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SECOND ORDER ADER SCHEME FOR ADVECTION-DIFFUSION ON MOVING
OVERSET GRIDS WITH A COMPACT TRANSMISSION CONDITION*

MICHEL BERGMANNT# MICHELE GIULIANO CARLINOff AND ANGELO IOLLO't%

Abstract. We propose a space-time Finite Volume scheme on moving Chimera grids for a general advection-diffusion
problem. Special care is devoted to grid overlapping zones in order to devise a compact and accurate discretization stencil to
exchange information between different mesh patches. Like in the ADER method, the equations are discretized on a space-
time slab. Thus, instead of time-dependent spatial transmission conditions between relatively moving grid blocks, we define
interpolation polynomials on arbitrarily intersecting space-time cells at the block boundaries. Through this scheme, a mesh-free
FEM-predictor/FVM-corrector approach is employed for representing the solution. In this discretization framework, a new
space-time Local Lax-Friederichs (LLF) stabilization speed is defined by considering both the advective and diffusive nature
of the equation. The numerical illustrations for linear and non-linear systems show that background and foreground moving
meshes do not introduce spurious perturbation to the solution, uniformly reaching second order accuracy in space and time.
Finally, it is shown that several foreground meshes, possibly overlapping and with independent displacements, can be employed
thanks to this approach.

Key words. Chimera mesh, overset grid, Finite Volume, second order scheme, ADER, compact transmission condition,
unsteady advection-diffusion

AMS subject classifications. 65M08, 65M55, 65Y99

1. Introduction. One of the main difficulties for the simulation of a phenomenon modeled by a Partial
Differential Equation (PDE) is the geometrical modeling of the computational domain with a single mesh
block. This problem is especially relevant when the domain is complex or its shape and its topology evolve
during the simulation. Classical approaches to tackle this problem include the Arbitrary Lagrangian-Eulerian
(ALE) method, fictitious domain approaches and Chimera grids. ALE methods [18] allow a certain degree of
mesh deformation and adaptation thanks to an appropriate reformulation of the governing equations and to
sophisticated and efficient grid displacement algorithms. However, when the grid deformation leads to exces-
sively stretched cells, a delicate (and computationally expensive) global re-meshing step may be necessary.
In turn, this operation can introduce approximation irregularities that are caused by the interpolation of the
solution from the old grid to the new one. In fictitious domain approaches, including immersed boundary or
penalization methods, the original problem is discretised on a simple mesh, usually structured and cartesian,
constant in time [14, 25, 1]. The grid hence does not necessarily fit the physical boundaries and special
care must be taken to attain a sufficient degree of accuracy at the boundaries. Moreover, the presence of
thin boundary layers can significantly reduce the computational advantages deriving from a simple meshing
algorithm, because of the uniform aspect ratio of the mesh.

We focus our investigations on Chimera grids [35, 5, 22, 26]. Chimera grids consist of multiple overlap-
ping mesh blocks that together define an overset grid used for spatially discretise a PDE [30, 31, 29]. Usually,
one has a background mesh that includes one or more foreground mesh patches that are fitted to the physical
domain boundaries. This mesh generation approach considerably simplifies the task of mesh adaptation in
the case of boundary layers, changing geometry for an unsteady problem (e.g. fluid-structure interaction
problems in fluid-dynamics) and for unsteady multiply connected domains [2, 3, 28, 4, 9]. Once the multiple
mesh patches are generated, they are collated in order to obtain an appropriate overlapping zone between the
neighboring blocks [22]. In the overlap zones, the exchange of solution information from one grid to another
is performed. A compact transmission condition is generally sought in order to limit communications be-
tween the grids. Namely, a compact stencil only composed of the first layer of cells is defined around any cell.

In this paper, we propose a space-time Finite Volume scheme on Chimera grids. Our objective is
to combine some aspects of an ALE approach, notably its flexibility with respect to grid displacement and
deformation, to the multi-block discretization strategy of overset grids. In particular, we will devote special
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2 M. BERGMANN, M.G. CARLINO AND A. IOLLO

care to grid overlapping zones in order to devise a compact and accurate discertization stencil to exchange
information between different mesh patches, in the spirit of previous works on cartesian hierarchical grids
[27]. We then apply this approach to integrate linear and non-linear Advection-Diffusion partial differential
equations and show how the method can exploit the versatility of the Chimera meshes to reach second order
accuracy in unsteady multiply connected domains.

The numerical solution on Chimera grids is obtained by exchanging data through the fringe cells at
the overlapping zone. For example, in [10, 15, 36, 21], fringe (namely donor) cells of a block in proximity of
the overlapping zone provide the information to the fringe (i.e., receptor) cells of another block by polynomial
interpolation. In [16] a coarse grid is automatically generated and a connection of interpolation information
at the overlapping zone is presented through a multigrid approach.

Another way of making the different blocks communicate is to use proper Domain Decomposition (DD)
methods (e.g., Schwartz, Dirichlet/Neumann or Dirichlet/Robin methods). In particular, each mesh block
is considered as a decomposition of the domain and the overlapping zones are the interfaces for coupling the
different blocks. Accordingly to these approaches, typically iterative discrete methods are employed. For
this two way communication, the reader is referred to [19] for further details.

In the same framework, other approaches connect the background and the foreground meshes, such as the
DRAGON grids [20] for which the overlapping zone is replaced by a nonstructured grid during a further
stage by preserving the body-fitting advantages of the Chimera meshes.

In contrast, here we derive a second order compact transmission condition by properly defining a set of cells,
i.e. the stencil, that belong both to the back- and foreground meshes, over which the solution is interpolated
in space and time by an appropriate polynomial. This hybrid stencil allows a smooth discretization transition
from one block to another. In particular, first a mesh-free discontinuous FEM-solution is recovered and then
a FVM-correction is performed in any cell by using information provided by near cells. Thus, for fringe cells,
the solution is obtained by combining values from different grids.

The Arbitrary high order DERivatives (ADER) method provides an ideal setting for pursuing our pur-

pose. In [11, 33, 32, 8], the authors presented a method to recover an accurate solution for hyperbolic PDEs
with an arbitrary order of accuracy on a single mesh block. More recently, in [7] the authors presented an
ADER Discontinuos Galerkin scheme with a posteriori subcell finite volume limiter on fixed and moving
grids such as space-time adaptive Cartesian AMR meshes. The numerical scheme treats the temporal vari-
able indistinctly with respect to the spatial variables by defining the solution on a space-time slab. This
discretization approach, therefore, allows us to re-consider the problem of Chimera grids transmission con-
ditions: instead of time-dependent spatial transmission conditions between relatively moving grid blocks, we
define interpolation polynomials on arbitrarily intersecting space-time cells at the block boundaries.
In the ADER scheme a local space-time weak solution of the problem from the generic time ¢ to ¢ + At is
computed in every single space-time cell. This solution is defined as the predictor. The prediction step is
local and hence embarrassingly parallel, because the solution is calculated independently of the information
of the neighbouring cells. Then, in the subsequent stage of correction, the computation of a space-time
numerical flux between neighboring cells provides the appropriate stabilization of the integration scheme.
We extend this prediction-correction method to Advection-Diffusion PDEs on overset grids and propose a
space-time flux among the space-time cells that provides improved stabilization and precision as it takes into
account both the advective and diffusive nature of the equation.

Let (t) C R? be the time-dependent computational domain and let T be a positive real. In the
following we consider the parabolic problem: find u : Q(t) x [0,T] — R® such that

(1.1) ou+V - -F(u,Vu)=f, xeQt), tel0,T],

closed with appropriate initial and boundary conditions. Problem (1.1) is a rather general representation of
an advection-diffusion model. In (1.1) the diffusive-convective vector F(u, Vu), eventually nonlinear, and
the force term f(x,t) are defined. In particular, the problem is linear when the diffusive-convective term is
written as F(u, Vu) = Au—vVu, where A : Qx [0, T] — R?*? is the advective field and v : Q x [0,T] — R,
is the diffusion parameter.
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SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID 3

In Section 2 the formal definition of the overset (Chimera) grid is given. The predictor-corrector method
on a Chimera mesh is then derived in Section 3. In Section 4 the new Local-Lax-Friederichs (LLF) stabi-
lization term is introduced and contrasted with the LLF term from the literature. Section 5 is devoted to
the numerical results. In particular, first the second order analysis is conducted on linear 1D and 2D test
cases; successively, we focus on the stability of the method by comparing the performances of the differ-
ent LLF fluxes. At the end of the numerical test cases section, we show results for a nonlinear system of
PDEs, for multiblock grid setting, meshes and time-dependent overset grids for multiply connected domain.
Conclusions are reported in Section 6.

2. The overset grid. An overset grid or Chimera mesh is a set of mesh blocks covering the compu-
tational domain. Each block may overlap other block(s) in some particular sub-region(s) said overlapping
zone(s). Once the multiple mesh patches are generated, they are collated in order to generate an appropriate
topology [22]. Consequently, an overlapping zone between two neighbouring blocks is defined. For the sake of
simplicity with no loss of generality, the whole method is explained by considering a two blocks overset grid
(i.e., the background and the foreground meshes). For multiple-block meshes (e.g. Ti,...,7n), a hierarchy
of meshes from the background to the foreground is defined (e.g. 71 < -+ < Tn). Successively the presented
algorithm for setting the overset grid is performed from one mesh to the union of all other meshes towards
the background (e.g. 7; for U;;ll T, for any ¢ = 2,...,N). In Section 5.4.2 of test cases, a multiple-block
setting is presented. Figure 1 shows an overset grid; in black there is the background mesh and in blue
the foreground mesh. In particular, the foreground mesh can move and deform. The overlapping zone is
necessary for the communication and data transfer from one mesh to the other.

In this work, the cell of any block mesh is considered quadrilateral. In particular, when all the cells are
squared, the mesh is uniform. When the cells are either squared or rectangular and the edges are oriented
as the Cartesian axes, the mesh is said to be Cartesian.

Fig. 1: Example of Chimera grid configuration. In black there is the background mesh and in pink the
foreground mesh.

2.1. The automatic definition of the stencil at the transmission condition. Let 7; = {QF} Nk

be the partition composed of Ny, cells referring to the k-th block mesh (in order to simplify the notation, we
will omit the superscript k to the cell QF by writing (2;), moreover, let S; be the stencil centered over the
cell ;. Thus, stencil S; is the set collecting the indexes of neighboring cells to ;. By abuse of language,
sometimes we will refer to the physical set Q; U Ujes,; €; as the stencil.

It is possible to distinguish two classes of cells with respect to their proximity to the overlapping interface.
The definition of the stencil depends on the class.

If cell Q; is not at the boundary of the overlapping zone (Figure 2a), the stencil S; is composed of all the
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4 M. BERGMANN, M.G. CARLINO AND A. IOLLO

cells €); sharing at least one vertex with €2;. Thus, if €2; belongs to the partition 77, all cells ;, with j € S;,
also belong to 7;.

If the cell ©; of partition T} is at the boundary of the interface, it is no longer possible to use the criterion of
the cells sharing at least a vertex. In fact, there will be at least one edge e;; not shared by any other cell of
the same partition (see right edge of cell 214 in Figure 2b). For these cells, we aim in automatically finding
the other cells of partition 7; (j # k) belonging to the stencil. Let the extremes of the edge be indicated as
v1 and vy and its middle point with vs, respectively. Point ¢, is the center of mass of generic cell €),. For
our numerical tests, Algorithm 2.1 is adopted through the two steps:

1. look for the nodes of cells of the other partition 7; minimizing the Euclidean distance with respect
to points v, p = 1,2,3, (line 5, see Figure 3a);

2. compute the symmetric points v, of center cf with respect to points v, for p = 1,2,3 (line 6),
then look for the cells of partition 7; whose centers minimize the Euclidean distance with the three
symmetric points (line 7, see Figure 3b).

For the edges shared by other cells in the same partition, the cells of the stencil will be those ones sharing
at least one vertex (as cells of indexes 13, 14, 17, 19 and 20 in Figure 2b).

The routine presented in this section will be run whenever the foreground mesh configuration as well as the
hole change.

Algorithm 2.1 could not define a compact stencil in the case of widely different mesh spacing. In this case,
more than three points v, can be considered for lines 5 and 6. Moreover a weighted symmetry (possibly led
by the different spacing) can be performed at line 6.

Algorithm 2.1 Compute stencil for cells at the boundary of the overlapping zone.

Input: QF, efl, T;, Sk > j # k, i.e. T; is the other partition with respect to 7y

1: Initialize v; and vs as the two vertexes of edge efl;
2: v3 + (v1 +v2)/2; > Middle point of edge efl
3 Z; 0 > Temporary set of indexes of partition 7;
4: for p=1,2,3 do
5: Zi+— ZiU{n=1,...,N; :||lv, —c|| <|lv,— || Ym=1,...,N;};
6: ¥+ 20, —ck; > Symmetric point of cellcenter ¢ of Q¥ with respect to v,
T ZJ%ZJU{’R:L7NJH’ZJ—C-ZL||§||’{)—C£”H szl,,Nj},
8: Slk «— S U Z;;
9: return SF

///\\,\;‘ e I

//\21// 29 123 v 24 27577:

(b) A stencil of cells not belonging to the same

E?(zn A Csf)flrtlicriluot?sf lf;ils fO;n thteheste?cririe Sparti partition. Continuous line for the stencil S16 =
‘ B {1,4,7,13,14,17,19,20}.

{7,8,9,12,14,17,18, 19}.

Fig. 2: Two possible stencils: on the left the stencil is in the same partition; on the right the stencil is
composed of cells not belonging to the same partition.
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SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID 5

(b) Second step: by identifying the symmetric
points v, p = 1,2,3, (red full dots) of the node
of the cell Q16 (blue empty dot) with respect to
the vertexes and the middle point of the not shared
edge, look for the nodes of cells in the partition 71
minimizing the Euclidean distance to those points.

(a) First step: by identifying the vertexes v and va
and the middle point v3 of the edge on the boundary
cell Q6 (blue full dots), look for the nodes of cells
in the partition 77 (black empty dots) minimizing
the Euclidean distance with respect to those points.

Fig. 3: The two steps for the research of cells in the partition 77 for the cell Q6 € Ts.

3. The numerical method. Once the stencil has been defined, the numerical method can both nu-
merically solve problem (1.1) and eventually evolve the overset grid. In this section the scheme is presented.
The method consists in a FEM-predictor FVM-corrector scheme stabilised with a Local Lax-Friederichs
approach whose stabilization coefficient is explained in the following section.

3.1. Local polynomial reconstruction. The first step of the numerical method is to recover a recon-
struction of the solution over any point of the actual cell ;. Since the scheme is cell-centered, at time ",
we would like to extend (at least locally) the solution to the whole cell by exploiting the information in the
cells of the stencil referring to €27. In order to explain the reconstruction let us consider a generic regular’
function ¢ : E — R by 1dent1fy1ng the stencil £ = Q7 U U 7. We remark that, due to the overlapping
zone, the cell composing the subdomain E does not necessary fulfill the non-overlapping condition, i.e., it
could be verified that there is a couple of indexes k,l € {i} US; such that Q) N Q)" # 0. Let us suppose to
know the value of function ¢ over the center of mass (zx,yx) = xk, with k € {z} US;, of any Qp composing
E. We would like to have a polynomial function II;¢(x, y) for any (z,y) € E by using the knowledge of the
function ¢ only on the centers of mass. Let us define ¢y = ¢(zk,y). For any (z,y) € E it is always possible
to write the Taylor’s polynomial truncated to the quadratic terms with respect to ¢;:

O(z,y) = ¢ + (020)i (x — ) + (0y0)s (y — i) + (02,0)i (x — i) (y — vi)

3.1
(3.1) (02,00 (- 207 + L0200 (v - )2 + O(H?),

with H = max{|z — ;|,|y — y;|}. In the expansion (3.1) all the derivatives of ¢; are unknown. Moreover,
by renaming those derivatives as

(3.2) p1=(0:0)i p2=(0y0)i p3=(03,0)i pa=(07,0)i ps=(0o,0)i,

the Taylor’s expansion (3 1) can be seen as a linear combination of the components of the basis {1,z —
25y —Yi, (@ —2;)(y— i), 3(x—x;)?, 3(y—y;)?} which defines the polynomial space function Q; of quadratic
polynomials centered in x;; thus the polynomial interpolation function II;¢ reads:

(33)  Toe,y) = 6+ pale — 20) +paly — i) +pale = 2)(y — y3) + 3pale — 2% + 2psy — i),

1We require at least ¢ € C2(E).
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with the polynomial coefficients p;, I = 1,...,5, to be sought. By imposing as constraint that the polynomial
II;¢(x, y) exactly coincides with the function ¢ on the nodes, i.e. II;¢(x;,y;) = ¢; for any j € S;, the system
in the unknown polynomial coefficients arises:

hie  hi hz'lkhgk 3(h%)? (57 [m 0ik
(3.4) : : : : =10
hi;  hi;  hi hzyy 3(h5)? 5 ()% Lps i

with hf; = z; —x;, h?j =y; —y; and 0¢;; = ¢; — @, for j € S;. The algebraic system (3.4) has to be solved in
least-square sense if |S;| > 5. Moreover, if the chosen polynomial basis is not reduced, namely if the Taylor’s
expansion (3.1) is arrested to the bi-linear or linear terms, the stencil has to contain at least 5 cells in order
to ensure a solution for (3.4). The proposed Ps-interpolation, with the second-order accurate scheme, fulfills
the condition for the accuracy in the interpolation for overlapping zones whose depth d, degrades as the
characteristic length h of the chimera mesh (i.e., d, = O(h)) [9].

This method allows to locally reconstruct all over the stencil a given function. If the function is defined
over the computational domain Q C R? and it is (at least locally) C?, then the reconstruction is locally
computed over any stencil and the ensured order of convergence is 3. On the contrary, if the solution
presents propagating shock waves or discontinuities, this interpolation is no longer adequate because of well-
known Gibbs’ phenomenon, for which spurious oscillation are produced near the discontinuity. For those
cases, other interpolation could be adopted, such as the central weighted ENO for hyperbolic equations for
moving meshes in [11].

In the sequel, the local polynomial reconstruction Il;u™ will be referred as w}.

3.2. Local space-time Galerkin predictor. Let be the time interval [0, T] subdivided in N subin-
tervals [t",t" 1], with n = 0,..., N — 1; thus for a generic time-dependent variable g(t), we define g" for
g™ = g(t™). In particular, the domain Q" and the solution u™ at time ¢™ are considered the actual spatial con-
figuration and the actual time, respectively. Let CI* = Q;(t) x [t",t"T1] be the physical space-time cell whose
lower and upper bases represent the evolution of cell Q;(t) from " to ¢"*1. First, the governing equation (1.1)
is rewritten with respect to a space-time reference system identified by the independent variables & = (£, 71, 7)
in the unit cube C = [0,1]3. Let E = (&,n) be the reference spatial vector. Inspired by [17], the governing
equation is discretized using an efficient nodal formulation of space-time nodes given by a tensor product
of Gauss-Legendre quadrature points along space and time directions. This choice defines an L2-orthogonal
Lagrange basis used for the definition of the Galerking solution. For our purposes, the single direction nodes
over the unit interval [0, 1] are {(5—+/15)/10;1/2; (5+/15)/10}. Consequently, over a space-time cell there
will be 27 Gauss-Legendre nodes £m and 27 Lagrange polynomial 6; : ¢ — R such that 6, (E ) = 0y and
J 010, A& = 517"||91||2L2(é)’ with &;,,, the Kronecher’s symbol. Let m : {1,2,3}® — {1,...,27} be a discrete

map from a single direction index to the global three dimensional index defined as
m(i,j, k) =ij+(j —1)(3—1) + 9(k - 1),

where indexes i, j,k € {1 2,3} lead the discretization along &, 7,7, respectively. By denoting the Gauss-
Legendre nodes with &, f; and 75 along &, n and T, respectively, and with 05(5) 0"( ) and 67 (7) the

Lagrange polynomial for &-, - and 7-directions, respectively, the three dimensional Gauss-Legendre node & !
and its associated Lagrange’s polynomial 6;(&) read

& = (i 7); Ou(Em,T) = 05(E)07 ()0 (7),

with index [ = m(q, j, k).
We want to solve the following problem: find q : C* — R® such that

(3'5) {@Q +V- F(q, Vq) =f in Czn

— M n’
qli=in = W} on

which is problem (1.1) restricted to the space-time cell C" and redefined as a boundary value problem. We
denote with g;, as the discretized solution of (3.5). In order to refer problem (3.5) to the reference domain
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r M; t

Fig. 4: Representation of the map M; from the reference space-time cell C to the physical space-time cell
cr.

é,weuseamapMi:(f%C{‘

r=x(n,7)
(3.6) M Sy=y&nT1)
t=1"+ AtT

such that any space-time point © = (z,y,t) in the physical space-time cell C}* is a function x = x(£), with
& € C (see Figure 4). Time t is considered as a linear function of 7. From map (3.6), we define the Jacobian
matrix J as

da Teg Ty Tr
(3.7) J = A = 1\Y% Yn Yr|,
0 0 At

whose inverse is

o d£‘ B gw g’lj é—t B Js—l Et
(3.8) Jhi===n 0, m | = 0 /At
0 0 1/At

In the above notation, we call J; ! the restriction to the spatial coordinates of the inverse of the Jacobian
matrix

-1 __ fw f
(3.9) J, = Llw TIZ]

and E; = [&,n;]7 the derivative of the spatial reference vector with respect to time. Through (3.9), the
problem in the reference domain reads

(3.10) 0r-q + At F*(Vq) + AtJTTV - F**(q,Vq) = At f,

where

a‘l'q % [ * [ 2 * % - —T& sk 3k ok - 8
oa =01 (Vay F (Y0 = VaZis F(a.Va) = Fla. s V) = (77 V= |0,

The hat differential operators refer to reference space variables ¢ and 7 in the reference space-time cell €. By
abuse of notation and for sake of simplicity, we call all functions involved in both equations (3.5) and (3.10)
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8 M. BERGMANN, M.G. CARLINO AND A. IOLLO

with the same symbol (e.g., ¢ and f) even though they take inputs in the physical space-time cell C}* and
in the reference space-time cell C, respectively. In order to weaken equation (3.10), the following functional
space is defined:

0= {v e HY(C:[0,1] 37— v(&,n,7) € Lz((O,l)Q)}

being the subspace of Sobolev space H!(C) of functions L2((0,1)2)-integrable at any fixed reference time 7.
Moreover, the following notation is introduced:

/fgds, [f, 9] //fg,n, g(&n,7)dE. VfecO, VgeoP (D=1,...,0).

For our purposes, functional space O is identified as a test space and the following trial functional spaces is
defined: )
Q= {v €O :v(&n0)=wpAJ ! [(“)VZ] € LQ(é;RB)},
T
where wy, is the k-th component of the interpolated polynomial w™. By multiplying left and right side of
(3.10) by a generic test function € © and by integrating over the reference space-time cell C, the problem
reads: find g € Q° such that

(3.11)  [0,q)1 — (9:0,q) + At (0, F*(Vaq)) + At (0, J;7V - F**(q,Vaq)) = At {0, f) + [0, w"]y V0 €O,

with [0, w"]o = fo fo (&,m,0)w™(&,n) d=. For the Galerkin solution g, and the convective-diffusive terms
F* and F** in the reference domain, a Lagrangian polynomial expansion is performed, i.e., by adopting
the Einstein’s notation, g, = 6,4, and Fj, = Hlf'l*, with * = *, %%, where ¢, = q(&;) and .7:-; = .7:*|él.
Considering as the test function the k-th Lagrangian polynomial 8, and by using the Lagrange expansion,
we rewrite equation (3.11) as:

([B1s 1)1 — (001, 00)) @y + A6y, 0)F| + At{By, (€.0¢ + 100,00 F e

(3.12) 5
+ At<9k7 (gyaﬁ + nyan)9l>]:n7l - At<0k7 f> + [ekvwn]ﬂv

for any k=1,...,27.

In the left hand side of (3.12), we remark that the arising matrices have a sparse pattern due to the L2-
orthogonality of the Lagrangian basis (e.g. the mass matrix by (0, 6;) is diagonal). Matrices involving the
derivatives of the map M;, i.e. {0k, ({20t +n.0y)0:) and (Or, (§,0¢ +1,0,)0:1), cannot be explicitly computed
before finding the map itself. On the contrary, the components which do not involve the map, namely
([0, 01]1 — (06K, 6;)) and (O, 0;), can be pre-computed once for all before solving problem (3.12). Equation
(3.12) is nonlinear due to the convective-diffusive terms F* and F** which depend on the solution g;. For
this reason a fixed point problem is solved: let r be the index of the fixed point iteration, therefore we solve

r+1
dp

[0k, O] — (Or 01, 0@} + A0k, 0 F, " + At(Br, (E.0 +1a0y)01) F i7"

(3.13) Y
+ At<9k7 (fyag + nya )91>T " At<9k7 f> + [9k7 wn]()?

where terms of fixed point index r are computed by using the previous solution gj . In our numerical tests, the
fixed point iteration stops when the L?(C)-norm of residual of equation (3.13) is less than a fixed tolerance.

3.3. Recovery of the map and foreground mesh motion. In the previous subsection, the local
map M; : C = C* has been involved for the computation of the local weak predictor solution. Moreover,
the foreground mesh of coordinates X is moving accordingly to the following motion equation:

dX
3.14 2 _y,
(3.14) i
where V' = V (x,t;u) is the mesh velocity, eventually dependent on the solution. Equation (3.14) is closed
with a Cauchy condition X (0) = X, which is the initial spatial configuration. Through equation (3.14),
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we recover the map M, for any cell at least on the foreground mesh. The motion equation (3.14) is solved
through an isoparametric or Lagrangian approach by locally referring it to the same reference system as
done for the local equation (3.5). This means that the spatial coordinates X are considered as function of
the reference coordinates, i.e. X (&), with & € C. Finally, the solution of the referred motion equation is
approximated via a Lagrangian expansion by employing the same Lagrangian basis {Hk}%il built on the
tensor combination of three Gauss-Legendre nodes in (0,1) along any direction as previously introduced:
X, =0,X,, with X, = X(él). Thus, from time " to "1, the motion equation (3.14) is locally re-written
as

dX .
(315) E =V in C:l,
and closed by strongly imposing that the solution X™ at current time is equal to X (¢") found at the
previous physical space-time cell Cl-”fl. The local motion equation (3.15) is weaken in a similar way to the
local equation (3.5) and in algebraic form it reads

(3.16) ([0 1)1 — (061, 00) X1 = At (01, 0)V 1 + [0k, 610 X

with V; = V|, g, The last term [0k, 010 b'dl , takes into account the initial given configuration of the space at
time ¢".

When the mesh is neither moving nor deforming, as for cells in the background, the mesh velocity is thus
coincident with zero, i.e. V' = 0. In that case, the map is known a priori and it consists in the rescaling of
the reference space-time cell C to the physical space-time cell C;*:

{x =x(§) = w172 + i€

(3.17)
y=yn) =Yi—12 +hin

3

where coordinates x;_1/2 and y;_1/o and x;;1/2 and y;1 /o define the extremes along x- and y-direction of
the physical space-time cell Cf* = [2;_1 /2, Ti1/2] X [Yi—1/2, Yit1/2] X [t7, t"*1]; and h? and hY are the length
along z and y of the cell, respectively, i.e. hi = ;112 — 2;_1/2 and hY = Yiv1/2 — Yi-1/2-

Since the mesh motion equation (3.14) is essentially solved via a sort of Discontinuous Galerkin (DG)
approach, possible numerical (and non physical) discontinuities could arise. As a matter of fact, for a

given vertex XZH shared by a set of spatial cells {Q?H}ieznﬂ at time "1, there could be as many
k
different values of the vertex, namely {Xzﬂ}zeznﬂ for any map M; referring to the cell C* to which Q?H

belongs. The set Z"Jrl collects the index(es) of the cells sharing the vertex Xy - The cardinality N of set
{Q”H}Z ezt commdlng with the cardinality of the indexes set Z”+1 depends on the position of the vertex

X Z+ on the foreground mesh: it is either 1 or 2 if the vertex is on the boundary of the mesh, otherwise it is
4. For this reason we consider a weighted average value for the shared vertex in order to tackle the possible
arising discontinuities. As suggested in [6], we first consider a weighted velocity VZH corresponding to the
vertex X Z—H

(3.18) VZ“_ N S Vi with Vi /elg ) ATV,

Zn+1

where coordinates (£*,7*) depend on the position of the coordinate X ZH in the cell Q"H it can assume four
values: (0,0), (1,0), (1,1) and (0,1). Once equation (3.16) is solved, the just found coordmates {X )37, are
used for computing the velocity components Vl ; and, thus, the weighted velocities V. k in (3.18). Finally,
the coordinates X} at time ¢"+! is

(3.19) Xp =X AVt

We refer the reader to [11] for another definition of the weighted vertex velocities VZ+1 in (3.18) where the
Voronoi neighborhood parameters of any vertex are exploited.
In Algorithm 3.1 we resume the salient stages of the prediction step.
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Algorithm 3.1 Prediction step

1: Compute the foreground mesh motion (3.19) from the motion equation (3.14) and through the weighted
velocity (3.18);

2: fori=1,...,N do

Find the map M; for the space-time cell C}*;

Compute the Jacobian matrix J associated to M;;

Compute J~! and take the submatrix J; ! to the spatial coordinates defined in (3.9);

Update the convective-diffusive terms F* and F** in the reference domain;

Evolve the local predictor solution through (3.12);

3.4. Correction stage: the finite volume scheme over the space-time cell. Once the local
predictor solution ¢q;, is computed in each space-time cells C}*, we can perform the correction stage. First,
we rewrite the convective-diffusive equation (1.1) in divergence form. Let V= [V, 8;]7 be the space-time
differential operator and let U = [F(u, Vuu),u]? be the space-time solution, thus problem (1.1) can be
rewritten as

(3.20) Var -U=Ff inQ(t)x[0,7).

We want to find a finite volume solution for the above equation, where the finite volume is the space-time
cell CI*, whose boundary reads

4
(3.21) ocy =ruarttul Ty,
j=1
where the boundaries I'};, j = 1,...,4, are the space-time boundaries of ;' linking any edge of (2" at time

t™ to any edge of Q?H at time ¢"*1. By integrating equation (3.20) over C!* and by applying the divergence
theorem to the left side, we obtain

(3.22) U-ng,dl'= [ fdcC,
acy cp

with ng ; being the normal unit vector to the boundary 9C}* of the cell. Let U} be the spatial average of
the solution u of (1.1) over the spatial cell QF and located on its center, i.e.,

1
(3.23) U= ol ) u(z,y,t") de dy,

where |QF] is the measure of the spatial cell Q. Though (3.21) and (3.23), equation (3.22) explicitly is

4
(3.24) — Uy + Ut + > | Uengydl= | fdC,
=171 ¢
where the unknown is the average solution U?'H at time ¢"*!, while the last term of the left hand side is the
space-time flux along the space-time sides U?:1 I'l;. Scheme (3.24) is the Finite Volume scheme; we remark
that it is still exact. In order to solve (3.24), we need to approximate the integral function of the space-time
flux. Among the several methods proposed in the literature (such as in [11, 12, 13, 33, 17]), we here present
a Local Lax-Friederichs (LLF) approach:

_ 1 _ E _
(3.25) U - nz,t]F;; ~ ‘I’(q;»qj' )= §(U;r +U; ) Mat — 5(‘1; —4q; ),
where U;r = U(q;r) and U; = U(q; ) are the space-time solution of (3.20) computed by solutions q;r and
q; , which represent the local predictor solutions outside and inside the cell, respectively, with respect to the
space-time side I'};. The term s is the stabilization coefficient. Equation (3.24) with the flux approximation
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(3.25) closes the correction stage of the ADER method. At the end of this stage, a solution ™" is found
over any cell Q?H. Since the predictor solution over space-time cells Cf“ needs to be evaluated over the
Gauss nodes, a second order local polynomial interpolation is performed as explained in Section 3.1.

For the computation of the integrals along the space-time manifolds I'/;, we still use the previously computed

map M,. As a matter of fact, for a generic function ¢ : C]* — R it holds:

J

where fj is the j-th lateral side of the reference cubic domain C of unit outer normal n;, I
Cof(J) is the cofactor matrix of the Jacobian tensor J of the map.

g(x) dT = / o(w(€))|Cof()ay | dF,

n .
ij J

= M;(T';) and

Concerning the time step At, due to the combination of the weak predictor solution by problem (3.11)
and the consequent plug of this solution in the finite volume scheme (3.24) trough the LLF flux (3.25), a
classical stability analysis is not evident. We assumed the time step to be

h

max{supq x(o,7] |ax], SUPox 0,77 lay]}

(3.26) At = CFL

where h is the smallest characteristic length among all cells (both of background and foreground meshes)
along the whole temporal window [0, 7], i.e., h = min; , P, with A} the characteristic length of spatial cell
QP at discrete time t". Coefficient CFL in (3.26) is the Courant-Friedrichs-Lewy number. In this paper, the
CFL coefficient is experimentally sought by conducting an empirical analysis in Section 5.2.

3.5. Dynamics of the overlapping zone. During the simulation, the foreground mesh moves and,
consequently, the background mesh changes its configuration in the zone of the overlapping as well as in the
hole. Let Q;(¢) be a background cell in a neighborhood of the overlapping. From times t* to t"*1, there are
three possibilities:

1. Cell ©;(t) is present at time " and it disappears at time ¢"*! because the hole completely covers it;

2. Cell Q;(t) is not present at time ¢ but it appears at time ¢"*! because the hole gets away;

3. The overlapping zone does not drastically change its configuration with respect to cell €;(t), thus

the cell is present at time t” and it still continues to be present at time ¢"*1.

The third case is trivial. For the first case, the predictor solution is executed in order to compute the fluxes
of the neighboring cells even though the correction stage is not performed. For the second case, information
u is missing and it is necessary for computing u?“. For this reason, let N7 the total number of background
cells (those ones in the hole included). Consequently ¢ < Nj. By recalling that the order of foreground cells
starts from N; 4 1, we look for an index j > Nj such that

(3.27) xr; = arg krganl lle: — @kl

where x,, is the center of mass of cell {2, for = 4,7, k. Then, a local polynomial interpolation w7 on the
stencil S; centered on cell 27 of the foreground mesh is computed as previously explained in Section 3.1.
In particular, since {7 is chosen to be as the closest foreground cell to background cell (2" through (3.27),
a third order polynomial approximation of solution 4™ on x; is ensured by imposing u} = w?(wl) Finally
the ADER prediction-correction is performed as usual.

4. The stabilization of the scheme. For the definition of the coefficient s in (3.25), there are different
approaches leading to different definitions. Here we analyse two stabilization coeflicients, i.e. the advective-
diffusive term sap and the just advective term s4. For the sake of clarity and to lighten the notation, we
consider a two-dimensional scalar solution in this section (i.e., d =2 and § = 1).

4.1. The local advective-diffusive stabilization term. For the definition of the coefficient s4p in
(3.25), we study a relaxed hyperbolic form of the parabolic equation (3.20). Let us consider the following
relaxation by Cattaneo (we refer to [34] and its references for further details): let 0 < & < 1 be a relaxed
time and consider variables v and w in £ x [0,7] such that

1 1
(4.1) Opv = g(&;u —v); Ow = g(ayu —w).
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Relations (4.1) define the relaxations in the sense that d,u — v and Jyu — w in the limit of a vanishing
e. Since the flux has to be computed along the manifold I'}; in the space-time continuum, let us consider
solution w and all its first derivatives as stationary solutions with respect to a pseudo-time t € R;. Thus, let
u(t;z,y,t) = [u, v, w]” be the formal definition of the relaxed hyperbolic system with respect to pseudo-time
t. It holds 0y = 0. The conservative form problem (3.20) in quasi-linear form is

(4.2) Ot + 0y (Au) + 8, (Bu) + 9,(Cu) = in Ry x Q(t) x [0, T,

where A, B and C are 3 x 3 matrices (eventually involving the solution u among their components if the
original problem is nonlinear) and the force term f = [f, —v/e,—w/e]T. In particular, A and B always
depend on the relaxation time ¢ and they are defined by the convection-diffusion term F(u, Vu) and C is
always the identity matrix if the Cattaneo’s relaxation (4.1) is employed. In order to study the differential
operator in (4.2), let us consider a vanishing force term, i.e. f = 0. The presence of the the pseudo-time t in
(4.2) helps in treating the real time variable ¢ as any other spatial variable  and y. When the force term in
(4.2) is null, the problem is hyperbolic if the spectrum of matrix A = ny A+ ny, B +n:C is real for any choice
of real values n,, n, and n;. If the hyperbolicity is ensured, the relaxed hyperbolic system has a planar
wave solution propagating in the space-time continuum Q x [0,7]. In particular, if 14 = [N, ny, 77 is a
particular direction in the space-time continuum, the eigenvalues of A define the speeds of propagation of the
solution along the principal directions defined by the eigenvectors of A. For this reason, in the perspective
of an upwind stabilization, the local stabilization term s4p in (3.25) is equal to the maximum speed of
propagation of the wave, as it happens for the LLF flux approximation for a generic hyperbolic problem of
a propagating wave in the space continuum.

Here we detail the previous analysis for the convection-diffusion problem with the convective field a =
[z, ay}T and the diffusive term v depending on space & and time ¢t and eventually the solution w itself if a
non-linearity leads the dynamics of the equation. In this case, the matrices of the quasi-linear problem (4.2)
read

Ay —v 0 Qy 0 —v 1 0 0]
A=1|-1/e 0 0|, B= 0 0O 0|, C=10 1 0f.
0 0 O —1/e 0 0 0 0 1]

Consequently, the spectrum p(A) of matrix A is

dv 4v ]
o+ \/<a§ + E)n% + 2azaynzn, + <a§ + E>n§ },

where 0 = a - n + 2n; and n = [n,, ny]T. The following proposition finally defines the advective-diffusive
stabilization parameter.

2

(4.3) p(A) = {nt;l

PROPOSITION 4.1. For the advection-diffusion problem (1.1) with the convective field a = [ay,a,|T and
the diffusive term v, the advection-diffusion stabilization coefficient sap is chosen to be the absolute value
of the mazimum of spectrum (4.3), i.e.,

(4.4) sap = max |p(A)] = =

1 4v 4v
o+ \/<a§J + 5)71% + 2azayngn, + (ai + 5)715 .

2

Since the spectrum p(A) C R for any nonnegative ¢, it yields the relaxed system (4.2) is always hyperbolic
for any nonnegative €.

4.2. The choice of the relaxation time. For the definition of the advective-diffusive stabilization
term sap, we considered the relaxed hyperbolic system (4.2) deriving from the parabolic problem (3.20)
through a relaxation time e. If we were to solve the relaxed problem instead of the original one, the
approximate solution would differ from the exact solution of two errors that are added together: the numerical
error (typical of the scheme) and a relaxation error. For a linear problem, these errors have been investigated
by Montecinos and Toro in [34]. The error |unip — u| between the hyperbolized solution up;, and the original
solution u is O(e) [24]. Thus, if upip p is a numerical approximation of the exact relaxation solution up;p,
the error |unip,n — unip| is O(hh), with p the order of the method (i.e., p = 2 in this paper), and hq the
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maximum characteristic length of cells Q;(¢)’s. However, the goal is to choose a relaxation time e such that
the relaxation error is always dominated by or, at least, comparable to the numerical error, i.e. O(e) 5 O(hY).
The following theoretical result can help in fulfilling our task.

PROPOSITION 4.2. The solution u of the original parabolic problem (3.20) is approzimated by a relaxed
solution upp, solving the relaxed problem (4.2) with accuracy p for all relazation time € and characteristic
length cell hg satisfying
€

(4.5) Cyry = O(1),
0

with
1-273

Cp = » 1 1

For the proof of Proposition 4.2, we refer the reader to Section 2.4.1 of [23]. As a consequence, there is the
following corollary.

PROPOSITION 4.3. For a given mesh whose characteristic length is hg and a numerical method of order
p for solving the hyperbolized problem (4.2) derived by the original parabolic problem (3.20), the optimal
relazation time €, is

O()hg

(4.6) Ep = c,

We remark that, if a relaxation time ¢ is chosen to be less than or equal to €, the numerical error dominates
the relaxation error; on the contrary, if a relaxation time ¢ is chosen to be greater than the optimal value, the
relaxation error dominates the numerical error. For this reason, in our simulation relaxation time ¢ = €9/2
is chosen.

4.3. The local advective stabilization term. In order to recover a stabilization term s4 by only
considering the first order operator involved in the whole differential operator of the original problem, we
can treat the equation to stabilize as a pure hyperbolic (namely just advective) problem. For this reason,
the advective stabilization term s4 coincides with the maximum eigenvalue of the ALE Jacobian matrix
in a spatial normal direction by excluding the diffusive component which acts on the diffusion from the
advective-diffusive term F(u, Vu) [11]. This matrix reads

v OF
L 2 2|l n -V -n
(4.7 A ,/nm—i-ny[ n—V 'nl],

where I is the identity tensor whose dimension is that one of the image space of the solution w and the unit
vector 7 is the normalized projection of the space-time unit vector n, along the spatial directions given by
vector [ng,ny]7, ie.

[nl.,ny]T
\/n2+ nz
"

By recalling that the recovered map M; is defined over C with image in C;, the space-time manifold Iz,
j=1,...,4, of the space-time cell C; can be described by only two of the three reference space-time variables
(€,m,7); i.e., by either couple (£, 7), with n = 7, or couple (n, 7), with € = &; with £ and 7 alternatively equal
to 0 or 1, depending on the specific j-th space-time manifold I'7. Let x be the free variable (e.g. x = &)
and R be the constrained variable (e.g. & = 7]) for the specific manifold I'7:. Therefore, for a specific point
x over I'7% it is possible to distinguish two directional vectors provided by the map M;

ﬁ:

Ty T,
Ty = | Yy and r,= |y, | .
0. At]
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The definitions of the directional vectors r, and r, allow to explicitly write the physical normal vector ng ;
on T as

_ [Atyy, —Atxy, dyr )T
p AP AR &

(VAN

Nyt

)

)

T r AT

with dyr = 24yr — ,yy. From now on we will omit the constraint variable x. It is now possible to write
the unit vector n along the spatial directions and the velocity of the point as

T ~ T
= [Yx, —Tx] and V = dj _ (27, yr] .
/3/>2< +$§< dt At
Consequently it holds
—d,, _
(4.8) V.= S —

2 2 2 2
At\/yX—I—xX \/nz—i—ny
In the case of a linear problem the advective stabilization term reads
(4.9) s4 = |agng + ayny + ny.

The next proposition, through 4.8, allows to connect the advective-diffusive parameter s 4 p with the advective
parameter s4 in the limit of a vanishing diffusion parameter v.

PROPOSITION 4.4. For linear problem (1.1), let the diffusion parameter v go to zero, therefore the fol-
lowing limit holds

. 1
(4.10) ,}%SAD = 5\0 + azng + ayny| = |agng + ayng + ng = sa.

The above Proposition confirms that, in the limit of small diffusion in the dynamics of linear problem (1.1),
the two stabilization techniques coincide.

5. Numerical results. In this section we are going to present some numerical test cases in order to
analyse the method.
Table 1 synthetically sums up the test cases that will be used for the different analyses. In particular, test!
and test2 (in lowercase letters) are the 1D tests and TEST! and TEST2 (in capital letters) are the 2D test
cases.
In the 1D tests, the foreground mesh is put in the middle between other two meshes composing the back-
ground mesh, and it deforms according to the deformation laws specified in the last row of Table 1. In
the following, for test! we are not presenting a figure but only the rate of convergence. In Figure 5 three
instants for test2 simulation are showed; in particular, the red circle markers define the nodes of the moving
foreground mesh which is in the middle between the other two meshes (in the background) whose nodes
are marked by blue dots and x-symbols. The background meshes are always uniform while the foreground
mesh is allowed to be displaced and deformed. The solution of test2 is flat towards the boundaries of the
computational domain and develops a moving front affected by a large spatial derivative; for this reason,
the foreground mesh is set in order to follow the front. Finally we remark that, if A is the characteristic
length of the cells in the background mesh, at the initial time ¢t = 0 the foreground mesh is uniform with a
characteristic length equal to h/2 in test! and h/4 for test2.
In TEST1I, the foreground mesh is subjected to a deformation and rotation around its center of mass. We
remark that in this case that the deformation velocity depends on the solution; in TEST?2, the hyperbolic
tangent in the exact solution describes a composed Gaussian bell whose maximum is originally located in
the position @ = (—1,0) and, after a time 7" = 7, it computes a counterclockwise half rotation up to position
x = (1,0) along the circumference of unit radius and centered in the origin of the axes. Due to the particular
dynamics of the solution, we set a foreground mesh following the movement of the Gaussian bell. At the
initial time, the foreground and background meshes in both 2D cases consist of squared cells whose sides
have a length equal to h.
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For all numerical tests, the time step At is set accordingly to (3.26) with CFL coefficient equal to 0.4. The
reason of this value will be better explained in Section 5.2 where an empirical stability analysis is conducted.
Without reporting numerical evidences, we checked the scheme is free-stream preserving, i.e. it exactly solves
a constant but nonzero solution.

5.1. Order of convergence. In this section we have a double goal. On one hand we want to nu-
merically prove that the presented method is second order when an advective-diffusive LLF stabilization
sap is employed. On the other hand, we want to compare this stabilization term with the local advective
stabilization flux s4. The study of the second order convergence is conducted on all test cases of Table 1.
Finally, on the two mentioned 2D test cases the comparison of the performances for the flux approximations
is carried out.

For quantifying the convergence rate, we considered the L>°- and L?-norms of the mismatch between the
exact solution and the numerical solution at final time ¢ = T. The errors are defined and approximated as

(5.1) L-e1r = ||u — Uey|| oo () = €88 sup |u(z, T') — Ues(x, T)| = efoe = max [ud! — ey (2, T)|
EISY) =

yeeey

(5.2)

2
N
2 2 N €2 22— (Uﬁd — Uea(Tk, T))
Le-err = ||U — ueI”LQ(Q) = / <U($,T) — uez(a},T)) dQ ~ €r2 = N ,

Q

respectively, where N ~ |Q2|h~1/¢ is the number of cells such that any part of the of the domain is covered
by one and only one cell at time T (with h the characteristic length of cells and d = dim(Q2)) and M is
the maximum natural such that ' = MA¢. Approximation (5.2) is valid only in the case of cells having
approximatively or exactly the same spacing. The convergence rate reads

log (73 /en?)

5.3 LP-rate = d ,
(5:3) log(N2/N1)

for p =2, 00,

for two different partition settings whose number of cells are N7 and N, respectively, with N; < Ns. The
mesh refinement is performed by reducing the spacing (kept constant for any cell) and by preserving a layer
of 4 cells both in background and foreground for the overlapping zone.

Table 2 sums up the convergence analysis for 1D test cases. In the last two columns there are the rates of
convergence of the errors for both L and L? errors. From the analysis, the second order of the method is
confirmed.

In Table 3 we report the L>°- and L2-errors with their respective rate of convergence with respect to a
local advective-diffusive (AD, white cells) and advective (A, grey cells) stabilization. We first remark that,
for both cases, the errors relative to AD stabilization are slightly smaller with respect to the same errors
with an A stabilization. The rate of convergence of the errors for an AD stabilization is at least 2. On the
other hand, even though a second order of accuracy is also reached by employing an A stabilization, the
convergence rate shows an irregular trend (especially for TEST2). For this reason we can state that an AD
flux approximation allows to reach a more precise solution with a monotone trend for the rate of convergence
with respect to the same solution with an A flux stabilization.

5.2. Empirical analysis of stability condition. As already mentioned at the end of Section 3.4, the

presence of a weak solution, found in the prediction step of the presented method and successively plugged
into the flux of the finite volume scheme in the correction stage, makes a classical stability analysis not
straightforward to be made. For this reason, we performed an empirical stability analysis by assuming that
the right time step At allowing a stable computation is defined as in (3.26).
On a given problem, once both background and foreground meshes are set, we considered a time step At
starting from a CFL number equal to 0.1 and, by increasing this value of 0.05 each time, we look for the largest
stable CFL. In particular, this process is executed on the same problem considering an approximated LLF
flux employing once an advective-diffusive stabilization term s4p and then with an advective stabilization
term s4.
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Table 1: Summary scheme of test cases used in Sections 5.1 and 5.2. Rows Diffusion and Advection report the diffusion parameter and the advection
field value(s), respectively. Rows B.C. and I.C. describe the boundary conditions and the initial conditions, respectively. The subsets defined in fg
mesh row are those ones covered at initial time by the foreground mesh subjected to a motion equation with velocity V' (last row). Finally, function
xEe(z), with z € R and E C R, is the indicator function, i.e., xg(z) = 1if 2 € E and xg(z) = 0 otherwise.

1D 2D
testl test2 TEST1 TEST?
Q A\H“Hv A\Hqu A\ﬁ‘uqﬂvm A\ﬁ.uﬁ‘vw
Diffusion 0.5 1 6.37e-3 6.37e-3
Advection 3 1 [0.6,0.8]7 [0.6,0.8)T
e _ _ _ . —tanh(2(x + cos(t))? + 2(y — sin(t))?)+
Uex e tsin(m(z —t)) cos(m(t —1/2))tanh(10(x —¢t)) e *sin(x) cos(y) — cos(t) cos(x) sin(y)
B.C. periodic Dirichlet: weq(+1,1) Dirichlet: e, (z,y, SAmb Dirichlet: e, (2,y,t) Fb
I.C. sin(mx) 0 sin(z) cos(y) —tanh(222 + 2(y — 1)?)
T 0.25 0.5 1 us
fg mesh  [~0.5,0.25] [—0.25,0.25] [—0.5,0.5)2 [~1.25, —0.75] x [~0.25,0.25]
\4 2.5+ €" e X{t<0.25} () + X{t>0.25} (1) [u(z,y,t) —y,u(z,y,t) + 2" [~y,2]"
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Fig. 5: Three time instants for the 1D test case test2. The circle markers define the nodes of the moving
foreground mesh. The remaining dot and x markers are the nodes of the two background meshes.
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Table 2: Convergence analysis for 1D test cases test! and test2.

T h L°-err L?-err L>-rate L2-rate
2.00e-2  1.2740e-3  1.3903e-3 0 0
% 0.95 1.00e-2  2.5042e-4 2.9250e-4 2.37 2.79
) 5.00e-3  5.6957e-5 6.6934e-5 2.15 2.14
2.50e-3  1.3675e-5 1.6068e-5 2.06 2.06
1.00e-2 9.2733e-4  6.3960e-4 0 0
%: 05 5.00e-3 1.1948e-4 1.0081e-4 2.88 2.60
L ’ 2.50e-3 2.1898e-5 1.6359e-5 2.49 2.67
1.25e-3  5.6504e-6 2.8547e-6 1.96 2.44

Table 3: Convergence analysis for 2D test cases TEST1 and TEST2. Column labeled with h reports the
smallest characteristic length among all cells.

T h L*®-err L%-err L*>-rate L2%-rate
AD A AD A AD A AD A
- 3.00e-1  1.9012e-2 4.6211e-3 0 0
5'__} 1 1.50e-1  4.3829¢-3 1.0854e-3 2.28 2.25
E 7.50e-2  9.5837e-4 2.1323e-4 2.25 2.41
3.75e-2  3.0646e-4 2.9265e-5 1.95 2.65
3.00e-1  6.5375e-2 1.0682¢-2 0 0
R 2.25e-1  3.1934e-2 5.5980e-3 2.66 2.40
Eii m  1.50e-1 1.1276e-2 2.0116e-3 2.71 2.66
&~ 1.13e-1  5.2093e-3 9.3905e-4 2.78 2.74
7.50e-2  2.4154e-3 3.9534e-4 1.94 2.19

The analysis is conducted on the 2D test cases presented in Table 1. In Figure 6 there are three time instants
of both test cases.

In Table 4 there are the maximum CFL numbers and related maximum time steps At such that the method is
stable. The time step At is computed by formula (3.26). By comparing the performances of a local advective
(A) stabilization term against the same ones using a local advective-diffusive (AD) stabilization term, it is
evident that an advective LLF flux always needs a smaller CFL with respect to an advective-diffusive LLF
flux in order to stabilise the routine.

5.3. Relationship between the convective field and the foreground mesh velovity. From the
theoretical explanation of the method, it does not emerge in any way an interaction between the speed of the
foreground grid V' and the intrinsic advective field a of the problem. In other words, there does not seem to
be a limitation of the velocity of the mesh that is displaced and deformed in terms of stability of the method.
The unique limitation of the mesh speed (see section 3.5) is due to the CFL condition with respect to the
dimension of the single cell. In order to allow to the code to perform the automatic information transmission,
the mesh speed is such that it does not allow a given fringe cell 2} in the foreground mesh to migrate beyond
the boundaries of the stencil S; centered on the cell itself in any time interval from t™ to t"T1. As a matter of
fact, if this process is not ensured, for those new born cells belonging to the background mesh at time ¢"+!
could not be able to recover the information from the polynomial interpolation. Consequently, the algorithm
would incur a loss of information.

In this subsection we test on a numerical case that the stability is only given by the relative advective speed
a — V and the mesh velocity V' does not affect the stability of the method in other ways. In particular, on
the same linear test case, we will consider different possible movements of the foreground mesh by measuring,
at final time t = T, the L>°- and L?-errors of the mismatch between the exact and the numerical solution.
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Table 4: Experimental stability analysis. For both tests, the reported CFL and At consist in the maximum
CFL number and the maximum related time step At such that the method is stable. Labels A and AD
underline the usage of an advective and advective-diffusive stabilization term for the LLF flux, respectively.
The first column reports the space steps h used for the different simulations.

TEST1 TEST?
h CFL At CFL At
A AD A AD A AD A AD

3.00e-1 | 0.5 0.95 [ 2.06e-1 | 3.56e-1 | 0.75 0.95 | 2.8le-1 | 3.56e-1
1.50e-1 | 0.756 | 1.15 | 1.4le-1  2.16e-1 | 0.65 | 0.85 | 1.22e-1 1.59-1
7.50e-2 | 0.7 | 0.95 | 7.03e-2 | 8.91e-2 | 0.55 | 0.75 | 5.16e-2  7.03e-2

Table 5: On the top, features of TESTS3 are reported. On the bottom, there are the three considered
movements of the foreground mesh.

TESTS3

Q (0,1) x (0,5)
Diffusion  2e-3
Advection [1,0]7
—tanh(2(x — )% + 5(y — 1)?)+
+e ' (5z —2%)(2y —y*) + 1
B.C. Dirichlet: u|gpn =0
—tanh(22? 4+ 5(y — 1)?)
2

Ueg

LC. +(5r —2%)(2y —y?) + 1
T 2

fg mesh  [0.8,1.2)2
v P1, P2, P3

P1  The foreground mesh is not moving for the whole period of the simulation.

P2  The foreground has a constant velocity equal to the advective velocity for any time.

P8  For half of the time the mesh moves with double the speed compared to the advective field and for
the remaining half of the time the mesh moves with the same speed in modulus but in the opposite
direction compared to the advective field.

The tested case is named TESTS and it is summed up in Table 5 (top).

The foreground mesh is either allowed not to move or to rigidly move in the parallel direction with respect to
the abscissae axis. In particular, we consider three possibilities of movements, P1, P2 and P3, reported and
explained in Table 5 (bottom). We remark that test P1 corresponds to a test case with a unique block mesh
due to the position and the uniformity of the foreground mesh with respect to the background mesh. For
this reason, tests P2 and P3 are compared with P1. In Figure 7 there are both the numerical solutions and
the associated pointwise absolute values of the difference between the exact and numerical solution for the
final time T' = 2 for the configurations listed above. In particular, the configuration of the foreground mesh
in Figure 7a (left) corresponds to the initial mesh configuration for tests P2 and P& too. By visualising the
different plots of the errors, it is evident the movement of the foreground mesh introduces an error. As a
matter of fact the errors of P2 and P& are neither equal each other nor to the errors of P1. The quantitative
differences among the different cases are reported in Table 6. Concerning test P2, the L*>-error is equal to
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Fig. 6: Three time instants for test cases TEST! (a) and TEST2 (b).

the one of P1, even though the L2-error is the double. This distance between a steady and moving foreground
mesh becomes slightly more evident at increasing of the mesh speed, as the last line of Table 6 shows. In
any case, all the errors are comparable and this confirms that there is no relation between advective field
and mesh velocity in terms of stability. The mesh velocity seems to affect the numerical solution only on the
precision.

We conclude this subsection by analysing the loss of information given by a very strong speed of the fore-
ground mesh on the same test case. The foreground mesh is still located in the subset [0.8,1.2]% at the
initial time and moves rightwards with a speed equal to 4. This velocity, with the considered time step At,
allows to the cells on the left side of the foreground mesh to overflow from the borders of their stencil from
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Fig. 7: The numerical solutions, on the left, at final time ¢t = 2 of the three possibilities P1, P2 and P3 of
foreground mesh movements for the TESTS3. On the right there there are the associated pointwise errors of
the mismatch between the exact solution and the numerical solution.

Table 6: Errors for TESTS. The errors refer to a characteristic length h equal to the cell of 2e-2 and a time
t=T=2.

L*>®-err L2-err

P11 2.1554e-2  6.8500e-3
P2 2.1554e-2  4.8809e-3
P3  4.8809e-2 1.0864e-2

times ¢” to t"*1. In Figure 8 there is a comparison between the recovered numerical solution and the exact
solution for ¢t = 0.84 (which corresponds to that time when the right side of the moving mesh is fully aligned
to the right side of the channel). There is no relation between the two solutions because the speed of the
foreground mesh is so fast that it does not allow the algorithm to assign the correct information about the
background cells that arise in the wake of the foreground mesh itself.
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Fig. 8: Comparison between the numerical (left) and exact (rigth) solution of TESTS3 at time t = 0.84 for a
moving foreground mesh travelling with a speed generating a loss of information.

5.4. Further topics. We conclude this section by presenting three test cases that show the potentiality
of the method. Firstly, a nonlinear advection-diffusion system is solved; successively a multimesh setting of
grids is considered for the already described TEST2 (see Table 1); finally, we consider a test case with a
complex domain in which the foreground mesh is employed in order to adapt its shape to the shape of the
domain.

5.4.1. Nonlinear system. Let Q = [-m,7]? and T = 0.5 be the computational domain and the final
time, respectively. Thus the problem is: find w :  x [0,T] — R? such that:

Ou+ V- (uul)=vAu+f in Qx[0,7)
(5.4) U= Uey on 092 x [0,T7,
u(z,0) = ey (x,0) in Q x {0}

where the force term f is chosen to have the exact solution

_¢ | cos(z)sin(y
Uea (2,1, 1) = € [— su&(gg) coé(;)} ’
In problem (5.4), the diffusive term v is equal to 57 x 102 while the convective field is represented by the
solution itself, thus the partial differential equation is nonlinear. For this problem, the convective-diffusive
component F is the matrix uu’ — vVu. The foreground mesh is originally located around the center of
mass of the whole domain and it is allowed to rigidly counterclockwise rotate. In Figure 9 there are the two
components of the numerical solution at final time ¢t =T
The error and convergence analysis is conducted as for the already presented linear test cases by comparing
the performances of the flux discretization either with local advective-diffusive or just advective stabilization
term. For this reason, Table 7 reports the L> and L? errors and convergence rates by decreasing four times
the characteristic length h of the cells. As already observed for the linear tests, also in this specific nonlinear
case the errors of AD and A fluxes are similar even though an AD discretization is almost always more
precise. Finally, we remark that both flux approximations have a second order discretization rate, as we
expected a priori.

5.4.2. Multimesh setting. The presented method can be easily extended to more than one foreground
mesh. As a matter of fact, different meshes can be set with an independent movement and such that to
exchange information with the background grid and with the other moving foreground meshes. Due to the
possibility to move, the foreground meshes can overlap each other. Consequently, the hole will be present in
the background as well as in some foreground grids by properly applying the same dynamics of the overlap-
ping zone of Section 3.5 to the specific intermediate foreground mesh.

In order to compare the performances of multimesh setting with two moving foreground meshes, we consid-
ered the presented case TEST2 with a foreground mesh clockwise rotating around the origin (see Table 1) by
adding a second foreground mesh. The new grid is originally located to subset [—0.78, —0.18] x [—0.62, —0.02]
and horizontally moves on the right with a constant velocity Vo = [-0.8,0]T (see Figure 10). The new grid
intercepts the original foreground mesh at the beginning and at the end of the simulation. For this reason,
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Fig. 9: Components of the solution of nonlinear test at time ¢t =T = 0.5.

Table 7: Convergence analysis of the nonlinear test case. The errors refer to time ¢t =T = 0.5.

h L-err L2-err L*>®-rate L2-rate
AD A AD A AD A AD A
3.00e-1  2.3700e-2 5.2187e-3 0 0
1.50e-1  5.2138e-3 1.1061e-3 2.36 2.42
7.50e-2  2.4113e-3 2.4506e-4 1.15 1.30
3.75e-2  6.1828e-4 1.0332e-4 1.99 2.16

the original foreground mesh partially covers the new mesh by creating a new partial hole on it (see first
and last rows in Figure 10b). Moreover a new hole is generated in the background. Since each foreground
mesh is independent from the other, the holes in the background can be ether connected (if the foreground
grids overlap each other) or unconnected (if the foreground meshes are far enough to not overlap each other).
Figure 10a refers to the solution where each grid is defined by squared grids whose cells have a characteristic
length h = 7.50e —2. The L>- and L2-errors with respect to the exact solution are exactly the same reported
in Table 3 (last row). This means that the new grid does not influence the performance of the method with
respect to the previous grid setting.

5.4.3. Complex domains. An important application of chimera grids is the possibility to use meshes
fitting the particular shape of the domain (which eventually evolves in time) by preserving a Cartesian
background mesh. Here we present a test case summed up in Table 8. For any positive time ¢, let the generic
moving ball formally be

B(pmin, Pmax; t) = {(:c,y) €R?: 2 =pcos(0), y = psin(f) — 2t — 7; with (p,60) € [pmin, Pmax) X [0, 27r]}.

The domain is the channel of dimensions [—7, 7] X [—2m, 27| from which the moving circle B(0,0.5;¢) of
radius equal to 0.5 is subtracted at any time ¢ € [0,7]. The circle vertically moves downwards with a
constant velocity. In Figure 11a it is reported the numerical solution at the initial and final time instants
for the numerical test. In Figure 11b there is a focus on the grid settings. For the foreground mesh, a polar
structured grids is employed. It fits the shape of the domain and moves as the domain evolves.

6. Conclusions. We presented a second order finite volume scheme for unsteady advection-diffusion
PDEs on overset grid. The scheme is based on an extension of the ADER method to advection-diffusion
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Fig. 10: On the left (a), the solution of TEST?2 for three time instants with a multimesh setting composed
of two foreground meshes; on the right (b), for the same time instants, the configuration of the background
and foreground grids.

equations with compact data transmission conditions from the background to the foreground meshes and
vice versa. We also introduced a new stabilization term for approximating the fluxes through a Local Lax-
Friederichs approach.

The numerical illustrations for linear and non-linear systems show that background and foreground
moving meshes do not introduce spurious perturbation to the solution, uniformly reaching second order
accuracy in space and time. In addition, we showed that the speed of the foreground mesh does not
influence the stability of the method. Our results also show that the new LLF stabilization speed improves
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Table 8: Summary scheme of TESTY.

TEST
Q [—7, 7] x [-27,27]/B(0,0.5;t)
Diffusion  0.05
Advection [0, —2]T
Uez(7,y,t)  exp[—2? — (y — 2t — m)% + 0.5](cos(t) + 1)

B.C. Dirichlet: weq(z,y,1t)|o0
I.C. Uez (2,9, 0)
T /2
fg mesh  B(0.5,1.5;0)
1% [0, -2

the precision and robusteness of the numerical solution and allows a less restrictive CFL condition. Finally,
it is shown that several foreground meshes, possibly overlapping and with independent displacements, can
seamlessly be employed thanks to this approach.

Future investigations will extend this integration scheme to the compressible and incompressible Navier-

Stokes equations.
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