ¹ ; Charles Fattal MD, PhD ⁶
5	
6	Abstract
7	
8	Study design: Systematic Review
9	Objectives: The sacral anterior root stimulator (SARS) was developed 40 years ago to restore
10	urinary and bowel functions to individuals with spinal cord injury (SCI). Mostly used to
11	restore lower urinary tract function, SARS implantation is coupled with sacral deafferentation
12	to counteract the problems of chronic detrusor sphincter dyssynergia and detrusor
13	overactivity. In this article, we systematically review 40 years of SARS implantation and
14	assess the medical added-value of this approach in accordance with the PRISMA guidelines
15	(Preferred Reporting Items for Systematic reviews and Meta-Analyses). We identified four
16	axes of investigation: i) impact on visceral functions, ii) implantation safety and device
17	reliability, iii) individuals quality of life, and iv) additional information about the procedure.
18	Methods: Three databases were consulted: Pubmed, EBSCOhost and Pascal. 219 abstracts
19	were screened and 38 publications were retained for analysis (1,147 implantations).
20	Results: The SARS technique showed good clinical results (85.9% of individuals used their
21	implant for micturition and 67.9% to ease bowel movements) and improved individual quality

of life. Conversely, several sources of complications were reported after implantation(surgical complications, failures etc.).

Conclusions: Despite promising results, a decline in implantations was observed. This
decline can be linked to the complication rate, as well as to the development of new
therapeutics (botulinum toxin, etc.) and directions for research (spinal cord stimulation) that
may have an impact on people. Nevertheless, the lack of alternatives in the short-term
suggests that the SARS implant is still relevant for the restoration of visceral functions after
SCI.

30

31 Introduction

Spinal cord injuries (SCI) have disastrous consequences for individuals, who, in addition to 32 the motor impairments, must deal with sexual, bowel and urinary problems. Beyond their 33 impact on health, these disorders have psychosocial implications that must not be neglected. 34 Regarding lower urinary tract (LUT) function, SCI results in a communication breakdown 35 between supraspinal and spinal levels that not only manifests by the loss of voluntary control 36 of micturition but also by an exacerbation of reflex processes. Adult neurogenic lower urinary 37 tract dysfunction (ANLUTD) refers to the urological symptoms associated with these 38 39 disturbances and expresses clinically by two major problems: the disruption of the detrusor 40 activity (detrusor overactivity – DO or detrusor underactivity – DU) and the detrusor sphincter dyssynergia (DSD). 41

42 In order to restore urinary function, a device based on a strategy of functional electrical

43 stimulation (FES) – more specifically, sacral anterior root stimulation (SARS) – was

44 developed 40 years ago (implantation of the first person in 1976 and entering into the market

45 in 1982) (1): the Brindley-Finetech® implant (or SARS implant). Stimulation electrodes are

surgically disposed on S2 to S5 sacral anterior roots – i.e., roots composed of pelvic motor 46 47 axons – and the device exploits the anatomical and physiological characteristics of the urinary tract to induce micturition. The detrusor being made up of slow dynamic smooth muscle 48 fibers and the external urethral sphincter of fast dynamic striated muscle fibers; post-stimulus 49 voiding is enabled by applying intermittent electrical stimulation. Indeed, at each stimulation 50 cycle (3 seconds stimulation at 25 Hz followed by 6 seconds rest), the detrusor and the 51 52 striated sphincter simultaneously contract and then relax asynchronously (striated sphincter relaxes instantly while detrusor contraction persists for a short time); this asynchrony is the 53 source of a pressure gradient favorable to micturition. Default stimulation parameters – ie 54 55 bladder-specific settings – might subsequently be adapted to either facilitate defecation (lengthening of stimulation cycles -10 secs on then 20 secs off) or sustained erection in male 56 individuals (decrease of stimulation frequency at either 8 or 12 Hz). 57 However, the Brindley device does not handle DO by itself as bladder contractions at low 58

filling are still likely induced by the disturbed sacral reflex arch. Sacral deafferentation (i.e., sectioning of the sacral posterior roots, procedure called rhizotomy) is often coupled with
SARS implantation to prevent DO – and, consequently, promote bladder compliance – but results in the potentially irreversible loss of spared perineal sensation and function (erection and ejaculation in men, vaginal lubrication in women, defecation).

Recent technological improvements paved the way to optimized sacral stimulation paradigms
likely to renew the interest for SARS-like approaches. In this context, reviewing the impact of
Brindley implantation in patients with traumatic SCI seems an important step towards
development of upgraded implants/strategies.

68 Methods

We reviewed 40 years of Brindley implant use – from 1976 to 2020 – by analyzing the data in
terms of i) visceral function results, ii) occurrences of adverse effects, iii) quality of life
impact/considerations, and iv) additional aspects, especially long-term concerns – e.g., impact
of laminectomies on spinal stability or compatibility with MRI exams.

73 <u>Literature search</u>

This systematic review was performed according to the Preferred Reporting Items for 74 Systematic reviews and Meta-Analyses (PRISMA) recommendations. Three databases were 75 searched: Pubmed (main database), EBSCOhost (medical database) and Pascal (European 76 77 and French database) based on keywords selected by an engineer (TG) and a physician specialized in physical and rehabilitation medicine (CF). No language or date restrictions 78 were applied and the last search was performed in August 2020. The search was carried out 79 80 using the terms "sacral anterior root stimulator", "implantable neurostimulator", "neural prostheses", "electrical stimulation therapy", "neurogenic bladder", "urinary incontinence", 81 "urinary retention, "bowel function", "acceptability", "failures", "quality of life" and 82 "psychology" confined to additional filters like "human species" and "adult" in Pubmed. The 83 abstracts of all identified studies were screened by TG according to inclusion criteria defined 84 85 with the senior authors. Only articles related to SARS in adults with SCI of traumatic origin were kept for analysis whatever their level of evidence (from cohort study to single subject 86 87 design) or the number of implanted individuals (from large groups of persons to case study). 88 TG then reviewed the selected articles in full text according to a review protocol designed in collaboration with CF, CA-C and DG. Manual inspection of the reference lists of all included 89 papers was carried out to identify studies that were not captured by the online search (Figure 90 91 1) and senior authors undertook a repeat review to ensure inclusion of all relevant articles.

92 <u>Study selection</u>

93	Evaluating the action of the SARS procedure implies assessing its impact in terms of			
94	improved visceral functions – LUT, defecation and erection – but also the risks inherent to			
95	implantation (surgery, technical failures, etc.). The impact of SARS on quality of life was also			
96	investigated in this literature review, as were several additional findings on long-term follow-			
97	up (compatibility with MRI exams, etc.).			
98	Studies from the same research group were carefully inspected and only studies with			
99	significantly different numbers of individuals, sufficient temporal gaps and different			
100	population characteristics were kept for the first analysis. Two-part studies were treated			
101	separately when they reported results in two different axes of research.			
102	Raw data extraction and presentation			
103	First, the main characteristics of each paper were extracted. The nature of the article			
104	(retrospective, prospective study, case study etc.), the year of publication and the main			
105	features of the investigated population (number of individuals, age, type of lesions, etc.) were			
106	examined. The level of evidence and the risk of bias were assessed at the same time using the			
107	recommendations of the Oxford Centre for Evidence-Based Medicine and the Cochrane's			
108	Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool (2) respectively.			
109	The article contents were analyzed through four reading grids, one for each axis, and the			
110	following information was extracted and combined in a table format:			
111	• Urological, intestinal, and sexual benefits: use of the SARS implant for micturition,			
112	defecation and sexual purposes; bladder volume; volume of residual urine;			
113	incontinence episodes; urinary tract infections; autonomic dysreflexia before and after			
114	surgery.			

115	•	Implantation procedure and reliability: sacral deafferentation and implantation
116		procedure; complications following surgery; implant failures; impact on peoples
117		everyday lives and long-term side effects; other considerations (benefits, etc.).

118

• *Individuals' quality of life*: population; survey modalities; results.

119

• Studies providing additional information.

120 Data analysis

Given the large amount of generated data and in order to avoid patient redundancy, articles 121 authorships as well as medical centres location were extracted from each paper before 122 123 grouping them by geographic areas – Austria, France, Germany, Netherlands, North America, South America, Spain, Switzerland and United Kingdom (Table 1, 2 and 3) – allowing for a 124 better tracking of implanted individuals for advanced analysis. For the same medical centre, 125 126 according to their level of evidence and bias, articles were primarily used for main analysis or only for data completion precluding multiple computation of data from a single individual. In 127 the same way, only publication stating data from the same individuals before and after 128 implantation were used for computation of urologic outcomes while data from multicentric 129 studies – including the three articles authored by GS Brindley – were reported separately. 130 131 Last, the mean values of the most salient variables in each of these table were calculated on the generated dataset in order to obtain a summary statement of the literature. 132

133 <u>Statistical analysis</u>

When available, standard deviations associated with pre- and post-implantation bladder and
residual urine volumes were extracted for statistical analysis. After ensuring independence
between study-level variances and sample sizes (plots of squared standard deviation versus
sample size complemented with a monotony assessment using a spearman coefficient),

inverse variance weighting was used to implement both a fixed effect and a random effect 138 139 meta-analytic model (Hunter and Schmidt model [HSM] (3)). Indicators of heterogeneity H² and I² provided insights upon models' relevance and confirmed the validity of the HSM 140 model. After obtaining the meta-analysis global estimates and standard errors, 95% 141 confidence interval values were drawn from a t-distribution (t-score being more conservative 142 than z-score). For qualitative indicators – presence/absence of UTI or incontinent episode, 143 statistics were drawn from a t distribution after comparison of pre and post implantation 144 ratios. 95% confidence intervals were then used to determine significance for α =5%. These 145 statistical analyses were carried out using the Metalab toolbox developed in Matlab (4). 146

147 **<u>Results</u>**

148 <u>Research process and study design</u>

149 The flow diagram of the literature search is shown in Figure 1. At the end of the selection

process, 38 articles were retained for analysis including 24 retrospective studies (5–28), 4

prospective studies (29–32), 4 cross-sectional studies (33–36), 4 case reports (37–40), 1

survey (41) and 1 basic research article (42).

Among these publications, 6 dealt with individuals quality of life (29,30,33–36), and 8 others

154 – including two case reports – were placed in the category "Other considerations" (5,6,37–

155 42). The axes "Benefits for visceral functions" and "Implantation procedure and reliability"

156 regrouped the 24 remaining publications.

157 The raw data from these studies were compiled in a table format – five tables in total, one

- 158 combining the population characteristics plus one for each axis of investigation
- 159 (Supplementary Tab.1, Supplementary Tab.2, Supplementary Tab.3, Table 4 and Table 5).
- 160 Among these 38 publications, data from 4 multicentric studies (Supplementary Table 4) were

subsequently withdrawn from analysis (15–17,22) as they were grouping results from several
medical centers and precluded individualized follow-up.

Two additional figures investigated the risk of bias (Supplementary Fig.1) and the level of evidence (Supplementary Fig.2) of these studies. Interestingly, a gradual shift was observed from visceral benefits and implant reliability to quality of life issues over the last decades while wider considerations such as the long-term outcome of implanted persons emerged rather recently (Supplementary Fig.2).

168 Data analysis

169 A total of 1,147 implanted persons were tracked in 34 articles including 712 men and 435

170 women (Table 1). Individuals' mean age at the time of implantation was 36 years (ranged

between 26.3 and 40 years, n=1,091) while 467 (31.3%) persons had tetraplegia and 680

172 (68.7%) paraplegia. The mean time between spinal injury and implantation was 8.45 years

173 (varied from 1.86 to 11.17 years, n=1,097) and the mean post-implantation follow-up was

174 12.3 years (between 4.4 and 14.6 years, n=957). Implantations were performed on people with

175 complete SCI in 88.9% [77-100%] of cases (mean [range of the means by geographical

176 areas], n=1124).

177 Benefits for visceral functions

178 The impact of the Brindley implant on urinary, intestinal and sexual functions was initially

reported in 24 studies. Of these 24 studies, 50% were ranked as level II or III, while the

remaining 50% were categorized as level IV or V (Table 2).

181 Among the 1,147 individuals identified with SARS implant, 880 individuals were asked for

their current situation and 85.9% [73-100%] stated using their implant for micturition. Their

averaged bladder capacity significantly increased from 198 mL [173-264 mL] before

implantation to 480 mL [401-546 mL] (n=751) after implantation (HSM for 295 individuals 184 185 (10,17,19,30,32): mean increase in bladder volume = 279 mL; 95% Confidence Interval [CI], +191 to +354 mL), whereas the mean volume of residual urine after micturition decreased 186 significantly from 131 mL [90-157 mL] (n=57) to 46 mL [16-85.7 mL] (HSM for 72 people 187 (11,12,17,30): mean decrease in residual urine = - 97 mL; 95% CI, -71 to -122 mL). Urinary 188 incontinence affected 86% [61-100%] and 35.5% [7-65%] of the individuals before and after 189 190 implantation respectively (n=691; t-distribution, p<0.05). Urinary tract infections decreased from 6.3 to 1.3 episodes per year in the German group (n=464) while the overall percentage 191 of persons affected by urinary tract infections in other areas dropped from 93% [87.7-100%] 192 193 to 39% [15-78%] (n=402, t-distribution, p<0.05).

In addition to the LUT data, 67.9% [29-100%] of the patients (n=654) used their implant to
facilitate bowel movements, while 62.1% [30-100%] of the male individuals (n=143 of 230
males) were able to obtain stimulation-induced erections. Finally, the proportion of
individuals with autonomic dysreflexia decreased from 43.3% [16-66%] to 3% [0-9%] after
implantation (n=895).

199 Implantation procedure and reliability

SARS implant reliability and impact on individuals with SCI was assessed by five modalities:
i) nature of the surgical procedure, ii) surgical complications, iii) implant failures, iv) longterm complications, and v) additional information (benefits of the implantation, problems
using the implant, etc.). The corresponding data were drawn from 22 publications gathering
989 implanted individuals from 10 level II or III studies – 45.5% – and 12 level IV or V
publications – 54.5% (Table 3).

In 83.3% of individuals, Brindley devices were implanted intradurally. Sacral deafferentation
was attempted in 99.4% of cases with a success rate of 93.9%. A total of 34 immediate post-

208	surgical complications occurred after the initial surgery (3.4% - infections, cerebrospinal fluid
209	leakage, etc.). Adverse effects caused by the implant/stimulation were reported in 54 cases
210	(5.5%: muscle spasms, stimulus pain, infections, etc.), whereas 209 implant faults (21.1% of
211	implants) were reported leading to 136 revision surgeries (surgeries to replace implant
212	failures: 13.7%). Last, the SARS procedure proved to be insufficient in 63 persons (6.3%)
213	who faced persistent urinary disorders (incontinence, sphincterotomy, etc.).
214	Nevertheless, the cleanest database on the subject remains Brindley's 1995 publication
215	overviewing the 500 first implanted individuals (8) (Supplementary Tab.4).
216	Patient quality of life
217	Six publications were classed in this axis (Table 4; 488 individuals: 138 from level II and 350
218	from level III studies). In a nutshell, two distinct groups emerged and the conclusions drawn
219	by Wielink et al. (29), Vastenholt et al. (33) and Rasmussen et al. (35) differed slightly from
220	those of Creasey et al. (30), Martens et al. (34) and Zaer et al. (36).
221	For Wielink et al. (29) and Vastenholt et al. (33), implantation had an overall beneficial
222	impact on individuals but this improvement was either not statistically significant (Wielink et
223	al. (29)) or concerned only half the persons (people expectations met in 49% of cases in
224	Vastenholt et al. (33)). Rasmussen et al. (35), for their part, only assessed quality of life
225	related to bowel function in implanted individuals with no real improvement.
226	Conversely, no reservation was expressed about the positive impact of implantation in
227	Creasey et al. (30)(improvement in 86.8% of the cases), Martens et al. (34) (results from
228	Qualiveen and SF-36 questionnaire) and Zaer et al. (36) (overall satisfaction of implanted
229	individuals and improvements of bladder function), for which a clear improvement in
230	individual's quality of life was demonstrated.

231 Additional information

Eight publications were retained to complement this review as they were dealing with aspects
little or not documented in previous studies (Table 5; 204 individuals from level IV or V
studies including 4 case studies). Among these papers, six dealt directly with the
consequences of implantation (5,6,37–40), while the last two (41,42) were focused on the
prospects of this design of implant.

Lopez de Heredia et al. (5) concluded on the safety of MRI examination in implanted persons
when conducting examinations in a 1.5 Tesla system – a central concern for the follow-up of
people with SCI. Krebs et al. (6) showed no significant alteration of bladder contraction
during stimulation-induced micturition in 111 patients 11.7 years after implantation.

Conversely, Soni et al. (37) questioned the long-term impact of laminectomy on spinal 241 balance by reporting fractures of L4 and L5 vertebral bodies in one patient that induced a 242 deterioration in his condition eventually leading to the cessation of implant use. Vaidyanathan 243 et al. (38) and Bramall et al. (40) reported implant infections with complete removal of the 244 245 device while Pannek et al. (39) reported the case of a patient with life-threatening autonomic dysreflexia for whom sacral deafferentation was necessary but who refused SARS 246 implantation – raising genuine questions about the psychological impact of neuroprosthetic 247 248 implantation.

Dealing with the future of the SARS implant, Kirkham et al. (42) investigated simultaneous
stimulation of both anterior and posterior roots to restore LUT function without sacral
deafferentation but concluded to the failure of the investigated procedure while Sanders et al.
(41) attempted to identify patients' preferences for future neuroprostheses and highlighted the
major role of the benefit-risk ratio on implant acceptability.

254 **Discussion**

255 <u>Level of evidence</u>

256	This systematic review gathered 1,147 implanted individuals from 34 publications. These 34
257	articles presented unequal levels of evidence (studies with a control group/level II: 2;
258	prospective studies/level III: 11; retrospective studies/level IV: 11; case studies and short
259	communications/level V: 10) as well as unequal risk of bias (supplementary Fig.1).
260	The number of publications classed under each axis of research proved also highly variable
261	(Supplementary Fig.2). Most of the collected data related either to clinical results on visceral
262	functions (n=24) or implant reliability (n=22). Only a few dealt with quality of life (n=6),
263	although these studies had the highest level of evidence (level II or III) while long-term
264	considerations were often limited to low-evidence articles (8 articles: levels IV or V including
265	4 case studies).
266	Assessment of Brindley implantation
267	a) Benefit/risk balance
267 268	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence
267 268 269	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain
267 268 269 270	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral
267 268 269 270 271	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2).
267 268 269 270 271 272	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2). Apart from the imponderables of such a procedure – i.e., surgery, electronic device
267 268 269 270 271 272 272	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2). Apart from the imponderables of such a procedure – i.e., surgery, electronic device implantation and sacral deafferentation – discomfort resulted mostly from surgical
267 268 269 270 271 272 273 274	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2). Apart from the imponderables of such a procedure – i.e., surgery, electronic device implantation and sacral deafferentation – discomfort resulted mostly from surgical complications or implant failures that were corrected spontaneously (leak of cerebrospinal
267 268 269 270 271 272 273 274 275	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2). Apart from the imponderables of such a procedure – i.e., surgery, electronic device implantation and sacral deafferentation – discomfort resulted mostly from surgical complications or implant failures that were corrected spontaneously (leak of cerebrospinal fluid, neuropraxia etc.) or after a second surgery (cable replacement, second extradural
267 268 269 270 271 272 273 274 275 276	 a) Benefit/risk balance For all clinical examinations – bladder capacity, volume of residual urine, incontinence episodes, urinary infections, facilitation of bowel movements, autonomic dysreflexia – a gain of function was systematically observed as a results of a combined SARS and sacral deafferentation procedure in all the investigated studies (Table 2). Apart from the imponderables of such a procedure – i.e., surgery, electronic device implantation and sacral deafferentation – discomfort resulted mostly from surgical complications or implant failures that were corrected spontaneously (leak of cerebrospinal fluid, neuropraxia etc.) or after a second surgery (cable replacement, second extradural implantation) (Table 3). Deafferentation was responsible for constipation or erectile

279	decreasing fecal incontinence by reducing bowel reflex contractions in the other hand.
280	The aging of the implanted population raised previously unknown issues, such as the impact
281	of laminectomy on spine balance or the safety of MRI exams (implant successfully tested
282	with 1.5 Tesla MR System (5) while manufacturer documentation reports safe procedures
283	with > 0.5 Tesla machines). Brindley also reported two death in his follow-up of the first 500
284	implanted individuals (7,8) – one due to renal failure and the other from primary bladder
285	carcinomatosis (Supplementary Tab.3) – but none was mentioned in the 34 retained studies.
286	As patients' expectations for the implant are often very high – and legitimately so – these
287	unexpected drawbacks might have engendered frustration despite the overall success of the
288	procedure. This might explain the results – globally positive but somewhat contrasted – of
289	quality of life studies (Table 4).
290	b) Decline in the use of the implant
291	In addition to the SARS implant, other competing solutions – surgical and drug approaches –
292	
	emerged in recent years offering patients and medical staff several therapeutic alternatives
293	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation
293 294	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both
293 294 295	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures.
293 294 295 296	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures. Medication approaches may also be prescribed such as semi-invasive botulinum toxin
293 294 295 296 297	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures. Medication approaches may also be prescribed such as semi-invasive botulinum toxin injections. However, repeated injections are needed to achieve a significant decrease in DO
293 294 295 296 297 298	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures. Medication approaches may also be prescribed such as semi-invasive botulinum toxin injections. However, repeated injections are needed to achieve a significant decrease in DO emphasizing the transient impact of this procedure and the discontinuous nature of the
293 294 295 296 297 298 299	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures. Medication approaches may also be prescribed such as semi-invasive botulinum toxin injections. However, repeated injections are needed to achieve a significant decrease in DO emphasizing the transient impact of this procedure and the discontinuous nature of the generated effect – discontinuity that generates discomfort in patients waiting for renewal of
293 294 295 296 297 298 299 300	emerged in recent years offering patients and medical staff several therapeutic alternatives especially to treat refractory DO (43). Surgical solutions include augmentation enterocystoplasty and/or continent cystostomy and offer the advantage of achieving both sustainable results and an optimal action on DO but constitute unique invasive procedures. Medication approaches may also be prescribed such as semi-invasive botulinum toxin injections. However, repeated injections are needed to achieve a significant decrease in DO emphasizing the transient impact of this procedure and the discontinuous nature of the generated effect – discontinuity that generates discomfort in patients waiting for renewal of the injection. Finally, both botulinum toxin and surgical approaches do not enable patients to

incontinence of feces – by reducing reflex contraction of the anal sphincter – in one hand or

278

From an economic perspective, additional reports concluded the cumulative cost of treatment 302 303 with the neuroprosthesis – including the cost of the device, its implantation and maintenance – to be equaled of those of conventional care on a time horizon between 5- and 8-years post-304 implantation (comparison before and after implantation (29,44)). Subsequent studies further 305 investigated the cost-effectiveness ratio of the SARS approach to deeply inform decision 306 makers of the opportunity to reimburse this procedure (versus a control group (45,46)) and 307 308 provided recommendations in favor of the Finetech-Brindley implant. Nevertheless, these conclusions were a bit contrasted by the mixed results reported in studies focused on the 309 quality of life of the implanted population (29,30,33–36). Thus, in the vast majority of cases, 310 311 the cost of the procedure is still largely borne by patients while some alternatives are cheaper on a shorter term and more easily reimbursed by the health care system. This lead to a 312 potentially insurmountable financial burden on interested individuals that will dissuade them 313 314 from opting for the neuroprosthesis and may further explain, at least in part, the decline in implantation. Likewise, the gradual decline in implantation leads to a reduction in trained 315 surgical services and to an even greater reduction in the number of prescriptions making this 316 approach slowly falling back into anonymity. 317

Beyond the aforementioned factors, the rise of the Internet facilitates public access to recent
scientific advances and raises expectation for the development of a medium-term
comprehensive solution (stem-cell therapy, neuroprosthesis etc.). Patients are therefore more
likely to preserve their "neurological capital" – and so to reject any deafferentation – and to
suspend all surgical procedures while waiting for this new solution.

323 Distrust of some patients with regard to the implantation of electronic devices for ideological324 considerations may also constitute a limiting factor.

325 c) Targeted population

SARS is therefore one of the solutions to overcome visceral deficiency but by both its nature
and the incidence of adverse effects, the generalization of its recourse is unlikely; secondary
ejaculatory dysfunction and loss of sensitivity already precluding deafferentation in persons
with incomplete lesions. However, since the population of patients with a spinal cord injury is
very disparate – particularly with respect to the lesion profiles or the age of the individuals –
SARS implant may still be relevant for certain categories of patients:

Aging patient with paraplegia or tetraplegia (woman or man) in trouble to continue
self-catheterization.

Women with paraplegia or tetraplegia, able to perform self-catheterization, to transfer
 and to undress but confronted with residual incontinence (DO – different form stress
 incontinence) that cannot be collected by a specific device equivalent to the penile sheath in
 men.

Women or men with paraplegia or tetraplegia who can no longer or cannot apply
intermittent self-catheterization due to overweight or obesity.

Patient with paraplegia or tetraplegia (woman or man) who refuses self-catheterization
for practical reasons or to avoid urinary tract infections.

Although ANULTD management is very much dependent on the patient's medical condition and willingness, several studies have helped to deeply revise the current therapeutic arsenal to provide easy-to-follow treatment guidelines applicable to large cohorts of patients. Based on the objective to be achieved: i) continence with intermittent catheterization, ii) continence without catheterization, or iii) reflex micturition, several therapeutic stratagems might be implemented to help patients with DO or DSD – see Denys et al (47), Wyndaele et al (48) or Anquetil et al (43) for more details. Nevertheless, it might be worth complementing these

349 guidelines by mentioning that Brindley implantation is not precluding future urological

350 surgeries when, conversely, prior urological intervention is likely to prevent SARS procedure.

351 <u>Study limitations</u>

The lack of randomized or multi-group studies reduced the level of certainty of this 352 systematic review. This situation can be explained by the difficulty of setting up randomized 353 protocols because of both the invasiveness of surgery and people high expectations about 354 implantation. It might also be due to the relative paucity of complete spinal cord injury as 355 examiners might have anticipated that such a randomization would had decrease their 356 357 recruitment potential. Similarly, setting up cross-over studies seems very unlikely because of the sacral deafferentation. Most of the publications on SARS have come from neurosurgical 358 departments and, unsurprisingly, many of these studies dealt exclusively with urological and 359 360 surgical outcomes, while few focused on patient quality of life.

As the selected studies were performed at different location across the globe, differing 361 surgeries, post-surgical treatment care and rehabilitation may have affected outcomes. Only 362 few studies reporting fragmentary data were thus available for individuals implanted in Spain 363 or United Kingdom. Absence of a systematic report of pre and post-surgery data – as well as 364 their respective variances – further undermine the impact of our conclusions by drastically 365 366 reducing the number of implanted people eligible for final analysis. Discrepancies in followup periods and reporting procedures, especially regarding postoperative complication/care and 367 quality of life assessment, also make synthetizing these data extremely difficult – our study is, 368 to the best of our knowledge, the first systematic review on the SARS implant. In the same 369 way, as this literature review extending over four decades, both the surgical approach and the 370 implant reliability were continuously refined for the succeeding studies. Originally implanted 371 without deafferentation, outcomes of the first/pioneer studies were likely impacted by the 372

preservation of a disturbed sacral reflex arch in some individuals while management of side
effects has progressively improved over time. Ultimately, as patient long term follow-up is
often ensured by clinical centers close to the patients' homes, long-term assessment of large
cohorts of individuals remains a challenge. It is therefore not surprising that most of the
publications related to long-term implantation consequences are case studies.

378

379 <u>Future directions</u>

The main limitation of the implantation procedure remains the systematic posterior root rhizotomy. New stimulation strategies are currently studied to bypass this procedure and are mainly based on direct spinal cord stimulation (49,50) or on a combination of spinal roots and pudendal nerve stimulation. These main approaches are the so called "LION approach" (51), the sphincter fatigue procedure (52), the blocking technique (53,54) and the high frequency technique (55).

386

387 <u>Conclusions</u>

Despite generally positive results on visceral functions – especially LUT function – the 388 number of Brindley implantation procedures has declined in recent years. Although the risks 389 390 inherent to this procedure was minimized, the emergence of mini-invasive therapeutic alternatives such as botulinum toxin therapy has limited its use. The deafferentation coupled 391 with the implantation procedure dissuades many persons frightened by its very invasive 392 nature. However, sacral deafferentation might still constitute a valid alternative in individuals 393 with a botulinum toxin-resistant bladder and might still be considered in competition with 394 more widespread urological surgeries such as enterocystoplasty. 395

396	The rehabilitation of visceral functions remains a major concern of individuals with SCI, and
397	thus many research teams are dedicated to finding less invasive solutions or alternatives that
398	are likely to offer these persons a dramatic gain in quality of life. Nonetheless, the lack of
399	alternatives in the short term suggests that the SARS and SARS-like implants are still relevant
400	within the therapeutic arsenal.
401	
402	Data Archiving
403	All data generated or analysed during this study are included in this published article.
404	
405	Acknowledgments
406	The authors would like to thank Christine Gilbert for her help in the literature search.
407	
408	Conflict of Interest Statement
408 409	<u>Conflict of Interest Statement</u> The authors report no conflict of interest concerning the materials or methods used in this
408 409 410	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
408 409 410 411	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
408 409 410 411	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
408 409 410 411 412	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions
408 409 410 411 412 413	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening
408 409 410 411 412 413 414	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening potentially eligible studies, extracting and analyzing data, interpreting results, creating tables,
408 409 410 411 412 413 414 415	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening potentially eligible studies, extracting and analyzing data, interpreting results, creating tables, and writing the report.
408 409 410 411 412 413 414 415 416	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening potentially eligible studies, extracting and analyzing data, interpreting results, creating tables, and writing the report. CF was responsible for designing the review protocol, conducting the search and assessing
408 409 410 411 412 413 414 415 416 417	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening potentially eligible studies, extracting and analyzing data, interpreting results, creating tables, and writing the report. CF was responsible for designing the review protocol, conducting the search and assessing potentially eligible studies. He contributed to writing the report and interpreting results.
408 409 410 411 412 413 414 415 416 417 418	Conflict of Interest Statement The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Author Contributions TG was responsible for designing the review protocol, conducting the search, screening potentially eligible studies, extracting and analyzing data, interpreting results, creating tables, and writing the report. CF was responsible for designing the review protocol, conducting the search and assessing potentially eligible studies. He contributed to writing the report and interpreting results. CAC and DG contributed to the review protocol and provided feedback on the report.

420		
421	<u>Fun</u>	ding
422	This	work was carried out with the support of the I-SITE MUSE, Companies on Campus
423	prog	ram (SPINSTIM project – AAP18ENT-FRM06-SPINSTIM) and an ERANET Neuron
424	joint	call co-funded by the Medical Research Council (R001189). The Companies on Campus
425	prog	ram financed the SPINSTIM project and the ERANET call financed Thomas Guiho.
426		
427	<u>Refe</u>	erences
428	1.	Brindley GS. History of the sacral anterior root stimulator, 1969–1982. Neurourol
429		Urodyn. 1993;
430	2.	McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and
431		Shiny web app for visualizing risk-of-bias assessments. In: Research Synthesis
432		Methods. 2021;
433	3	Hunter I. Schmidt F. Methods of meta-analysis: Correcting error and bias in research
434	5.	findings. https://books.google.fr/books. 2004:
		Indings. https://books.google.ii/books. 2001,
435	4.	Mikolajewicz N, Komarova S V. Meta-Analytic Methodology for Basic Research: A
436		Practical Guide. Front Physiol. 2019;
437	5.	Lopez De Heredia L, Meagher TMM, Jamous MA, Hughes RJ. Long-term effect of
438		MRI on sacral anterior root stimulator: The Stoke Mandeville experience. Spinal Cord.
439		2012;
440	6.	Krebs J, Wöllner J, Grasmücke D, Pannek J. Long-term course of sacral anterior root
441		stimulation in spinal cord injured individuals: The fate of the detrusor. Neurourol
442		Urodyn. 2017;

443 7. Brindley GS. The first 500 patients with sacral anterior root stimulator implants:
444 General description. Paraplegia. 1994;

- 8. Brindley GS. The first 500 sacral anterior root stimulators: Implant failures and their
 repair. Paraplegia. 1995;
- 447 9. Van Kerrebroeck PEV, Koldewijn EL, Rosier PFWM, Wijkstra H, Debruyne FMJ.
 448 Results of the treatment of neurogenic bladder dysfunction in spinal cord injury by
 449 sacral posterior root rhizotomy and anterior sacral root stimulation. J Urol. 1996;
- Egon G, Barat M, Colombel P, Visentin C, Isambert JL, Guerin J. Implantation of
 anterior sacral root stimulators combined with posterior sacral rhizotomy in spinal
 injury patients. World J Urol. 1998;
- Schurch B, Knapp PA, Jeanmonudj D, Rodic B, Rossler AB. Does sacral posterior
 rhizotomy suppress autonomie hyper-reflexia in patients with spinal cord injury? Br J
 Urol. 1998;
- 456 12. Van Der Aa HE, Alleman E, Nene A, Snoek G. Sacral anterior root stimulation for
 457 bladder control: Clinical results. Arch Physiol Biochem. 1999;
- 458 13. Bauchet L, Segnarbieux F, Martinazzo G, Frerebeau P, Ohanna F. Traitement
 459 neurochirurgical de la vessie hyperactive chez le blessé médullaire. 2001;13–24.
- 460 14. Sauerwein DS. Sacral deafferentation with implantation of an anterior root stimulator.
 461 Experience after 15 years in 430 patients. Eur Urol Suppl. 2003;
- 462 15. Hamel O, Perrouin-Verbe B, Robert R. Brindley technique with intradural
- deafferentation and extradural implantation by a single sacral laminectomy.
- 464 Neurochirurgie. 2004;

465	16.	Kutzenberger J, Domurath B, Sauerwein D. Spastic bladder and spinal cord injury:
466		Seventeen years of experience with sacral deafferentation and implantation of an
467		anterior root stimulator. Artif Organs. 2005;
468	17.	Madersbacher H, Fischer J, Ebner A. Anterior sacral root stimulator (Brindley):
469		Experiences especially in women with neurogenic urinary incontinence. Neurourol
470		Urodyn. 1988;
471	18.	Kutzenberger J. Surgical therapy of neurogenic detrusor overactivity (hyperreflexia) in
472		paraplegic patients by sacral deafferentation and implant driven micturition by sacral
473		anterior root stimulation: Methods, indications, results, complications, and future
474		prospects. Acta Neurochirurgica, Supplementum. 2007.
475	19.	Krasmik D, Krebs J, Van Ophoven A, Pannek J. Urodynamic results, clinical efficacy,
476		and complication rates of sacral intradural deafferentation and sacral anterior root
477		stimulation in patients with neurogenic lower urinary tract dysfunction resulting from
478		complete spinal cord injury. Neurourol Urodyn. 2014;
479	20.	Castaño-Botero JC, Ospina-Galeano IA, Gómez-Illanes R, Lopera-Toro A. Extradural
480		implantation of sacral anterior root stimulator in spinal cord injury patients. Neurourol
481		Urodyn. 2016;
482	21.	Ramos LV, Illanes* RG, Pantoja RC. MP48-09 EXPERIENCE WITH SARS
483		(SACRAL ANTERIOR ROOT STIMULATOR) IN SUPRASACRAL SPINAL CORD
484		INJURY PATIENTS. J Urol. 2020;
485	22.	ROBINSON LQ, GRANT A, WESTON P, STEPHENSON TP, LUCAS M, THOMAS
486		DG. Experience with the Brindley Anterior Sacral Root Stimulator. Br J Urol. 1988;
487	23.	Brindley GS, Rushton DN. Long-term follow-up of patients with sacral anterior root

488		stimulator implants. Paraplegia. 1990;
489	24.	Sauerwein D, Ingunza W, Fischer J, Madersbacher H, Polkey CE, Brindley GS, et al.
490		Extradural implantation of sacral anterior root stimulators. J Neurol Neurosurg
491		Psychiatry. 1990;
492	25.	Barat M, Egon G, Daverat P, Colombel P, Guerin J. Why does continence fail after
493		sacral anterior root stimulator? Neurourol Urodyn. 1993;
494	26.	Egon G, Colombel P, Isambert JL, Guerin J, Barat M. Evolution of bladder contraction
495		in course of time after implantation of a sacral anterior root stimulator. Neurourol
496		Urodyn. 1993;
497	27.	Madersbacher H, Fischer J. Sacral anterior root stimulation: Prerequisites and
498		indications. Neurourol Urodyn. 1993;
499	28.	Sarrias M, Sarrias F, Borau A. The "Barcelona" technique. Neurourol Urodyn. 1993;
500	29.	Wielink G, Essink-Bot ML, Van Kerrebroeck PEV, Rutten FFH, Bosch JLHR,
501		Debruyne FMJ, et al. Sacral rhizotomies and electrical bladder stimulation in spinal
502		cord injury. 2. Cost-effectiveness and quality of life analysis. Eur Urol. 1997;
503	30.	Creasey GH, Grill JH, Korsten M, U HS, Betz R, Anderson R, et al. An implantable
504		neuroprosthesis for restoring bladder and bowel control to patients with spinal cord
505		injuries: A multicenter trial. Arch Phys Med Rehabil. 2001;
506	31.	MacDonagh RP, Sun WM, Smallwood R, Forster D, Read NW. Control of defecation
507		in patients with spinal injuries by stimulation of sacral anterior nerve roots. Br Med J.
508		1990;
509	32.	Van Kerrebroeck E V, van der Aa HE, Bosch JL, Koldewijn EL, Vorsteveld JH,

510		Debruyne FM. Sacral rhizotomies and electrical bladder stimulation in spinal cord
511		injury. Part I: Clinical and urodynamic analysis. Dutch Study Group on Sacral Anterior
512		Root Stimulation. Eur Urol. 1997;
513	33.	Vastenholt JM, Snoek GJ, Buschman HPJ, Van Der Aa HE, Alleman ERJ, Ijzerman
514		MJ. A 7-year follow-up of sacral anterior root stimulation for bladder control in
515		patients with a spinal cord injury: Quality of life and users' experiences. Spinal Cord.
516		2003;
517	34.	Martens FMJ, den Hollander PP, Snoek GJ, Koldewijn EL, van Kerrebroeck PEV a,
518		Heesakkers JPF a. Quality of life in complete spinal cord injury patients with a
519		Brindley bladder stimulator compared to a matched control group. Neurourol Urodyn.
520		2011;30(4):551–5.
521	35.	Rasmussen MM, Kutzenberger J, Krogh K, Zepke F, Bodin C, Domurath B, et al.
522		Sacral anterior root stimulation improves bowel function in subjects with spinal cord
523		injury. Spinal Cord. 2015;
524	36.	Zaer H, Rasmussen MM, Zepke F, Bodin C, Domurath B, Kutzenberger J. Effect of
525		spinal anterior root stimulation and sacral deafferentation on bladder and sexual
526		dysfunction in spinal cord injury. Acta Neurochir (Wien). 2018;
527	37.	Soni BM, Oo T, Vaidyanathan S, Hughes PL, Singh G. Complications of sacral
528		anterior root stimulator implantation in a cervical spinal cord injury patient: Increased
529		spasms requiring intrathecal baclofen therapy followed by delayed fracture of lumbar
530		spine leading to intractable spasms compelling disuse of. Spinal Cord. 2004.
531	38.	Vaidyanathan S, Soni BM, Oo T, Hughes PL, Mansour P, Singh G. Infection of
532		Brindley sacral anterior root stimulator by Pseudomonas aeruginosa requiring removal

533		of the implant: Long-term deleterious effects on bowel and urinary bladder function in
534		a spinal cord injury patient with tetraplegia: A case report. Cases J. 2009;
535	39.	Pannek J, Göcking K, Bersch U. Sacral rhizotomy: A salvage procedure in a patient
536		with autonomic dysreflexia. Spinal Cord. 2010;
537	40.	Bramall A, Chaudhary B, Ahmad J, Shamji MF. Chronic infection of a Brindley sacral
538		nerve root stimulator. BMJ Case Rep. 2016;
539	41.	Sanders PMH, Ijzerman MJ, Roach MJ, Gustafson KJ. Patient preferences for next
540		generation neural prostheses to restore bladder function. Spinal Cord. 2011;
541	42.	Kirkham APS, Knight SL, Craggs MD, Casey ATM, Shah PJR. Neuromodulation
542		through sacral nerve roots 2 to 4 with a Finetech-Brindley sacral posterior and anterior
543		root stimulator. Spinal Cord. 2002;
544	43.	Anquetil C, Abdelhamid S, Gelis A, Fattal C. Botulinum toxin therapy for neurogenic
545		detrusor hyperactivity versus augmentation enterocystoplasty: Impact on the quality of
546		life of patients with SCI. Spinal Cord. 2016;
547	44.	Creasey GH, Dahlberg JE. Economic consequences of an implanted neuroprosthesis
548		for bladder and bowel management. Arch Phys Med Rehabil. 2001;
549	45.	Morlière C, Verpillot E, Donon L, Salmi LR, Joseph PA, Vignes JR, et al. A cost-
550		utility analysis of sacral anterior root stimulation (SARS) compared with medical
551		treatment in patients with complete spinal cord injury with a neurogenic bladder. Spine
552		J. 2015;
553	46.	Bénard A, Verpillot E, Grandoulier AS, Perrouin-Verbe B, Chêne G, Vignes JR.
554		Comparative cost-effectiveness analysis of sacral anterior root stimulation for

rehabilitation of bladder dysfunction in spinal cord injured patients. Neurosurgery.

556 2013;

- 557 47. Denys P, Corcos J, Everaert K, Chartier-Kastler E, Fowler C, Kalsi V, et al. Improving
 558 the global management of the neurogenic bladder patient: Part II. Future treatment
 559 strategies. Current Medical Research and Opinion. 2006.
- Wyndaele JJ, Birch B, Borau A, Burks F, Castro-Diaz D, Chartier-Kastler E, et al.
 Surgical management of the neurogenic bladder after spinal cord injury. World Journal
 of Urology. 2018.
- 563 49. Guiho T, Delleci C, Azevedo-Coste C, Fattal C, Guiraud D, Vignes JR, et al. Impact of
 564 direct epispinal stimulation on bladder and bowel functions in pigs: A feasibility study.
 565 Neurourol Urodyn. 2018;
- 566 50. Guiho T, Azevedo-Coste C, Andreu D, Delleci C, Bauchet L, Vignes JR, et al.
- 567 Functional selectivity of lumbosacral stimulation: Methodological approach and pilot
- study to assess visceral function in pigs. IEEE Trans Neural Syst Rehabil Eng. 2018;
- 569 51. Possover M, Schurch B, Henle K-P. New strategies of pelvic nerves stimulation for
 570 recovery of pelvic visceral functions and locomotion in paraplegics. Neurourol Urodyn.
 571 2010;29(8):1433–8.
- 572 52. Li JS, Hassouna M, Sawan M, Duval F, Elhilali MM. Long-Term Effect of Sphincteric
 573 Fatigue During Bladder Neurostimulation. J Urol. 1995;
- 574 53. Rijkhoff NJM, Wijkstra H, Van Kerrebroeck PEV, Debruyne FMJ. Selective detrusor
 575 activation by sacral ventral nerve-root stimulation: Results of intraoperative testing in
 576 humans during implantation of a Finetech-Brindley system. World J Urol. 1998;

577	54.	Peh WYX, Mogan R, Thow XY, Chua SM, Rusly A, Thakor N V., et al. Novel
578		neurostimulation of autonomic pelvic nerves overcomes Bladder-sphincter
579		dyssynergia. Front Neurosci. 2018;
580	55.	Boger A, Bhadra N, Gustafson KJ. Bladder voiding by combined high frequency
581		electrical pudendal nerve block and sacral root stimulation. Neurourol Urodyn. 2008;
582		
583	<u>Figu</u>	re Legends
584		
585	Figu	re 1. Flow diagram of the literature search
586	Table	e 1. Study and patient characteristics per geographic areas
587	Table	e 2. Benefits for visceral functions (geographic areas)
588	Table	e 3. Implantation procedure and reliability axis
589	Table	e 4. Patient quality of life
590	Table	e 5. Additional information
591		
592	<u>Sup</u>	blementary Figure Legends
593	Supp	lementary Fig.1. Cochrane's Risk of Bias in Non-randomized Studies of Interventions
594	(ROI	BINS-I) plot

- 595 Supplementary Fig.2 Articles characteristics. a) Distribution of the selected publications
- classified according to their topics and their year of publication, b) Strength of evidence of the
- 597 selected articles
- 598 Supplementary Tab.1. Study and patient characteristics (all studies)
- 599 Supplementary Tab.2. Benefits for visceral functions (all studies)
- 600 Supplementary Tab.3. Implantation procedure and reliability axis (all studies)
- 601 Supplementary Tab.4. Multicentric studies

Location and period of publication [First to Last papers]	Identified groups	References* and level of evidence	% of male patient	Mean age at the time of implantation (in years)	Lesion profile T – Tetraplegia P – Paraplegia	% of complete SCI	Mean age of the lesion at the time of implantation (in years)	Mean patient follow up after implantation (in years)
Austria [1988-1993]	Innsbruck	[Made88] – IV [Made93] – V	27 -> n=30	26.3 -> n=7	Trauma: 30 T – 10 / P – 20 -> n=30	97 -> n=30	1.86 -> n=7	<8 -> n=30
United Kingdom [1988-2012]	Cardiff Sheffield Southport	[Robi88] – IV [MacD90] – III [Kirk02] – IV [Soni04] – V [Vaid09] – V [DeHe12] – IV	91.75 -> n=24	34.5 -> n=2	Trauma: 24 T – 9 / P – 15 -> n=24	91.75 -> n=24	4.96 -> n=24	10.5 -> n=2
France [1993-2004]	Bordeaux Le Mans Montpellier Nantes	[Bara93] – V [Egon93] – V [Egon98] – IV [Bauc01] – III [Hame04] – IV	65.1 -> n=120	33.6 -> n=116	Trauma: 116 Unspecified: 4 T – 48 / P – 72 -> n=120	85.8 -> n=120	6.6 -> n=116	5.34 -> n=116
Spain [1993]	Barcelona	[Sarr93] – V	14.3 -> n=7	-	Trauma: 7 T – 3 / P – 4 -> n=7	-	-	-
Netherlands [1996-2011]	Enschede Nijmegen Rotterdam	[VanK96] – IV [VanK97] – III [Wiel97] – III [VanD99] – III [Vast03] – II [Mart11] – II	68.6 -> n=89	37.1 -> n=89	Trauma: 89 T – 25 / P – 64 -> n=89	100 -> n=89	6.67 -> n=89	4.8 -> n=89
Switzerland [1998-2017]	Nottwil Zurich	[Schu98] – III [Pann10] – V [Kras14] – III [Kreb17] – IV	57.1 -> n=147	39.2 -> n=147	Trauma: 147 T – 58 / P – 89 -> n=147	95.9 -> n=147	11.17 -> n=147	14.05 -> n=147
North America [2001-2016]	Cleveland New York Philadelphia San Diego Stanford Toronto	[Crea01] – III [Sand11] – IV [Bram16] – V	70 -> n=23	40 -> n=23	Trauma: 23 T – 6 / P – 17 -> n=23	100 -> n=23	7 -> n=23	> 1 year but some results are missing -> n=23
Germany [2003-2018]	Bad Wildungen	[Saue03] – V [Kutz05] – IV [Kutz07] – IV [Rasm15] – III [Zaer18] – III	57 -> n=587	34.9 -> n=587	Trauma: 561 Other specified causes: 26 T – 266 / P – 321 -> n=587	84.5 -> n=587	8.9 -> n=587	14.6 -> n=587
South America [2016-2020]	Medellin Santiago de Chile	[Cast16] – III [Ramo] – V	89.2 -> n=120	38.7 -> n=120	Trauma: 103 Unspecified: 17 T – 42 / P – 78 -> n=120	92.3 -> n=104	7.25 -> n=104	4.4 -> n=16

Table 1 – Study and patients characteristics per geographic areas

 *References presented as the four first letters of the first author surname followed by the two last digits of the year of publication; -> n = total number of implanted individuals with available information for each area

Location	Use of SARS for micturition	Mean bladder capacity (volume in ml)		Mean residual urine (volume in ml)		Incontinent episodes (%)		Urinary tract infections		Autonomic dysreflexia (%)		Use for defecation	Use for erection (% of
	(%)	Before	After	Before	After	Before	After	Before	After	Before	After	(%)	male)
Austria	90 -> n=30	209 -> n=7	435 -> n=7	116 -> n=7	27 -> n=7	100 -> n=30	7 -> n=30	-	0 -> n=7	-	-	29 -> n=7	100 -> n=1
United Kingdom	73 -> n=22	-	-	-	-	-	32 -> n=22	-	-	-	-	50 (SARS alone) -> n=12	30 -> n=20
France	89.7	203	546.4	90	25	98.8	11.58	100	29	21.7	0	52.6	65.2
Spain	-> n=116 100 -> n=7	-> 11=112	>400 in all patients -> n=7	-> 11 = 19	<50 in all patients -> n=7	-> 11=112	0 -> n=7	-> 11=93	-> 11=93	-> 112	-> 11=112	-> n=116 100 -> n=7	100 -> n=1
Netherlands	87.1 -> n=84	285.4 -> n=52	571.2 -> n=37	104.7 -> n=52	64.9 at one year -> n=37	90 (daytime) 96 (night) -> n=52	27 (daytime) 14 (night) at one year -> n=37	98 -> n=37	59 -> n=37	15.9 -> n=47	4.25 -> n=47	46.7 -> n=84	62.3 -> n=61
Switzerland	79.6 -> n=147	264.4 -> n=147	476.7 -> n=147	157 -> n =10	16 -> n =10	60.9 -> n=137	38.3 -> n=137	87.7 -> 147	51.7 -> n=147	62.6 -> n=147	7.5 -> n=147	-	-
North America	78 -> n=21	256.9 -> n=21	>401 -> n=21	159.6 -> n=21	85.7 -> n=21	82.6 -> n=21	64.8 -> n=21	100 -> n=21	78.3 -> n=21	34.8 -> n=21	8.7 -> n=21	61 (systematic use) -> n=21	-
Germany	86.2 -> n=333	173 -> n=464	470 -> n=464	-	-	86 -> n=287	52 -> n=287	6.3 per year -> n=464	1.2 per year -> n=464	40.3 -> n=464	0.4 -> n=464	73 ->287	-
South America	90.5 -> n=120	-	362 -> n=104	-	<50 -> n=120	100 -> n=104	14.4 -> n=104	91 -> n=104	15 -> n=104	66.3 -> n=104	5.8 -> n=104	88.8 -> n=120	66.7 -> n=72

Table 2 – Benefits on visceral functions (geographic areas)

-> n = total number of implanted individuals with available information for each area

Author	Deafferentation and Implantation procedure	Complications following surgery	Implant failures	Impact on patients everyday life and long term side effects	Additional information
Austria ->N=30	SARS implantation and deafferentation of roots for whom anterior component induced detrusor contractions – first patients – then extension to all sacral posterior roots. 26 intradural implant and 4 extradural implantation	- Second deafferentation (n=5) -> successful procedure for 4 of them	-	- Suspicion of Wallerian degeneration in one patient for whom electromicturition was impossible at the time of the study	- Severe autonomic dysreflexia disappeared in on patient - Statement claiming that SARS procedure improved all patients Quality of life as well as no patient has regretted the operation
United Kingdom ->N=24	Intradural implantation in all cases with or without S2-S4 rhizotomy – e.g. 9 implantation with and 3 without deafferentation in Sheffield group (n=12)	- Suspicion of anterior roots damage (n=2) - Cerebrospinal fluid leakage (n=2)	-	 Patient with pelvic pain awaiting for rhizotomy (n=1) Somatic muscle spasms (n=1, preventing implant-driven micturition) Muscle spasms when using SARS implant for erection (n=6 -> never used for sexual purposes) Sphincterotomy proposed (n=4 -> two refused and did not use the implant) Hydronephrosis pre-implantation (n=4): Resolved in two cases One patient relapsed Grade IV reflux with urgent sphincterotomy in one patients Spine fractures due to the laminectomy leaded to intractable spasms and cessation of implant use (n=1) Infection leading to complete removal of the device 2 years after implantation (n=1) 	- No constipation and reduced time for bowel evacuation reported by the Sheffield group
France ->N=116	- Intradural rhizotomy and implantation (n=103) – Intradural rhizotomy and extradural implantation (n=13)	 Cerebrospinal fluid leakage (n=6) Nearly complete denervation (n=5, intradural implantation, stimulator could be use after recovery in 3 patients) Neuropraxia (n=1) Recovery after few months (n=1) Partial denervation (n=5, with good results few months post-implantation) Second deafferentation (n=4) Discomfort at the subcutaneous receptor (subsequently displaced, n=2) 	 Extradural implantation due to intradural electrode failure (n=1) Replacement of receiver block (n=6) Cable failures (n=4) Cable disconnection (n=4) Charger failure (n=3) 	 Transitory spasticity was mentioned but not quantitatively documented. Infection leading to implant removal (n=2) Deterioration of detrusor responses (n=5) Bladder fibrosis (n=1) Persistent sphincter dyssynergia (n=3, patient refused sphincterotomy or conus deafferentation) Persistent Wallerian degeneration (n=1) Second sphincterotomy (n=4, all continent) Peyelonephritis (n=1) Renal problems leaded to nephrotomy (n=1) 	Benefit: - Preoperative vesicoureteral reflux disappeared (n=3)
Spain ->N=7	Extradural implantation and deafferentation at the conus medullaris in all patients	The receiver block was placed too low in patient abdominal wall and broke through the skin (n=1) -> It was replaced higher up	-	-	Benefit: - Upper urinary tract dilatation improved in one patient

Table 3 - Implantation procedure and reliability axis (geographic areas)

Netherlands ->N=84	Intradural sacral posterior rhizotomy (S2-S5) and intradural SARS implantation in all patients	 Second deafferentation (n=3) Neuropraxie (n=1) Cerebrospinal fluid leakage (n=3) Wound infection (n=1) Nerve damage (n=2) 1 permanent 1 recovered Detrusor weakness (n=4) -> Problems solved several years after surgery 	 External equipment (n=23 in total) Cable fracture (n=16) Transmitter defects (n=7) Internal equipment (n=4 in total). 3 receiver replacements 	 Strong lower limbs contractions during stimulation-induced erection (n=12) Strong motor responses to stimulation (n=1) Fibrosis around sacral roots (n=2) Root failures (n=1, but deafferentation enable complete continence) Detrusor weakness (n=2) Sphincter weakness (n=1) Implant infection (n=1) -> Replacement of the intradural implant by an extradural one AHR induced by stimulation (n=2) Intrathecal baclofen pump (n=2) 	 Stimulation-induced erections not used for sexual intercourse Upper urinary tract dilatation solved in 2 patients Creatinine clearance returned to normal values after implantation (n=32) Preoperative vesicoureteral reflux was reduced (n=1) or disappeared (n=1) No interference between SARS and baclofen pump
Switzerland ->N=147	Intradural implantation and deafferentation S2 to S5 in all cases	 Incomplete rhizotomy (n=8) with second deafferentation (n=4) Cerebrospinal fluid leakage (n=8) Infection (n=3) 	 Defect of cables (n=19) Defect of stimulation plate (n=19) Dislocation of the stimulator plate (n=16) Undetermined cause of stimulator failure (n=15) 	 Additional urological interventions in 43 patients 22 Outlet obstruction 10 Vesicoureteral reflux 10 Incontinence 9 Urethral strictures Problems with condom fixation (n=3) AHR persisted and occurred during implant-driven voiding despite complete sacral deafferentation (n=8) 	- In 54 patients, a total of 83 surgical revisions were performed (17 patients underwent more than one revision)
North America ->N=21	Extradural implantation and intradural rhizotomy S2-S5 in all cases	 Temporary nerve damage (n=2, recovery within 3 months) Incomplete rhizotomy with second deafferentation (n=1) 	-	 Increased lower limb spasticity (n=2) Infection leading to complete removal of the device 26 years after implantation (n=1) Increase in incontinence episodes (n=4) Fracture of the second lumbar vertebra 5 months after surgery which caused compression of the cauda equina (n=1) 	Benefit: - Reduced time for bowel evacuation
Germany ->N=440	Intradural deafferentation and implantation. Rhizotomy performed in all surgery with a success rate of 95.2%	 Cerebrospinal fluid leak (n=6) Infection of the implant (n=5) with further reimplantation in 4 cases Dehiscent wound (n=2) Hemorrhages (n=2, no further treatment) Second rhizotomy (n=8 at conus terminlis to interrupt dysreflexia) 	 - 81 Implant defects -> 44 repair surgeries * 26 Receiver exchange and cable repair * 6 Cable repair alone * 12 Extradural implant with 1 withdrawal due to an infection 	- Bladder overdistension and neurogenic failures are mentioned but not quantitatively documented.	- Bladder spasticity stopped in 97% of all cases Recovery of kidney function is mentioned
South America ->N=120	Extradural implantation and posterior rhizotomy of S2-S5 sacral roots (n=104) or S2-S4 roots (n=16)	- Neuropraxia with spontaneous resolution after 12 months (n=2)	 Failure of the receiver block (n=1) Malfunction/damage of the external hardware mostly due to operator misuse (n=10) 	 Infections few months after implantation (n=2) Cable extrusion (n=2) Extrusion of the receiver block (n=4) 	- Stimulation-induced erections rarely used for sexual intercourse

-> N = total number of implanted individuals with available information for each area; n = number of corresponding adverse events for each area

Table 4 - Patient's quality of life

Author	Population	Survey modalities	Results
Wielink et al, 1997	52 implanted patients.	Final survey designed by	Quality of life:
	Questionnaires	using 4 indicators	- The Nottingham Health Profile covers several aspects such as "energy", "sleep", "emotional reaction" and "social isolation". It did
	completed at	- the Nottingham Health	not show significant improvement after implantation.
	baseline, 3 months, 6	Profile	- The Karnofsky Performance Index, initially designed in cancer research to quantify "objective" quality of life aspects, did not show
	months and 1 year	- the Karnofsky	significant improvement after implantation.
	follow-up	Performance Index	- The Affect Balance Scale assessing experienced well-being improved significantly after SARS implantation.
		- the Affect Balance	- Before implantation patients showed problems with bladder emptying and incontinence especially during everyday life tasks.
		Scale	
		 Self-developed items 	<u>Cost-effectiveness:</u>
			- Costs of treatment with SARS are high in the first 2.5 years (implantation surgery and stay in hospital)
		+ Cost effectiveness	- These SARS costs are earned back after 8 years compared to conventional treatment costs.
		study	- The saving of money increases with the long term effects
Creasey et al, 2001	18 implanted patients	User satisfaction survey	6 Items with 5 possible responses (Strongly agree / Agree / Neutral / Disagree / Strongly disagree):
	whose completed a 6-	designed by the authors	- Patient satisfaction
	month follow-up		*SA: 67% *A: 28% *N: 0% *D: 5% *SD: 0%
			- Quality of life improvement
			*SA: 44% *A: 50% *N: 5% *D: 0% *SD: 0%
			- Correspondence with patients expectations
			*SA: 29% *A: 59% *N: 0% *D: 12% *SD: 0%
			- Improvement in patient independence
			*SA: 39% *A: 39% *N: 22% *D: 0% *SD: 0%
			- System ease of use
			*SA: 28% *A: 61% *N: 0% *D: 11% *SD: 0%
			- Reduction in urinary tract infections
			*SA: 44% *A: 33% *N: 6% *D: 11% *SD: 6%
Vastenholt et al,	Comparison between	Use of the Qualiveen	Qualiveen results:
2003	two populations:	questionnaire which is a	- Impact of urinary problems on patients quality of life is smaller in the implanted patients group compared to the control group.
	- 37 implanted	disease specific	- The overall quality of life is higher in implanted patients versus control patients
	patients with a 7 years	questionnaire	
	follow-up period	composed of two parts:	Patient's experiences and expectations:
	- 400 SCI patients	 Impact of urinary 	- Patients expectations with respect to micturition:
	whose results are	problems	*Expectations met: 62% *Partially met: 32%
	reported in the	 Quality of life of SCI 	- Concerning defecation:
	manual of the	patients	*Expectations met: 38% *Partially met: 30%
	Qualiveen		- Use of SARS for erection in male patients:
	questionnaire	+ Patient expectations	*Expectations met: 47%
			Almost 90% patient would chose again for surgery and would recommend implantation
Martens et al, 2011	Comparison between	Survey designed with 3	Qualiveen guestionnaire
	3 populations:	components:	- Impact of urinary problems:
	- Brindley group	- the Qualiveen	* Patients who used SARS mentioned less limitations, constraints, fears and bad feelings concerning their urinary problems.
	(n=46)	questionnaire	- Overall quality of life:

	- Rhizotomy group	- the SF-36 which	* Better general quality of life for the Brindley group
	(Brindley procedure	mesures the general	* Better general quality of life for the rhizotomy group compared to the control group but not statistically significant.
	without use of the	health	- Brindley group > Rhizotomy group > Control group
	implant – n=27)	- Questions regarding	
	- Control group (n=28)	urinary tract infections	SF-36 Questionnaire:
		and continence	- Higher scores in Brindley group versus Rhizotomy group and control group indicating better general health and social functioning
			Clinical results:
			- Continence rate (% of patients totally continent):
			*Brindley group *Rhizotomy group *Control group
			52% 33% 14%
			- Urinary tract infections (% of patients without infections):
			*Brindley group *Rhizotomy group *Control group
			50% 15% 36%
Rasmussen et al,	587 implanted	Combination of data	Overall satisfaction:
2015 and Zaer et al,	patients.	from both showed	- VAS ranged from 0 (worst) to 10 (best). For the subject that are still using their implant, the median VAS score was 10 (range: 0-10).
2018	Questionnaires	results from 7 indicators	
	completed by 333	- 1 for overall	Bladder function (for individuals using their implant):
	patients and only	satisfaction: Visual	- VAS ranged from 0 (minor) to 10 (major nuisance). VAS score dropped from 9 (range: 7-10) at baseline to 3 (1-5) at follow up.
	responses from those	analog scale (VAS),	
	who are using the	- 1 for bladder function:	Sexual function (for individuals using their implant):
	SARS for bowel	VAS	- VAS ranged from 0 (no satisfaction) to 10 (no problems).
	function were	- 1 for sexual function:	Males: No statistical difference between before and after (0.41 versus 0.47) even if males ability of performing intercourse
	analyzed in	VAS (n=284 – 154 males	decreased.
	Rasmussen et al	and 130 females)	Females: slightly decrease from 6 (range: 0-10) to 5 (0-10) without reaching statistical significance. In the same way, no statistical
	(n=277 – 145 males	- 4 assessing bowel	difference between before and after regarding capability of orgasm, usage of sexual aids or medicine and ability of having sexual
	and 132 females)	function: VAS for overall	intercourse.
	while only those using	severity of bowel	
	the SARS for bladder	symptoms; Neurogenic	Bowel symptoms (for individuals using their implant):
	function were	bowel dysfunction	- VAS for overall severity of bowel symptoms, range 0 (worst) to 10 (best), was 6 (range: 4-8) before implantation and 4 (2-6) at follow
	analyzed in Zaer et al	score; St Marks	up.
	(n=287– 154 males	incontinence score and	- Neurogenic bowel dysfunction score (0-6 very minor, 7-9 minor, 10-13 moderate, 14+ severe dysfunction) was 17 (range: 11-21)
	and 133 females).	Cleveland constipation	before SARS procedure and 11 (9-15) at follow-up.
		score	- St Marks incontinence score (0=perfect continence, 24=totally incontinence) remains 4 before and after implantation (range: 0-7
			and 0-5 respectively).
			- Cleveland constipation score (0=minimal, 30=worst constipation) slightly decrease from 7 (range: 6-10) at baseline to 6 (4-8) at
			follow-up.

Table 5 – Additional information

Author	Deafferentation	General description
Kirkham et al, 2002	 Extradural (80%) or intradural (20%) implantation of SARS No rhizotomy 	Implantation of SARS implant on both anterior and posterior roots for neuromodulation purposes. In all patient, stimulation increase bladder capacity and reflex erection was preserved. However, micturition was only elicited in one patient - Patient for whom micturition cannot be for sure imputed to implant use.
Soni et al, 2004	intradural implantation of SARS and S2, S3 and S4 posterior roots rhizotomy	A patient using SARS implant for micturition noticed progressively increasing spasms. These spasms required intrathecal baclofen therapy but subsequent lumbar spine fractures – L4 and L5 vertebral bodies – leaded to intractable spasms and to cessation of implant use.
Vaidyanathan et al, 2009	- Intradural rhizotomy and implantation	Person with SCI with a history of bladder calculus underwent sacral deafferentation and SARS implantation. Chronic infections by Pseudomonas aeruginosa led to implant removal, causing loss of bladder emptying. Deafferentation and failed implantation induced severe constipation and loss of – reflex – penile erection. The long-term consequences of unsuccessful bladder stimulator surgery had dramatic effects on patient quality of life.
Pannek et al, 2010	Intradural rhizotomy without implantation	S2 to S5 deafferentation as a salvage procedure in a patient with life-threatening autonomic dysreflexia. This bladder-triggered dysreflexia even leading to cardiac arrest, it was decided to perform sacral deafferentation to prevent further critical episodes. The patient nevertheless rejected any implant and 3 month after surgery declare himself content with suprapubic catheter while no episodes of autonomic dysreflexia occurred.
Sanders et al, 2011	NAª	Patient preferences for next generation of neural prostheses. A fractional factorial study was designed to identify patient preferences regarding new neuroprosthetic devices. This study aimed to identify the key features for implant attractiveness and compared three stimulation modalities: Brindley implant, pudendal nerve stimulation and Brindley system without dorsal rhizotomy. In a nutshell, "side effects" and invasiveness seemed to be the most important features while patient preferences established the following ranking: Brindley system without dorsal rhizotomy > pudendal nerve stimulation > Brindley implant.
De Heredia et al, 2012	NAª	Investigation of MRI exams impact on SARS implant in 18 patients. A total of 44 MRI examinations were performed, 34 at 0.2 Tesla and 21 at 1.5 Tesla. Side effects: Two MRI on the same patient were stopped due to interference with the SARS (toe movements at 0.2 Tesla, a subsequent MRI at 1.5 Tesla was performed without complications). No other adverse effects could be directly attributed to MRI exams.
Bramall et al, 2016	- Intradural implantation of SARS - No rhizotomy	Person with SCI remained incontinent after SARS implantation leading his physician to remove the receiver block while leaving the electrodes and associated wires. Repeated skin breakdown with wired extrusion happened in subsequent patient medical history ultimately leading to a chronic Staphylocccus aureus infection and sacral osteomyelitis 26 years after implantation. Definitive management involved complete removal of the device and the intradural phlegmon as well as ligation of the thecal sac and flap reconstruction.
Krebs et al, 2016	- Intradural rhizotomy and implantation	Long-term follow up of detrusor contractions in spinal cord injured individuals implanted with sacral anterior root stimulator (mean follow-up=11.7 years). Detrusor pressures induced by stimulation decreased over time without reaching statistical significance. This decrease neither resulted in an increase in the number of daily stimulation-induced voiding nor in an increase in residual urine after voiding. The origin of the deterioration of bladder contraction remains unknown even if neurogenic deterioration in the wake of SCI, long-term SAR or aging are likely to be incriminated.

^aNA: Not applicable

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Supplementary Fig.1 – Cochrane's Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) plot

Blas due to confounding Blas due to selection of participants Blas in classification of interventions Blas due to deviations from intended interventions Blas due to missing data Blas in measurement of outcomes Blas in selection of the reported result Overall risk of blas

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Supplementary Fig.2 – Articles characteristics. a) Distribution of the selected publications classified according to their topics and their year of publication, b) Strength of evidence of the selected articles

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Authors	Number of patients / % of male patient	Mean age in years (*)	Lesion profile T – Tetraplegia P – Paraplegia	% of complete SCI	Mean age of the lesion at the time of implantation (in years)	Patients follow up after implantation (in years)	Study type	Level of evidence
Madersbacher et al, 1988	7/14	26.3 [17-45]	Trauma: 7 T – 3 / P – 4	86	1.86 [1-3]	- [0.5-2]	RS	IV
Robinson et al, 1988	22 / 91	-	Trauma: 22 T – 7 / P – 15	91	4.5 [1-22]	-	RS	IV
Brindley et al, 1990	50 / 76	32.08 [57-19]ª	Trauma: 48 T – 10 / P – 38 MS: 2	77.08	-	- [5-11]	RS	IV
MacDonagh et al, 1990	12 / 75	-	Trauma: 12 T – 2 / P – 10	100	> 2	2.2 [0.25-6]	PS	Ш
Sauerwein et al, 1990	12 / 50	36 [24-52]ª	Trauma: 12 T – 1 / P – 11	83.3	9 [1-27]	1.31 [2.5-0.08]	RS	IV
Barat et al, 1993	9/-	-	-	-	-	-	RS – SC	V
Egon et al, 1993	30/ 70	-	-	-	-	-	RS – SC	V
Madersbacher et al, 1993	30 / 27	-	Trauma: 30 T – 10 / P – 20	97	-	< 8	RS	v
Sarrias et al, 1993	7 / 14.3	-	Trauma: 7 T – 3 / P – 4	-			RS – SC	v
Brindley, 1994 and Brindley, 1995	500 / 54.2	-	Trauma: 378 T – 122 / P – 256 Unspecified : 98	85.5	- 4.07 [0.25-16.1]		RS	Ш
Van kerrebroeck et al, 1996	52 / 55.8	32.9 [16-57]ª	Trauma: 52 T – 11 / P – 41	100	6.25 [0.75-22.5]	3.2 [0.25-6.33]	RS	IV
Van kerrebroeck et al, 1997 and Wielink et al, 1997	52 / 78.85	28.5 [16-54] ^{ab}	Trauma: 52 T – 11 / P – 41	100	6.4 [0.75-24.8]	1.14	PS	Ш
Egon et al, 1998	96/73.1	38.9 [23-66]ª	Trauma: 96 T – 41 / P – 55	82.3	6.67 [1-21]	5.52 [0.5-14]	RS	IV
Schurch et al, 1998	10 / 30	28.7 [18-42]ª	Trauma: 10 T – 5 / P – 5	90	5.23 [1.2-16.7]	3.8 [1.92-6.03]	RS	Ш
Van der Aa et al, 1999	38 / 86.8	35.03 [18-59]ª	Trauma: 38 T – 9 / P – 29	100	6.95 [1-39]	- [0.25-12]	RS	ш
Bauchet et al, 2001	20 / 30	34 [17-53]ª	Trauma: 20 T – 6 / P – 14	100	6,25 [1.25-23.83]	4.5 [1-8.5]	RS	ш
Creasey et al, 2001	23 / 70	40 [14-67] ^a	Trauma: 23 T – 6 / P – 17	100	7 [2-26]	> 1 year but some results are missing	PS	Ш
Kirkham et al, 2002	5 / 100	37.2 [32-46] ^a	Trauma: 5 P – 5	100	8.4	-	RA	IV
Sauerwein et al, 2003	427 / 33	34ª	Unspecified: 427	-	-	6.2	RS – SC	V
Vastenholt et al, 2003	37 / 86.52	43	Trauma: 47	100	7.25	7.1	CSS	11

Supplementary Tab.1 – Study and patient characteristics (all studies)

		[23-63] ^b	T – 14 / P – 23		[0.9-39.25]	[1.3-13.25]		
Hamel et al, 2004	4/100	-	Unspecified: 4 T – 1 / P – 3	100	-	- [0.5-1.75]	RS	IV
Soni et al, 2004	1/100	46 ^{a°}	-	100	17	8	CR	V
Kutzenberger et al, 2005	464 / 31	-	Unspecified: 464 P – 464	-	-	6.6 [0.5-17]	RS – SC	IV
Kutzenberger, 2007	464/53	33 [14-67]ª	Trauma: 436 Other specified causes: 28 T – 190 / P – 274	75	[0.5-46]	8.6 [1.5-18]	RS	IV
Vaidyanathan et al, 2009	1/100	23	Trauma: 1 T – 1	100	3	13	CR	v
Pannek et al, 2010	1/100	53 ª°	Trauma: 1 P – 1	100	34 - rhizotomy only	0.25	CR	v
	Group #1 -Brindley 46 / 78	48 [33-67] ^b	Unspecified: 46	-	8	13 [1-19]		
Martens et al, 2011	Group #2 -Rhizotomy 27 / 81	47 [26-66] ^b	Unspecified: 27	-	5	14 [3-21]	CSS	II
	Group #3 - Control 28 / 79	42 [20-75] ^b	Unspecified: 28	100	NA	NA		
Sanders et al, 2011	66 / 89.4	50.6 (sd :1.9) ^b	Trauma: 66 T – 38 / P – 28	31.6	NA	NA	RA	IV
De Heredia et al, 2012	18 / 66.6	First MRI: 46 [24-69]	Unspecified: 18 T – 2 / P – 16	-	7 [1-18]	0.5 years after MRI exam	RS	IV
Krasmik et al, 2014	137 / 59.1	40 (sd: 12.4)ª	Trauma: 137 T – 53 / P – 84	96.35	11.6 (sd: 10.2)	14.8 (sd: 5.3)	RS	ш
Bramall et al, 2016	1/100	36	Trauma: 1 P – 1	100	14	26	CR	v
Castano-Boreto et al, 2016	104 / 91.3	38 (sd:10)ª	Trauma: 103 Unspecified: 1 T – 34 / P – 70	92.3	6.5 (sd: 4.9)	-	RS	111
Krebs et al, 2016	111/53	-	Unspecified: T – 39 / P – 72	-	8.6	11.7 [5-24.9]	RS	IV
Rasmussen et al, 2015 and Zaer et al, 2018	587/57	34.9	Trauma: 561 Other specified causes: 26 T – 266 / P – 321	84.5	8.9 [0-49]	14.6 [1-25]	CSS	111
Ramos et al, 2020	16/81	43 [31-59]ª	Unspecified: 16 T – 8 / P – 8	-	-	4.4	RS-SC	V

^a is the age at time of implantation, ^bcorresponds to the age at interview completion and ^o are absolute values instead of mean values. [] corresponds to data range. (sd) corresponds to data standard deviation. RS: Retrospective Study, PS: Prospective study, SC: Short Communication, CR: Case Report, CSS: Cross-sectional study, RA: Research Article. NA: Not Applicable.

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Author	Use of SARS for	Bladder c (m	apacity I)	Residual urine (ml)		Incontine	Incontinent episodes (%)		Urinary tract infections		ysreflexia (%)	Use for	Use for erection
	micturition (%)	Before	After	Before	After	Before	After	Before	After	Before	After	derecation (%)	(%)
Madersbacher et al, 1988 (n=7)	100	209 [80-350]	350< [350- 500<]	130 [50-200]	27 [10-40]	-	-	-	0	ŀ	ŀ	29	100 (1/1 male)
Robinson et al, 1988 (n=22)	73	-	-	-	-	-	32	-	-	-	-	-	30 (6/20 males)
Brindley et al, 1990 (n=48)ª	85.4	-	-	-	-	-	44 (SARS users)	-	29.2% (SARS users)	-	-	56.2	43.2 (16/37 males)
MacDonagh et al, 1990 (n=12)	100	-	-	-	-	-	-	-	-	-	-	50 (SARS alone)	-
Sauerwein et al, 1990 (n=12)	75	-	565	-	<50 in 75% of patients	75	25	-	-	-	-	-	-
Egon et al, 1993 (n=30)	90	-	-	-	<50 in 83% of patients	-	-	-	-	-	-	-	-
Madersbacher et al, 1993 (n=30)	90	-	-	-	<50	100	7	-	-	-	-	-	-
Sarrias et al, 1993 (n=7)	100	-	>400 in all patients	-	<50 in all patients	-	0	-	-	-	-	100	100 (1 male patient)
Brindley, 1994 and Brindley, 1995 (n=479)ª	86.2	-	-	-	-	-	-	-	-	-	-	-	-
Van kerrebroeck et al, 1996 (n=47) ^a	87.2	-	590 (sd: 104) [374-792]	-	<50 in all patients	-	8.5	4.2 per year [2-12]	1.4 per year [0-2]	15.9	4.25	36.2	62 (18/29 males)
Van kerrebroeck et al, 1997 and Wielink et al, 1997 (n=52)	100	285.4 [20-780]	571.2 [260-806]	104.7 [0-600]	45.6 [0-600] at one year (n=31)	90 (daytime) 96 (night)	21 (daytime) 12 (night) at one year	92% 1.94 per year [0- 15]	27% 0.31 at one year [0-3]	13.5	5.8	Clear benefit mentioned for 2/3 of the patients	78 (32/41 males)
Egon et al, 1998 (n=93)ª	89.3	206	564	-	-	98.6	11.8	100	29	22.9	0	54.8	70.8 (46/65)
Schurch et al, 1998 (n=10)	100	160 (sd: 82)	>500 in all cases	157 (sd: 138)	16 (sd: 22)	100	-	80%	60%	80	80	-	-
Van der Aa et al, 1999 (n=37)ª	91.9	>400 in 24% of patients (9/37)	>400 in 94.6% of patients (35/37)	>60 in 78.8%	<60 in 73%	-	16.2	-	-	-	-	73	87.9 (29/33 males)

Supplementary Tab.2 – Benefits for visceral functions (all studies)

Bauchet et al, 2001 (n=19) ^a	89.5	190 [40-600]	460 [350- 800]	90 [0-500]	25 [0-90]	100	10.5	100	-	15.8	0	42.1	0 (0/6 males)
Creasey et al, 2001 (n=21) ^a	78	256,9	>401	159.6	85.7	82.6	64.8 (11/17)	100 %	78.3%	34.8	8.7	61 (systematic use)	-
Sauerwein et al, 2003 (n=427)	98	-	-	-	-	-	-	6.4 per year	1.2 per year	-	-	95	-
Vastenholt et al, 2003 (n=37)	87	-	-	-	-	-	43 (daytime) 30 % (night)	98%	59%	-	-	60 - clear benefit in stool evacuation	62.5 (20/32 males)
Hamel et al, 2004 (n=4)	100	-	>400 in all patients	-	<50 in all patients	-	25	-	-	-	-	50	75 but not used (3/4 males)
Kutzenberger et al, 2005 (n=464)	90.5	173	470	-	-	-	17	6.3 per year	1.2 per year	40.3	0.4	86.4	-
Kutzenberger, 2007 (n= 440)	95.4	173	476	-	-	-	17	6.3/year	1.2/year	-	0.4	91	-
Krasmik et al, 2014 (n=137)	78.1	272 (sd: 143)	475 (sd: 83)	-	96 (sd: 177)	60.9	38.3	88.3% 6.2 per year (sd: 4.5)	51.1% 2.5 per year (sd: 2.6)	61.3	2.2	-	-
Castano-Boreto et al, 2016 (n=104)	91	-	362 (sd : 108)	-	<50	100	14.4	91%	15%	66.3	5.8	88	64.2 (61/95 males)
Rasmussen et al, 2015 and Zaer et al, 2018 (n=333/287)	86.2	-	-	-	-	86	52	-	-	-	-	73	-
Ramos et al, 2020 (n=16)	87.5	-	-	-	<50 in all patients	-	-	-	37.5 (SARS users)	-	-	94	85 (11/13 males)

^aNumber of patients that completed the follow-up period (when different from the total number of patients involved in the initial study -> Figures related to bladder functions were then computed based on this number)

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Author	Deafferentation and Implantation procedure	Complications following surgery	Implant failures	Impact on patients everyday life and long term side effects	Additional information
Robinson et al, 1988 (n=22)	-	Neuropraxia (n=1)	-	 Patient with pelvic pain awaiting for rhizotomy (n=1) Somatic muscle spasms (n=1, preventing implant-driven micturition) Muscle spasms when using SARS implant for erection (n=6 -> Implant never used for sexual purposes) Sphincterotomy proposed (n=4 -> two refused and did not use the implant) Hydronephrosis pre-implantation (n=4): * Resolved in two cases * One patient relapsed * Grade IV reflux with urgent sphincterotomy in one patients 	-
Brindley et al, 1990 (n=48)	-	-	 - 37.5% of patients reported implant failures > 25 failures in total - Receiver block failure (n=7) - New implantation due to cable break (n=1) - Cable break (n=5) - Connector failures (n=12) 	 17% of users noted increased spasms Backache (n=2) Stimulus pain (n=1) Pain leading patient to stop implant use (n=2) Increased sweating (n=6) Occasional headache (n=1) Occasional autonomic dysreflexia (n=1) Loss of reflex erections (n=8) Increased constipation (n=4) 	-
MacDonagh et al, 1990 (n=12)	Intradural implantation in all cases and S2-S4 rhizotomy in 75% of patients	 Suspicion of anterior roots damage (n=2) Cerebrospinal fluid leakage (n=2) 	-	-	- No reports of constipation in any patients Benefit: - Reduced time for bowel evacuation in any patient
Sauerwein et al, 1990 (n=12)	Initially: -Intradural implantation without rhizotomy (16.7% of patients) -> Implants replaced by extradural devices with extradural rhizotomy Finally: -Extradural implant and extradural rhizotomy in all patients	 Cerebrospinal fluid leakage (n=1) Root damage in all patients (n=12) Incomplete deafferentation (n=2 and one more is suspected). 	-	-	-

Supplementary Tab.3 – Implantation procedure and reliability axis (all studies)

Barat et al. 1993	Deafferentation in all			- Stress incontinence (n=3)	Benefit:
(n=9)	patients but 3 incomplete			- Reflex incontinence (n=3)	- 3 patients recovered
(- <i>y</i>	procedure (without S2 or	-	-	- Mixed incontinence (n=2)	continence
	S4 cutting)			- Second deafferentation needed in 3 patients (spread to	
				S1 in two cases)	
Egon et al, 1993		- Major denervation ->		- Secondary loss of bladder contractions (n=3)	
(n=30)		Nearly complete bladder			
		denervation (n=2, maximal			
		recovery after 1 year)			
		- Neuropraxia (n=1)			
	-	-> Recovery after few	-		-
		months (n=1)			
		 Partial denervation (n=5, 			
		with good results few			
		months post-implantation)			
Madersbacher et	SARS implantation and	Suspicion of Wallerian		 Second deafferentation (n=5) -> successful procedure for 	- Severe autonomic
al, 1993 (n=30)	deafferentation of roots	degeneration in one patient		4 of them	dysreflexia disappeared in
	for whom anterior	for whom electromicturition			on patient
	component induced	was impossible at the time			- Statement claiming that
	detrusor contractions – in	of the study			SARS procedure improved
	first patients – then		-		all patients Quality of life
	extension to all sacral				as well as no patient has
	botton rooute				regretted the operation
	Deller results.				
	A extradural implantation				
Sarrias et al 1993	Extradural implantation	The receiver block was			Benefit:
(n=7)	and deafferentation at	placed too low in patient			- Patient satisfaction
(the conus medullaris in all	abdominal wall and one of			- one patient with upper
	patients	the device corners broke			urinary tract dilatation
	•	through one of the skin	-	-	showed improvement
		creases (n=1) -> It was			after 6 months of implant-
		replaced higher up and			driven micturition.
		cause no further trouble			
Brindley, 1994	- Implantation:	- Infection following surgery	- Implant failures in 72 of the 500 first patients	 Infection and explantation during follow-up (n=1) 	
and Brindley,	* 88.2 % intradural	and device explantation	* 56 repairs	- Exposition of the receiver block (n=5)	
1995 (n=479)	* 4.6% Extradural	(n=3)	+ 21 second failures	- 95 surgery performed to remedy faults in implant:	
	* 7.2% Unknown		 9 replaced 	* 75 repair procedures (cables, receiver block) -> These	
	- Rhizotomy:		 12 repaired 	operations were followed by infections in two cases.	
	* 73.6% Rhizotomy		+ 3 third failures	* 20 implantations of a new device -> followed by infection	
	* 10.4% No rhizotomy		 1 replaced 	and explantation in one case.	-
	* 16% Unknown		2 repaired	- Death due to renal failure (n=1)	
			* 9 replaced by a new stimulator with extradural	- Deterioration of the upper urinary tract (n=11)	
			electrodes	-> Including one patient deceased from carcinomatosis,	
			+ 2 failures	primary in the bladder	
			 2 repaired * E implant needed no repair since implant driver 	- Second deatterentation (n=39)	
			s implant needed no repair since implant-driven	- spinal roots deterioration during follow up (h=8)	
			micturition remained good		

			* 2 waiting to be repaired	- Failures of implant driven micturition due to	
			- Total number of failures = 98	overstretching of bladder wall (n=5) -> recovery in all	
			* 18 receiver failures	cases.	
			* 18 connector failures		
			* 3 cable fractures		
			* 42 cables outside their receiver blocks		
			* 17 Unknown		
Van kerrebroeck	Intradural implantation	- Cerebrospinal fluid leakage	-No implant failure (only mention of minor problems	- Spasticity return to preoperative levels	Benefits:
et al, 1996 (n=47)	and posterior rhizotomy in all cases	(n=2) - Wound infection (n=1) - Nerve damage (n=2) * 1 permanent * 1 recovered	with the external control boxes)	 Second deafferentation (n=3) Implant infection (n=1) -> Replacement of the intradural implant by an extradural one AHR induced by stimulation (n=2) Strong lower limbs contraction s during stimulation-induced erection (n=12) Intrathecal baclofen pump (n=2) 	 Upper urinary tract dilatation solved in 2 patients Creatinine clearance returned to normal values after implantation (n=32) Preoperative vesicoureteral reflux was reduced (n=1) or disappeared (n=1)
					- No interference between
					SARS and bacloten pump
Van kerrebroeck et al, 1997 and Wielink et al, 1997 (n=52)	Intradural implantation and intradural sacral posterior root rhizotomy (S2, S3 and S4)	 Difficulties to split anterior and posterior roots (n=3) -> Persistent reflex post- operatively needed second deafferentation Persistent neuropraxia (n=1, resolved at 18 months) Cerebrospinal fluid leakage (n=2) 	 Minor problems with the external control box are mentioned Cable fracture (n=1, 18 months after surgery) 	-	Benefits: - Upper urinary tract dilatation solved in 2 patients (6 weeks after rhizotomy) - Vesicoureteral reflux observed in 6 ureters in 4 patients improved in all cases
Egon et al, 1998 (n=93)	- 90.7% Intradural implantation	 Cerebrospinal fluid leakage (n=3) Nearly complete denervation (n=5, intradural implantation, stimulator could be use after recovery in 3 patients) 	- Receivers failure (n=5, all were replaced) - Cable failures (n=4)	 Transitory spasticity was mentioned but not quantitatively documented. In some cases, ablation of S1 and L5 posterior roots to abolish triceps surae spasticity Infection leading to implant removal (n=2) Second deafferentation in 4.3% of patients due to persistent detrusor reflex activity. Deterioration of detrusor responses (n=5) Persistent sphincter dyssynergia (n=3, patient refused sphincterotomy or conus deafferentation) Persistent Wallerian degeneration (n=1) Second sphincterotomy (n=4, all continent) Renal problems leaded to nephrotomy (n=1) 	Benefit: - Preoperative vesicoureteral reflux disappeared (n=3)
Schurch et al.	Intradural implantation	- Surgical incomplete		- AHR persisted and occurred during implant-driven	- DSD resolved in all cases
1998	and sacral	deafferentation (n=4)		voiding despite complete sacral deafferentation (n=8 and	- No lower limb or trunk
(n=10)	deafferentation in all		-	unknown condition in 1 patient)	contraction during
, ,	cases				stimulation in all patients.
Van der Aa et al	Intradural sacral posterior		-Beceiver block failure (n=3)		
1999	rhizotomy (\$2-\$5) and				
2000					

(n=37)*	intradural SARS implantation in all patients				
Bauchet et al 2001 (n=19)	Intradural implantation and S2/S3 rhizotomy with S4/S5 roots crushing in all cases	- Cerebrospinal fluid leak (n=2) - Discomfort at the subcutaneous receptor (subsequently displaced, n=2)	 Extradural implantation due to intradural electrode failure (n=1) Replacement of receiver block (n=1) Cable disconnection (n=4) Charger failure (n=3) 	- Bladder fibrosis (n=1) - Pyelonephritis (n=1)	One woman cannot use her implant at work because of inappropriate toilets
Creasey et al, 2001 (n=23)	Extradural implantation and intradural rhizotomy S2-S5 in all cases	- Temporary nerve damage (n=2, recovery within 3 months)	-	 Increased lower limb spasticity (n=2) Incomplete rhizotomy with second deafferentation (n=1) Increase in incontinence episodes (n=4) Fracture of the second lumbar vertebra 5 months after surgery which caused compression of the cauda equina (n=1) 	Benefit: - Reduced time for bowel evacuation
Sauerwein et al, 2003 (n=427)	-	-	-	-	 Bladder spasticity stopped in 97% of all cases. Recovery of kidney function is mentioned
Vastenholt et al, 2003 (n=37)	-	 Cerebrospinal fluid leakage (n=1) Neuropraxie (n=1) Detrusor weakness (n=4) Problems solved several years after surgery 	-External equipment (One failure per 17 and per 38 user- years, n=23) * Cable fracture (n=16) * Transmitter defects (n=7) - Internal equipment (One per 66 user-years, n=4 in total). * 3 receiver replacements	 Strong motor responses to stimulation (n=1) Fibrosis around sacral roots (n=2) Root failures (n=1, but deafferentation enable complete continence) Detrusor weakness (n=2) Sphincter weakness (n=1) 	-Erection never used for sexual intercourse
Hamel et al, 2004	Intradural rhizotomy and extradural implantation	- Cerebrospinal fluid leakage spontaneously resolved (n=1)	-	-	-
Kutzenberger et al, 2005 (n=464)	Deafferentation performed in all surgery with a success rate of 94.1%	 Cerebrospinal fluid leak (n=6) Infection of the implant (n=5) Dehiscent wound (n=2) Hemorrhages (n=2, requiring no further treatment) 	 - 70 Implant defects -> 34 repair surgery were necessary * 16 Receiver exchange and cable repair * 5 Cable repair alone * 9 Extradural implant 	 Second deafferentation (n=8 to interrupt dysreflexia) Bladder overdistension and neurogenic failures are mentioned but not quantitatively documented. 	-
Kutzenberger et al, 2007 (n=440)	Intradural deafferentation and implantation. Rhizotomy performed in all surgery with a success rate of 95.2%	 Cerebrospinal fluid leak (n=6) Infection of the implant (n=5) with further reimplantation in 4 cases Dehiscent wound (n=2) Hemorrhages (n=2, requiring no further treatment) 	 - 81 Implant defects -> 44 repair surgery were necessary * 26 Receiver exchange and cable repair * 6 Cable repair alone * 12 Extradural implant with 1 further withdrawal due to an infection 	 Second deafferentation (n=8 at conus terminlis to interrupt dysreflexia) Bladder overdistension and neurogenic failures are mentioned but not quantitatively documented. 	-

Krasmik et al,	Intradural implantation	- Cerebrospinal fluid leakage	- Defect of cables (n=19)	-Incomplete rhizotomy with second deafferentation at the	In 54 patients, a total of
2014 (n=137)	and deafferentation S2 to	(n=8)	- Defect of stimulation plate (n=19)	conus medullaris (n=4)	83 surgical revisions were
	S5 in all cases	- Infection (n=3)	 Dislocation of the stimulator plate (n=16) 	- Additional urological interventions in 43 patients	performed (17 patients
			 Undetermined cause of stimulator failure (n=15) 	* 22 Outlet obstruction	underwent more than one
				* 10 Vesicoureteral reflux	revision)
				* 10 Incontinence	
				* 9 Urethral strictures	
				 Problems with condom fixation (n=3) 	
Castano-Boreto	Extradural implantation		 Failure of the receiver block (n=1) 	 Infections few months after implantation (n=2) 	
et al, 2016	and posterior rhizotomy			- Cable extrusion (n=2)	
(n=104)	of S2-S5 sacral roots in all	-		 Extrusion of the receiver block (n=2) 	-
	cases				
Ramos et al, 2020	SARS implantation and	Neuropraxia with	 Malfunction/damage of the external hardware mostly 	 Extrusion of the receiver block (n=2) 	- 85% of patient obtained
(n=16)	deafferentation S2 to S4	spontaneous resolution	due to operator misuse (n=10)		stimulation-induced
	in all cases	after 12 months (n=2)			erections but only 2 use
					SARS (6 patients sexually
					active before SARS
					procedure – 4 using a
					penile prosthesis)

- : Not Documented.

Guiho T, Azevedo-Coste C, Bauchet L, Delleci C, Vignes JR, Guiraud, D, Fattal C. Forty Sacral Anterior Root Stimulation and visceral function outcomes in spinal cord injury – A systematic review of the literature over four decades, World Neurosurgery, 2021.

Supplementary Tab.4 – Multicentric studies

Study and patients characteristics

Authors	Number of patients / % of male patient	Mean age in years (*)	Lesion profile T – Tetraplegia P – Paraplegia	% of complete SCI	Mean age of the lesion at the time of implantation (in years)	Patients follow up after implantation (in years)	Study type	Level of evidence
Sauerwein et al, 1990	12 / 50	36 [24-52]ª	Trauma: 12 T – 1 / P – 11	83.3	9 [1-27]	1.31 [2.5-0.08]	RS	IV
Brindley et al, 1990	50 / 76	32.08 [57-19]ª	Trauma: 48 T – 10 / P – 38 MS: 2	77.08	-	- [5-11]	RS	IV
Brindley, 1994 and Brindley, 1995	500 / 54.2	-	Trauma: 378 T – 122 / P – 256 Unspecified : 98	85.5	-	4.07 [0.25-16.1]	RS	Ш

Benefits on visceral functions

Author	Use of SARS for micturition (%)	Bladder (n	volume nl)	Residu (r	al urine nl)	Incontine	nt episodes %)	Urinary tra	act infections Autonomic dysre		omic dysreflexia (%) Use for		Use for erection
		Before	After	Before	After	Before	After	Before	After	Before	After	derecation (%)	(70)
Sauerwein et al, 1990 (n=12)	75	-	565	-	<50 in 75% of patients	75	25	-	-	-	-	-	-
Brindley et al, 1990 (n=48)ª	85.4	-	-	-	-	-	44 (SARS users)	-	29.2% (SARS users)	-	-	56.2	43.2 (16/37 males)
Brindley, 1994 and Brindley, 1995 (n=479) ^a	86.2	-	-	-	-	-	-	-	-	-	-	-	-

Implantation procedure and reliability axis

Author	Deafferentation and Implantation procedure	Complications following surgery	Implant failures	Impact on patients everyday life and long term side effects	Additional information
Sauerwein et al, 1990 (n=12)	Initially: -Intradural implantation without rhizotomy (16.7% of patients) ->	- Cerebrospinal fluid leakage (n=1)	-	-	-

	Implants replaced by	- Root damage in			
	extradural devices with	all patients			
	extradural rhizotomy	(n=12)			
	Finally:	- Incomplete			
	-Extradural implant and	deafferentation			
	extradural rhizotomy in	(n=2 and one			
	all patients	more is			
		suspected).			
Brindley et al,			- 37.5% of patients reported implant failures	- 17% of users noted increased spasms	
1990 (n=48)			> 25 failures in total	- Backache (n=2)	
			- Receiver block failure (n=7)	 Stimulus pain (n=1) and pain leading to stop implant use (n=2) 	
	-	-	- New implantation due to cable break (n=1)	 Increased sweating (n=6) 	-
			- Cable break (n=5)	- Occasional headache (n=1)	
			- Connector failures (n=12)	 Occasional autonomic dysreflexia (n=1) 	
				- Loss of reflex erections (n=8) and Increased constipation (n=4)	
Brindley, 1994	- Implantation:	- Infection	- Implant failures in 72 of the 500 first patients	 Infection and explantation during follow-up (n=1) 	
and Brindley,	* 88.2 % intradural	following surgery	* 56 repairs -> 21 second failures	- Exposition of the receiver block (n=5)	
1995 (n=479)	* 4.6% Extradural	and device	 9 replaced and 12 repaired -> 3 third failures 	- 95 surgery performed to remedy faults in implant:	
	* 7.2% Unknown	explantation	 1 replaced 	* 75 repair procedures (cables, receiver block) -> 2 infections	
	- Rhizotomy:	(n=3)	 2 repaired 	* 20 implantations of a new device -> 1 infection and explantation	
	* 73.6% Rhizotomy		* 9 replaced by a new stimulator with extradural electrodes -> 2 failures	- Death due to renal failure (n=1)	
	* 10.4% No rhizotomy		 2 repaired 	- Deterioration of the upper urinary tract (n=11)	-
	* 16% Unknown		* 5 Implant needed no repair since implant-driven micturition remained good	-> Including one death from carcinomatosis, primary in the bladder	
			* 2 waiting to be repaired	- Second deafferentation (n=39)	
			- Total number of failures = 98	- Spinal roots deterioration during follow up (n=8)	
			* 18 receiver failures * 18 connector failures * 3 cable fractures	- Failures of implant driven micturition due to overstretching of	
			* 42 cables outside their receiver blocks * 17 Unknown	bladder wall (n=5) -> recovery in all cases.	