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Abstract. We study properties and relationship between three classes
of quantitative language models computing over infinite input alphabets:
Symbolic Weighted Automata (swA) at the joint between Symbolic Au-
tomata (sA) and Weighted Automata (wA), as well as Transducers (swT)
and Visibly Pushdown (sw-VPA) variants. Like sA, swA deal with large
or infinite input alphabets, and like wA, they output a weight value in a
semiring domain. The transitions of swA are labeled by functions from
an infinite alphabet into the weight domain. This generalizes sA, whose
transitions are guarded by Boolean predicates overs symbols in an in-
finite alphabet, and also wA, whose transitions are labeled by constant
weight values, and which deal only with finite alphabets. We present a
Bar-Hillel Perles Shamir construction of a swA computing a swT-defined
distance between a swA input language and a word, some closure results
and a polynomial best-search algorithm for sw-VPA. These results are
applied to solve a variant of parsing over infinite alphabets.

1 Introduction

Various extensions of language models have been proposed for handling infinite
alphabets. Some automata with memory extensions allow restricted storage and
comparison of input symbols (see [33] for a survey). They use pebbles for mark-
ing positions [32], registers [22], or separate computation on subsequences with
the same attribute values [4]. Moreover, automata at the core of model checkers
compute on input symbols represented by large bitvectors [35] and, in practice,
each transition accepts a set of such symbols (instead of an individual symbol),
represented by Boolean Formulas or Binary Decision Diagrams. Following this
idea, in symbolic automata (sA) [36,9,10], transitions are guarded by predicates
over large or infinite domains. With appropriate closure conditions on the sets
of such predicates, all the good properties enjoyed by automata over finite al-
phabets are preserved. The ability of sA to compare input symbols is restricted
compared to the former automata with memory. It can however be extended
with the addition of a stack [8].

Other extensions of language models assign one weight value to every in-
put [13]. This is useful for the quantitative modelling of e.g. probabilistic or



stochastic recursive programs, quantitative database queries, or semi-structured
data, as well as for the verification of quantitative properties of systems related
to quality measures, resource-consumption, distance metrics, probabilistic guar-
antees, etc In the context of parsing, when grammars return weight values, it is
possible to rank derivations (and abstract syntax trees) in order to select a best
one (or n bests), e.g. in case of ambiguity [15,30,29]. In weighted language models
like e.g. probabilistic context-free grammars and weighted automata (wA) [13], a
weight is associated to each transition rule, and the weights of the rules involved
in a computation are combined with an associative product operator ⊗. A sec-
ond operator ⊕ is moreover used to resolve the ambiguity raised by the existence
of several (in general exponentially many) computations on a given input. Typi-
cally, ⊕ selects the best of two weight values. The weight domain, equipped with
these two operators is typically a semiring where ⊕ can be extended to infinite
sums, such as the Viterbi semiring and the tropical min-plus algebra

In this paper, we present some results for Symbolic Weighted finite states
language models generalizing the Boolean guards of sA to functions into an
arbitrary semiring, and also the wA, by handling infinite alphabets (Figure 1).

In short, a transition rule q
φ−→ q′ of a Symbolic Weighted Automaton, from

state q to q′, is labeled by a function φ associating to every input symbol a, a
weight value φ(a) in a semiring S. These models are also particular cases of the
very general class of Weighted Symbolic Automata with Data Storage [19,18],
for appropriate storage types.

SWADS [19,18]

SWA : Σ∗inf → S

q
φ−→ q′, φ : Σinf → S

WA [13] : Σ∗fin → S
q
a,w−−→ q′, a ∈ Σfin, w ∈ S

SA [36,10] : Σ∗inf → B

q
φ−→ q′, φ : Σinf → B

FA : Σ∗fin → B
q
a−→ q′, a ∈ Σfin

VPA [2]

WVPA [26,6] SVPA [8]

SWVPA

Fig. 1. Classes of Symbolic/Weighted Automata. Here, Σfin and Σinf denote fi-
nite/countable alphabets, B the Boolean algebra, S a commutative semiring. q

...−→ q′

is a transition between states q and q′.

The models studied are: symbolic-weighted automata (swA), defining series over
infinite alphabets, transducers (swT), defining distances between finite words



over infinite alphabets, and pushdown automata with a visibility restriction [2]
(sw-VPA), operating sequentially on words structured with markup symbols
(parentheses) and describing linearizations of trees. The main contributions of
this paper are:

(i) a construction à la Bar-Hillel Perles Shamir of a swA computing a swT-
defined distance between a swA input language and a word (Proposition 1),

(ii) closure results for sw-VPA (Proposition 2),
(iii) a polynomial best-search algorithm for sw-VPA (Proposition th:best-search.

Moreover, we present in Section 5 an

(iv) application to the problem of weighted parsing over infinite input alphabets,
called SW-parsing.

The goal of the latter problem is, given an input word s, to find t minimizing
the distance, in the sense of [28], T (s, t) ⊗ A(t), where T is a swT and A a
sw-VPA. The notion of transducer-based distances allows to consider different
infinite alphabets for the input s and output t. Moreover, the use of sw-VPA
permits to search for an output t in the form of a (nested) word, instead of a
tree. SW-parsing is solved with a Bar-Hillel construction [31] of a sw-VPA B
such that, for all t, B(t) = T (s, t) ⊗ A(t) and the application of a best-search
procedure to this automaton B.

Context-free parsing approaches [17] generally assume a finite and reasonably
small input alphabet. Considering large or infinite alphabets can however be of
practical interest when dealing with large characters encodings such as UTF-
16 [10]. It is also true in the context of automata-based quantitative verification
techniques [24], in particular when dealing with data streams, serialization of
structured documents [33,32], or timed execution traces [5].

The latter case of timed traces is related to a problem that motivated the
present work: automated music transcription, that we shall use as a running
example thorough the paper, in order to illustrate our results. Representations
capturing music performances are essentially linear [34]; they ignore the hierar-
chical structures that frame the conception of music, at least in the Western area.
Hierarchical structures, on the other hand, are present, either explicitly or im-
plicitly, in Common Western Music Notation [16]: Music scores are partitioned
in measures, measures in beats, and beats can be further recursively divided.
It follows that written music events do not occur at arbitrary timestamps, but
respect a discrete partitioning of the timeline incurred by these recursive divi-
sions. The transcription problem takes as input a linear performance (in audio
or MIDI format) and aims at re-constructing structured notation, by mapping
input events to this hierarchical rhythmic space. It can therefore be stated as a
parsing problem over an infinite alphabet of timed events [14].

Example 1. We consider a very simplified example of music transcription: a
given input timeline of musical events from an infinite alphabet Σ, is parsed into
a structured music score. Input events of Σ are pairs µ: τ, where µ is a MIDI



key number [34], and τ ∈ Q is a timestamp in seconds. Such inputs typically
correspond to the recording of a live performance, e.g.

I = 69: 0.07, 71: 0.72, 73: 0.91, 74: 1.05, 76: 1.36, 77: 1.71.

The output of parsing is a sequence of timed symbols ν: τ ′ in an alphabet ∆,
where ν represents an event (or note), specified by its pitch name (e.g., A4, G5,
etc.), an event continuation (symbol ‘−‘, see Example 3), or a markup (opening
or closing parenthesis). The temporal information τ ′ is either a time interval,
for the opening parentheses (representing the duration between the parenthesis
and the matching closing one), or a timestamp, for the other symbols. The time
points in τ ′ belong to a rhythmic “grid” obtained from recursive divisions: whole
notes ( ¯ ) split in halves ( ˘ “), halves in quarters ( ˇ “), eights ( ˇ “( ), etc. For instance,

the output score
�� �

3

��14� � � �

Music engraving by LilyPond 2.20.0—www.lilypond.org

, corresponds to a hierarchical structure that can
be linearized as the sequence O = dm: [0,1], d2: [0,1], A4: 0, d2: [ 12 ,1], −: 1

2 , d2: [ 34 ,1],
B4: 3

4 , C]5: 7
8 , e2: 1, e2: 1, e2: 1, em: 1, dm: [1,2], d3: [1,2], D5: 1, E5: 4

3 , F5: 5
3 , e3: 2, em: 2.

The opening markups dm delimit measures, which are time intervals of duration 1
in this example, while the subsequences of O between markups dd and ed, for
some natural number d, represent a division of the time interval attached to dd,
of duration `, into d sub-intervals of equal duration `

d . We will show that O is
a solution for the parsing of I. Note that several other parsings are possible like
e.g. �

3

�
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Music engraving by LilyPond 2.20.0—www.lilypond.org

. SW-parsing associates a weight value to each solution, and our
approach aims at selecting the best one with respect to this weight. 3

2 Preliminary Notions

2.1 Semirings

A semiring 〈S,⊕,0,⊗,1〉 is a structure with a domain S, equipped with two
associative binary operators ⊕ and ⊗, with respective neutral elements 0 and 1,
such that:

– ⊕ is commutative: 〈S,⊕,0〉 is a commutative monoid and 〈S,⊗,1〉 a monoid,
– ⊗ distributes over ⊕:
∀x, y, z ∈ S, x⊗(y⊕z) = (x⊗y)⊕(x⊗z), and (x⊕y)⊗z = (x⊗z)⊕(y⊗z),

– 0 is absorbing for ⊗: ∀x ∈ S, 0⊗ x = x⊗ 0 = 0.

A semiring S is commutative if ⊗ is commutative. It is idempotent if for every
x ∈ S, x ⊕ x = x. Every idempotent semiring S induces a partial ordering ≤⊕
which is called the natural ordering of S [27], and is defined by: for every x, y ∈ S,
x ≤⊕ y iff x⊕ y = x. The natural ordering is sometimes defined in the opposite
direction [12]; We follow here the direction that coincides with the usual ordering
on the Tropical semiring min-plus (Figure 2). An idempotent semiring S is called
total if ≤⊕ is total, i.e. when for every x, y ∈ S, either x⊕ y = x or x⊕ y = y.

Lemma 1 (Monotony, [27]). Let 〈S,⊕,0,⊗,1〉 be an idempotent semiring.
For every x, y, z ∈ S, if x ≤⊕ y then x ⊕ z ≤⊕ y ⊕ z, x ⊗ z ≤⊕ y ⊗ z and
z ⊗ x ≤⊕ z ⊗ y.



We thus say the S is monotonic wrt ≤⊕. Another important semiring prop-
erty in the context of optimization is superiority [23,20], which generalizes the
non-negative weights condition in shortest-path algorithms [11]. Intuitively, it
means that combining elements with ⊗ always increases their weight. Formally,
S is called superior wrt ≤⊕ when property (i) of Lemma 2 below holds.

Lemma 2 (Superiority, Boundedness). Let 〈S,⊕,0,⊗,1〉 be an idempotent
semiring. The two following statements are equivalent:

i. for every x, y ∈ S, x ≤⊕ x⊗ y and y ≤⊕ x⊗ y
ii. for every x ∈ S, 1⊕ x = 1.

Proof. (ii)⇒ (i) : x⊕ (x⊗ y) = x⊗ (1⊕ y) = x, by distributivity of ⊗ over ⊕.
Hence x ≤⊕ x⊗ y. Similarly, y ⊕ (x⊗ y) = (1⊕ x)⊗ y = y, hence y ≤⊕ x⊗ y.
(i)⇒ (ii) : by the second inequality of (i), with y = 1, 1 ≤⊕ x⊗ 1 = x, i.e., by
definition of ≤⊕, 1⊕ x = 1.

The property (i) of superiority implies that 1 ≤⊕ x for every x ∈ S. Similarly,
by the first inequality of (i) with y = 0, x ≤⊕ x ⊗ 0 = 0. Hence, in a superior
semiring, for every x ∈ S, 1 ≤⊕ x ≤⊕ 0. From an optimization point of view, it
means that 1 is the best value, and 0 the worst. In [27], S with the property (ii)
of Lemma 2 is called bounded – we shall use this term in the rest of the paper.
Boundedeness implies that, when looking for a best path in a graph whose edges
are weighted by values of S, the loops can be safely avoided, because, for every
x ∈ S and n ≥ 1, x⊕ xn = x⊗ (1⊕ xn−1) = x.

Lemma 3 ([27], Lemma 3). Every bounded semiring is idempotent.

Proof. By boundedness, 1⊕1 = 1, and idempotency follows by multiplying both
sides by x and distributing.

We need to extend ⊕ to infinitely many operands. A semiring S is called com-
plete [13] if it has an operation

⊕
i∈I xi for every family (xi)i∈I of elements of

dom(S) over an index set I ⊆ N, such that:

i. infinite sums extend finite sums: ∀j, k ∈ N, j 6= k,⊕
i∈∅

xi = 0,
⊕
i∈{j}

xi = xj ,
⊕

i∈{j,k}

xi = xj ⊕ xk,

ii. associativity and commutativity: for all partitions (Ij)j∈J of I,⊕
j∈J

⊕
i∈Ij

xi =
⊕
i∈I

xi,

iii. distributivity of products over infinite sums: for all I ⊆ N, ∀x, y ∈ S,⊕
i∈I

(x⊗ yi) = x⊗
⊕
i∈I

yi, and
⊕
i∈I

(xi ⊗ y) = (
⊕
i∈I

xi)⊗ y.



domain ⊕ ⊗ 0 1

Boolean {⊥,>} ∨ ∧ ⊥ >
Counting N + × 0 1

Viterbi [0, 1] ⊂ R max × 0 1

Tropical min-plus R+ ∪ {∞} min + ∞ 0

Fig. 2. Some commutative, bounded, total and complete semirings.

2.2 Label Theories

We define the functions labeling the transitions of SW automata and transducers,
generalizing the Boolean algebras of [36,9]. We consider alphabets, which are non-
empty countable sets of symbols denoted by Σ, ∆,... Moreover, Σ∗ is the set
of finite sequences (words) over Σ, ε the empty word, Σ+ = Σ∗ \ {ε}, and uv
denotes the concatenation of u, v ∈ Σ∗.

Given a semiring 〈S,⊕,0,⊗,1〉, a label theory Φ̄ over S is an indexed family
of sets denoted by ΦΣ , containing unary functions of type Σ → S, or ΦΣ,∆,
containing binary functions Σ ×∆→ S, and such that:

– for all ΦΣ,∆ ∈ Φ̄, we have ΦΣ ∈ Φ̄ and Φ∆ ∈ Φ̄.
– all ΦΣ , ΦΣ,∆ ∈ Φ̄ contain all the constant functions ofΣ → S, resp.Σ ×∆→ S.
– for all ΦΣ ∈ Φ̄, for all φ ∈ ΦΣ , and α ∈ S, α ⊗ φ : x 7→ α ⊗ φ(x), and
φ⊗ α : x 7→ φ(x)⊗ α, belong to ΦΣ , and similarly for ⊕ and for ΦΣ,∆.

– for all ΦΣ ∈ Φ̄, for all φ, φ′ ∈ ΦΣ , φ⊗ φ′ : x 7→ φ(x)⊗ φ′(x) belongs to ΦΣ .
– for all ΦΣ,∆ ∈ Φ̄, for all η, η′ ∈ ΦΣ,∆, η⊗η′ : x, y 7→ η(x, y)⊗η′(x, y) belongs

to ΦΣ,∆.
– for all ΦΣ , ΦΣ,∆ ∈ Φ̄, for all φ ∈ ΦΣ and η ∈ ΦΣ,∆, φ ⊗1 η : x, y 7→
φ(x)⊗ η(x, y) and η ⊗1 φ : x, y 7→ η(x, y)⊗ φ(x) belong to ΦΣ,∆.

– for all Φ∆, ΦΣ,∆ ∈ Φ̄, for all ψ ∈ Φ∆ and η ∈ ΦΣ,∆, ψ ⊗2 η : x, y 7→
ψ(y)⊗ η(x, y) and η ⊗2 ψ : x, y 7→ η(x, y)⊗ ψ(y) belong to ΦΣ,∆.

– similar closures hold for ⊕.

When the semiring S is complete, we consider moreover the following operators
on the functions of Φ̄.⊕

Σ : ΦΣ → S, φ 7→
⊕
a∈Σ

φ(a)⊕1
Σ : ΦΣ,∆ → Φ∆, η 7→

(
y 7→

⊕
a∈Σ

η(a, y)
) ⊕2

∆ : ΦΣ,∆ → ΦΣ , η 7→
(
x 7→

⊕
b∈∆

η(x, b)
)

Intuitively,
⊕

Σ returns the global minimum, wrt ≤⊕, of a function φ of ΦΣ ,

and
⊕1

Σ ,
⊕2

∆ return partial minimums of a function φ of ΦΣ,∆.
We assume that when the underlying semiring S is complete:

– for all ΦΣ,∆ ∈ Φ̄ and all η ∈ ΦΣ,∆,
⊕1

Σ η ∈ Φ∆ and
⊕2

∆ η ∈ ΦΣ .

Example 2. We return to Example 1. Let ∆i be the subset of ∆ without markup
symbols. In order to align the input in Σ∗ with a music score, we must account



for the expressive timing of human performance that results in small time shifts
between an input event of Σ and the corresponding notation event in ∆i. These
shifts can be weighted as the time distance between both, computed in the
tropical semiring by δ ∈ ΦΣ,∆i , defined as follows:

δ(µ τ, ν τ ′) =

{
|τ ′ − τ | if ν corresponds to µ,
0 otherwise

The distance between I and O is the aggregation with ⊗ of the pairwise differ-
ences between the timestamps. In the tropical semiring, this yields |0.07− 0|+
|0.72− 3

4 |+ |0.91− 7
8 |+ |1.05− 1|+ |1.36− 4

3 |+ |1.71− 5
3 | = 0.255. 3

The following facts are immediate consequences of the definitions of the op-
erators on the functions of labels theories and properties of complete semirings.

Lemma 4. For a label theory Φ̄ over a complete semiring S, for all ΦΣ , Φ∆, ΦΣ,∆ ∈
Φ̄, α ∈ S, φ, φ′ ∈ ΦΣ, ψ ∈ Φ∆, and η ∈ ΦΣ,∆, it holds that:

i.
⊕

Σ

⊕2
∆ η =

⊕
∆

⊕1
Σ η.

ii. α⊗
⊕

Σ φ =
⊕

Σ(α⊗φ) and
(⊕

Σ φ
)
⊗α =

⊕
Σ(φ⊗α), and similarly for ⊕.

iii.
(⊕

Σ φ
)
⊕
(⊕

Σ φ
′) =

⊕
Σ(φ⊕ φ′) and

(⊕
Σ φ
)
⊗
(⊕

Σ φ
′) =

⊕
Σ(φ⊗ φ′).

iv.
(⊕2

∆ η
)
⊕
(⊕2

∆ η
′) =

⊕2
∆(η ⊕ η′), and

(⊕2
∆ η
)
⊗
(⊕2

∆ η
′) =

⊕2
∆(η ⊗ η′).

v. φ⊗
(⊕2

∆ η
)

=
⊕

∆(φ⊗1 η), and
(⊕2

∆ η
)
⊗ φ =

⊕
∆(η ⊗1 φ),

and similarly for ⊕.
vi. ψ ⊗

(⊕1
Σ η
)

=
⊕

Σ(ψ ⊗2 η), and
(⊕1

Σ η
)
⊗ ψ =

⊕
Σ(η ⊗2 ψ),

and similarly for ⊕.

The following property of label theories will be useful in the following results, in
order to ensure the computability of the above infinite sum operators.

Definition 1. A function φ : Σ → S, resp. η : Σ × ∆ → S, is called effec-
tive when the operations of S are computable and

⊕
Σ φ, resp.

⊕
∆

⊕1
Σ η and⊕

Σ

⊕2
∆ η, can be effectively computed from φ, resp. η, as well as one symbol of

Σ, resp. symbols of Σ and ∆, reaching this bound. A label theory Φ̄ is effective
when all its functions are.

The effectiveness is a strong restriction of label theories, but it is not un-
realistic in the context of the problems for languages models considered below,
namely the combination of automata, best-search and symbolic weighted pars-
ing. In fact, every instance of such problems comes with a finite number of
automata, each one containing a finite number of functions in a label theory, in
their transitions. We may assume that the global minimums

⊕
Σ φ,

⊕
∆

⊕1
Σ η,

and
⊕

Σ

⊕2
∆ η of all these functions are known. Then, the other functions con-

sidered when solving the problems are obtained by combination with the above
operators, and are effective by Lemma 4. In practice, the combinations may be
represented by structures like Algebraic Decision Diagrams [3].



3 SW Automata and Transducers

We follow the approach of [28] for the computation of distances between words
and languages and extend it to infinite alphabets. The models presented in this
section are weighted automata and transducers [13] with transitions labeled by
weight functions that take the input and output symbols as parameters. These
functions generalize the guards of symbolic automata [36,9,10], from Boolean
domains to commutative semirings. These models are also particular cases of
the very general model of Weighted Symbolic Automata with Data Storage [19].
Let S be a commutative semiring, Σ and ∆ be alphabets called input and output
respectively, and Φ̄ be a label theory over S containing ΦΣ , Φ∆, ΦΣ,∆.

Definition 2. A symbolic-weighted transducer (swT) over Σ, ∆, S and Φ̄ is a
tuple T = 〈Q, in, w̄, out〉, where Q is a finite set of states, in : Q→ S (respectively
out : Q→ S) are functions defining the weight for entering (respectively leaving)
computation in a state, and w̄ is a triplet of transition functions w10 : Q×Q→
ΦΣ, w01 : Q×Q→ Φ∆, and w11 : Q×Q→ ΦΣ,∆.

Note that the SW-transducers of Definition 2 are actually classical weighted
transducers where the alphabets are permitted to be infinite. A tuple of Q ×
(Σ ∪ {ε}) × (∆ ∪ {ε}) × Q → S is called a transition of T . For convenience,
we shall sometimes present the above w10, w01, w11 as mappings associating to
every transition a weight value in S as follows, for every q, q′ ∈ Q, a ∈ Σ, b ∈ ∆:

w10(q, a, ε, q′) = φ(a) where φ = w10(q, q′) ∈ ΦΣ ,
w01(q, ε, b, q′) = ψ(b) where ψ = w01(q, q′) ∈ Φ∆,
w11(q, a, b, q′) = η(a, b) where η = w11(q, q′) ∈ ΦΣ,∆.

The swT T computes on pairs 〈s, t〉 ∈ Σ∗×∆∗, s and t, being respectively called
input and output word. The semantics of T is based on an intermediate function
weightT defined recursively as follows, for every states q, q′ ∈ Q, and every pairs
of strings 〈s, t〉 ∈ Σ∗ ×∆∗.

weightT (q, ε, ε, q′) = 1 if q = q′ and 0 otherwise (1)

weightT (q, s, t, q′) =
⊕
q′′∈Q

s=ua, a∈Σ

weightT (q, u, t, q′′)⊗ w10(q′′, a, ε, q′)

⊕
⊕
q′′∈Q

t=vb, b∈∆

weightT (q, s, v, q′′)⊗ w01(q′′, ε, b, q′)

⊕
⊕
q′′∈Q

s=ua, t=vb

weightT (q, u, v, q′′)⊗ w11(q′′, a, b, q′)

We recall that, by convention (Section 2), an empty sum with
⊕

is equal to 0.
Intuitively, a transition wij(q, a, b, q

′) is interpreted as follows: when reading a



and b in the input and output words, increment the current position in the input
word if and only if i = 1, and in the output word iff j = 1, and change state from
q to q′. When a = ε (resp. b = ε), the current symbol in the input (resp. output)
is not read. Since 0 is absorbing for ⊗, and neutral for ⊕ in S, if wij(q, a, b, q

′′)
is equal to 0 (meaning that there is no possible transition from state q into state
q′ while reading a and b), then the entire term containing this expression can
be ignored in the sum. This is analogous to the case of a transition’s guard not
satisfied by 〈a, b〉 for symbolic transducers [37].

The expression (1) can be seen as a stateful definition of an edit-distance
between a word s ∈ Σ∗ and a word t ∈ ∆∗, see also [28]. Intuitively, w10(q, a, ε, r)
is the cost of the deletion of the symbol a ∈ Σ in s, w01(q, ε, b, r) is the cost of the
insertion of b ∈ ∆ in t, and w11(q, a, b, r) is the cost of the substitution of a ∈ Σ
by b ∈ ∆. The cost of a sequence of such operations transforming s into t is the
product in terms of ⊗ of the individual costs of the operations involved; and
the distance between s and t is the sum in terms of ⊕ of all possible products.
Formally, the weight associated by T to 〈s, t〉 ∈ Σ∗ ×∆∗ is:

T (s, t) =
⊕
q,q′∈Q

in(q)⊗weightT (q, s, t, q′)⊗ out(q′) (2)

Example 3. We build a small swT over the alphabets Σ and ∆i of Ex. 1 and 2,
with two states q0 and q1, that calculates the temporal distance between an
input performance in Σ∗ and the subsequence of ∆i events in a score. Given a
performed event µ and the corresponding notated event ν (e.g. MIDI pitch 69
and note A4), the weight computed by the swT is the time distance between
both, as modeled by transitions w11 below. The continuation symbol ′−′ (met
for instance in ties ˇ “̂ ˇ “( , or dots ˇ “‰ ) is skipped with no cost (transitions w01).

w11(q0, µ: τ, ν: τ ′, q0) = δ(µ: τ, ν: τ ′) if ν 6= −
w11(q1, µ: τ, ν: τ ′, q0) = δ(µ: τ, ν: τ ′) if ν 6= −
w01(q0, ε,−: τ ′, q0) = 1 w01(q1, ε,−: τ ′, q0) = 1
w10(q0, µ: τ, ε, q1) = α

We also want to take performing errors into account, since a performer could,
for example, play an unwritten extra note. The transition w10, with a fixed
weight value α ∈ S, switches from state q0 (normal) to q1 (error) when reading
an extra note µ. The transitions in the second column below switch back to
the normal state q0. At last, we let q0 be the only initial and final state, with
in(q0) = out(q0) = 1, and in(q1) = out(q1) = 0. 3

Symbolic Weighted Automata are defined as the transducers of Definition 2, by
simply omitting the output symbols.

Definition 3. A symbolic-weighted automaton (swA) over Σ, S and Φ̄ is a tu-
ple A = 〈Q, in,w1, out〉, where Q is a finite set of states, in : Q→ S , respectively
out : Q→ S, are functions defining the weight for entering (respectively leaving)
computation in a state, and w1 is a transition function from Q×Q into ΦΣ.



A swA transition is a triplet of Q×Σ ×Q, and, as in the case of swT, we may
write w1(q, a, q′) for φ(a) when w1(q, q′) = φ ∈ ΦΣ . The computation of A on
words s ∈ Σ∗ is based on an intermediate function weightA, defined as follows
for q, q′ ∈ Q, a ∈ Σ, u ∈ Σ∗

weightA(q, ε, q′) = 1 if q = q′ and 0 otherwise (3)

weightA(q, ua, q′) =
⊕
q′′∈Q

weightA(q, u, q′′)⊗ w1(q′′, a, q′)

and the weight value associated by A to s ∈ Σ∗ is defined as follows:

A(s) =
⊕
q,q′∈Q

in(q)⊗weightA(q, s, q′)⊗ out(q′) (4)

Proposition 1. Given a swT T over Σ, ∆, S commutative, bounded and com-
plete, and Φ̄ effective, and a swA A over Σ, S and Φ̄, there exists a swA BA,T
over ∆, S and Φ̄, effectively constructible in PTIME, such that for every t ∈ ∆+,

BA,T (t) =
⊕
s∈Σ∗

A(s)⊗ T (s, t).

Proof. Let T = 〈Q, inT , w̄, outT 〉, where w̄ contains w10, w01, and w11, from
Q×Q into respectively ΦΣ , Φ∆, and ΦΣ,∆, and let A = 〈P, inA,w1, outA〉 with
w1 : P × P → ΦΣ . The state set of BA,T will be Q′ = P ×Q, and its entering,
leaving and transition functions will simulate, while reading an output word
t ∈ ∆∗, the synchronized computations of A and T , when they read both the
output word t and an input word s ∈ Σ∗.
The main difficulty comes from the transitions of T of the form w10, which
read in input s and ignore the output t. Since the automaton BA,T only reads
the output word t, such transitions would correspond to ε-transitions in BA,T .
But ε-transitions are not defined for swA. Therefore, we shall perform on-the-fly
elimination of the ε-transitions during the construction of BA,T , following an
approach of [25], Algorithm 1.
The state entering function of BA,T is defined for all 〈p1, q1〉 ∈ Q′, by:

in′
(
〈p1, q1〉

)
= inA(p1)⊗ inT (q1). (5)

The transition function w′1 of BA,T will roughly perform a synchronized product
of transitions defined by w1 (A reading in input word s), w01 (T reading in
output word t and not in input word s), and w11 (T reading both in input word
s and in output word t). Moreover, the ε-transitions to eliminate come from the
simulation, by w′1, of the transitions defined by w1 and w10 (A and T reading
in input word s and not in output word t). Let us construct the transition
function w′1 iteratively. Initially, for all p1, p2 ∈ P , and q1, q2 ∈ Q, let

w′1
(
〈p1, q1〉, 〈p2, q2〉

)
=
( ⊕
p1=p2

w01(q1, q2)
)
⊕
⊕1

Σ

(
w1(p1, p2)⊗1 w11(q1, q2)

)
(6)



out′
(
〈p1, q1〉

)
= outA(p1)⊗ outT (q1) (7)

We recall that by convention,
⊕
p1=p2

w01(q1, q2) is equal to 0 if p1 6= p2.

Then, we iterate the following updates for all p1, p2, p3 ∈ P and q1, q2, q3 ∈ Q:

w′1
(
〈p1, q1〉, 〈p3, q3〉

)
⊕=

⊕
Σ

(
w1(p1, p2)⊗ w10(q1, q2)

)
⊗ w′1

(
〈p2, q2〉, 〈p3, q3〉

)
(8)

out′
(
〈p2, q2〉

)
⊕=

⊕
Σ

(
w1(p1, p2)⊗ w10(q1, q2)

)
⊗ out′(p1, q1) (9)

In both cases of updates of w′1 (8) and out′ (9) during the iteration, w1(p1, p2)⊗
w10(q1, q2) is the weight of an ε-transition. It corresponds to the reading, by A
and T , of a symbol a in the input word s without moving in the output word, i.e.
the synchronization of a transition w1(p1, a, p2) ofA and a transition w10(q1, a, ε, q2)
of T . The iteration stops if it does not change the value of w′1 and out′. By hy-
pothesis and Lemma 3, S is idempotent. Therefore, the construction of BA,T
will stop after at most |P |2.|Q|2 iterations. The correctness of this construction
of BA,T is proved in Appendix A. ut

The particular case of Proposition 1 with a singleton A, i.e. such that A(s) =
1 for a given s ∈ Σ∗ and A(s′) = 0 for every s′ 6= s, corresponds to a construction
of a swA for the partial application of the swT T , fixing the first argument s.

Corollary 1. Given a swT T over Σ, ∆, S commutative, bounded and complete,
and Φ̄ effective, and s ∈ Σ+, there exists an effectively constructible swA Bs,T
over ∆, S and Φ̄, such that for every t ∈ ∆+, Bs,T (t) = T (s, t).

4 SW Visibly Pushdown Automata and Best-Search

We consider now a language model generalizing symbolic VPA (sVPA [8], them-
selves generalizing VPA [2] to infinite alphabets) from Boolean semirings to ar-
bitrary semiring domains. It is also a particular case of Weighted Symbolic Au-
tomata with Data Storage [19] for a special type of data storage, and associates
to every nested word over an infinite alphabet a weight value in a semiring.
Nested words can describe structures of labeled trees. In the context of parsing,
they will be useful to represent AST (see Section 5 and Appendix C).
Let ∆ be a countable alphabet, partitioned into three pairwise disjoint sub-

sets ∆i, ∆c, ∆r, whose elements are respectively called internal, call and return
symbols [2]. Let 〈S,⊕,0,⊗,1〉 be a commutative and complete semiring and let
Φ̄ = 〈Φi, Φc, Φr, Φci, Φcc, Φcr〉 be a label theory over S where Φi, Φc, Φr and Φcx

(where x is either i, c, or r) stand respectively for Φ∆i , Φ∆c , Φ∆r and Φ∆c,∆x .

Example 4. In the nested score representation O ∈ ∆∗ in Ex. 1, ∆i corresponds
to timed notes and continuations, and ∆c and ∆r contain respectively opening
and closing parentheses. Another example is the other candidate �
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Music engraving by LilyPond 2.20.0—www.lilypond.org

of transcription of I, linearized into O′ = dm: [0,1], d2: [0,1], A4: 0, d2: [ 12 ,1], −: 1
2 ,



B4: 3
4 , e2: 1, e2: 1, em: 1, dm: [1,2], d3: [1,2], ‘C]5‘: 1, D5: 1, E5: 4

3 , F5: 5
3 , e3: 2, em: 2 (see

also Fig. 3). The symbol between quotes ‘C]5‘ represents an appogiatura, i.e. an
ornamental note with theoretical duration 0. 3

Definition 4. A Symbolic Weighted Visibly Pushdown Automata (sw-VPA)
over ∆ = ∆i ] ∆c ] ∆r, S and Φ̄ is a tuple A = 〈Q,P, in, w̄, out〉, where Q
is a finite set of states, P is a finite set of stack symbols, in : Q → S (respec-
tively out : Q → S) are functions defining the weight for entering (respectively
leaving) a state, and w̄ is a sextuplet composed of the transition functions :
wi : Q × P × Q → Φci, we

i : Q × Q → Φi, wc : Q × P × Q × P → Φcc,
we

c : Q× P ×Q→ Φc, wr : Q× P ×Q→ Φcr, w
e
r : Q×Q→ Φr.

We extend the above transition functions as follows for every q, q′ ∈ Q, p ∈ P ,
a ∈ ∆i, c ∈ ∆c, r ∈ ∆r, overloading their names:

wi : Q× [∆c × P ]×∆i ×Q→ S wi(q, c, p, a, q
′) = ηci(c, a)

where ηci = wi(q, p, q
′),

we
i : Q×∆i ×Q→ S we

i (q, a, q′) = φi(a)
where φi = we

i (q, q′),
wc : Q× [∆c × P ]× [∆c × P ]×Q→ S wc(q, c, p, c

′, p′, q′) = ηcc(c, c
′)

where ηcc = wc(q, p, p
′, q′),

we
c : Q× [∆c × P ]×Q→ S we

c(q, c, p′, q′) = φc(c)
where φc = we

c(q, p, q′),
wr : Q× [∆c × P ]×∆r ×Q→ S wr(q, c, p, r, q

′) = ηcr(c, r)
where ηcr = wr(q, p, q

′),
we

r : Q×∆r ×Q→ S we
r (q, r, q′) = φr(r)

where φr = we
r (q, q′) .

The tuples in the definition domains of the above functions are also called tran-
sitions of the sw-VPA. We denote by src(τ) (respectively snd(τ)) the first (re-
spectively second) state component of a transition τ . Intuitively, we

i , we
c, and we

r

describe the cases where the stack is empty. The transitions of wi and we
i both

read an internal symbol a and change state from q to q′, without changing the
stack. Moreover, wi reads a pair made of c ∈ ∆c and p ∈ P on the top of the
stack (c is compared to a by the weight function ηci ∈ Φci). The transitions of wc

and we
c read the call symbol c′, push it to the stack along with p′, and change

state from q to to q′. Moreover, wc reads c and p at the top of the stack (c is
compared to c′). Finally, wr and we

r read the return symbol r, and change state
from q to to q′. Moreover, wr reads and pops from stack a pair made of c and p
(c is compared to r).

Formally, the computations of the automaton A are defined with an inter-
mediate function weightA, like in Section 3. A configuration q[γ] is composed of
a state q ∈ Q and a stack content γ ∈ Γ ∗, where Γ = ∆c × P . Hence, weightA
is a function from [Q× Γ ∗]×∆∗ × [Q× Γ ∗] into S. The empty stack is denoted
by ⊥, and the topmost symbol is the last pushed pair. The recursive definition
of weightA enumerates each of the six possible cases: reading a ∈ ∆i, or c ∈ ∆c,
or r ∈ ∆r, for each possible state of the stack (empty or not).



weightA
(
q[γ], ε, q′[γ′]) = 1 if q = q′, γ = γ′ = ⊥ and 0 otherwise (10)

weightA
(
q[γ], u a, q′

[
〈c, p〉
γ′

])
=
⊕
q′′∈Q

weightA
(
q[γ], u, q′′

[
〈c, p〉
γ′

])
⊗ wi(q

′′, c, p, a, q′)

weightA
(
q[γ], u a, q′[⊥]

)
=
⊕
q′′∈Q

weightA
(
q[γ], u, q′′[⊥]

)
⊗ we

i (q′′, a, q′)

weightA
(
q[γ], u c′, q′

 〈c′, p′〉〈c, p〉
γ′

) =
⊕
q′′∈Q
p′∈P

weightA
(
q[γ], u, q′′

[
〈c, p〉
γ′

])
⊗ wc

(
q′′, c, p, c′, p′, q′

)

weightA
(
q[γ], u c, q′[〈c, p〉]

)
=
⊕
q′′∈Q
p∈P

weightA
(
q[γ], u, q′′[⊥]

)
⊗ we

c(q′′, c, p, q′)

weightA
(
q[γ], u r, q′[γ′]

)
=
⊕
q′′∈Q

weightA
(
q[γ], u, q′′

[
〈c, p〉
γ′

])
⊗ wr

(
q′′, c, p, r, q′

)
weightA

(
q[γ], u r, q′[⊥]

)
=
⊕
q′′∈Q

weightA
(
q[γ], u, q′′[⊥]

)
⊗ we

r (q′′, r, q′)

The weight associated by A to t ∈ ∆∗ is defined according to empty stack
semantics:

A(t) =
⊕
q,q′∈Q

in(q)⊗weightA
(
q[⊥], t, q′[⊥]

)
⊗ out(q′) (11)

Every swA A = 〈Q, in,w1, out〉, over Σ, S and Φ̄ is a special case of sw-VPA
〈Q, ∅, in, w̄, out〉 over ∆, S and Φ̄ with ∆i = Σ and ∆c = ∆r = ∅, and computing
with an always empty stack: we

i = w1 and all the other functions of w̄ are the
constant 0.

Example 5. We consider a sw-VPA over the alphabet of Example 4 and with
P = Q, that expresses a weight related to the music notation, or more precisely
to its structural complexity. Given a set of equivalent representations, we aim at
choosing the simplest one, i.e. the one with the smallest weight.

Let us assume that the top of the stack is a tuple made of the call sym-
bol dn: [τ,τ+`] and the state q. Let us now consider a new call transition starting in
state q j

n
, that is the j-th state of the n sub-intervals of duration `

n . We thus read

a new time-division symbol dd and compute the weight of the transition from
q j

n
to q 1

d
, the first state after the new dd, reading on the top of the stack the pair

〈dn: [τ,τ+`], q〉, and pushing 〈dd: ι, q j+1
c
〉 on top, or: wc

(
q j

n
, dn: [τ,τ+`], q, dd: ι, q j+1

c
, q 1

d

)
= αd.

Reading the k-th musical event µ in this current sub-interval is computed with:
wi

(
q k

d
, dd: [τ,τ+`], q j

n
, µ: τ+ j`

d , q k+1
d

)
= αµ. Finally, this sub-interval will end after

reading a return symbol ed and compute: wr

(
q d

d
, dd: [τ,τ+`], q i+1

c
, ed: τ+`, q i+1

c

)
= 1.



We described earlier the special cases where the stack is empty, which applies for
example when reading the first measure for which we only push 〈dm: [0,1], q 1

1
〉 in

the stack: we
c

(
q 1

1
, dm: [0,1], q1/1, q1/1

)
= 1. In comparison, any other new measure

would compute instead: wc

(
q 1

1
, dm: [τ−1,τ ], q 1

1
, dm: [τ,τ+1], q 1

1
, q 1

1

)
= 1.

Each transition thus has a weight computing an overall weight for one repre-
sentation of music notation. When setting the weights, we decide which notation
is preferred if possible. For example, let’s say we want to prioritize tuplets over
triplets, then we set α2 and α3 such as α2 > α3. In conclusion, a sw-VPA is ca-
pable of computing several representations of the same piece of music, allowing
to choose the best one. 3

Similarly to VPA [2] and sVPA [8], the class of sw-VPA is closed under the binary
operators of the underlying semiring.

Proposition 2. Let A1 and A2 be two sw-VPA over the same ∆, commutative S
and effective Φ̄. There exist two effectively constructible sw-VPA A1 ⊕ A2 and
A1 ⊗ A2, such that for every s ∈ ∆∗, (A1 ⊕ A2)(s) = A1(s)⊕ A2(s) and (A1 ⊗
A2)(s) = A1(s)⊗A2(s).

Proof. We prove the closure under ⊗ - the case of ⊕ is similar. Let A1 =
〈Q1, P1, in1, w̄1, out1〉 and A2 = 〈Q2, P2, in2, w̄2, out2〉. The sw-VPA A1 ⊗ A2 is
built by a classical product construction. It has a state set Q = Q1 ×Q2 and a
auxiliary set of stack symbols P = P1 × P2: A1 ⊗ A2 = 〈Q,P, in1,⊗, w̄⊗, out⊗〉.
The weight entering and leaving functions in⊗, out⊗ and the sextuplet of transi-
tion functions w̄⊗ are defined using the label-theory operators of Section 2.1 as
follows, for all 〈q1, q2〉, 〈q′1, q′2〉 ∈ Q and 〈p1, p2〉, 〈p′1, p′2〉 ∈ P :

in⊗
(
〈q1, q2〉

)
= in1(q1)⊗ in2(q2) out⊗

(
〈q1, q2〉

)
= out1(q1)⊗ out2(q2)

wi,⊗
(
〈q1, q2〉, 〈p1, p2〉, 〈q′1, q′2〉

)
= wi,1(q1, p1, q

′
1)⊗ wi,2(q2, p2, q

′
2)

we
i,⊗
(
〈q1, q2〉, 〈q′1, q′2〉

)
= we

i,1(q1, q
′
1)⊗ we

i,2(q2, q
′
2)

wc,⊗
(
〈q1, q2〉, 〈p1, p2〉, 〈q′1, q′2〉, 〈p′1, p′2〉

)
= wc,1(q1, p1, q

′
1, p
′
1)⊗ wc,2(q2, p2, q

′
2, p
′
2)

we
c,⊗
(
〈q1, q2〉, 〈p1, p2〉, 〈q′1, q′2〉

)
= we

c,1(q1, p1, q
′
1)⊗ we

i,2(q2, p2, q
′
2)

wr,⊗
(
〈q1, q2〉, 〈p1, p2〉, 〈q′1, q′2〉

)
= wr,1(q1, p1, q

′
1)⊗ wr,2(q2, p2, q

′
2)

we
r,⊗
(
〈q1, q2〉, 〈q′1, q′2〉

)
= we

r,1(q1, q
′
1)⊗ we

i,2(q2, q
′
2)

With these functions, A simulate the synchronized behaviour of A1 and A2. ut

We present now a procedure for searching a word of minimal weight for a sw-VPAA.

Proposition 3. For a sw-VPA A over ∆, S commutative, bounded, total and
complete, and Φ̄ effective, one can construct in PTIME a word t ∈ ∆∗ such that
A(t) is minimal wrt the natural ordering ≤⊕ for S.

Let A = 〈Q,P, in, w̄, out〉. We propose first a method for computing, for every
q, q′ ∈ Q, the minimum, wrt ≤⊕, of the function βq,q′ : t 7→ weightA(q[⊥], t, q′[⊥]).
Let us denote by b⊥(q, q′) this minimum. By definition of ≤⊕, and since S is



total, it holds that (the infinite sum in (12) is well defined since S is complete):

b⊥(q, q′) =
⊕
t∈∆∗

weightA
(
q[⊥], t, q′[⊥]

)
. (12)

Following (11), and the associativity, commutativity and distributivity for ⊗
and ⊕, the minimum of A(t) is:⊕
t∈∆∗

A(t) =
⊕
t∈∆∗

⊕
q,q′∈Q

in(q)⊗βq,q′(t)⊗ out(q′) =
⊕
q,q′∈Q

in(q)⊗ b⊥(q, q′)⊗ out(q′)

(13)
Hence, in order to prove Proposition 3, it is sufficient to show that we can
compute b⊥(q, q′) for all q, q′ ∈ Q. For this purpose, we shall consider an auxiliary
function b> : Q×P ×Q→ Φc that corresponds to the cases where the stack of A
is not empty. Intuitively, b>(q, p, q′) is a function of Φc, mapping every c ∈ ∆c to
the minimum weight of a computation of A starting in state q, with a non-empty
stack γ′ = 〈c, p〉 γ ∈ Γ+, and ending in state q′ with the same stack γ′, such
that the computation does not pop the pair 〈c, p〉 at the top of γ′ (i.e. γ′ is left
untouched during the computation). However, the computation can read 〈c, p〉
at the top of γ′, and can also push another pair 〈c′, p′〉 ∈ Γ on top of γ′, following
the third case in the definition (10) of weightA (call symbol). The pair 〈c′, p′〉
must be popped later, during the computation from q to q′, following the fifth
case of (10) (return symbol). Formally, in order to define b>, we consider a fresh
stack symbol > /∈ Γ , representing the above untouched stack, and let:

b>(q, p, q′) : c 7→
⊕
s∈∆∗

weightA
(
q

[
〈c, p〉
>

]
, s, q′

[
〈c, p〉
>

])
for all c ∈ ∆c (14)

This ensures in particular that the subword read during the computation is well
parenthesized (every symbol in ∆c has a matching symbol in ∆r).

We shall compute the values of the functions b⊥ and b> by search of shortest
paths in a S-labeled graph GA associated to the sw-VPA A. This graph is defined
by GA = 〈VA, EA, ηA〉, with set of vertices VA = (Q×Q)∪(Q×P×Q), set of edges
EA = VA × VA (an edge 〈v1, v2〉, with v1, v2 ∈ VA is denoted by v1 → v2), and
with an edge labelling ηA : EA → S defined by, for q0, q1, q2, q3 ∈ Q, p, p′ ∈ P :

〈q0, q1〉 → 〈q0, q2〉 7→
⊕

∆i
we

i (q1, q2)⊕
⊕

∆r
we

r (q1, q2)

〈q1, p, q2〉 → 〈q0, q3〉 7→
⊕

∆c

[
we

c(q0, p, q1)⊗
⊕2

∆r
wr(q2, p, q3)

]
〈q1, p′, q2〉 → 〈q0, p, q3〉 7→

⊕
q0=q1

⊕
p=p′

⊕
∆i

wi(q2, p, q3)

⊕
⊕2

∆c

[
wc(q0, p, p

′, q1)⊗2

⊕
∆r
wr(q2, p

′, q3)
]

A path of GA is a sequence π = v0, . . . , vn ∈ V ∗A, where v0 and vn are respectively
called fst(π) and last(π). The path π is called safe when fst(π) has the form
〈q, q〉 for some q ∈ Q, A path π is assigned a weight value weight(π) ∈ S which
is the product by ⊗ of the weights of the edges involved in the path. More



precisely, for all q, q′ ∈ Q and p ∈ P , we let weight(〈q, q′〉) = 1 if q = q′,
and 0 otherwise, weight(〈q, p, q′〉) = 0 and for all n ≥ 1, weight(v0, . . . , vn) =
weight(v0, . . . , vn−1) ⊗ ηA(vn−1 → vn). For v, v′ ∈ VA, let Πv,v′ be the set of
pathes π such that fst(π) = v and last(π) = v′, and let short(v, v′) be the weight

of the shortest path from v to v′, more precisely, short(v, v′) =
⊕

π∈Πv,v′

weight(π).

Proposition 4. For all q, q′ ∈ Q, b⊥(q, q′) =
⊕
q0∈Q

short
(
〈q0, q0〉, 〈q, q′〉

)
.

This proposition is a consequence of Lemmata 5 and 6 found in Appendix B.

Following (13) and Proposition 4, in order to compute the minimum of t 7→ A(t)
wrt ≤⊕, it is sufficient to compute one shortest paths in GA of source 〈q0, q0〉 and
target 〈q, q′〉 for all q0, q, q

′ ∈ Q. This can be done [27] with an overall worst case
time complexity in O

(
|Q|2.|P |)3

)
. Moreover, a witness t ∈ ∆∗ for this minimum

can be associated to the appropriate shortest path, with no additional cost, like
in the proof of Lemma 5.

5 Symbolic Weighted Parsing

Let us now apply the models and results of the previous sections to the problem
of parsing over an infinite alphabet. Let Σ and ∆ = ∆i ]∆c ]∆r be countable
input and output alphabets, let 〈S,⊕,0,⊗,1〉 be a commutative, bounded, total
and complete semiring and let Φ̄ be an effective label theory over S, containing
ΦΣ , ΦΣ,∆i , as well as Φi, Φc, Φr, Φcr (following the notations of Section 4). We
assume to be given the following input:

– a swT T over Σ, ∆i, S, and Φ̄, defining a measure T : Σ∗ ×∆i
∗ → S,

– a sw-VPA A over ∆, S, and Φ̄, defining a measure A : ∆∗ → S,
– an input word s ∈ Σ∗.

For every u ∈ Σ∗ and t ∈ ∆∗, let d(u, t) = T
(
u, t|∆i

)
, where t|∆i ∈ ∆i

∗ is the
projection of t onto ∆i, obtained from t by removing all symbols in ∆ \ ∆i.
Symbolic weighted parsing is the problem, given the above input, to find t ∈ ∆∗
minimizing d(s, t)⊗A(t) wrt ≤⊕, i.e. s.t.

d(s, t)⊗A(t) =
⊕
u∈∆∗

d(s, u)⊗A(u) (15)

Following the terminology of [28], sw-parsing is the problem of computing the
distance (15) between the input string s and the weighted language over the
output alphabet defined by A, and returning a witness t.

Example 6 (Symbolic Weighted Parsing and the transcription problem). Applied
to the music transcription problem, the above formalism is interpreted as follows:

– The input word is I of Example 1.



– The swT T evaluates a “fitness measure” expressing a correspondence be-
tween a performance and a nested representation of a music score - Ex. 3.

– The sw-VPA A expresses a cost related to the complexity of music notation.

As seen in Example 5,
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when the
weight assigned to an additional second time division with d2 is less than the
difference of weight between the appogiatura ‘C]5‘ and the standard note C]5.
The SW-parsing framework, applied to the transcription problem, allows to find
an optimal solution that considers both the fitness of the result, and its structural
complexity. 3

The application to music transcription suggested briefly in the examples has
been implemented in a C++ tool [1], following the principles of the present
SW-parsing framework, although it differs in several points. In particular, the
automata constructions are performed on the on-the-fly during the search of a
best AST, for efficiency reasons.

Proposition 5. The problem of Symbolic Weighted Parsing can be solved in
PTIME in the size of the input swT T , sw-VPA A and input word s, and the
computation time of the functions and operators of the label theory.

Proof. We follow a Bar-Hillel construction for parsing by intersection. We first
extend the swT T over Σ, ∆i into a swT T ′ over Σ and ∆ (and the same
semiring and label theory S and Φ̄), such that for every u ∈ Σ∗, and t ∈ ∆∗,
T ′(u, t) = T (u, t|∆i). T

′ simply skips every symbol b ∈ ∆ \ ∆i by the addition
of new transitions of the form w01(q, ε, b, q′) to T . Then, using Corollary 1,
we construct from s ∈ Σ∗ and T ′ a swA Bs,T ′ , such that for every t ∈ ∆∗,
Bs,T ′(t) = d(s, t). Next, we compute the sw-VPA Bs,T ′ ⊗A, using Proposition 2.
It remains to compute a best nested word t ∈ ∆∗ for this sw-VPA, using the
procedure of Proposition 3. ut

The sw-parsing problem generalizes the problem of searching for the best
derivation (AST) of a weighted CF-grammar G that yields a given input word
w, with an infinite input alphabet instead of a finite one and transducer-defined
distances instead of equality (it is however uncomparable to related problem
called semiring parsing, [15], called weighted parsing [29]). The interested reader
might find in Appendix C more details on the correspondence between nested
words t ∈ ∆∗, AST, CF grammars and sw-VPA.

Conclusion

We presented three properties of three Symbolic Weighted language models (au-
tomata, transducers and visibly pushdown automata), and applied them to the
problem of parsing with infinitely many possible input symbols (typically timed
events). One originality of this approach is the comparison of words using a dis-
tance between words defined by a given SW transducer. This allows to consider
finer word relationships than strict equality.



This work can be extended in several directions. The best-search algorithm
for sw-VPA could be generalized from 1-best to n-best [21], and to k-closed
semirings [27] (instead of bounded, which corresponds to 0-closed). It complexity
upper bound could also certainly be improved. Another possible study could be
the existence of best-search algorithms for the more general models of [19].
Finally, the best-search algorithm presented here works offline, whereas an on-
the-fly approach coupling automata construction and best-search would be in-
teresting e.g. for online XML validation or filtering, or program monitoring [8].
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A End of proof of Proposition 1

Let us show that BA,T (t) =
⊕
s∈Σ∗

A(s)⊗ T (s, t) for all t ∈ ∆+.

We call run from 〈p0, q0〉 to 〈pn, qn〉 a finite sequence of the form: ρ = 〈p0, q0〉,
a1, 〈p1, q1〉,. . . , an, 〈pn, qn〉 where 〈pi, qi〉 ∈ Q′ for all 0 ≤ i ≤ n and aj ∈ Σ for
all 1 ≤ j ≤ n. The state 〈p0, q0〉 is called source of the run, denoted src(ρ) and
〈pn, qn〉 is called target of the run, denoted trg(ρ); the set of runs with source
〈p, q〉 and target 〈p′, q′〉 is denoted R(〈p, q〉, 〈p′, q′〉). The word a1 . . . an ∈ Σ∗ is
called word of the run ρ and denoted word(ρ). Moreover, we associate a weight
value in S to every run, defined by:

weight(ρ) =

n⊗
i=1

w1(pi−1, ai, pi)⊗ w10(qi−1, ai, ε, qi) (16)

By definition of the weight functions, and associativity, commutativity, and
distributivity of ⊕, ⊗, it holds that:

weightA(p, s, p′)⊗ weightT (q, s, ε, q′) =
⊕

ρ∈R(〈p,q〉,〈p′,q′〉)
word(ρ)=s

weight(ρ) (17)

Using (16) and Lemma 4 repetively, (17) implies that:⊕
s∈Σ∗

weightA(p, s, p′)⊗ weightT (q, s, ε, q′) =

⊕
ρ∈R(〈p,q〉,〈p′,q′〉)

ρ=〈p0,q0〉,a1,〈p1,q1〉,...,an,〈pn,qn〉

n⊗
i=1

⊕
Σ

(w1(pi−1, pi)⊗ w10(qi−1, qi))
(18)

Note that the symbols a1, . . . , an ∈ Σ in the run ρ are not significant in (18). Us-
ing a pumping argument, we can show that (18) still holds when restricting ρ to
the set R0(〈p, q〉, 〈p′, q′〉) of runs without repetition in the state symbols. Indeed,
assume that in ρ = 〈p0, q0〉, a1, 〈p1, q1〉, . . . , an, 〈pn, qn〉, 〈pi1 , qi1〉 = 〈pi2 , qi2〉 for
0 ≤ i1 < i2 ≤ n. Then ρ′ = 〈p0, q0〉, . . . , ai1−1, 〈pi1−1, qi1−1〉, ai2 , 〈pi2 , qi2〉, . . . , an, 〈pn, qn〉
also belongs to R

(
〈p0, q0〉, 〈pn, qn〉

)
and yields a smaller expression (wrt ≤⊕) in

the right-hand-side of (18) than ρ. It follows, by (6) and (8), that for all b ∈ ∆,

w′1(〈p, q〉, b, 〈p′, q′〉) =
⊕
s∈Σ∗

⊕
p′′∈P
q′′∈Q

weightA(p, s, p′′)⊗ weightT (q, s, ε, q′′)⊗ ψ1(b)

(19)

where ψ1 = w01(q′′, q′)⊕
⊕1

Σ

(
w1(p′′, p′)⊗1 w11(q′′, q′)

)
.

We show now by induction on the length of t ∈ ∆+, that

weightBA,T
(〈p, q〉, t, 〈p′, q′〉) =

⊕
s∈Σ∗

weightA(p, s, p′)⊗ weightT (q, s, t, q′)



This permits to conclude, using the definition of in′ in (5), and the definition of
out′ in (7), and (9).
The base case t ∈ ∆ follows from (19) and the distributivity of ⊗.
For t = bu, with b ∈ ∆ and u ∈ ∆∗, by definition of weightA and weightT , it
holds that for all s ∈ Σ∗:

weightA(p, s, p′)⊗ weightT (q, s, t, q′) =
⊕
s=s1s2

⊕
p′′,p′′′∈P
q′′,q′′′∈Q

weightA(p, s1, p
′′′)⊗ weightA(p′′′, s2, p

′′)⊗

weightT (q, s1, ε, q
′′)⊗


⊕
q′′′∈Q

w01(q′′, ε, b, q′′′)⊗ weightT (q′′′, s2, u, q
′)⊕⊕

q′′′∈Q

⊕
s2=as′2

w11(q′′, a, b, q′′′)⊗ weightT (q′′′, s′2, u, q
′)


Using (19), it follows that:⊕

s∈Σ∗
weightA(p, s, p′)⊗ weightT (q, s, t, q′) =⊕
p′′,p′′′∈P
q′′,q′′′∈Q

⊕
s1∈Σ∗

weightA(p, s1, p
′′)⊗ weightT (q, s1, ε, q

′′)⊗ ψ1(b)

⊗
⊕
s2∈Σ∗

weightA(p′′′, s2, p
′)⊗ weightT (q′′′, s2, u, q

′)

with ψ1 = w01(q′′, q′′′)⊕
⊕1

Σ

(
w1(p′′, p′′′)⊗1 w11(q′′, q′′′)

)
.

The first term in the right-hand-side is w′1(〈p, q〉, b, 〈p′′′, q′′′〉) by (19), and the
second term is weightBA,T

(〈p′′′, q′′′〉, u, 〈p′, q′〉) by induction hypothesis. Hence,
by definition,⊕

s∈Σ∗
weightA(p, s, p′)⊗ weightT (q, s, t, q′) =⊕

p′′′∈P
q′′′∈Q

w′1(〈p, q〉, b, 〈p′′′, q′′′〉)⊗ weightBA,T
(〈p′′′, q′′′〉, u, 〈p′, q′〉)

= weightBA,T
(〈p, q〉, t, 〈p′, q′〉).

B Proof of Proposition 4

Proposition 4 states the correctness of the construction of the graph GA for
the computation of b⊥ and, by extension, the minimum of A. Its proof is a
consequence of the two following Lemmata 5 and 6.

Lemma 5 (Correctness). For all safe path π of GA, (i) if last(π) = 〈q, q′〉,
then there exists u ∈ ∆∗ such that weightA(q[⊥], u, q′[⊥]) = weight(π),
(ii) if last(π) = 〈q, p, q′〉, then there exists v ∈ ∆∗ such that⊕
c∈∆c

weightA
(
q

[
〈c, p〉
>

]
, v, q′

[
〈c, p〉
>

])
= weight(π).



Proof. We prove (i) and (ii) simultaneously by induction on the length |π| of
the path π.
The base case |π| = 1 is a direct consequence of the definition of weight of paths
of length 1 and the first line of (10).
If π = v0, . . . , vn with n ≥ 1, we assume that Lemma 5 holds for a safe path π′ =
v0, . . . , vn−1 and a word u′ ∈ ∆∗, and do a case analysis on the edge vn−1 → vn.

Firstly, let us consider the case where vn−1 = 〈q, q′′〉 and vn = 〈q, q′〉. By defini-
tion, the edge 〈q, q′′〉 → 〈q, q′〉 is possible only if an internal symbol or a return
symbol is read, keeping the stack empty:

– if we read a ∈ ∆i and have an empty stack, then the new weightA is computed
with the third case in equation (10). We have

weightA
(
q[γ], u′ a, q′[⊥]

)
= weightA

(
q[γ], u′, q′′[⊥]

)
⊗ we

i (q′′, a, q′)

= weight(π′)⊗ we
i (q′′, a, q′)

= weight(π)

since we know that weight(v0, . . . , vn−1)⊗ηA(vn−1 → vn) = weight(v0, . . . , vn)
and we

i (q′′, a, q′) is indeed a possible label ηA for the edge 〈q, q′′〉 → 〈q, q′〉
(first line of label definition).

– Following the same reasoning as above, we find that the Lemma is also true
when a ∈ ∆r by using the last equation in (10) which corresponds to the
case of an unmatched return symbol.

let us now consider the case where vn−1 = 〈q1, p, q2〉 and vn = 〈q0, q3〉. The edge
〈q1, p, q2〉 → 〈q0, q3〉 exists if we have a return symbol matching a call symbol
on the top of the stack, which is pop, leaving the stack empty. With the 6th
equation in (10), we can compute the weightA for 〈q0, q3〉 and then replace the
first term with the 5th equation in (10), such as:

weightA
(
q0[⊥], u r, q3[⊥]

)
= weightA

(
q0[⊥], u, q2

[
〈c, p〉
⊥

])
⊗ wr

(
q2, c, p, r, q3

)
= weightA(q1

[
〈c, p〉
⊥

]
, u, q2

[
〈c, p〉
⊥

])
⊗ we

c(q0, c, p, q1)⊗ wr

(
q2, c, p, r, q3

)
= weightA(π′)⊗ we

c(q0, c, p, q1)⊗ wr

(
q2, c, p, r, q3

)
= weightA(π)

Here the Lemma holds since wr

(
q2, c, p, r, q3

)
is also part of the edge labels (sec-

ond line).
Finally, for the case where vn−1 = 〈q1, p, q2〉 and vn = 〈q0, p′, q3〉 for p, p′ ∈ Q,

we can following the same reasoning as the two previous cases, and complete the
proof of Lemma algo-correct. ut

Lemma 6 (Completeness). For all q, q′ ∈ Q, p ∈ P , (i) there exists a safe
path π of GA such that last(π) = 〈q, q′〉, and weight(π) = b⊥(q, q′), (ii) there
exists a safe path π′ of GA such that last(π′) = 〈q, p, q′〉, and weight(π′) =⊕

∆c
b>(q, p, q′).



Proof. By associativity, commutativity and distributivity for S, (12) can be
rewritten into the form, unfolding (10):

b⊥(q, q′) =
⊕
t∈∆∗

⊕
q0,...,qn∈Q

pi,...,pk∈P

n⊗
i=1

wi(τi) (20)

where n is the length of t, k ≤ n, q0 = q, qn = q′, for all 1 ≤ i < n, wi is one of
the functions of w̄, τi is a transition of A and src(τi) = qi−1, snd(τi) = qi. Since S
is total, there exists finite sequences as above such that b⊥(q, q′) =

⊗n
i=1 wi(τi).

There might exists, for q and q′, several finite sequences τ̄ and w̄ as above, let us
choose arbitrarily one of minimal length n. This integer n will be denoted nq,q′

in the following.
Similarly, following (14) and (10),

⊕
∆c
b>(q, p, q′) can be put in the form:

⊕
∆c
b>(q, p, q′) =

⊕
∆c

⊕
t∈∆∗

⊕
q0,...,qn∈Q

pi,...,pk∈P

n⊗
i=1

wi(τi) (21)

and hence
⊕

∆c
b>(q, p, q′) =

⊗n
i=1 wi(τi), using c ∈ ∆c that minimize the func-

tion in rhs of (21). We denote the smallest n as above by nq,p,q′ .
We show now the existence of a path π as expected, by simultaneous induction
on nq,q′ and nq,p,q′ .
The base case, n = 0 corresponds to t = ε. In this case, by (10), b>(q, p, q′) = 0,
b⊥(q, q) = 1 and b⊥(q, q′) = 0 if q 6= q′.
For n = nq,q′ > 0, let τ̄ and w̄ be the sequences associated to q and q′ as
above. We can perform a case analysis of wn. Computing b⊥(q, q′) comes down
to running A on a word u ∈ ∆∗, such that |u| = n, and u is well-matched except
for unmatched return symbols read on empty stack. Let us consider the case
where wn = we

i . Then using Equation 10, we can decompose b⊥(q, q′) as follows:

b⊥(q, q′) = weightA(q[⊥], u′, q′′[⊥])⊗ we
i (q′′, a, q′)

= b⊥(q, q′′)⊗ we
i (q′′, a, q′)

Since u = u′a is minimal in length, then so is u′, and weightA(q[⊥], u′, q′′[⊥]) =
b⊥(q, q′′). Consequently, for this case the Lemma holds. The other cases can be
proven similarly, but only for the wn that can form a well-matched word. For
example, wn cannot be wc since this call would not have a matching return. ut

C Nested Words and Parse Trees

The hierarchical structure of nested words, defined with the call and return
markup symbols suggest a correspondence with trees. The lifting of this corre-
spondence to languages, of tree automata and VPA, has been discussed in [2],



and [6] for the weighted case. In this section, we describe a correspondence be-
tween the symbolic-weighted extensions of tree automata and VPA.

Let Ω be a countable ranked alphabet, such that every symbol a ∈ Ω has a
rank rk(a) ∈ [0..M ] where M is a fixed natural number. We denote by Ωk the
subset of all symbols a of Ω with rk(a) = k, where 0 ≤ k ≤M , and Ω>0 = Ω\Ω0.
The free Ω-algebra of finite, ordered, Ω-labeled trees is denoted by TΩ . It is the
smallest set such that Ω0 ⊂ TΩ and for all 1 ≤ k ≤ M , all a ∈ Ωk, and all
t1, . . . , tk ∈ TΩ , a(t1, . . . , tk) ∈ TΩ . Let us assume a commutative semiring S and
a label theory Φ̄ over S containing one set ΦΩk

for each k ∈ [0..M ].

Definition 5. A symbolic-weighted tree automaton (swTA) over Ω, S, and Φ̄
is a triplet A = 〈Q, in, w̄〉 where Q is a finite set of states, in : Q → ΦΩ is the
starting weight function, and w̄ is a tuplet of transition functions containing, for
each k ∈ [0..M ], the functions wk : Q×Qk → ΦΩ>0,Ωk

and we
k : Q×Qk → ΦΩk

.

We define a transition function w : Q× (Ω>0 ∪ {ε})×Ω ×
⋃M
k=0Q

k → S by:

w(q0, a, b, q1 . . . qk) = η(a, b) where η = wk(q0, q1 . . . qk)
w(q0, ε, b, q1 . . . qk) = φ(b) where φ = we

k(q0, q1 . . . qk).

where q1 . . . qk is ε if k = 0. The first case deals with a strict subtree, with a
parent node labeled by a, and the second case is for a root tree.
Every swTA defines a mapping from trees of TΩ into S, based on the following
intermediate function weightA : Q× (Ω ∪ {ε})× TΩ → S

weightA(q0, a, t) =
⊕

q1...qk∈Qk

w(q0, a, b, q1 . . . qk)⊗
k⊗
i=1

weightA(qi, b, ti) (22)

where q0 ∈ Q, a ∈ Ω>0 ∪ {ε} and t = b(t1, . . . , tk) ∈ TΩ , 0 ≤ k ≤M .

Finally, the weight associated by A to t ∈ TΩ is

A(t) =
⊕
q∈Q

in(q)⊗weightA(q, ε, t) (23)

Intuitively, w(q0, a, b, q1 . . . qk) can be seen as the weight of a production rule
q0 → b(q1, . . . , qk) of a regular tree grammar [7], that replaces the non-terminal
symbol q0 by b(q1, . . . , qk), provided that the parent of q0 is labeled by a (or q0 is
the root node if a = ε). The above production rule can also be seen as a rule of
a weighted CF grammar, of the form [a, b] q0 := q1 . . . qk if k > 0, and [a] q0 := b
if k = 0. In the first case, b is a label of the rule, and in the second case, it
is a terminal symbol. And in both cases, a is a constraint on the label of rule
applied on the parent node in the derivation tree. This features of observing the
parent’s label are useful in the case of infinite alphabet, where it is not possible
to memorize a label with the states. The weight of a labeled derivation tree t of
the weighted CF grammar associated to A as above, is weightA(q, t), when q is
the start non-terminal. We shall now establish a correspondence between such



a derivation tree t and some word describing a linearization of t, in a way that
weightA(q, t) can be computed by a sw-VPA.

Let Ω̂ be the countable (unranked) alphabet obtained from Ω by: Ω̂ = ∆i ]
∆c ]∆r, with ∆i = Ω0, ∆c = { 〈a| a ∈ Ω>0}, ∆r = { a〉 | a ∈ Ω>0}.
We associate to Ω̂ a label theory Φ̂ like in Section 4, and we define a linearization
of trees of TΩ into words of Ω̂∗ as follows:

lin(a) = a for all a ∈ Ω0,
lin
(
b(t1, . . . , tk)

)
= 〈b lin(t1) . . . lin(tk) b〉 when b ∈ Ωk for 1 ≤ k ≤M .

Example 7. The trees in Figure 3 represent the two scores in Examples 1,4, and
their linearization are respectively O and O′ in the same examples.

Proposition 6. For all swTA A over Ω, S commutative, and Φ̄, there exists an
effectively constructible sw-VPA A′ over Ω̂, S and Φ̂ such that for all t ∈ TΩ,
A′
(
lin(t)

)
= A(t).

Proof. Let A = 〈Q, in, w̄〉 where w̄ is presented as above by a function. We build

A′ = 〈Q′, P ′, in′, w̄′, out′〉, where Q′ =
⋃M
k=0Q

k is the set of sequences of state
symbols of A, of length at most M , including the empty sequence denoted by ε,
and where P ′ = Q′ and w̄′ is defined by:

wi(q0 ū, 〈c, p̄, a, ū) = w(q0, c, a, ε) for all c ∈ Ω>0, a ∈ Ω0

we
i (q0 ū, a, ū) = w(q0, ε, a, ε) for all a ∈ Ω0

wc(q0 ū, 〈c, p̄, 〈d, ū, q̄) = w(q0, c, d, q̄) for all c, d ∈ Ω>0

we
c(q0 ū, 〈c, ū, q̄) = w(q0, ε, c, q̄) for all c ∈ Ω>0

wr(ε, 〈c, p̄, c〉, p̄) = 1 for all c ∈ Ω>0

we
r (ū, c〉, q̄) = 0 for all c ∈ Ω>0

All cases not matched by one of the above equations have a weight 0, for instance
wr(ū, 〈c, p̄, d〉, q̄) = 0 if c 6= d or ū 6= ε or q̄ 6= p̄.
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Fig. 3. Tree representation of the scores of Ex 1,4, linearized respectively into O and O′.
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