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SECOND ORDER ADER SCHEME FOR ADVECTION-DIFFUSION ON MOVING1

OVERSET GRIDS WITH A COMPACT TRANSMISSION CONDITION∗2

MICHEL BERGMANN†‡† , MICHELE GIULIANO CARLINO†‡‡ , AND ANGELO IOLLO†‡3

Abstract. We propose a space-time Finite Volume scheme on moving Chimera grids for a general advection-diffusion4
problem. Special care is devoted to grid overlapping zones in order to devise a compact and accurate discretization stencil to5
exchange information between different mesh patches. Like in the ADER method, the equations are discretized on a space-6
time slab. Thus, instead of time-dependent spatial transmission conditions between relatively moving grid blocks, we define7
interpolation polynomials on arbitrarily intersecting space-time cells at the block boundaries. Through this scheme, a mesh-free8
FEM-predictor/FVM-corrector approach is employed for representing the solution. In this discretization framework, a new9
space-time Local Lax-Friederichs (LLF) stabilization speed is defined by considering both the advective and diffusive nature10
of the equation. The numerical illustrations for linear and non-linear systems show that background and foreground moving11
meshes do not introduce spurious perturbation to the solution, uniformly reaching second order accuracy in space and time.12
Finally, it is shown that several foreground meshes, possibly overlapping and with independent displacements, can be employed13
thanks to this approach.14

Key words. Chimera mesh, overset grid, Finite Volume, second order scheme, ADER, compact transmission condition,15
unsteady advection-diffusion16
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1. Introduction. One of the main difficulties for the simulation of a phenomenon modeled by a Partial18

Differential Equation (PDE) is the geometrical modeling of the computational domain with a single mesh19

block. This problem is especially relevant when the domain is complex or its shape and its topology evolve20

during the simulation. Classical approaches to tackle this problem include the Arbitrary Lagrangian-Eulerian21

(ALE) method, fictitious domain approaches and Chimera grids. ALE methods [18] allow a certain degree of22

mesh deformation and adaptation thanks to an appropriate reformulation of the governing equations and to23

sophisticated and efficient grid displacement algorithms. However, when the grid deformation leads to exces-24

sively stretched cells, a delicate (and computationally expensive) global re-meshing step may be necessary.25

In turn, this operation can introduce approximation irregularities that are caused by the interpolation of the26

solution from the old grid to the new one. In fictitious domain approaches, including immersed boundary or27

penalization methods, the original problem is discretised on a simple mesh, usually structured and cartesian,28

constant in time [14, 25, 1]. The grid hence does not necessarily fit the physical boundaries and special29

care must be taken to attain a sufficient degree of accuracy at the boundaries. Moreover, the presence of30

thin boundary layers can significantly reduce the computational advantages deriving from a simple meshing31

algorithm, because of the uniform aspect ratio of the mesh.32

33

We focus our investigations on Chimera grids [35, 5, 22, 26]. Chimera grids consist of multiple overlap-34

ping mesh blocks that together define an overset grid used for spatially discretise a PDE [30, 31, 29]. Usually,35

one has a background mesh that includes one or more foreground mesh patches that are fitted to the physical36

domain boundaries. This mesh generation approach considerably simplifies the task of mesh adaptation in37

the case of boundary layers, changing geometry for an unsteady problem (e.g. fluid-structure interaction38

problems in fluid-dynamics) and for unsteady multiply connected domains [2, 3, 28, 4, 9]. Once the multiple39

mesh patches are generated, they are collated in order to obtain an appropriate overlapping zone between the40

neighboring blocks [22]. In the overlap zones, the exchange of solution information from one grid to another41

is performed. A compact transmission condition is generally sought in order to limit communications be-42

tween the grids. Namely, a compact stencil only composed of the first layer of cells is defined around any cell.43

44

In this paper, we propose a space-time Finite Volume scheme on Chimera grids. Our objective is45

to combine some aspects of an ALE approach, notably its flexibility with respect to grid displacement and46

deformation, to the multi-block discretization strategy of overset grids. In particular, we will devote special47
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2 M. BERGMANN, M.G. CARLINO AND A. IOLLO

care to grid overlapping zones in order to devise a compact and accurate discertization stencil to exchange48

information between different mesh patches, in the spirit of previous works on cartesian hierarchical grids49

[27]. We then apply this approach to integrate linear and non-linear Advection-Diffusion partial differential50

equations and show how the method can exploit the versatility of the Chimera meshes to reach second order51

accuracy in unsteady multiply connected domains.52

53

The numerical solution on Chimera grids is obtained by exchanging data through the fringe cells at54

the overlapping zone. For example, in [10, 15, 36, 21], fringe (namely donor) cells of a block in proximity of55

the overlapping zone provide the information to the fringe (i.e., receptor) cells of another block by polynomial56

interpolation. In [16] a coarse grid is automatically generated and a connection of interpolation information57

at the overlapping zone is presented through a multigrid approach.58

Another way of making the different blocks communicate is to use proper Domain Decomposition (DD)59

methods (e.g., Schwartz, Dirichlet/Neumann or Dirichlet/Robin methods). In particular, each mesh block60

is considered as a decomposition of the domain and the overlapping zones are the interfaces for coupling the61

different blocks. Accordingly to these approaches, typically iterative discrete methods are employed. For62

this two way communication, the reader is referred to [19] for further details.63

In the same framework, other approaches connect the background and the foreground meshes, such as the64

DRAGON grids [20] for which the overlapping zone is replaced by a nonstructured grid during a further65

stage by preserving the body-fitting advantages of the Chimera meshes.66

In contrast, here we derive a second order compact transmission condition by properly defining a set of cells,67

i.e. the stencil, that belong both to the back- and foreground meshes, over which the solution is interpolated68

in space and time by an appropriate polynomial. This hybrid stencil allows a smooth discretization transition69

from one block to another. In particular, first a mesh-free discontinuous FEM-solution is recovered and then70

a FVM-correction is performed in any cell by using information provided by near cells. Thus, for fringe cells,71

the solution is obtained by combining values from different grids.72

73

The Arbitrary high order DERivatives (ADER) method provides an ideal setting for pursuing our pur-74

pose. In [11, 33, 32, 8], the authors presented a method to recover an accurate solution for hyperbolic PDEs75

with an arbitrary order of accuracy on a single mesh block. More recently, in [7] the authors presented an76

ADER Discontinuos Galerkin scheme with a posteriori subcell finite volume limiter on fixed and moving77

grids such as space-time adaptive Cartesian AMR meshes. The numerical scheme treats the temporal vari-78

able indistinctly with respect to the spatial variables by defining the solution on a space-time slab. This79

discretization approach, therefore, allows us to re-consider the problem of Chimera grids transmission con-80

ditions: instead of time-dependent spatial transmission conditions between relatively moving grid blocks, we81

define interpolation polynomials on arbitrarily intersecting space-time cells at the block boundaries.82

In the ADER scheme a local space-time weak solution of the problem from the generic time t to t + ∆t is83

computed in every single space-time cell. This solution is defined as the predictor. The prediction step is84

local and hence embarrassingly parallel, because the solution is calculated independently of the information85

of the neighbouring cells. Then, in the subsequent stage of correction, the computation of a space-time86

numerical flux between neighboring cells provides the appropriate stabilization of the integration scheme.87

We extend this prediction-correction method to Advection-Diffusion PDEs on overset grids and propose a88

space-time flux among the space-time cells that provides improved stabilization and precision as it takes into89

account both the advective and diffusive nature of the equation.90

91

Let Ω(t) ⊂ Rd be the time-dependent computational domain and let T be a positive real. In the92

following we consider the parabolic problem: find u : Ω(t)× [0, T ]→ Rδ such that93

(1.1) ∂tu+∇ · F (u,∇u) = f , x ∈ Ω(t), t ∈ [0, T ],94

closed with appropriate initial and boundary conditions. Problem (1.1) is a rather general representation of95

an advection-diffusion model. In (1.1) the diffusive-convective vector F (u,∇u), eventually nonlinear, and96

the force term f(x, t) are defined. In particular, the problem is linear when the diffusive-convective term is97

written as F (u,∇u) = Au−ν∇u, where A : Ω× [0, T ]→ Rδ×δ is the advective field and ν : Ω× [0, T ]→ R+98

is the diffusion parameter.99

100
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In Section 2 the formal definition of the overset (Chimera) grid is given. The predictor-corrector method101

on a Chimera mesh is then derived in Section 3. In Section 4 the new Local-Lax-Friederichs (LLF) stabi-102

lization term is introduced and contrasted with the LLF term from the literature. Section 5 is devoted to103

the numerical results. In particular, first the second order analysis is conducted on linear 1D and 2D test104

cases; successively, we focus on the stability of the method by comparing the performances of the differ-105

ent LLF fluxes. At the end of the numerical test cases section, we show results for a nonlinear system of106

PDEs, for multiblock grid setting, meshes and time-dependent overset grids for multiply connected domain.107

Conclusions are reported in Section 6.108

2. The overset grid. An overset grid or Chimera mesh is a set of mesh blocks covering the compu-109

tational domain. Each block may overlap other block(s) in some particular sub-region(s) said overlapping110

zone(s). Once the multiple mesh patches are generated, they are collated in order to generate an appropriate111

topology [22]. Consequently, an overlapping zone between two neighbouring blocks is defined. For the sake of112

simplicity with no loss of generality, the whole method is explained by considering a two blocks overset grid113

(i.e., the background and the foreground meshes). For multiple-block meshes (e.g. T1, . . . , TN ), a hierarchy114

of meshes from the background to the foreground is defined (e.g. T1 < · · · < TN ). Successively the presented115

algorithm for setting the overset grid is performed from one mesh to the union of all other meshes towards116

the background (e.g. Ti for
⋃i−1
j=1 Tj for any i = 2, . . . , N). In Section 5.4.2 of test cases, a multiple-block117

setting is presented. Figure 1 shows an overset grid; in black there is the background mesh and in blue118

the foreground mesh. In particular, the foreground mesh can move and deform. The overlapping zone is119

necessary for the communication and data transfer from one mesh to the other.120

In this work, the cell of any block mesh is considered quadrilateral. In particular, when all the cells are121

squared, the mesh is uniform. When the cells are either squared or rectangular and the edges are oriented122

as the Cartesian axes, the mesh is said to be Cartesian.123

Fig. 1: Example of Chimera grid configuration. In black there is the background mesh and in pink the
foreground mesh.

2.1. The automatic definition of the stencil at the transmission condition. Let Tk = {Ωki }
Nk
i=1124

be the partition composed of Nk cells referring to the k-th block mesh (in order to simplify the notation, we125

will omit the superscript k to the cell Ωki by writing Ωi), moreover, let Si be the stencil centered over the126

cell Ωi. Thus, stencil Si is the set collecting the indexes of neighboring cells to Ωi. By abuse of language,127

sometimes we will refer to the physical set Ωi ∪
⋃
j∈Si Ωj as the stencil.128

It is possible to distinguish two classes of cells with respect to their proximity to the overlapping interface.129

The definition of the stencil depends on the class.130

If cell Ωi is not at the boundary of the overlapping zone (Figure 2a), the stencil Si is composed of all the131
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4 M. BERGMANN, M.G. CARLINO AND A. IOLLO

cells Ωj sharing at least one vertex with Ωi. Thus, if Ωi belongs to the partition T1, all cells Ωj , with j ∈ Si,132

also belong to T1.133

If the cell Ωi of partition Tk is at the boundary of the interface, it is no longer possible to use the criterion of134

the cells sharing at least a vertex. In fact, there will be at least one edge eil not shared by any other cell of135

the same partition (see right edge of cell Ω16 in Figure 2b). For these cells, we aim in automatically finding136

the other cells of partition Tj (j 6= k) belonging to the stencil. Let the extremes of the edge be indicated as137

v1 and v2 and its middle point with v3, respectively. Point c? is the center of mass of generic cell Ω?. For138

our numerical tests, Algorithm 2.1 is adopted through the two steps:139

1. look for the nodes of cells of the other partition Tj minimizing the Euclidean distance with respect140

to points vµ, µ = 1, 2, 3, (line 5, see Figure 3a);141

2. compute the symmetric points ṽµ of center cki with respect to points vµ for µ = 1, 2, 3 (line 6),142

then look for the cells of partition Tj whose centers minimize the Euclidean distance with the three143

symmetric points (line 7, see Figure 3b).144

For the edges shared by other cells in the same partition, the cells of the stencil will be those ones sharing145

at least one vertex (as cells of indexes 13, 14, 17, 19 and 20 in Figure 2b).146

The routine presented in this section will be run whenever the foreground mesh configuration as well as the147

hole change.148

Algorithm 2.1 could not define a compact stencil in the case of widely different mesh spacing. In this case,149

more than three points vµ can be considered for lines 5 and 6. Moreover a weighted symmetry (possibly led150

by the different spacing) can be performed at line 6.151

Algorithm 2.1 Compute stencil for cells at the boundary of the overlapping zone.

Input: Ωki , e
k
il, Tj ,Ski ; . j 6= k, i.e. Tj is the other partition with respect to Tk

1: Initialize v1 and v2 as the two vertexes of edge ekil;
2: v3 ← (v1 + v2)/2; . Middle point of edge ekil
3: Zj ← ∅; . Temporary set of indexes of partition Tj
4: for µ = 1, 2, 3 do
5: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖vµ − cjn‖ ≤ ‖vµ − cjm‖ ∀m = 1, . . . , Nj};
6: ṽ ← 2vµ − cki ; . Symmetric point of cellcenter cki of Ωki with respect to vµ
7: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖ṽ − cjn‖ ≤ ‖ṽ − cjm‖ ∀m = 1, . . . , Nj};
8: Ski ← Si ∪ Zj ;
9: return Ski

1 2 3 4 5

6 7 8 9 10

11
12 13 14 15

16 17 18 19
20

21
22 23 24 25

(a) A stencil of cells in the same parti-
tion. Continuous line for the stencil S13 =
{7, 8, 9, 12, 14, 17, 18, 19}.

1

4

7

13 14

16 17

19
20

(b) A stencil of cells not belonging to the same
partition. Continuous line for the stencil S16 =
{1, 4, 7, 13, 14, 17, 19, 20}.

Fig. 2: Two possible stencils: on the left the stencil is in the same partition; on the right the stencil is
composed of cells not belonging to the same partition.
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4

7

13 14

16 17

19
20

◦
•
v2

•
v3
•
v1

◦

◦

T1

T2

(a) First step: by identifying the vertexes v1 and v2

and the middle point v3 of the edge on the boundary
cell Ω16 (blue full dots), look for the nodes of cells
in the partition T1 (black empty dots) minimizing
the Euclidean distance with respect to those points.

1

4

7

13 14

16 17

19
20

◦
•
v2

•
v3
•
v1

•ṽ2 ◦

•ṽ3 ◦

•ṽ1

◦

T1

T2

(b) Second step: by identifying the symmetric
points ṽµ, µ = 1, 2, 3, (red full dots) of the node
of the cell Ω16 (blue empty dot) with respect to
the vertexes and the middle point of the not shared
edge, look for the nodes of cells in the partition T1

minimizing the Euclidean distance to those points.

Fig. 3: The two steps for the research of cells in the partition T1 for the cell Ω16 ∈ T2.

3. The numerical method. Once the stencil has been defined, the numerical method can both nu-152

merically solve problem (1.1) and eventually evolve the overset grid. In this section the scheme is presented.153

The method consists in a FEM-predictor FVM-corrector scheme stabilised with a Local Lax-Friederichs154

approach whose stabilization coefficient is explained in the following section.155

3.1. Local polynomial reconstruction. The first step of the numerical method is to recover a recon-156

struction of the solution over any point of the actual cell Ωi. Since the scheme is cell-centered, at time tn,157

we would like to extend (at least locally) the solution to the whole cell by exploiting the information in the158

cells of the stencil referring to Ωni . In order to explain the reconstruction, let us consider a generic regular1159

function φ : E → R by identifying the stencil E = Ωni ∪
⋃
j∈Si Ωnj . We remark that, due to the overlapping160

zone, the cell composing the subdomain E does not necessary fulfill the non-overlapping condition, i.e., it161

could be verified that there is a couple of indexes k, l ∈ {i} ∪ Si such that Ωnk ∩ Ωnl 6= ∅. Let us suppose to162

know the value of function φ over the center of mass (xk, yk) = xk, with k ∈ {i} ∪ Si, of any Ωk composing163

E. We would like to have a polynomial function Πiφ(x, y) for any (x, y) ∈ E by using the knowledge of the164

function φ only on the centers of mass. Let us define φk = φ(xk, yk). For any (x, y) ∈ E it is always possible165

to write the Taylor’s polynomial truncated to the quadratic terms with respect to φi:166

(3.1)
φ(x, y) = φi + (∂xφ)i (x− xi) + (∂yφ)i (y − yi) + (∂2

xyφ)i (x− xi)(y − yi)

+
1

2
(∂2
xxφ)i (x− xi)2 +

1

2
(∂2
yyφ)i (y − yi)2 +O(H3),

167

with H = max{|x − xi|, |y − yi|}. In the expansion (3.1) all the derivatives of φi are unknown. Moreover,168

by renaming those derivatives as169

(3.2) p1 = (∂xφ)i p2 = (∂yφ)i p3 = (∂2
xyφ)i p4 = (∂2

xxφ)i p5 = (∂2
yyφ)i,170

the Taylor’s expansion (3.1) can be seen as a linear combination of the components of the basis {1, x −171

xi, y−yi, (x−xi)(y−yi), 1
2 (x−xi)2, 1

2 (y−yi)2} which defines the polynomial space function Q2 of quadratic172

polynomials centered in xi; thus the polynomial interpolation function Πiφ reads:173

(3.3) Πiφ(x, y) = φi + p1(x− xi) + p2(y − yi) + p3(x− xi)(y − yi) +
1

2
p4(x− xi)2 +

1

2
p5(y − yi)2,174

1We require at least φ ∈ C2(E).
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6 M. BERGMANN, M.G. CARLINO AND A. IOLLO

with the polynomial coefficients pl, l = 1, . . . , 5, to be sought. By imposing as constraint that the polynomial175

Πiφ(x, y) exactly coincides with the function φ on the nodes, i.e. Πiφ(xj , yj) = φj for any j ∈ Si, the system176

in the unknown polynomial coefficients arises:177

(3.4)

h
x
ik hyik hxikh

y
ik

1
2 (hxik)2 1

2 (hyik)2

...
...

...
...

...
hxij hyij hxijh

y
ij

1
2 (hxij)

2 1
2 (hyij)

2


p1

...
p5

 =

δφik...
δφij

 ,178

with hxij = xj−xi, hyij = yj−yi and δφij = φj−φi, for j ∈ Si. The algebraic system (3.4) has to be solved in179

least-square sense if |Si| > 5. Moreover, if the chosen polynomial basis is not reduced, namely if the Taylor’s180

expansion (3.1) is arrested to the bi-linear or linear terms, the stencil has to contain at least 5 cells in order181

to ensure a solution for (3.4). The proposed P2-interpolation, with the second-order accurate scheme, fulfills182

the condition for the accuracy in the interpolation for overlapping zones whose depth do degrades as the183

characteristic length h of the chimera mesh (i.e., do = O(h)) [9].184

This method allows to locally reconstruct all over the stencil a given function. If the function is defined185

over the computational domain Ω ⊂ R2 and it is (at least locally) C2, then the reconstruction is locally186

computed over any stencil and the ensured order of convergence is 3. On the contrary, if the solution187

presents propagating shock waves or discontinuities, this interpolation is no longer adequate because of well-188

known Gibbs’ phenomenon, for which spurious oscillation are produced near the discontinuity. For those189

cases, other interpolation could be adopted, such as the central weighted ENO for hyperbolic equations for190

moving meshes in [11].191

In the sequel, the local polynomial reconstruction Πiu
n will be referred as wn

i .192

3.2. Local space-time Galerkin predictor. Let be the time interval [0, T ] subdivided in N subin-193

tervals [tn, tn+1], with n = 0, . . . , N − 1; thus for a generic time-dependent variable g(t), we define gn for194

gn = g(tn). In particular, the domain Ωn and the solution un at time tn are considered the actual spatial con-195

figuration and the actual time, respectively. Let Cni = Ωi(t)× [tn, tn+1] be the physical space-time cell whose196

lower and upper bases represent the evolution of cell Ωi(t) from tn to tn+1. First, the governing equation (1.1)197

is rewritten with respect to a space-time reference system identified by the independent variables ξ ≡ (ξ, η, τ)198

in the unit cube Ĉ = [0, 1]3. Let Ξ = (ξ, η) be the reference spatial vector. Inspired by [17], the governing199

equation is discretized using an efficient nodal formulation of space-time nodes given by a tensor product200

of Gauss-Legendre quadrature points along space and time directions. This choice defines an L2-orthogonal201

Lagrange basis used for the definition of the Galerking solution. For our purposes, the single direction nodes202

over the unit interval [0, 1] are {(5−
√

15)/10; 1/2; (5 +
√

15)/10}. Consequently, over a space-time cell there203

will be 27 Gauss-Legendre nodes ξ̂m and 27 Lagrange polynomial θl : Ĉ → R such that θl(ξ̂m) = δlm and204 ∫
Ĉ θlθm dξ = δlm‖θl‖2L2(Ĉ), with δlm the Kronecher’s symbol. Let m : {1, 2, 3}3 → {1, . . . , 27} be a discrete205

map from a single direction index to the global three dimensional index defined as206

m(i, j, k) = ij + (j − 1)(3− i) + 9(k − 1),207

where indexes i, j, k ∈ {1, 2, 3} lead the discretization along ξ, η, τ , respectively. By denoting the Gauss-208

Legendre nodes with ξ̂i, η̂j and τ̂k along ξ, η and τ , respectively, and with θξi (ξ), θ
η
j (η) and θτk(τ) the209

Lagrange polynomial for ξ-, η- and τ -directions, respectively, the three dimensional Gauss-Legendre node ξ̂l210

and its associated Lagrange’s polynomial θl(ξ) read211

ξ̂l = (ξ̂i, η̂j , τ̂k); θl(ξ, η, τ) = θξi (ξ)θ
η
j (η)θτk(τ),212

with index l = m(i, j, k).213

We want to solve the following problem: find q : Cni → Rδ such that214

(3.5)

{
∂tq +∇ · F (q,∇q) = f in Cni
q|t=tn = wn

i on Ωni
,215

which is problem (1.1) restricted to the space-time cell Cni and redefined as a boundary value problem. We216

denote with qh as the discretized solution of (3.5). In order to refer problem (3.5) to the reference domain217

This manuscript is for review purposes only.
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O 1

1

1

Ĉ

Mi

Cni
ξ

η

τ

x
y

t

Fig. 4: Representation of the map Mi from the reference space-time cell Ĉ to the physical space-time cell
Cni .

Ĉ, we use a map Mi : Ĉ → Cni218

(3.6) Mi :


x = x(ξ, η, τ)

y = y(ξ, η, τ)

t = tn + ∆t τ

,219

such that any space-time point x ≡ (x, y, t) in the physical space-time cell Cni is a function x = x(ξ), with220

ξ ∈ Ĉ (see Figure 4). Time t is considered as a linear function of τ . From map (3.6), we define the Jacobian221

matrix J as222

(3.7) J =
dx

dξ
=

xξ xη xτ
yξ yη yτ
0 0 ∆t

 ,223

whose inverse is224

(3.8) J−1 =
dξ

dx
=

ξx ξy ξt
ηx ηy ηt
0 0 1/∆t

 =

[
J−1
s Ξt

0 1/∆t

]
.225

In the above notation, we call J−1
s the restriction to the spatial coordinates of the inverse of the Jacobian226

matrix227

(3.9) J−1
s =

[
ξx ξy
ηx ηy

]
.228

and Ξt = [ξt, ηt]
T the derivative of the spatial reference vector with respect to time. Through (3.9), the229

problem in the reference domain reads230

(3.10) ∂τq + ∆tF∗(∇̂q) + ∆tJ−Ts ∇̂ ·F
∗∗(q, ∇̂q) = ∆tf ,231

where232

∂tq =
∂τq

∆t
+ F∗(∇̂q); F∗(∇̂q) = ∇̂qΞt; F∗∗(q, ∇̂q) = F (q, J−Ts ∇̂q) = (F∗∗ξ ,F

∗∗
η ); ∇̂ =

[
∂ξ
∂η

]
.233

The hat differential operators refer to reference space variables ξ and η in the reference space-time cell Ĉ. By234

abuse of notation and for sake of simplicity, we call all functions involved in both equations (3.5) and (3.10)235
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with the same symbol (e.g., q and f) even though they take inputs in the physical space-time cell Cni and236

in the reference space-time cell Ĉ, respectively. In order to weaken equation (3.10), the following functional237

space is defined:238

Θ =

{
v ∈ H1(Ĉ : [0, 1] 3 τ 7→ v(ξ, η, τ) ∈ L2((0, 1)2)

}
239

being the subspace of Sobolev space H1(Ĉ) of functions L2((0, 1)2)-integrable at any fixed reference time τ .240

Moreover, the following notation is introduced:241

〈f, g〉 =

∫
Ĉ
fg dξ; [f, g]τ =

∫ 1

0

∫ 1

0

f(ξ, η, τ)g(ξ, η, τ) dΞ. ∀f ∈ Θ, ∀g ∈ ΘD (D = 1, . . . , δ).242

For our purposes, functional space Θ is identified as a test space and the following trial functional spaces is243

defined:244

Q =

{
v ∈ Θ : v(ξ, η, 0) = wnk ∧ J−1

[
∇̂v
∂τv

]
∈ L2(Ĉ;R3)

}
,245

where wk is the k-th component of the interpolated polynomial wn. By multiplying left and right side of246

(3.10) by a generic test function θ ∈ Θ and by integrating over the reference space-time cell Ĉ, the problem247

reads: find q ∈ Qδ such that248

(3.11) [θ, q]1 − 〈∂τθ, q〉+ ∆t 〈θ,F∗(∇̂q)〉+ ∆t 〈θ, J−Ts ∇̂ ·F
∗∗(q, ∇̂q)〉 = ∆t 〈θ,f〉+ [θ,wn]0 ∀θ ∈ Θ,249

with [θ,wn]0 =
∫ 1

0

∫ 1

0
θ(ξ, η, 0)wn(ξ, η) dΞ. For the Galerkin solution qh and the convective-diffusive terms250

F∗ and F∗∗ in the reference domain, a Lagrangian polynomial expansion is performed, i.e., by adopting251

the Einstein’s notation, qh = θlq̂l and F?
h = θlF̂?l , with ? = ∗, ∗∗, where q̂l = q(ξ̂l) and F̂

?

l = F?|ξ̂l .252

Considering as the test function the k-th Lagrangian polynomial θk and by using the Lagrange expansion,253

we rewrite equation (3.11) as:254

(3.12)
([θk, θl]1 − 〈∂τθk, θl〉)q̂l + ∆t〈θk, θl〉F̂

∗
l + ∆t〈θk, (ξx∂ξ + ηx∂η)θl〉F∗∗ξ,l

+ ∆t〈θk, (ξy∂ξ + ηy∂η)θl〉F∗∗η,l = ∆t〈θk,f〉+ [θk,w
n]0,

255

for any k = 1, . . . , 27.256

In the left hand side of (3.12), we remark that the arising matrices have a sparse pattern due to the L2-257

orthogonality of the Lagrangian basis (e.g. the mass matrix by 〈θk, θl〉 is diagonal). Matrices involving the258

derivatives of the mapMi, i.e. 〈θk, (ξx∂ξ +ηx∂η)θl〉 and 〈θk, (ξy∂ξ +ηy∂η)θl〉, cannot be explicitly computed259

before finding the map itself. On the contrary, the components which do not involve the map, namely260

([θk, θl]1 − 〈∂τθk, θl〉) and 〈θk, θl〉, can be pre-computed once for all before solving problem (3.12). Equation261

(3.12) is nonlinear due to the convective-diffusive terms F∗ and F∗∗ which depend on the solution qh. For262

this reason a fixed point problem is solved: let r be the index of the fixed point iteration, therefore we solve263

qr+1
h264

(3.13)
([θk, θl]1 − 〈∂τθk, θl〉)q̂r+1

l + ∆t〈θk, θl〉F̂
∗,r
l + ∆t〈θk, (ξx∂ξ + ηx∂η)θl〉F∗∗,rξ,l

+ ∆t〈θk, (ξy∂ξ + ηy∂η)θl〉F∗∗,rη,l = ∆t〈θk,f〉+ [θk,w
n]0,

265

where terms of fixed point index r are computed by using the previous solution qrh. In our numerical tests, the266

fixed point iteration stops when the L2(Ĉ)-norm of residual of equation (3.13) is less than a fixed tolerance.267

3.3. Recovery of the map and foreground mesh motion. In the previous subsection, the local268

map Mi : Ĉ → Cni has been involved for the computation of the local weak predictor solution. Moreover,269

the foreground mesh of coordinates X is moving accordingly to the following motion equation:270

(3.14)
dX

dt
= V ,271

where V = V (x, t;u) is the mesh velocity, eventually dependent on the solution. Equation (3.14) is closed272

with a Cauchy condition X(0) = X0, which is the initial spatial configuration. Through equation (3.14),273

This manuscript is for review purposes only.



SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID 9

we recover the map Mi for any cell at least on the foreground mesh. The motion equation (3.14) is solved274

through an isoparametric or Lagrangian approach by locally referring it to the same reference system as275

done for the local equation (3.5). This means that the spatial coordinates X are considered as function of276

the reference coordinates, i.e. X(ξ), with ξ ∈ Ĉ. Finally, the solution of the referred motion equation is277

approximated via a Lagrangian expansion by employing the same Lagrangian basis {θk}27
k=1 built on the278

tensor combination of three Gauss-Legendre nodes in (0, 1) along any direction as previously introduced:279

Xh = θlX̂ l, with X̂ l = X(ξ̂l). Thus, from time tn to tn+1, the motion equation (3.14) is locally re-written280

as281

(3.15)
dX

dt
= V in Cni ,282

and closed by strongly imposing that the solution Xn at current time is equal to X(tn) found at the283

previous physical space-time cell Cn−1
i . The local motion equation (3.15) is weaken in a similar way to the284

local equation (3.5) and in algebraic form it reads285

(3.16) ([θk, θl]1 − 〈∂τθk, θl〉)X̂ l = ∆t〈θk, θl〉V̂ l + [θk, θl]0X̂
n

l ,286

with V̂ l = V |ξ̂l . The last term [θk, θl]0X̂
n

l takes into account the initial given configuration of the space at287

time tn.288

When the mesh is neither moving nor deforming, as for cells in the background, the mesh velocity is thus289

coincident with zero, i.e. V ≡ 0. In that case, the map is known a priori and it consists in the rescaling of290

the reference space-time cell Ĉ to the physical space-time cell Cni :291

(3.17)

{
x = x(ξ) = xi−1/2 + hxi ξ

y = y(η) = yi−1/2 + hyi η
,292

where coordinates xi−1/2 and yi−1/2 and xi+1/2 and yi+1/2 define the extremes along x- and y-direction of293

the physical space-time cell Cni ≡ [xi−1/2, xi+1/2]× [yi−1/2, yi+1/2]× [tn, tn+1]; and hxi and hyi are the length294

along x and y of the cell, respectively, i.e. hxi = xi+1/2 − xi−1/2 and hyi = yi+1/2 − yi−1/2.295

Since the mesh motion equation (3.14) is essentially solved via a sort of Discontinuous Galerkin (DG)296

approach, possible numerical (and non physical) discontinuities could arise. As a matter of fact, for a297

given vertex X̄
n+1
k shared by a set of spatial cells {Ωn+1

i }i∈Zn+1
k

at time tn+1, there could be as many298

different values of the vertex, namely {X̄n+1
k,i }i∈Zn+1

k
, for any mapMi referring to the cell Cni to which Ωn+1

i299

belongs. The set Zn+1
k collects the index(es) of the cells sharing the vertex X̄

n+1
k . The cardinality Nk of set300

{Ωn+1
i }i∈Zn+1

k
, coinciding with the cardinality of the indexes set Zn+1

k , depends on the position of the vertex301

X̄
n+1
k on the foreground mesh: it is either 1 or 2 if the vertex is on the boundary of the mesh, otherwise it is302

4. For this reason we consider a weighted average value for the shared vertex in order to tackle the possible303

arising discontinuities. As suggested in [6], we first consider a weighted velocity V̄
n+1
k corresponding to the304

vertex X̄
n+1
k305

(3.18) V̄
n+1
k =

1

Nk

∑
i∈Zn+1

k

V̄
n+1
k,i , with V̄

n+1
k,i =

∫ 1

0

θl(ξ
∗, η∗, τ) dτ V̂ l,i,306

where coordinates (ξ∗, η∗) depend on the position of the coordinate X̄
n+1
k in the cell Ωn+1

i ; it can assume four307

values: (0, 0), (1, 0), (1, 1) and (0, 1). Once equation (3.16) is solved, the just found coordinates {X̂ l}27
l=1 are308

used for computing the velocity components V̂ l,i and, thus, the weighted velocities V̄
n+1
k in (3.18). Finally,309

the coordinates X̄
n+1
k at time tn+1 is310

(3.19) X̄
n+1
k = X̄

n
k + ∆t V̄

n+1
k .311

We refer the reader to [11] for another definition of the weighted vertex velocities V̄
n+1
k in (3.18) where the312

Voronoi neighborhood parameters of any vertex are exploited.313

In Algorithm 3.1 we resume the salient stages of the prediction step.314
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Algorithm 3.1 Prediction step

1: Compute the foreground mesh motion (3.19) from the motion equation (3.14) and through the weighted
velocity (3.18);

2: for i = 1, . . . , N do
3: Find the map Mi for the space-time cell Cni ;
4: Compute the Jacobian matrix J associated to Mi;
5: Compute J−1 and take the submatrix J−1

s to the spatial coordinates defined in (3.9);
6: Update the convective-diffusive terms F∗ and F∗∗ in the reference domain;
7: Evolve the local predictor solution through (3.12);

3.4. Correction stage: the finite volume scheme over the space-time cell. Once the local315

predictor solution qqh is computed in each space-time cells Cni , we can perform the correction stage. First,316

we rewrite the convective-diffusive equation (1.1) in divergence form. Let ∇x,t = [∇, ∂t]T be the space-time317

differential operator and let U = [F (u,∇uu),u]T be the space-time solution, thus problem (1.1) can be318

rewritten as319

(3.20) ∇x,t ·U = f in Ω(t)× [0, T ].320

We want to find a finite volume solution for the above equation, where the finite volume is the space-time321

cell Cni , whose boundary reads322

(3.21) ∂Cni = Ωni ∪ Ωn+1
i ∪

4⋃
j=1

Γnij ,323

where the boundaries Γnij , j = 1, . . . , 4, are the space-time boundaries of Cni linking any edge of Ωni at time324

tn to any edge of Ωn+1
i at time tn+1. By integrating equation (3.20) over Cni and by applying the divergence325

theorem to the left side, we obtain326

(3.22)

∫
∂Cni

U · nx,t dΓ =

∫
Cni
f dC,327

with nx,t being the normal unit vector to the boundary ∂Cni of the cell. Let Un
i be the spatial average of328

the solution u of (1.1) over the spatial cell Ωni and located on its center, i.e.,329

(3.23) Un
i =

1

|Ωni |

∫
Ωn

i

u(x, y, tn) dx dy,330

where |Ωni | is the measure of the spatial cell Ωni . Though (3.21) and (3.23), equation (3.22) explicitly is331

(3.24) − |Ωni |U
n
i + |Ωn+1

i |Un+1
i +

4∑
j=1

∫
Γn
ij

U · nx,t dΓ =

∫
Cni
f dC,332

where the unknown is the average solution Un+1
i at time tn+1, while the last term of the left hand side is the333

space-time flux along the space-time sides
⋃4
j=1 Γnij . Scheme (3.24) is the Finite Volume scheme; we remark334

that it is still exact. In order to solve (3.24), we need to approximate the integral function of the space-time335

flux. Among the several methods proposed in the literature (such as in [11, 12, 13, 33, 17]), we here present336

a Local Lax-Friederichs (LLF) approach:337

(3.25) [U · nx,t]Γn
ij
≈ Φ(q+

j , q
−
j ) =

1

2
(U+

j +U−j ) · nx,t −
s

2
(q+
j − q

−
j ),338

where U+
j = U(q+

j ) and U−j = U(q−j ) are the space-time solution of (3.20) computed by solutions q+
j and339

q−j , which represent the local predictor solutions outside and inside the cell, respectively, with respect to the340

space-time side Γnij . The term s is the stabilization coefficient. Equation (3.24) with the flux approximation341
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(3.25) closes the correction stage of the ADER method. At the end of this stage, a solution un+1
i is found342

over any cell Ωn+1
i . Since the predictor solution over space-time cells Cn+1

i needs to be evaluated over the343

Gauss nodes, a second order local polynomial interpolation is performed as explained in Section 3.1.344

For the computation of the integrals along the space-time manifolds Γnij , we still use the previously computed345

map Mi. As a matter of fact, for a generic function g : Cni → R it holds:346 ∫
Γn
ij

g(x) dΓ =

∫
Γ̂j

g(x(ξ))|Cof(J)n̂j | dΓ̂,347

where Γ̂j is the j-th lateral side of the reference cubic domain Ĉ of unit outer normal n̂j , Γnij =Mi(Γ̂j) and348

Cof(J) is the cofactor matrix of the Jacobian tensor J of the map.349

Concerning the time step ∆t, due to the combination of the weak predictor solution by problem (3.11)350

and the consequent plug of this solution in the finite volume scheme (3.24) trough the LLF flux (3.25), a351

classical stability analysis is not evident. We assumed the time step to be352

(3.26) ∆t = CFL
h

max{supΩ×[0,T ] |ax|, supΩ×[0,T ] |ay|}
,353

where h is the smallest characteristic length among all cells (both of background and foreground meshes)354

along the whole temporal window [0, T ], i.e., h = mini,n h
n
i , with hni the characteristic length of spatial cell355

Ωni at discrete time tn. Coefficient CFL in (3.26) is the Courant-Friedrichs-Lewy number. In this paper, the356

CFL coefficient is experimentally sought by conducting an empirical analysis in Section 5.2.357

3.5. Dynamics of the overlapping zone. During the simulation, the foreground mesh moves and,358

consequently, the background mesh changes its configuration in the zone of the overlapping as well as in the359

hole. Let Ωi(t) be a background cell in a neighborhood of the overlapping. From times tn to tn+1, there are360

three possibilities:361

1. Cell Ωi(t) is present at time tn and it disappears at time tn+1 because the hole completely covers it;362

2. Cell Ωi(t) is not present at time tn but it appears at time tn+1 because the hole gets away;363

3. The overlapping zone does not drastically change its configuration with respect to cell Ωi(t), thus364

the cell is present at time tn and it still continues to be present at time tn+1.365

The third case is trivial. For the first case, the predictor solution is executed in order to compute the fluxes366

of the neighboring cells even though the correction stage is not performed. For the second case, information367

uni is missing and it is necessary for computing un+1
i . For this reason, let N1 the total number of background368

cells (those ones in the hole included). Consequently i ≤ N1. By recalling that the order of foreground cells369

starts from N1 + 1, we look for an index j > N1 such that370

(3.27) xj = arg min
k>N1

‖xi − xk‖,371

where xµ is the center of mass of cell Ωnµ, for µ = i, j, k. Then, a local polynomial interpolation wn
j on the372

stencil Sj centered on cell Ωnj of the foreground mesh is computed as previously explained in Section 3.1.373

In particular, since Ωnj is chosen to be as the closest foreground cell to background cell Ωni through (3.27),374

a third order polynomial approximation of solution un on xi is ensured by imposing uni = wn
j (xi). Finally375

the ADER prediction-correction is performed as usual.376

4. The stabilization of the scheme. For the definition of the coefficient s in (3.25), there are different377

approaches leading to different definitions. Here we analyse two stabilization coefficients, i.e. the advective-378

diffusive term sAD and the just advective term sA. For the sake of clarity and to lighten the notation, we379

consider a two-dimensional scalar solution in this section (i.e., d = 2 and δ = 1).380

4.1. The local advective-diffusive stabilization term. For the definition of the coefficient sAD in381

(3.25), we study a relaxed hyperbolic form of the parabolic equation (3.20). Let us consider the following382

relaxation by Cattaneo (we refer to [34] and its references for further details): let 0 < ε � 1 be a relaxed383

time and consider variables v and w in Ω× [0, T ] such that384

(4.1) ∂tv =
1

ε
(∂xu− v); ∂tw =

1

ε
(∂yu− w).385
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Relations (4.1) define the relaxations in the sense that ∂xu → v and ∂yu → w in the limit of a vanishing386

ε. Since the flux has to be computed along the manifold Γnij in the space-time continuum, let us consider387

solution u and all its first derivatives as stationary solutions with respect to a pseudo-time t ∈ R+. Thus, let388

u(t;x, y, t) = [u, v, w]T be the formal definition of the relaxed hyperbolic system with respect to pseudo-time389

t. It holds ∂tu = 0. The conservative form problem (3.20) in quasi-linear form is390

(4.2) ∂tu + ∂x(Au) + ∂y(Bu) + ∂t(Cu) = f in R+ × Ω(t)× [0, T ],391

where A, B and C are 3 × 3 matrices (eventually involving the solution u among their components if the392

original problem is nonlinear) and the force term f = [f,−v/ε,−w/ε]T . In particular, A and B always393

depend on the relaxation time ε and they are defined by the convection-diffusion term F(u,∇u) and C is394

always the identity matrix if the Cattaneo’s relaxation (4.1) is employed. In order to study the differential395

operator in (4.2), let us consider a vanishing force term, i.e. f ≡ 0. The presence of the the pseudo-time t in396

(4.2) helps in treating the real time variable t as any other spatial variable x and y. When the force term in397

(4.2) is null, the problem is hyperbolic if the spectrum of matrix A = nxA+nyB+ntC is real for any choice398

of real values nx, ny and nt. If the hyperbolicity is ensured, the relaxed hyperbolic system has a planar399

wave solution propagating in the space-time continuum Ω× [0, T ]. In particular, if nx,t = [nx, ny, nt]
T is a400

particular direction in the space-time continuum, the eigenvalues of A define the speeds of propagation of the401

solution along the principal directions defined by the eigenvectors of A. For this reason, in the perspective402

of an upwind stabilization, the local stabilization term sAD in (3.25) is equal to the maximum speed of403

propagation of the wave, as it happens for the LLF flux approximation for a generic hyperbolic problem of404

a propagating wave in the space continuum.405

Here we detail the previous analysis for the convection-diffusion problem with the convective field a =406

[ax, ay]T and the diffusive term ν depending on space x and time t and eventually the solution u itself if a407

non-linearity leads the dynamics of the equation. In this case, the matrices of the quasi-linear problem (4.2)408

read409

A =

 ax −ν 0
−1/ε 0 0

0 0 0

 , B =

 ay 0 −ν
0 0 0
−1/ε 0 0

 , C =

1 0 0
0 1 0
0 0 1

 .410

Consequently, the spectrum ρ(A) of matrix A is411

(4.3) ρ(A) =

{
nt;

1

2

[
σ ±

√(
a2
x +

4ν

ε

)
n2
x + 2axaynxny +

(
a2
y +

4ν

ε

)
n2
y

]}
,412

where σ = a · n + 2nt and n = [nx, ny]T . The following proposition finally defines the advective-diffusive413

stabilization parameter.414

Proposition 4.1. For the advection-diffusion problem (1.1) with the convective field a = [ax, ay]T and415

the diffusive term ν, the advection-diffusion stabilization coefficient sAD is chosen to be the absolute value416

of the maximum of spectrum (4.3), i.e.,417

(4.4) sAD = max |ρ(A)| = 1

2

∣∣∣∣∣σ +

√(
a2
x +

4ν

ε

)
n2
x + 2axaynxny +

(
a2
y +

4ν

ε

)
n2
y

∣∣∣∣∣.418

Since the spectrum ρ(A) ⊂ R for any nonnegative ε, it yields the relaxed system (4.2) is always hyperbolic419

for any nonnegative ε.420

4.2. The choice of the relaxation time. For the definition of the advective-diffusive stabilization421

term sAD, we considered the relaxed hyperbolic system (4.2) deriving from the parabolic problem (3.20)422

through a relaxation time ε. If we were to solve the relaxed problem instead of the original one, the423

approximate solution would differ from the exact solution of two errors that are added together: the numerical424

error (typical of the scheme) and a relaxation error. For a linear problem, these errors have been investigated425

by Montecinos and Toro in [34]. The error |uhip−u| between the hyperbolized solution uhip and the original426

solution u is O(ε) [24]. Thus, if uhip,h is a numerical approximation of the exact relaxation solution uhip,427

the error |uhip,h − uhip| is O(hp0), with p the order of the method (i.e., p = 2 in this paper), and h0 the428
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maximum characteristic length of cells Ωi(t)’s. However, the goal is to choose a relaxation time ε such that429

the relaxation error is always dominated by or, at least, comparable to the numerical error, i.e. O(ε) / O(hp0).430

The following theoretical result can help in fulfilling our task.431

Proposition 4.2. The solution u of the original parabolic problem (3.20) is approximated by a relaxed432

solution uhip solving the relaxed problem (4.2) with accuracy p for all relaxation time ε and characteristic433

length cell h0 satisfying434

(4.5) Cp
ε

hp0
= O(1),435

with436

Cp =
1− 2−

1
2

2p−
1
2 − 1

.437

For the proof of Proposition 4.2, we refer the reader to Section 2.4.1 of [23]. As a consequence, there is the438

following corollary.439

Proposition 4.3. For a given mesh whose characteristic length is h0 and a numerical method of order440

p for solving the hyperbolized problem (4.2) derived by the original parabolic problem (3.20), the optimal441

relaxation time εp is442

(4.6) εp =
O(1)hp0
Cp

.443

We remark that, if a relaxation time ε is chosen to be less than or equal to εp, the numerical error dominates444

the relaxation error; on the contrary, if a relaxation time ε is chosen to be greater than the optimal value, the445

relaxation error dominates the numerical error. For this reason, in our simulation relaxation time ε = ε2/2446

is chosen.447

4.3. The local advective stabilization term. In order to recover a stabilization term sA by only448

considering the first order operator involved in the whole differential operator of the original problem, we449

can treat the equation to stabilize as a pure hyperbolic (namely just advective) problem. For this reason,450

the advective stabilization term sA coincides with the maximum eigenvalue of the ALE Jacobian matrix451

in a spatial normal direction by excluding the diffusive component which acts on the diffusion from the452

advective-diffusive term F (u,∇u) [11]. This matrix reads453

(4.7) AVñ =
√
n2
x + n2

y

[
∂F

∂u
ñ− V · ñ I

]
,454

where I is the identity tensor whose dimension is that one of the image space of the solution u and the unit455

vector ñ is the normalized projection of the space-time unit vector nx,t along the spatial directions given by456

vector [nx, ny]T , i.e.457

ñ =
[nx, ny]T√
n2
x + n2

y

.458

By recalling that the recovered map Mi is defined over Ĉ with image in Ci, the space-time manifold Γnij ,459

j = 1, . . . , 4, of the space-time cell Ci can be described by only two of the three reference space-time variables460

(ξ, η, τ); i.e., by either couple (ξ, τ), with η = η̄, or couple (η, τ), with ξ = ξ̄; with ξ̄ and η̄ alternatively equal461

to 0 or 1, depending on the specific j-th space-time manifold Γnij . Let χ be the free variable (e.g. χ = ξ)462

and κ̄ be the constrained variable (e.g. κ̄ = η̄) for the specific manifold Γnij . Therefore, for a specific point463

x̃ over Γnij it is possible to distinguish two directional vectors provided by the map Mi464

rχ =

xχyχ
0


κ̄

and rτ =

xτyτ
∆t


κ̄

.465
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The definitions of the directional vectors rχ and rτ allow to explicitly write the physical normal vector nx,t466

on x̃ as467

nx,t =
rχ ∧ rτ
|rχ ∧ rτ |

∣∣∣∣∣
κ̄

=
[∆t yχ, −∆t xχ, dχτ ]T√
∆t2 y2

χ + ∆t2 x2
χ + d2

χτ

∣∣∣∣∣
κ̄

,468

with dχτ = xχyτ − xτyχ. From now on we will omit the constraint variable κ̄. It is now possible to write469

the unit vector ñ along the spatial directions and the velocity of the point as470

ñ =
[yχ,−xχ]T√
y2
χ + x2

χ

and V =
dx̃

dt
=

[xτ , yτ ]T

∆t
.471

Consequently it holds472

(4.8) V · ñ =
−dχτ

∆t
√
y2
χ + x2

χ

=
−nt√
n2
x + n2

y

.473

In the case of a linear problem the advective stabilization term reads474

(4.9) sA = |axnx + ayny + nt|.475

The next proposition, through 4.8, allows to connect the advective-diffusive parameter sAD with the advective476

parameter sA in the limit of a vanishing diffusion parameter ν.477

Proposition 4.4. For linear problem (1.1), let the diffusion parameter ν go to zero, therefore the fol-478

lowing limit holds479

(4.10) lim
ν→0

sAD =
1

2
|σ + axnx + ayny| = |axnx + ayny + nt| = sA.480

The above Proposition confirms that, in the limit of small diffusion in the dynamics of linear problem (1.1),481

the two stabilization techniques coincide.482

5. Numerical results. In this section we are going to present some numerical test cases in order to483

analyse the method.484

Table 1 synthetically sums up the test cases that will be used for the different analyses. In particular, test1485

and test2 (in lowercase letters) are the 1D tests and TEST1 and TEST2 (in capital letters) are the 2D test486

cases.487

In the 1D tests, the foreground mesh is put in the middle between other two meshes composing the back-488

ground mesh, and it deforms according to the deformation laws specified in the last row of Table 1. In489

the following, for test1 we are not presenting a figure but only the rate of convergence. In Figure 5 three490

instants for test2 simulation are showed; in particular, the red circle markers define the nodes of the moving491

foreground mesh which is in the middle between the other two meshes (in the background) whose nodes492

are marked by blue dots and x-symbols. The background meshes are always uniform while the foreground493

mesh is allowed to be displaced and deformed. The solution of test2 is flat towards the boundaries of the494

computational domain and develops a moving front affected by a large spatial derivative; for this reason,495

the foreground mesh is set in order to follow the front. Finally we remark that, if h is the characteristic496

length of the cells in the background mesh, at the initial time t = 0 the foreground mesh is uniform with a497

characteristic length equal to h/2 in test1 and h/4 for test2.498

In TEST1, the foreground mesh is subjected to a deformation and rotation around its center of mass. We499

remark that in this case that the deformation velocity depends on the solution; in TEST2, the hyperbolic500

tangent in the exact solution describes a composed Gaussian bell whose maximum is originally located in501

the position x = (−1, 0) and, after a time T = π, it computes a counterclockwise half rotation up to position502

x = (1, 0) along the circumference of unit radius and centered in the origin of the axes. Due to the particular503

dynamics of the solution, we set a foreground mesh following the movement of the Gaussian bell. At the504

initial time, the foreground and background meshes in both 2D cases consist of squared cells whose sides505

have a length equal to h.506
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For all numerical tests, the time step ∆t is set accordingly to (3.26) with CFL coefficient equal to 0.4. The507

reason of this value will be better explained in Section 5.2 where an empirical stability analysis is conducted.508

Without reporting numerical evidences, we checked the scheme is free-stream preserving, i.e. it exactly solves509

a constant but nonzero solution.510

5.1. Order of convergence. In this section we have a double goal. On one hand we want to nu-511

merically prove that the presented method is second order when an advective-diffusive LLF stabilization512

sAD is employed. On the other hand, we want to compare this stabilization term with the local advective513

stabilization flux sA. The study of the second order convergence is conducted on all test cases of Table 1.514

Finally, on the two mentioned 2D test cases the comparison of the performances for the flux approximations515

is carried out.516

For quantifying the convergence rate, we considered the L∞- and L2-norms of the mismatch between the517

exact solution and the numerical solution at final time t = T . The errors are defined and approximated as518

(5.1) L∞-err = ‖u− uex‖L∞(Ω) = ess sup
x∈Ω
|u(x, T )− uex(x, T )| ≈ eNL∞ = max

k=1,...,N
|uMk − uex(xk, T )|519

and520

(5.2)

L2-err = ‖u− uex‖L2(Ω) =

√∫
Ω

(
u(x, T )− uex(x, T )

)2

dΩ ≈ eNL2 =

√√√√ |Ω|∑N
k=1

(
uMk − uex(xk, T )

)2

N
,521

respectively, where N ≈ |Ω|h−1/d is the number of cells such that any part of the of the domain is covered522

by one and only one cell at time T (with h the characteristic length of cells and d = dim(Ω)) and M is523

the maximum natural such that T = M∆t. Approximation (5.2) is valid only in the case of cells having524

approximatively or exactly the same spacing. The convergence rate reads525

(5.3) Lp-rate = d
log (eN1

Lp /e
N2

Lp )

log(N2/N1)
, for p = 2,∞,526

for two different partition settings whose number of cells are N1 and N2, respectively, with N1 < N2. The527

mesh refinement is performed by reducing the spacing (kept constant for any cell) and by preserving a layer528

of 4 cells both in background and foreground for the overlapping zone.529

Table 2 sums up the convergence analysis for 1D test cases. In the last two columns there are the rates of530

convergence of the errors for both L∞ and L2 errors. From the analysis, the second order of the method is531

confirmed.532

In Table 3 we report the L∞- and L2-errors with their respective rate of convergence with respect to a533

local advective-diffusive (AD, white cells) and advective (A, grey cells) stabilization. We first remark that,534

for both cases, the errors relative to AD stabilization are slightly smaller with respect to the same errors535

with an A stabilization. The rate of convergence of the errors for an AD stabilization is at least 2. On the536

other hand, even though a second order of accuracy is also reached by employing an A stabilization, the537

convergence rate shows an irregular trend (especially for TEST2 ). For this reason we can state that an AD538

flux approximation allows to reach a more precise solution with a monotone trend for the rate of convergence539

with respect to the same solution with an A flux stabilization.540

5.2. Empirical analysis of stability condition. As already mentioned at the end of Section 3.4, the541

presence of a weak solution, found in the prediction step of the presented method and successively plugged542

into the flux of the finite volume scheme in the correction stage, makes a classical stability analysis not543

straightforward to be made. For this reason, we performed an empirical stability analysis by assuming that544

the right time step ∆t allowing a stable computation is defined as in (3.26).545

On a given problem, once both background and foreground meshes are set, we considered a time step ∆t546

starting from a CFL number equal to 0.1 and, by increasing this value of 0.05 each time, we look for the largest547

stable CFL. In particular, this process is executed on the same problem considering an approximated LLF548

flux employing once an advective-diffusive stabilization term sAD and then with an advective stabilization549

term sA.550
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Fig. 5: Three time instants for the 1D test case test2. The circle markers define the nodes of the moving
foreground mesh. The remaining dot and x markers are the nodes of the two background meshes.

This manuscript is for review purposes only.



18 M. BERGMANN, M.G. CARLINO AND A. IOLLO

Table 2: Convergence analysis for 1D test cases test1 and test2.

T h L∞-err L2-err L∞-rate L2-rate

te
st

1

0.25

2.00e-2 1.2740e-3 1.3903e-3 0 0
1.00e-2 2.5042e-4 2.9250e-4 2.37 2.79
5.00e-3 5.6957e-5 6.6934e-5 2.15 2.14
2.50e-3 1.3675e-5 1.6068e-5 2.06 2.06

te
st

2

0.5

1.00e-2 9.2733e-4 6.3960e-4 0 0
5.00e-3 1.1948e-4 1.0081e-4 2.88 2.60
2.50e-3 2.1898e-5 1.6359e-5 2.49 2.67
1.25e-3 5.6504e-6 2.8547e-6 1.96 2.44

Table 3: Convergence analysis for 2D test cases TEST1 and TEST2. Column labeled with h reports the
smallest characteristic length among all cells.

T h L∞-err L2-err L∞-rate L2-rate

AD A AD A AD A AD A

3.00e-1 1.9012e-2 2.1887e-2 4.6211e-3 9.1724e-3 0 0 0 0
1.50e-1 4.3829e-3 5.8280e-3 1.0854e-3 2.4464e-3 2.28 2.06 2.25 2.05
7.50e-2 9.5837e-4 1.2096e-3 2.1323e-4 4.8789e-4 2.25 2.32 2.41 2.38

T
E

S
T

1

1

3.75e-2 3.0646e-4 2.7571e-4 2.9265e-5 5.5269e-5 1.95 2.16 2.65 3.18
3.00e-1 6.5375e-2 6.5375e-2 1.0682e-2 1.0682e-2 0 0 0 0
2.25e-1 3.1934e-2 3.1598e-2 5.5980e-3 1.0043e-2 2.66 2.70 2.40 0.23
1.50e-1 1.1276e-2 1.1276e-2 2.0116e-3 2.0116e-3 2.71 2.70 2.66 4.18
1.13e-1 5.2093e-3 8.8807e-3 9.3905e-4 2.2073e-3 2.78 0.86 2.74 -0.33T

E
S

T
2

π

7.50e-2 2.4154e-3 3.6814e-3 3.9534e-4 8.6362e-4 1.94 2.22 2.19 2.37

The analysis is conducted on the 2D test cases presented in Table 1. In Figure 6 there are three time instants551

of both test cases.552

In Table 4 there are the maximum CFL numbers and related maximum time steps ∆t such that the method is553

stable. The time step ∆t is computed by formula (3.26). By comparing the performances of a local advective554

(A) stabilization term against the same ones using a local advective-diffusive (AD) stabilization term, it is555

evident that an advective LLF flux always needs a smaller CFL with respect to an advective-diffusive LLF556

flux in order to stabilise the routine.557

5.3. Relationship between the convective field and the foreground mesh velovity. From the558

theoretical explanation of the method, it does not emerge in any way an interaction between the speed of the559

foreground grid V and the intrinsic advective field a of the problem. In other words, there does not seem to560

be a limitation of the velocity of the mesh that is displaced and deformed in terms of stability of the method.561

The unique limitation of the mesh speed (see section 3.5) is due to the CFL condition with respect to the562

dimension of the single cell. In order to allow to the code to perform the automatic information transmission,563

the mesh speed is such that it does not allow a given fringe cell Ωni in the foreground mesh to migrate beyond564

the boundaries of the stencil Si centered on the cell itself in any time interval from tn to tn+1. As a matter of565

fact, if this process is not ensured, for those new born cells belonging to the background mesh at time tn+1566

could not be able to recover the information from the polynomial interpolation. Consequently, the algorithm567

would incur a loss of information.568

In this subsection we test on a numerical case that the stability is only given by the relative advective speed569

a− V and the mesh velocity V does not affect the stability of the method in other ways. In particular, on570

the same linear test case, we will consider different possible movements of the foreground mesh by measuring,571

at final time t = T , the L∞- and L2-errors of the mismatch between the exact and the numerical solution.572
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Table 4: Experimental stability analysis. For both tests, the reported CFL and ∆t consist in the maximum
CFL number and the maximum related time step ∆t such that the method is stable. Labels A and AD
underline the usage of an advective and advective-diffusive stabilization term for the LLF flux, respectively.
The first column reports the space steps h used for the different simulations.

TEST1 TEST2

h CFL ∆t CFL ∆t

A AD A AD A AD A AD

3.00e-1 0.55 0.95 2.06e-1 3.56e-1 0.75 0.95 2.81e-1 3.56e-1
1.50e-1 0.75 1.15 1.41e-1 2.16e-1 0.65 0.85 1.22e-1 1.59e-1
7.50e-2 0.75 0.95 7.03e-2 8.91e-2 0.55 0.75 5.16e-2 7.03e-2

Table 5: On the top, features of TEST3 are reported. On the bottom, there are the three considered
movements of the foreground mesh.

TEST3

Ω (0, 1)× (0, 5)
Diffusion 2e-3
Advection [1, 0]T

uex
− tanh(2(x− t)2 + 5(y − 1)2)+

+e−t(5x− x2)(2y − y2) + 1
B.C. Dirichlet: u|∂Ω ≡ 0

I.C.
− tanh(2x2 + 5(y − 1)2)

+(5x− x2)(2y − y2) + 1
T 2

fg mesh [0.8, 1.2]2

V P1, P2, P3

V

P1 The foreground mesh is not moving for the whole period of the simulation.

P2 The foreground has a constant velocity equal to the advective velocity for any time.

P3 For half of the time the mesh moves with double the speed compared to the advective field and for
the remaining half of the time the mesh moves with the same speed in modulus but in the opposite
direction compared to the advective field.

The tested case is named TEST3 and it is summed up in Table 5 (top).573

The foreground mesh is either allowed not to move or to rigidly move in the parallel direction with respect to574

the abscissae axis. In particular, we consider three possibilities of movements, P1, P2 and P3, reported and575

explained in Table 5 (bottom). We remark that test P1 corresponds to a test case with a unique block mesh576

due to the position and the uniformity of the foreground mesh with respect to the background mesh. For577

this reason, tests P2 and P3 are compared with P1. In Figure 7 there are both the numerical solutions and578

the associated pointwise absolute values of the difference between the exact and numerical solution for the579

final time T = 2 for the configurations listed above. In particular, the configuration of the foreground mesh580

in Figure 7a (left) corresponds to the initial mesh configuration for tests P2 and P3 too. By visualising the581

different plots of the errors, it is evident the movement of the foreground mesh introduces an error. As a582

matter of fact the errors of P2 and P3 are neither equal each other nor to the errors of P1. The quantitative583

differences among the different cases are reported in Table 6. Concerning test P2, the L∞-error is equal to584

This manuscript is for review purposes only.



20 M. BERGMANN, M.G. CARLINO AND A. IOLLO

(a) TEST1 (b) TEST2

Fig. 6: Three time instants for test cases TEST1 (a) and TEST2 (b).

the one of P1, even though the L2-error is the double. This distance between a steady and moving foreground585

mesh becomes slightly more evident at increasing of the mesh speed, as the last line of Table 6 shows. In586

any case, all the errors are comparable and this confirms that there is no relation between advective field587

and mesh velocity in terms of stability. The mesh velocity seems to affect the numerical solution only on the588

precision.589

We conclude this subsection by analysing the loss of information given by a very strong speed of the fore-590

ground mesh on the same test case. The foreground mesh is still located in the subset [0.8, 1.2]2 at the591

initial time and moves rightwards with a speed equal to 4. This velocity, with the considered time step ∆t,592

allows to the cells on the left side of the foreground mesh to overflow from the borders of their stencil from593
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(a) P1

(b) P2

(c) P3

Fig. 7: The numerical solutions, on the left, at final time t = 2 of the three possibilities P1, P2 and P3 of
foreground mesh movements for the TEST3. On the right there there are the associated pointwise errors of
the mismatch between the exact solution and the numerical solution.

Table 6: Errors for TEST3. The errors refer to a characteristic length h equal to the cell of 2e-2 and a time
t = T = 2.

L∞-err L2-err

P1 2.1554e-2 6.8500e-3
P2 2.1554e-2 4.8809e-3
P3 4.8809e-2 1.0864e-2

times tn to tn+1. In Figure 8 there is a comparison between the recovered numerical solution and the exact594

solution for t = 0.84 (which corresponds to that time when the right side of the moving mesh is fully aligned595

to the right side of the channel). There is no relation between the two solutions because the speed of the596

foreground mesh is so fast that it does not allow the algorithm to assign the correct information about the597

background cells that arise in the wake of the foreground mesh itself.598
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Fig. 8: Comparison between the numerical (left) and exact (rigth) solution of TEST3 at time t = 0.84 for a
moving foreground mesh travelling with a speed generating a loss of information.

5.4. Further topics. We conclude this section by presenting three test cases that show the potentiality599

of the method. Firstly, a nonlinear advection-diffusion system is solved; successively a multimesh setting of600

grids is considered for the already described TEST2 (see Table 1); finally, we consider a test case with a601

complex domain in which the foreground mesh is employed in order to adapt its shape to the shape of the602

domain.603

5.4.1. Nonlinear system. Let Ω = [−π, π]2 and T = 0.5 be the computational domain and the final604

time, respectively. Thus the problem is: find u : Ω× [0, T ]→ R2 such that :605

(5.4)


∂tu+∇ · (uuT ) = ν∆u+ f in Ω× [0, T ]

u ≡ uex on ∂Ω× [0, T ]

u(x, 0) = uex(x, 0) in Ω× {0}
,606

where the force term f is chosen to have the exact solution607

uex(x, y, t) = e−t
[

cos(x) sin(y)
− sin(x) cos(y)

]
.608

In problem (5.4), the diffusive term ν is equal to 5π × 10−3 while the convective field is represented by the609

solution itself, thus the partial differential equation is nonlinear. For this problem, the convective-diffusive610

component F is the matrix uuT − ν∇u. The foreground mesh is originally located around the center of611

mass of the whole domain and it is allowed to rigidly counterclockwise rotate. In Figure 9 there are the two612

components of the numerical solution at final time t = T .613

The error and convergence analysis is conducted as for the already presented linear test cases by comparing614

the performances of the flux discretization either with local advective-diffusive or just advective stabilization615

term. For this reason, Table 7 reports the L∞ and L2 errors and convergence rates by decreasing four times616

the characteristic length h of the cells. As already observed for the linear tests, also in this specific nonlinear617

case the errors of AD and A fluxes are similar even though an AD discretization is almost always more618

precise. Finally, we remark that both flux approximations have a second order discretization rate, as we619

expected a priori.620

5.4.2. Multimesh setting. The presented method can be easily extended to more than one foreground621

mesh. As a matter of fact, different meshes can be set with an independent movement and such that to622

exchange information with the background grid and with the other moving foreground meshes. Due to the623

possibility to move, the foreground meshes can overlap each other. Consequently, the hole will be present in624

the background as well as in some foreground grids by properly applying the same dynamics of the overlap-625

ping zone of Section 3.5 to the specific intermediate foreground mesh.626

In order to compare the performances of multimesh setting with two moving foreground meshes, we consid-627

ered the presented case TEST2 with a foreground mesh clockwise rotating around the origin (see Table 1) by628

adding a second foreground mesh. The new grid is originally located to subset [−0.78,−0.18]×[−0.62,−0.02]629

and horizontally moves on the right with a constant velocity V 2 = [−0.8, 0]T (see Figure 10). The new grid630

intercepts the original foreground mesh at the beginning and at the end of the simulation. For this reason,631
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Fig. 9: Components of the solution of nonlinear test at time t = T = 0.5.

Table 7: Convergence analysis of the nonlinear test case. The errors refer to time t = T = 0.5.

h L∞-err L2-err L∞-rate L2-rate

AD A AD A AD A AD A

3.00e-1 2.3700e-2 2.01643e-2 5.2187e-3 4.9065e-3 0 0 0 0
1.50e-1 5.2138e-3 5.8552e-3 1.1061e-3 1.5086e-3 2.36 1.93 2.42 1.84
7.50e-2 2.4113e-3 2.4344e-3 2.4506e-4 5.7129e-4 1.15 1.33 1.30 1.44
3.75e-2 6.1828e-4 6.4658e-4 1.0332e-4 1.4322e-4 1.99 1.94 2.16 2.02

the original foreground mesh partially covers the new mesh by creating a new partial hole on it (see first632

and last rows in Figure 10b). Moreover a new hole is generated in the background. Since each foreground633

mesh is independent from the other, the holes in the background can be ether connected (if the foreground634

grids overlap each other) or unconnected (if the foreground meshes are far enough to not overlap each other).635

Figure 10a refers to the solution where each grid is defined by squared grids whose cells have a characteristic636

length h = 7.50e−2. The L∞- and L2-errors with respect to the exact solution are exactly the same reported637

in Table 3 (last row). This means that the new grid does not influence the performance of the method with638

respect to the previous grid setting.639

5.4.3. Complex domains. An important application of chimera grids is the possibility to use meshes640

fitting the particular shape of the domain (which eventually evolves in time) by preserving a Cartesian641

background mesh. Here we present a test case summed up in Table 8. For any positive time t, let the generic642

moving ball formally be643

B(ρmin, ρmax; t) =
{

(x, y) ∈ R2 : x = ρ cos (θ), y = ρ sin(θ)− 2t− π; with (ρ, θ) ∈ [ρmin, ρmax]× [0, 2π]
}
.644

The domain is the channel of dimensions [−π, π] × [−2π, 2π] from which the moving circle B(0, 0.5; t) of645

radius equal to 0.5 is subtracted at any time t ∈ [0, T ]. The circle vertically moves downwards with a646

constant velocity. In Figure 11a it is reported the numerical solution at the initial and final time instants647

for the numerical test. In Figure 11b there is a focus on the grid settings. For the foreground mesh, a polar648

structured grids is employed. It fits the shape of the domain and moves as the domain evolves.649

6. Conclusions. We presented a second order finite volume scheme for unsteady advection-diffusion650

PDEs on overset grid. The scheme is based on an extension of the ADER method to advection-diffusion651
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(a) (b)

Fig. 10: On the left (a), the solution of TEST2 for three time instants with a multimesh setting composed
of two foreground meshes; on the right (b), for the same time instants, the configuration of the background
and foreground grids.

equations with compact data transmission conditions from the background to the foreground meshes and652

vice versa. We also introduced a new stabilization term for approximating the fluxes through a Local Lax-653

Friederichs approach.654

The numerical illustrations for linear and non-linear systems show that background and foreground655

moving meshes do not introduce spurious perturbation to the solution, uniformly reaching second order656

accuracy in space and time. In addition, we showed that the speed of the foreground mesh does not657

influence the stability of the method. Our results also show that the new LLF stabilization speed improves658
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Table 8: Summary scheme of TEST4.

TEST4

Ω [−π, π]× [−2π, 2π]/B(0, 0.5; t)
Diffusion 0.05
Advection [0,−2]T

uex(x, y, t) exp[−x2 − (y − 2t− π)2 + 0.5](cos(t) + 1)
B.C. Dirichlet: uex(x, y, t)|∂Ω

I.C. uex(x, y, 0)
T π/2

fg mesh B(0.5, 1.5; 0)
V [0,−2]T

the precision and robusteness of the numerical solution and allows a less restrictive CFL condition. Finally,659

it is shown that several foreground meshes, possibly overlapping and with independent displacements, can660

seamlessly be employed thanks to this approach.661

Future investigations will extend this integration scheme to the compressible and incompressible Navier-662

Stokes equations.663
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