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Abstract. The ATLAS Experiment at the LHC generates petabytes of data that
is distributed among 160 computing sites all over the world and is processed con-
tinuously by various central production and user analysis tasks. The popularity
of data is typically measured as the number of accesses and plays an important
role in resolving data management issues: deleting, replicating, moving between
tapes, disks and caches. These data management procedures were still carried
out in a semi-manual mode and now we have focused our efforts on automating
it, making use of the historical knowledge about existing data management strate-
gies. In this study we describe sources of information about data popularity and
demonstrate their consistency. Based on the calculated popularity measurements,
various distributions were obtained. Auxiliary information about replication and
task processing allowed us to evaluate the correspondence between the number
of tasks with popular data executed per site and the number of replicas per site.
We also examine the popularity of user analysis data that is much less predictable
than in the central production and requires more indicators than just the number
of accesses.

1 Introduction

A dataset in the ATLAS experiment [1] at the LHC is the aggregation of multiple files in one
logical and operational unit in a distributed computing environment. Only datasets, not single
files, are transferred between sites and replicated. For this reason, in our study the popularity
of data refers to the popularity of datasets.

As data replication and deletion strategies in ATLAS are typically based on manually
defined static policies, sooner or later we face situations when popular datasets do not have
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enough replicas, or unpopular datasets, on the contrary, take up too much space. These
inconsistencies may cause significant delays in tasks execution processes that could have been
avoided if the policies were more automated and dynamic.

Methods for assessing data popularity in order to automate data management policies have
already been investigated in earlier studies [2, 3], but none of them have been integrated in the
production system of the ATLAS computing infrastructure. A possible reason that they are not
used is due to insufficient integration of the following sources of information about ATLAS
data: DDM (Distributed Data Management) Rucio [4], Rucio Traces [5], EOS [6] Report
Logs, WMS (Workload Management System) PanDA [7]. These sources have specific sets
of metrics that can be used to assess the popularity of datasets. Our studies have proved that
measurements obtained from these four sources are consistent with each other. This means that
data on popularity can be integrated without sacrificing the measurement accuracy, but with
a gain in the number of consolidated metrics. Additionally, we demonstrate how popularity
can be evaluated based on different sources of information and which auxiliary metrics can be
calculated for further integration work.

2 Sources for Data Popularity Measurements

There are two general methods for the evaluation of dataset popularity depending of the source
of information: how often datasets were requested on the grid, and how many tasks were
executed with the datasets as an input within a given time range. Below, we describe the
existing data sources that contain metrics needed for the popularity measurements.

2.1 DDM Rucio

DDM Rucio is an open source framework that provides scientific collaborations and individual
users with means to organize, manage and access data at any scale. Data can be distributed
across distributed data centers around the world. Rucio was originally designed to meet the
requirements of the ATLAS experiment. It provides the formation of datasets from files,
combining datasets into containers1 and management of data distribution and replication to
the grid.

Rucio Traces

Every data access made on the grid, either through the WMS or directly through the DDM
system is tracked by the Tracer system. The trace dictionary is on a file level and includes
information like the filename and scope, the corresponding dataset, the endpoint where it
was accessed, the type of access, e.g. Analysis or Production upload, the user account, some
file information and timings. From the Rucio server the traces are forwarded to a central
ActiveMQ broker from where different consumers read this data. One consumer is the Kronos
daemon in Rucio. This daemon takes the traces and updates the last access timestamp for files
and datasets in the Rucio catalogue, which is used to sort replicas for the deletion. Furthermore,
it also updates the access_cnt field for files and datasets, which simply counts the number of
times when a file or any file in a dataset was accessed.

Rucio API

Rucio API provides detailed metadata about dataset parameters (project, run number, a short
description of a physics process, production tags, data format) and information about their

1Container is a named set of datasets
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replicas, including the placement. The direct popularity metric is the number of accesses
(access_cnt).

2.2 EOS Report Logs

EOS is one of the storage systems used in the Worldwide LHC Computing Grid (WLCG). In
particular, it is deployed at the CERN Data Center and provides a separate instance for each of
the large LHC experiments, including ATLAS. EOS Report Logs store detailed information
about the system and user file accesses that can be used to better understand the data popularity
and life cycle. EOS Report Logs consist of several types of records: file accesses (generated
each time a file is opened), file deletions from disks, and file deletions from the metadata space.
File accesses records contain the file identifiers, the timestamps of the file opening and closing,
the number of bytes read and written, the size of the file before and after each operation, and
others (in total, more than 60 metrics). In the study, we are using the records outlined above
to obtain the aggregated view of the file life cycle (from its creation until the deletion). We
collect and process these log files using the Spark cluster facility provided by the CERN IT
Department.

2.3 PanDA Database

PanDA (Production and Distributed Analysis) is a highly scalable and flexible data-driven
workload management system that supports central production and user analysis data process-
ing in ATLAS. PanDA DB is a database system serving PanDA. It registers the comprehensive
historical and operating meta-information about all physics analysis tasks, jobs being executed
within the distributed computing environment of the ATLAS experiment. Additionally, PanDA
DB registers metadata about input and output datasets of the computing tasks. Popularity of a
dataset in the PanDA DB can be measured as the number of tasks executed within a certain
period of time with this dataset as an input, that refers to the number of accesses to the dataset.
Besides the popularity of input datasets we can study the execution process of each task, i.e.
execution time, time delays, computing sites, user name2. This auxiliary information allows
us to evaluate the uniformity and efficiency of the resource utilization.

3 Consistency Check of Data Popularity Metrics

In this study we evaluate whether data popularity metrics calculated on various data sources
are consistent. It is an important step for further research as we will integrate and join data
from multiple sources.

Consistency Check of Data Popularity Metrics Between Rucio Traces and PanDA DB

For this evaluation we collected data (production tasks with input AOD3 datasets of the
Monte-Carlo type) from Rucio Traces and PanDA DB in a defined time period (01/09/2020 -
20/10/2020). Then we generated two data samples with pairs of (Dataset Name, taskID)4 from
Rucio Traces and PanDA DB. The results showed that these two samples are consistent. From
PanDA DB we took tasks (with input datasets) that were started or finished within the specified
time period, from Rucio Traces we selected tasks with input datasets that were transferred
within the same time period.

2We are not going to study users statistics. For the popularity measurements we just take the number of different
users who executed tasks with ATLAS datasets

3Analysis Object Data - these datasets are used for physics analysis tasks
4taskID is a task that used the dataset as an input
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Consistency Check of Access Metrics between Rucio Traces and EOS

Another consistency check we performed was between the file access records from the EOS
logs and the Rucio traces. For that, we selected a specific time interval, limited to October 1,
2020, from 00:00 UTC to 23:59 UTC. All Rucio traces with access times in this period and for
files located at CERN were selected; similarly, all file access records from EOS logs in that
period and not related to system events were selected, and the two samples were compared.

The comparison showed that 98.8% of the files accessed according to Rucio are accessed
also according to EOS, and the remaining 1.2% is almost completely related to traces generated
before the files were actually accessed (“direct access”) and for which the access never
materialized due to a job crash. On the other hand, many more files get accessed according to
EOS than to Rucio, as expected due to the fact that EOS contains a significant amount of files
not accessed by PanDA jobs.

4 Analysis of the ATLAS EOS instance at CERN Data Center using
EOS Report Logs

We analyzed EOS Report Logs for the CERN Data Center for a period of three consecutive
months (01/01/2020 - 31/03/2020), which is not a data-taking period and the tasks performed
at the site mainly consisted of Monte Carlo production jobs and data analysis. As seen in
the description of the EOS Report Logs, most of the storage system activities logs, except
for deletions, have the same format. They include all the possible file operations (reads,
writes, updates and so on). The original set of log metrics does not indicate the operation
type. Nonetheless, having this information is important to understand which operations a file
undergoes during its lifetime.

We use the existing metrics (size of the file on opening and closing and the number of
bytes read and written) to classify operations into five categories: “Create”, “Read”, “Update”,
“Empty” and “Abnormal”, where “Empty” operations have no bytes read or written and
“Abnormal” are all the operations that cannot be classified as any of the previous categories.
The relative impact of the operations other than “Create” and “Read” is very small (less than
1% of all operations), which confirms the assumption that most of the data are immutable.

Figure 1 gives an overview of the read/write processes happening at the EOS instances
during the considered three months and shows how actively the provided disk volume was
used by ATLAS and two other LHC experiments. The plot indicates that the access patterns
differ from one experiment to another.

ATLAS, in comparison to the other experiments, has the biggest EOS instance volume and
had the most intense workload. Its total turnover (the sum of all the bytes read and written) is
over 480% of the instance volume at the time. During the examined period, all the experiments
read more data than they wrote, but not by a large margin. ATLAS had 2-3 times as much read
volume as the written one.

We grouped the access records by the file identifiers to obtain file-specific statistics and
categorized files based on their creation and deletion times in relation to the boundaries of the
considered period. Overall, we have four categories covering all the possible cases:

• Files created and deleted during the period;

• Files created during the period and deleted after or not deleted;

• Files created before and deleted during the period;

• Files created before and not deleted or deleted after the period.
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Figure 2: File categories distribution

The pie chart in Figure 2 shows
the distribution of these categories for
the ATLAS EOS instance.

The biggest fraction belongs to
the files that were present on disk be-
fore and after the considered period
(36.8% of total volume). For these
files, the lifetime is more than three
months. The ATLAS experiment pro-
duced and deleted approximately the
same volume in this period, as a re-
sult, the total occupied volume did
not change. A big fraction of cre-
ated files were also deleted (66.9% of
created volume), which indicates that
there are a lot of short-lived files with
a lifetime of shorter than 3 months.
The fraction of files that went through
the whole life cycle (“Created and
Deleted”) is only 31.2%, and, in the
future, we plan to extend the time
frame in order to increase the relative
number of such files.

ATLAS jobs produce a large num-
ber of log files and some of them are never read before the deletion. Overall, in the considered
period, almost 3 PB of files were not read between their creation and deletion. Moreover, a
big fraction of files stayed on disk without being accessed for a long time (see Figure 2). The
possibility of keeping these files on a less expensive storage media should be investigated
further [8].

While ∼85% of the files were <1 GB, most of the occupied volume (∼85%) was coming
from the files >1 GB, with the average file size ∼400 MB. In Figure 3 the “Read Volume” is

Figure 3: Read workload

the total volume of all the accessed files and the “Read Workload” is the sum of all the bytes
read. The hatched parts show the fraction of the volume that was read more than once and
the corresponding fraction of the workload. Some read accesses did not read the files fully,
though the average read rate per file at the ATLAS instance is 95.84%. As seen in Figure 4a,
most files were accessed only once (∼63%), and, if a file was re-read, it was most likely to
happen within a couple of hours (see Figure 4b).

5 Rucio Access Metrics for Detector and Monte-Carlo Data
As we already saw, Rucio traces provide a very convenient way to record every time that a file
has been accessed as input for a job or written as output, or downloaded/uploaded by a user
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(a) Number of accesses per file (b) Time difference between consecutive accesses

Figure 4: Accesses time locality

using the Rucio client tools, and this information is stored indefinitely in a Hadoop cluster
at CERN, allowing all sorts of data popularity studies. The most useful attributes in traces
are the file name, its size, the dataset name, the remote site, the access time and the access
event type. Another important source of information generated by Rucio are the logs, which
record events like file transfers and file deletions and they can be used, for example, to study
the effectiveness of data management policies.

In the vast majority of cases, ATLAS jobs process files from their local storage, possibly
after they have been transferred from a remote site. In some cases, for example for sites
without local storage, files will be directly copied from a remote site to the job worker node.

The first approach attempted was to examine file and dataset access patterns to a few
representative ATLAS sites belonging to different categories: Tier-0/1, nucleus Tier-25 and
non-nucleus Tier-26. Only traces related to PanDA jobs were considered, and only files
belonging to AOD, DAOD7 and HITS8 datasets, as they constitute the vast majority of the
data accessed.

Besides the evaluation of the number of traces in this study we decided to investigate how
accesses are spread over time or concentrated, that can have a big impact on data management.
Additionally, we measured the fraction of weeks with accesses to a given dataset.

The distributions over datasets in Figures 5(a,b) show that DAOD dataset accesses are
very few and concentrated in time during a year. Differences in distributions across different
sites are small, consistent with the fact that access patterns depend primarily on the file type
independently of the location at which datasets are processed. The distributions for the same
quantities were derived at a global scale, looking at accesses independently of the site, and very
similar distributions where obtained (Figures 5(c,d)) for AOD datasets; it is worth stressing
though that only datasets that are accessed at least once contribute to the distributions.

There is therefore a strong indication that ATLAS datasets, even globally, were accessed
very few times during a year. Therefore, ideally they would need to be accessible from disk
only for a short time. Rucio logs can be used to measure the time between a file’s last access
and the time it is deleted from a site. Ideally, this time should be as short as possible, but it is
in fact of the order of 1-2 months, depending on the site. Another couple of metrics have been

5Nucleus sites are sites with larger storage size and better network connectivity that can aggregate work done at
other sites

6Non-nucleus sites - satellite sites
7Derived Analysis Object Data
8Output of the simulation

6

EPJ Web of Conferences 251, 02013 (2021)	 https://doi.org/10.1051/epjconf/202125102013
CHEP 2021



(a) Number of accesses per file (b) Time difference between consecutive accesses

Figure 4: Accesses time locality

using the Rucio client tools, and this information is stored indefinitely in a Hadoop cluster
at CERN, allowing all sorts of data popularity studies. The most useful attributes in traces
are the file name, its size, the dataset name, the remote site, the access time and the access
event type. Another important source of information generated by Rucio are the logs, which
record events like file transfers and file deletions and they can be used, for example, to study
the effectiveness of data management policies.

In the vast majority of cases, ATLAS jobs process files from their local storage, possibly
after they have been transferred from a remote site. In some cases, for example for sites
without local storage, files will be directly copied from a remote site to the job worker node.

The first approach attempted was to examine file and dataset access patterns to a few
representative ATLAS sites belonging to different categories: Tier-0/1, nucleus Tier-25 and
non-nucleus Tier-26. Only traces related to PanDA jobs were considered, and only files
belonging to AOD, DAOD7 and HITS8 datasets, as they constitute the vast majority of the
data accessed.

Besides the evaluation of the number of traces in this study we decided to investigate how
accesses are spread over time or concentrated, that can have a big impact on data management.
Additionally, we measured the fraction of weeks with accesses to a given dataset.

The distributions over datasets in Figures 5(a,b) show that DAOD dataset accesses are
very few and concentrated in time during a year. Differences in distributions across different
sites are small, consistent with the fact that access patterns depend primarily on the file type
independently of the location at which datasets are processed. The distributions for the same
quantities were derived at a global scale, looking at accesses independently of the site, and very
similar distributions where obtained (Figures 5(c,d)) for AOD datasets; it is worth stressing
though that only datasets that are accessed at least once contribute to the distributions.

There is therefore a strong indication that ATLAS datasets, even globally, were accessed
very few times during a year. Therefore, ideally they would need to be accessible from disk
only for a short time. Rucio logs can be used to measure the time between a file’s last access
and the time it is deleted from a site. Ideally, this time should be as short as possible, but it is
in fact of the order of 1-2 months, depending on the site. Another couple of metrics have been

5Nucleus sites are sites with larger storage size and better network connectivity that can aggregate work done at
other sites

6Non-nucleus sites - satellite sites
7Derived Analysis Object Data
8Output of the simulation

(a) No. of dataset re-reads for DAOD at BNL-ATLAS (b) Fraction of weeks with accesses to DAOD at BNL-
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(c) No. of tasks per dataset on all input AOD (d) Fraction of weeks with accesses to all AOD
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Figure 5: Dataset access patterns in 2020 year

proposed to quantify how effectively disk storage is used: the volume efficiency Ve f f and the
file storage cost FC:

Veff = Wacc/Wdisk

FC = (Wnoacc −Wacc) × S

where Wdisk is the number of weeks the file spends on disk, Wacc is the number of weeks
when it is accessed, Wnoacc is the number of weeks on disk and without accesses and S the
file size. The distributions for CERN (Figures 5(e,f)) show that files tend to spend a large
fraction of their time on disk without being accessed, consistent with the previous results; this
observation suggests a reduction of the number of disk replicas as an effective way to reduce
disk utilization.
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6 Popularity of ATLAS User Analysis Data

Central production tasks are typically planned in advance and executed sequentially as a bunch
of tasks, as can be seen at the bottom of the scatter plot in Figure 6. User analysis tasks, on
the contrary, can be created and started at any time. Start points of the analysis tasks are
almost randomly distributed over time. For this reason we decided to distinguish the popularity
analysis of datasets utilized for user tasks. We collected data from two main data sources:

Figure 6: Start time of production and user analysis tasks

PanDA DB and Rucio API, and from two auxiliary souces: CRIC (Computing Resource
Information Catalogue) [9] and CERN Phonebook Directory, and placed the integral view of
this data into the ElasticSearch9 storage. Currently this storage structure comprises 54 fields.
Each data source provides access to a specific group of metadata for a particular task, dataset,
computing center and user. PanDA database is used to access metadata of individual user
analysis tasks. These metrics allow us to identify delays in tasks brokerage, datasets usage
density, total duration of succeeded and failed tasks and many more. The WLCG infrastructure
topology and experiment-specific configurations are described in CRIC. With the help of
CRIC we are able to identify task execution hardware specifications and geolocations of
computing centers. These metadata are useful for anticipation of task execution time [10].
The CERN Phonebook Directory is exploited to address deep study on user analysis tasks.
The information provided is used to identify the user’s home institution and its country with
geolocation coordinates. This information is potentially important as it allows us to discover
institutes and countries that carry out more physics analysis tasks of particular types of ATLAS
data. The Rucio API provides us with the detailed information about datasets and replicas.

The popularity is measured with four parameters: N tasks - number of tasks, N users -
number of users who carried out these tasks, N institutes - number of users’ home institutes,
N countries - number of countries where the home institutes are. Number of tasks refers
to the number of accesses of a dataset. Other user-specific parameters allow us to measure
how a datasets usage is distributed around the world, across institutes and among users [11].
Four further metrics allow us to estimate the efficiency of the execution process of datasets
and correlate it with popularity metrics: Replication factor - average number of dataset
replicas, Computing factor - average number of computing sites, Duration - task execution
time from start to finish, Delay - task run delay time. These metrics can be applied for
datasets and for groups of datasets. The Tables 1 and 2 are built on data aggregated for the

9Elasticsearch is a search engine based on the Lucene library
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9Elasticsearch is a search engine based on the Lucene library

Table 1: Popularity Metrics by Projects [October 2020–January 2021]

Project N tasks N users N institutes N countries

mc16_13TeV 307 252 678 163 33
data18_13TeV 30 627 291 118 28
data17_13TeV 23 925 256 104 27
mc15_13TeV 17 859 267 104 27
mc12_8TeV 41 2 2 2

Table 2: Task Execution Parameters by Projects [October 2020–January 2021]

Project Replication Computing Duration,sec Delay,sec

mc16_13TeV 1.54 50 235 249 28 758
data18_13TeV 2.1 59 328 655 27 383
data17_13TeV 2.1 59 367 256 30 170
mc15_13TeV 4.76 40 143 088 19 518
mc12_8TeV 3.38 8 101 847 33 204

period from 01/10/2020 to 24/01/2021 (115 days), grouped by project names10, and represent
popularity and task execution process measurements. The most popular by the number of
computing tasks are datasets of the “mc16_13TeV”11 project. The projects “data18_13TeV”,
“data17_13TeV”12 and "mc15_13TeV"13 are less poopular by the number of tasks, but still
popular among users from different institutes and countries as expected. Computing factor is
correlated with dataset popularity: more popular datasets are processed by far more computing
sites than unpopular. Replication factor for popular datasets fluctuated from 1.5 to 4.7, but
at the bottom of the table we can observe that non popular datasets have 3-5 replicas, that is
clearly excessive. Delay time in most cases depends on the replication factor: it decreases with
the increasing of the number of dataset replicas. For example, the diagram shows that datasets
belonging to the project “mc15_13TeV”, that are not popular, have 4.76 replication factor and,
consequently, not long execution time (Duration = 143088 s) and delay (19518s). The most
popular project “mc16_13TeV” has a lower rate of replication (1.54), and the highest delay
time (28758). We aim to accelerate the processing of the most popular datasets and to reduce
delays of tasks execution. Number of dataset replicas and computing sites can affect these
indicators directly or indirectly.

7 Conclusion

At each step throughout the processing and data management stack, Rucio and PanDA keep
detailed logs on the operations on files, tasks and datasets. By combining this information with
the access records produced by the EOS file system, CRIC and the CERN Directory, it is now
possible to understand the complete life cycle of data from the global distribution down to the
fraction of files that are read, covering managed and individual use. While it is highly desirable

10Project identifies the particular physics or computing context of a set of datasets
11Monte Carlo production at 13 TeV in 2016 year
12Real data at 13TeV in 2017-2018 years
13Monte Carlo production at 13 TeV in 2015 year
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to expand the work to cover longer time periods, additional storage systems and more details,
this level of insight will serve nevertheless as the foundation on which further analysis can be
based to optimise the management and usage of storage. In addition, the concepts developed
are sufficiently general that they can be adapted with relative ease for wide use beyond ATLAS.
The main outcome of the studies covering AOD and DAOD datasets is that the vast majority of
data is accessed only a few times, that most accesses take place within short intervals, and that
a significant fraction of the data occupies disk space for extended periods without seeing active
use. These findings, while still preliminary and not necessarily representative for all phases of
the experiment, indicate that the usage of caches, more aggressive data deletion policies and
changes between different levels of quality of service have the potential to optimise the overall
cost of storage. However, before gains can be realised in practice, more work is required.
Notably this would be in the continuous monitoring of data popularity, and the development
and tracking of expressive metrics that can be used to guide users and site managers towards a
more efficient use of resources.
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