
HAL Id: hal-03390558
https://hal.inria.fr/hal-03390558

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Make call_once mandatory
Jens Gustedt

To cite this version:
Jens Gustedt. Make call_once mandatory. [Research Report] 2840, ISO JCT1/SC22/WG14. 2021.
�hal-03390558�

https://hal.inria.fr/hal-03390558
https://hal.archives-ouvertes.fr

Make call_once mandatory

file:///C/Users/monteil/Desktop/n2840.html[22/10/2021 09:08:05]

Make mandatory
Jens Gustedt, INRIA, France

Introduction
Changes and additions

Change the beginning of 7.22 (General utilities <stdlib.h>) p3
Change the beginning of 7.22 (General utilities <stdlib.h>) p4
Add a new paragraph 7.22 (General utilities <stdlib.h>) p5

Impact
Reference implementation for platforms without threads
Reference implementation for platforms with C17 atomics and proprietary threads

Question for WG14

org: ISO/IEC JCT1/SC22/WG14 document: N2840
target: IS 9899:2023 version: 1
date: 2021-10-12 license: CC BY

1. Introduction
C offers several possibilities to attach callbacks to termination events (, , destructors)
but only one for initialization, . This function entered C11 with the threads option and is very usefull in
that context, for example for the initialization of static objects with and types.

Nevertheless, this function is also very useful in other contexts that have nothing to do with threads, namely for any
types that need dynamic initialization to take for example some properties of the platform into account.

Therefore we propose to make this function (and the type and macro) accessible even without threads and to make it
mandatory.

2. Changes and additions

2.1. Change the beginning of 7.22 (General utilities <stdlib.h>) p3

3 The types declared are (both described in 7.19); once_flag (described in 7.26)
…

2.2. Change the beginning of 7.22 (General utilities <stdlib.h>) p4

4 The macros defined are NULL (described in 7.19); ONCE_FLAG_INIT (described in 7.26) …

2.3. Add a new paragraph 7.22 (General utilities <stdlib.h>) p5

5 The function

is described in 7.26.2

call_once

atexit at_quick_exit tss
call_once

mtx_t cnd_t

size_t and wchar_t

#include <stdlib.h>
void call_once(once_flag *flag, void (*func)(void));

https://creativecommons.org/licenses/by/4.0/

Make call_once mandatory

file:///C/Users/monteil/Desktop/n2840.html[22/10/2021 09:08:05]

3. Impact
These changes do not invalidate user code besides that they add the types and the macro

 to the header <stdlib.h>, which previously had only be reserved if the TU included <threads.h>.
Otherwise it only adds functionality; the indentifier had already been reserved as external since C11.

Changes for implementations are minimal. Those that already have the threads option and a monolithic C library
have just to add the features to the <stdlib.h>. Others that have a separate binary for threads, probably have to do
some code movement or add some weak symbol to extend the use to programs that don’t use threads.

In a context that does not have threads, implementation of a version that is based on a static integer for
objects and polling for its value is straight forward.

3.1. Reference implementation for platforms without threads

Note that , as most C library functions, is not guaranteed to be reentrant, see 7.1.4 p4. So for systems that
do not have the notition of threads, we also don’t have to make provisions for signal handlers.

3.2. Reference implementation for platforms with C17 atomics and proprietary
threads

A version that minimally conforms to the synchronization properties of could look as follows:

once_flag
ONCE_FLAG_INIT

call_once

once_flag

call_once

typedef bool once_flag;
#define ONCE_FLAG_INIT false
void call_once(once_flag *flag, void (*func)(void)) {
 if (!*flag) {
 func();
 flag = true;
 }
}

call_once

typedef _Atomic(unsigned) once_flag;
#define ONCE_FLAG_INIT 0u
void call_once(once_flag *flag, void (*func)(void)) {
 unsigned actual = atomic_load_explicit(flag, memory_order_acquire);
 if (actual < 2u) {
 switch (actual) {
 case 0u:
 // The very first sets this to 1 and then to 2 to indicate that the function has been
run.
 if (atomic_compare_exchange_strong_explicit(flag, &(unsigned){ 0 }, 1u,
memory_order_relaxed, memory_order_relaxed)) {
 func();
 atomic_store_explicit(flag, 2u, memory_order_release);
 return;
 }
 // we lose and fall through
 case 1u:
 while (atomic_load_explicit(flag, memory_order_acquire) < 2u) {
 // active polling or some sleep if supported
 }
 }
 }
}

Make call_once mandatory

file:///C/Users/monteil/Desktop/n2840.html[22/10/2021 09:08:05]

If a platform does not have C17 atomics but provides atomic extensions (for example in form of low-level atomic
instructions) they can easily replace the calls appropriately. The main performance bottleneck for this function is on
the “fast path”, namely a call where the value had already been set to , one atomic load and a conditional jump.

4. Question for WG14
Shall we integrate the proposed changes and additions into C23?

2

	Disque local
	Make call_once mandatory

	wvRGVza3RvcC9uMjg0MC5odG1sAA==:
	input0:
	input0_(1):
	input0_(1)_(2):
	input0_(1)_(2)_(3):

