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MINIMAX ADAPTIVE ESTIMATION IN MANIFOLD INFERENCE

Vincent Divol ∗

Abstract. We focus on the problem of manifold estimation: given a set of observations
sampled close to some unknown submanifold M , one wants to recover information about the
geometry ofM . Minimax estimators which have been proposed so far all depend crucially on the
a priori knowledge of parameters quantifying the underlying distribution generating the sample
(such as bounds on its density), whereas those quantities will be unknown in practice. Our
contribution to the matter is twofold. First, we introduce a one-parameter family of manifold
estimators (M̂t)t≥0 based on a localized version of convex hulls, and show that for some choice of
t, the corresponding estimator is minimax on the class of models of C2 manifolds introduced in
[GPPVW12]. Second, we propose a completely data-driven selection procedure for the parameter
t, leading to a minimax adaptive manifold estimator on this class of models. This selection
procedure actually allows us to recover the Hausdorff distance between the set of observations
and M , and can therefore be used as a scale parameter in other settings, such as tangent space
estimation.

1 Introduction

Manifold inference deals with the estimation of geometric quantities in a random setting. Given
Xn = {X1, . . . , Xn} a set of i.i.d. observations from some law µ on RD supported on (or con-
centrated around) a d-dimensional manifold M , one wants to produce an estimator θ̂ that
estimates accurately some quantity θ(M) related to the geometry of M such as its dimen-
sion d [HA05, LJM09, KRW19], its homology groups [NSW08, BRS+12], its tangent spaces
[AL19, CC16], or M itself [GPPVW12, GPPIW12, MMS16, AL18, AL19, PS19]. Consider for
instance the problem of estimating the manifold M with respect to the Hausdorff distance dH .
The quality of an estimator M̂ with respect to some law µ, called its µ-risk, is given by the
average Hausdorff distance dH between the estimator and M :

Rn(M̂, µ) := E[dH(M̂,M)], (1.1)

where M̂ = M̂(Xn) and Xn is a n-sample of law µ. In reality, the law µ generating the dataset
is unknown, and it is more interesting to control the µ-risk uniformly over a set Q of laws µ,
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Figure 1 – If the reach of the curve M is large, then the curve cannot be too pinched (left) and
cannot present a tight bottleneck structure (right).

that we call a statistical model. The uniform risk of the estimator M̂ on the class Q is given by,

Rn(M̂,Q) := sup{Rn(M̂, µ) : µ ∈ Q}. (1.2)

while we say that an estimator is minimax if it attains (up to a multiplicative constant
as n goes to ∞) the minimax risk

Rn(Q) := inf{Rn(M̂,Q) : M̂ is an estimator}. (1.3)

In geometric inference, several statistical models were introduced, which take into account
different noise models and regularities of the manifold M . Let us mention the family of models
Qdτmin,fmin,fmax

introduced by Genovese et al. in [GPPVW12], consisting of the laws µ supported
on a d-dimensional manifold M satisfying some additional properties. First, we assume that
µ has a density f on M , lower bounded by some constant fmin > 0 and upper bounded by
another constant fmax. This ensures that all the parts of the manifold M are approximately
evenly sampled: we then say that the law is "almost-uniform" on M . The parameter τmin gives
a lower bound on the reach τ(M) of the manifold. The reach is a central notion in geometric
inference, defined as the largest radius r such that, if some point x is at distance less than r to
M , then there exists a unique projection πM (x) of x on M . As such, it controls both a local
regularity of M (a bound on its curvature radius) and a global regularity (namely the presence
of a "bottleneck structure"), see also Figure 1.

On the statistical model Qdτmin,fmin,fmax
, the minimax rate of convergence satisfies

c0

( lnn
n

)2/d
≤ Rn(Qdτmin,fmin,fmax) ≤ c1

( lnn
n

)2/d
, (1.4)

for two positive constants c0, c1 depending on τmin, fmin, fmax and d. The lower bound in this
inequality was shown by Kim and Zhou [KZ15], while the upper bound is obtained by exhibit-
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ing an estimator having a uniform risk of order (lnn/n)2/d. Such an estimator (although not
computable in practice) was first proposed by Genovese et al. in [GPPVW12], while another
estimator attaining this same minimax rate (computable in practice), and based on the Tan-
gential Delaunay Complex [BG14], was proposed by Aamari and Levrard [AL18]. Although
being minimax and computable, the Tangential Delaunay Complex depends on the tuning of
several parameters (for instance a radius quantifying the size of neighborhoods which are used
to compute local PCAs), while those parameters have to be calibrated in a precise manner with
respect to the quantities τmin, fmin and fmax defining the model for the Tangential Delauny
Complex to be minimax. However, those quantities are a priori unknown. A first possibility is
to estimate those quantities in turn: if procedures are known to estimate the reach (although
themselves depending on the tuning of parameters [AKC+19, BHHS21]), estimating fmin and
fmax appears to be delicate. The problem of the practical choice of the parameters defining the
estimator is then raised. This question of the tuning of parameters defining an estimator is not
restricted to the framework of manifold estimation, but is a classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel density
estimation. Let X1, . . . , Xn be a n-sample of some law µ having a density f on R, and sup-
pose that we want to recover the value f(x0) of the density at some fixed point x0 ∈ R. A
standard method to achieve this goal is to consider the convolution of the empirical measure
µn = 1

n

∑n
i=1 δXi by some kernel Kh, where Kh = h−1K(·/h) and K satisfies

∫
K = 1. We then

obtain a function f̂ = Kh ∗ µn. Assume that the density f is of regularity s, that is f ∈ Cs(R),
the set of bsc-times differentiable functions, whose bscth derivative is (s− bsc)-Hölder continu-
ous. Then, for a good choice of kernel K, it is optimal to choose the bandwidth hopt of order
c · n−1/(2s+1), where c depends on the Cs-norm of f [Tsy08, Chapter 1]. The associated risk is
then of order n−s/(2s+1), which is the minimax rate of estimation on the class of densities of
regularity s. In practice, it is impossible to know exactly the value of s, so that we must find
another strategy to choose the bandwidth h. Adaptive methods consist in choosing a bandwidth
ĥ in a data-dependent way, such that the estimator f̂ĥ has a µ-risk almost as good as the opti-
mal estimator f̂hopt under weak hypotheses on µ. One of such methods, the PCO method (for
Penalized Comparison to Overfitting) introduced by Lacour, Massart and Rivoirard [LMR17]
consists in comparing each estimator f̂h to some degenerate estimator f̂hmin for some very small
bandwidth hmin. The selected bandwidth ĥ is chosen among a family H of bandwidths (all
larger than hmin), by minimizing a criterion depending on the distance ‖f̂h − f̂hmin‖L2(R), while
penalizing small values of h. Lacour, Massart and Rivoirard then show an oracle inequality for
their estimator, that is an inequality of the form

E‖f̂ĥ − f‖
2
L2(R) ≤ C min{E‖f̂h − f‖2L2(R) : h ∈ H}+ C(n, |H|) (1.5)

where C(n, |H|) is a remainder term negligible in front of the optimal risk. Thus, we obtain that
f̂ĥ has a risk almost as good as the best estimator f̂hopt , while we never had to estimate the
parameters defining the statistical model (that is the regularity s of the density and the Cs-norm
of f).
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Figure 2 – The t-convex hull Conv(t, A) (in green) of a curve A (in black).

Our main goal is to adapt the PCO method to the manifold inference setting. A first
step consists in creating a family of estimators (M̂t)t≥0 similar to kernel density estimators, but
in the context of manifold estimation. This is made possible with t-convex hulls. For t ≥ 0, the
t-convex hull Conv(t, A) of a set A is an interpolation between the set A (t = 0) and its convex
hull Conv(A) (t =∞). It is defined as

Conv(t, A) :=
⋃
σ⊆A
r(σ)≤t

Conv(σ), (1.6)

where r(σ) is the radius of the set σ, that is the radius of the smallest enclosing ball of σ.
See Figure 2 for an example. We prove in Section 3 that for A ⊆ M , the Hausdorff distance
between Conv(t, A) and M can be efficiently controlled for values of t a little larger than the
approximation rate ε(A) := sup{d(x,A) : x ∈ M} of A. More precisely, for such values of t,
Lemma 3.3 states that dH(Conv(t, A),M) ≤ t2/τ(M). Using this control on the t-convex hull
enables us to show that the t-convex hull of the sample Xn is a minimax estimator on the model
Qdτmin,fmin,fmax

for a certain choice of t.

Theorem 1.1. Let αd be the volume of the d-dimensional unit ball. For the choice of scale
tn = 7

4(3 lnn/(αdfminn))1/d, we have (for n large enough)

Rn(Conv(tn,Xn),Qdτmin,fmin,fmax) ≤ c0
τmin(αdfmin)2/d

( lnn
n

)2/d
(1.7)

for some absolute constant c0. In other words, Conv(tn,Xn) is a minimax estimator of M on
Qdτmin,fmin,fmax

.

To create an adaptive estimator, the next step is to build a selection procedure for the
parameter t. An analog of the degenerate estimator f̂hmin is given by the choice t = 0, with
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Conv(0,Xn) = Xn. The PCO method therefore suggests comparing the estimators Conv(t,Xn)
with Xn, that is to study the function t 7→ h(t,Xn) := dH(Conv(t,Xn),Xn). The function h(·,Xn)
was actually already introduced under the name of "convexity defect function of the set Xn" in
a paper by Attali, Lieutier and Salinas [ALS13], where it was used to study the homotopy types
of Rips complexes. The convexity defect function is nonnegative, nondecreasing, and satisfies
0 ≤ h(t, A) ≤ t for any set A. For A = Xn, this function is piecewise constant, while it may only
change values at t ∈ Rad(Xn) := {r(σ) : σ ⊆ Xn}. We show that the convexity defect function
h(t,Xn) of Xn at scale t exhibits different behaviors in two different regimes: for t ≤ ε(Xn) it
has a globally linear behavior (that is it stays close to its maximal value t), whereas roughly
after ε(Xn), it is almost constant. The convexity defect function can be computed using only
the dataset, so that we may in practice observe those two regimes. In practice, we fix a value
0 < λ < 1, and let

tλ(Xn) := inf{t ∈ Rad(Xn) : h(t,Xn) ≤ λt}. (1.8)

Our main result states that tλ(Xn) is a little larger than ε(Xn) with high probability,
so that we may control the risk of M̂ = Conv(tλ(Xn),Xn), without having to know d, fmin,
fmax or the reach τ(M), leading to an adaptive estimator in a sense made precise in Theorem
6.2. The estimator M̂ is to our knowledge the first minimax adaptive manifold estimator. Our
procedure allows us to actually estimate (up to a multiplicative constant arbitrarily close to 1)
the approximation rate ε(Xn), while scale parameters in computational geometry typically have
to be properly tuned with respect to this quantity. The parameter tλ(Xn) can therefore be used
as a hyperparameter in different settings. To illustrate this general idea, we show how to create
a data-driven minimax estimator of the tangent spaces of a manifold (see Corollary 6.5).

Related work

"Localized" versions of convex hulls such as the t-convex hulls have already been introduced in
the support estimation literature. For instance, slightly modified versions of the t-convex hull
have been used as estimators in [AB16] under the assumption that the support has a smooth
boundary and in [RC07] under reach constraints on the support, with different rates obtained
in those models. Selection procedures were not designed in those two papers, and whether
our selection procedure leads to an adaptive estimator in those frameworks is an interesting
question. The statistical models we study in this article were introduced in [GPPVW12] and
[AL18], in which manifold estimators were also proposed. If the estimator in [GPPVW12] is of
purely theoretical interest, the estimator proposed by Aamari and Levrard in [AL18], based on
the Tangential Delaunay complex, is computable with O(nD2O(d2)) operations. Furthermore,
it is a simplicial complex which is known to be ambient isotopic to the underlying manifold M
with high probability. It however requires the tuning of several hyperparameters in order to be
minimax, which may make its use delicate in practice. In contrast, the t-convex hull estimator
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with parameter tλ(Xn) is completely data-driven, computable in polynomial time (see Section
7), while keeping the minimax property. However, unlike in the case of the Tangential Delaunay
complex, we have no guarantees on the homotopy type of the corresponding estimator.

2 Background on submanifold with positive reach

Let us first introduce some notation. The Euclidean norm in RD is denoted by | · | and 〈·, ·〉
stands for the dot product. If A ⊆ RD and x ∈ RD, then d(x,A) := inf{|x − y| : y ∈ A} is the
distance to a set A while diam(A) := sup{|x−y| : x, y ∈ A} is its diameter. Given r ≥ 0, B(x, r)
is the open ball of radius r centered at x and we write BA(x, r) for B(x, r)∩A. We letMd be the
set of C2 compact connected d-dimensional submanifolds of RD without boundary. If M ∈ Md

and x ∈ M , then TxM is the tangent space of M at x. It is identified with a d-dimensional
subspace of RD, and we write πx for the orthogonal projection on TxM , while π⊥x = id −πx is
the projection on the normal space TxM⊥. The asymmetric Hausdorff distance between sets
A,B ⊆ RD is defined as dH(A|B) := sup{d(x,B) : x ∈ A}, while the Hausdorff distance is
defined as dH(A,B) = max {dH(A|B), dH(B|A)}. For A ⊆M , we denote by ε(A) := dH(A,M)
the approximation rate of A.

The regularity of a submanifold M ∈ Md is measured by its reach τ(M). This is the
largest number r such that if d(x,M) < r for x ∈ RD, then there exists a unique point of
M , denoted by πM (x), which is at distance d(x,M) from x. Thus, the projection πM on the
manifold M is well-defined on the r-tubular neigborhood M r := {x ∈ M : d(x,M) ≤ r} for
r < τ(M). The notion of reach was introduced for general sets by Federer in [Fed59], where it
is also proven that C2 compact submanifolds without boundary have positive reach (see [Fed59,
p.432]). Different geometric quantities of interest can be bounded in term of the reach. For
instance, the volume Vol(M) of M satisfies

Vol(M) ≥ ωdτ(M)d (2.1)

where ωd is the volume of a d-dimensional sphere (with equality obtained only for a sphere
of radius τ(M)), see [Alm86]. The reach also controls how points on M deviate from their
projections on some tangent space.

Lemma 2.1 (Theorem 4.18 in [Fed59]). For x, y ∈M ,
∣∣∣π⊥x (y − x)

∣∣∣ ≤ |y−x|22τ(M) .

The following lemma asserts that the projection from a manifold to its tangent space is
well-behaved.

Lemma 2.2. Let x ∈M .

1. Let y ∈ RD with d(y,M) < τ(M). Then, πM (y) = x if and only if y − x ∈ TxM⊥.
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2. Let y1, y2 ∈ RD be two points at distance less than γ < τ(M) from M . Then, |πM (y1) −
πM (y2)| ≤ τ(M)

τ(M)−γ |y1 − y2|.

3. For r < τ(M)/3, the map π̃x : y 7→ πx(y − x) is a diffeomorphism from BM (x, r) to its
image, and, if r ≤ τ(M)/2, we have BTxM (0, 7r/8) ⊆ π̃x (BM (x, r)). In particular, if
y ∈ BM (x, 7τ(M)/24), then

7
8 |y − x| ≤ |πx(y − x)| ≤ |y − x|. (2.2)

Proof. • For 1 and 2, see [Fed59, Theorem 4.8].
• We first show that π̃x is injective on BM (x, τ(M)/3). Assume that π̃x(y) = π̃x (y′) for

some y 6= y′ ∈ M . Consider without loss of generality that |x − y| ≥ |x− y′|. The goal is to
show that |x − y| ≥ τ(M)/3. If |x − y| > τ(M)/2, the conclusion obviously holds, so we may
assume that |x− y| ≤ τ(M)/2. Define the angle between TxM and TyM as ‖πx − πy‖op (where
‖ · ‖op denotes the operator norm). Lemma 3.4 in [BSW09] states that if |x − y| ≤ τ(M)/2,
then ∠ (TxM,TyM) ≤ 2 |x−y|τ(M) . Also, by definition,

∠ (TxM,TyM) ≥ |(πx − πy) (y − y′)|
|y − y′|

= |πy (y − y′)|
|y − y′|

≥
|y − y′| −

∣∣∣π⊥y (y − y′)
∣∣∣

|y − y′|

≥ 1− |y − y
′|

2τ(M) by Lemma 2.1

≥ 1− |x− y|
τ(M) by the triangle inequality.

Therefore, we have 3|x − y|/τ(M) ≥ 1, i.e. |x − y| ≥ τ(M)/3 and π̃x is injective on
BM (x, τ(M)/3). To conclude that π̃x is a diffeomorphism, it suffices to show that its differential is
always invertible. As π̃x is an affine application, the differential dπ̃x(y) is equal to πx. Therefore,
the Jacobian of the function π̃x : M → TxM at y is given by the determinant of the projection
πx restricted to TyM . In particular, it is larger than the smallest singular value of πx ◦πy to the
power d, which is larger than

(1− ∠ (TxM,TyM))d ≥
(

1− 2 |x− y|
τ(M)

)d
≥
(1

3

)d
thanks to [BSW09, Lemma 3.4] and using that |x − y| ≤ τ(M)/3. In particular, the

Jacobian is positive, and π̃x is a diffeormorphism from BM (x, τ(M)/3) to its image. The second
statement is stated in [AL19, Lemma A.2].
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The second inequality of the last statement follows from the projection being 1-Lipschitz
continuous. For the first one, let y ∈ BM (x, 7τ(M)/24), and let u = πx(y−x). The point u is in
BTxM (0, h) for h > |u|. We have BTxM (0, h) ⊆ π̃x (BM (x, 8h/7)) ⊆ π̃x (BM (x, τ(M)/3)). As π̃x
is injective on BM (x, τ(M)/3), this means that we necessarily have y ∈ BM (x, 8h/7). Therefore,
|x− y| < 8h/7, and the conclusion holds by letting h goes to |u|.

It will also be necessary to have precise bounds on the volume of balls onM . As expected,
the volume of a small ball is asymptotically equivalent to the volume of an Euclidean ball. Let
αd be the volume of the d-dimensional unit ball.

Lemma 2.3. Let r ≤ τ(M)/4 and x ∈M. Then,

(47
48

)d
≤
(

1− r2

3τ(M)2

)d
≤ Vol (BM (x, r))

αdrd
≤
(

1 + 4r2

3τ(M)2

)d
≤
(13

12

)d
. (2.3)

Proof. The proof of Proposition 8.7 in [AL18] implies that, if B̃M (x, r) is the geodesic ball
centered at x of radius r, then

(
1− r2

3τ(M)2

)d
≤

Vol
(
B̃M (x, r)

)
αdrd

≤
(

1 + r2

τ(M)2

)d
.

As B̃M (x, r) ⊆ BM (x, r), we have in particular Vol(BM (x,r))
αdrd

≥
(
1− r2

3τ(M)2

)d
. Further-

more, by [ACLG19, Lemma 3.12] and [NSW08, Proposition 6.3], if |x− y| ≤ τ(M)/4, then the
geodesic distance between x and y is smaller than

|x− y|
(

1 + π2

50τ(M)2 |x− y|
2
)
≤ 1.05|x− y|.

This implies that BM (x, r) ⊆ B̃M
(
x, r

(
1 + π2r2

50τ(M)2

))
. Therefore,

Vol (BM (x, r))
αdrd

≤
((

1 + π2r2

50τ(M)2

)(
1 + (1.05r)2

τ(M)2

))d

≤
(

1 +
(
π2

50 + (1.05)2 + π2(1.05)2r2

50τ(M)2

)
r2

τ(M)2

)
≤
(

1 + 4r2

3τ(M)2

)d
,

where we used at the last line that r ≤ τ(M)/4.

8



3 Approximation of manifolds with t-convex hulls

Let A ⊆ M be a finite set. We investigate in this section how the t-convex hull of A approx-
imates M for different values of t, first in a deterministic setting, then in a random setting.
The quantity of interest dH(Conv(t, A),M) is by definition the maximum of the two quantities
dH(Conv(t, A)|M) and dH(M |Conv(t, A)). The first quantity dH(Conv(t, A)|M) is given by the
maximum of the distances dH(Conv(σ)|M) over the simplexes σ ⊆ A satisfying r(σ) ≤ t. A
naive attempt to bound this quantity leads to a control of order t.

Lemma 3.1. Let σ ⊆ RD be a closed set. Then, dH(Conv(σ)|σ) ≤ r(σ).

Proof. Let y ∈ Conv(σ) and let z be the center of the smallest enclosing ball of σ. The half-space{
x ∈ RD : |x− z|2 − r(σ)2 ≤ |x− y|2 − d(y, σ)2

}
contains σ. It thus contains Conv(σ), and in

particular y. Therefore, d(y, σ)2 ≤ r(σ)2 − |y − z|2 ≤ r(σ)2, concluding the proof.

As σ ⊆M , we have in particular that dH(Conv(t, A)|M) ≤ t. We can actually obtain a
much better bound by exploiting that σ lies onM , which looks locally like a flat space. Consider
for instance the case where σ = {x0, x1} is made of two points. Then, the line (x0, x1) should
be approximately parallel to the tangent space Tx0M , with the distance from x1 to Tx0M being
of order |x0 − x1|2. As a consequence, the distance from any point of the segment [x0, x1] to M
is also of order |x0 − x1|2. More generally, we have the following result.

Lemma 3.2. Let σ ⊆M with r(σ) < τ(M) and let y ∈ Conv(σ). Then,

d(y,M) ≤ τ(M)
(

1−
√

1− r(σ)2

τ(M)2

)
≤ r(σ)2

2τ(M)

(
1 + r(σ)2

τ(M)2

)
. (3.1)

In particular, for any t ≥ 0 and A ⊆M ,

dH(Conv(t, A)|M) ≤ t2

2τ(M)

[(
1 + t2

τ(M)2

)
∧ 2
]
≤ t2

τ(M) . (3.2)

Proof. Lemma 12 in [ALS13] states that if σ ⊆M satisfies r(σ) < τ(M) and y ∈ Conv(σ), then,

d(y,M) ≤ τ(M)
(

1−
√

1− r(σ)2

τ(M)2

)
.

As
√

1− u ≥ 1− u/2− u2/2 for u ∈ [0, 1], one obtains the conclusion.
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t ≥ t∗(A)t < t∗(A)

Figure 3 – The t-convex hull of the finite set A (red crosses) is displayed (in green) for two values
of t. The black curve represents the (one dimensional) manifold M . On the first display, the
value of t is smaller than t∗(A), as there are regions of the manifold (circled in blue) which are
not attained by the projection πM restricted to the t-convex hull. The value of t is larger than
t∗(A) on the second display.

The other asymmetric distance dH(M |Conv(t, A)) is apparently more delicate to handle.
It can actually be controlled efficiently if the parameter t is large enough. Indeed, assume that
t is large enough so that every point x of M is the projection of some point y of Conv(t, A).
Then we have

d(x,Conv(t, A)) ≤ |x− y| = |πM (y)− y| = d(y,M)

≤ dH(Conv(t, A)|M) ≤ t2

τ(M) .
(3.3)

This suggests defining the parameter

t∗(A) := inf {t < τ(M) : πM (Conv(t, A)) = M} . (3.4)

Lemma 3.2 and (3.3) imply directly the following lemma.

Lemma 3.3. Let A ⊆M and t > t∗(A). Then,

dH(Conv(t, A),M) ≤ t2

τ(M) . (3.5)

A crucial result in the analysis of the t-convex hull estimator is given by the next propo-
sition, that indicates that the quantity t∗(A) is almost equal to the approximation rate ε(A).
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Proposition 3.4. Let A ⊆M be a finite set. Then, ε(A) ≤ t∗(A)
(
1 + t∗(A)

τ(M)

)
. Furthermore, if

ε(A) < τ(M)/8, then, t∗(A) ≤ ε(A)
(
1 + 6 ε(A)

τ(M)

)
The proof of Proposition 3.4 relies on considering Delaunay triangulations. Given d+ 1

points σ in Rd that do not lie on a hyperplane, there exists a unique ball that contains the points
on its boundary. It is called the circumball of σ, and its radius is called the circumradius circ(σ)
of σ. Given a finite set A ⊆ Rd that does not lie on a hyperplane, there exists a triangulation
of A, called the Delaunay triangulation, such that for each simplex σ in the triangulation, the
circumball of σ contains no point of A in its interior. Note that there may exist several Delaunay
triangulations of a set A, should the set A not be in general position. With a slight abuse, we
will still refer to "the" Delaunay triangulation of A, by simply choosing a Delaunay triangulation
among the possible ones should several exist. If the set A lies on a lower dimensional subspace, we
consider the Delaunay triangulation of A in the affine vector space spanned by A. Therefore, for
every set A, the Delaunay triangulation is well defined (for instance, the Delaunay triangulation
of three points aligned in the plane is the 1-dimensional triangulation obtained by joining the
middle point with the two others).

Proof. Let x ∈ M be such that d(x,A) = ε(A). By definition, there exists a simplex σ ⊆ A of
radius smaller than t∗(A) with x = πM (y) for some point y ∈ Conv(σ). We have, using Lemma
3.1 and Lemma 3.2,

ε(A) = d(x,A) ≤ |x− y|+ d(y,A) ≤ t∗(A)2

τ(M) + t∗(A)

proving the first inequality.
To prove the other inequality, without loss of generality, we assume that 0 ∈ M and

we show that 0 ∈ πM (Conv(t, A)) for t = ε(A)(1 + 6ε(A)/τ(M)). Let Ã = π0(A ∩ B(0, R)) for
R = ε(A) (2 + c0ε(A)/τ(M)) and c0 = 32/49. Note that the condition ε(A) ≤ τ(M)/8 implies
that R < 7τ(M)/24. We first state two lemmas.

Lemma 3.5. Assume that ε(A) ≤ 7τ(M)/24. Let x̃ ∈ T0M with |x̃| ≤ ε(A). Then d(x̃, Ã) ≤
ε(A).

Proof. By continuity, it suffices to prove the claim for |x̃| < ε(A). In this case, according
to Lemma 2.2, if ε(A) ≤ 7τ(M)/24, then there exists x ∈ BM (0, 8ε(A)/7) with π0(x) = x̃.
Furthermore, by Lemma 2.1,

|x| ≤ |x̃|+ |x− x̃| ≤ ε(A) + |x|2

2τ(M) ≤ ε(A)
(

1 + 32ε(A)
49τ(M)

)
.
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We have d(x,A) = |x− a| for some point a ∈ A, and

|a| ≤ |x− a|+ |x| ≤ ε(A) (2 + c0ε(A)/τ(M)) .

As π0(a) ∈ Ã, we have d(x̃, Ã) ≤ |x̃− π0(a)| ≤ |x− a| = d(x,A) ≤ ε(A).

Lemma 3.6. Let V ⊆ Rd be a finite set and t > 0. If dH(B(0, t)|V ) ≤ t, then 0 ∈ Conv(V ).

Proof. We prove the contrapositive. If 0 /∈ Conv(V ), then there exists an open half-space which
contains V . Let x be the unit vector orthogonal to this half-space. Then, d(tx, V ) > t.

Apply Lemma 3.6 to V = Ã and t = ε(A). For x̃ ∈ BT0M (0, ε(A)), we have d(x̃, Ã) ≤ ε(A)
according to Lemma 3.5. Therefore, we have 0 ∈ Conv(Ã). Consider the Delaunay triangulation
of Ã. The point 0 belongs to the convex hull of some simplex σ̃ of the triangulation, with
circumradius circ(σ̃) and center of the circumball q̃. The simplex σ̃ corresponds to some simplex
σ in A, and the point 0 is equal to π0(y) for some point y ∈ Conv(σ). By Lemma 2.2, we
actually have πM (y) = 0, and to conclude, it suffices to show that r(σ) ≤ ε(A)

(
1 + 6 ε(A)

τ(M)

)
. To

do so, we use the next lemma (recall that σ ⊆ BM (0, R) with R < 7τ(M)/24).

Lemma 3.7. Let σ ⊆ BM (0, 7τ(M)/24) and σ̃ = π̃0(σ). Assume that 0 ∈ Conv(σ̃). Then,

r(σ̃) ≤ r(σ) ≤ r(σ̃)
(

1 + 6 r(σ̃)
τ(M)

)
. (3.6)

Proof. As the projection is 1-Lipschitz, it is clear that r(σ̃) ≤ r(σ). Let us prove the other
inequality. Let σ = {y0, . . . , yk} , σ̃ = {ỹ0, . . . , ỹk} and fix 0 ≤ i ≤ k. As yi ∈ BM (0, 7τ(M)/24),
we have by (2.2)

|yi| ≤
8
7 |ỹi| ≤

16
7 r(σ̃). (3.7)

where we used that |ỹi| ≤ 2r(σ̃) as 0 ∈ Conv(σ̃). Let z̃ be the center of the minimum
enclosing ball of σ̃. Write z̃ = ∑k

j=0 λj ỹj as a convex combination of the ỹjs and let z =∑k
j=0 λjyj ∈ Conv(σ). Then, we have

|z − yi| ≤ |z − z̃|+ |z̃ − ỹi|+ |ỹi − yi|

≤
k∑
j=0

λj |yj − ỹj |+ r(σ̃) + |yi|2

2τ(M) using Lemma 2.1

≤
k∑
j=0

λj
|yj |2

2τ(M) + r(σ̃) + 128
49

r(σ̃)2

τ(M) using Lemma 2.1 and (3.7)

≤ r(σ̃) + 256
49

r(σ̃)2

τ(M) ≤ r(σ̃) + 6 r(σ̃)2

τ(M) using (3.7).
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0 w̃

ε(A)

q̃

Figure 4 – If |q̃| > ε(A), then the ball BT0M (q̃, |q̃|) contains a ball of radius ε(A) centered at a
point (here denoted by w̃) at distance less than ε(A) from 0.

We obtain the conclusion as σ is included in the ball of radius maxi |z − yi| and center
z.

Using the previous lemma, we are left with showing that r(σ̃) ≤ ε(A). We will actually
show the stronger inequality circ(σ̃) ≤ ε(A) (the radius of a set is always smaller than its
circumradius). As 0 is in the circumball (that is centered at q̃), the ball centered at q̃ of
radius |q̃| does not intersect Ã. This enforces |q̃| ≤ ε(A): otherwise, there would exist a ball
not intersecting Ã, of radius ε(A), and whose center is at distance less than ε(A) from 0, a
contradiction with Lemma 3.5 (see Figure 4). As |q̃| ≤ ε(A), we obtain, once again according to
Lemma 3.5, that circ(σ̃) = d(q̃, Ã) ≤ ε(A) concluding the proof.

Remark 3.8. In the case where the dimension d is known, one can consider a variant of the
t-convex hull, Convd(t, A), where one restricts the union to be over simplices of dimension less
than d. The set Convd(t, A) is simpler to compute as it contains less simplices (see Section 7).
Furthermore, if t∗d(A) := inf {t : πM (Convd(t, A)) = M}, then both Lemma 3.3 and Proposition
3.4 hold with t∗d(A) and Convd(t, A) instead of t∗(A) and Conv(t, A). Indeed, only simplices
of dimension less than d (corresponding to simplices of a Delaunay triangulation on a tangent
space) were considered in the previous proof.

We have now shown that the quality of the t-convex hull on A can be controlled for
t ≥ ε(A)(1 + 6ε(A)/τ(M)) (that is slightly larger than the approximation rate ε(A)). In a
random setting, the approximation rate is known to be of order (lnn/n)1/d: this is enough to
show that the t-convex hull is a minimax estimator. Recall the definition of the statistical model
Qdτmin,fmin,fmax

from the introduction: it consists of laws µ supported on some manifold M ∈Md

with τ(M) ≥ τmin, having a density f lower bounded by fmin and upper bounded by fmax. The
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minimax result will actually hold on the larger model Qdτmin,fmin
:= ⋃

fmax Q
d
τmin,fmin,fmax

(that is
without imposing any upper bound on f).

Let µ ∈ Qdτmin,fmin
and let Xn be a n-sample from law µ. We consider the estimator

Conv(t,Xn). Note first that Conv(t,Xn) is indeed an estimator, that is the application

(x1, . . . , xn) ∈
(
RD
)n
7→ Conv(t, {x1, . . . , xn})

is measurable (with respect to the Borel σ-field associated with the metric dH on the set
K
(
RD
)
of all nonempty compact subsets of RD). Indeed, for E a measurable subset of K

(
RD
)

and A,B ∈ K
(
RD
)
, introduce the notation GE(A,B) = A if A ∈ E and B otherwise. This

function is measurable, and Conv(t, {x1, . . . , xn}) can be written as

⋃
I⊆{1,...,n}

GE
(
Conv({xi}i∈I

)
, {xi}i∈I)

where E is the subset of K
(
RD
)
given by

{
K ∈ K

(
RD
)

: r(K) ≤ t
}
, which is closed

[ALS13, Lemma 16]. As the functions ∪ and Conv are measurable, the measurability follows
[Aam17, Proposition III.7].

For a fixed t > 0, we obtain the following control of E [dH(Conv(t,Xn),M)] .

E [dH(Conv(t,Xn),M)] = E [dH(Conv(t,Xn),M)1 {t ≥ t∗(Xn)}]
+ E [dH(Conv(t,Xn),M)1 {t < t∗(Xn)}]

≤ t2

τ(M) + diam(M)P (t∗(Xn) > t)

By Proposition 3.4, if ε(Xn) < τ(M)/8, then

t∗(Xn) ≤ ε(Xn)
(

1 + 6ε(Xn)
τ(M)

)
≤ 7

4ε(Xn).

Therefore, if t is small enough,

P (t∗(Xn) > t) ≤ P (ε(Xn) > τ(M)/8) + P (ε(Xn) > 4t/7)
≤ 2P (ε(Xn) > 4t/7) .

We obtain

E [dH(Conv(t,Xn),M)] ≤ t2

τ(M) + 2 diam(M)P (ε(Xn) > 4t/7) (3.8)
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Hence, to control the risk, it suffices to bound the tail of ε(Xn).

Proposition 3.9. Let µ ∈ Qdτmin,fmin
and let Xn = {X1, . . . , Xn} be a n-sample of law µ. If

r ≤ τmin/4, then, for any η ∈ (0, 1)

P (ε(Xn) > r) ≤ cd,η
fminrd

exp

−nαdfmin

(
1− r2

3τ2
min

)d
ηrd

 , (3.9)

where cd,η depends on d and η. Furthermore, for any a > 0, for n large enough (with
respect to d, fmin, τmin and a), with probability 1−c(lnn)d−1n1−a (where c depends also on those
parameters), we have

ε(Xn) ≤
(

a lnn
αdfminn

)1/d
. (3.10)

Proof. A measure ν is said to be (a, b)-standard at scale r0 if ν(B(x, r)) ≥ arb for all r ≤ r0
and x in the support of ν. Let µ ∈ Qdτmin,fmin

with support M . Lemma 2.3 indicates that the

measure µ is (a, b)-standard at scale r0 for any r0 ≤ τ(M)/4, with a = fminαd
(
1− r2

0
3τ(M)2

)d
and b = d. It is stated in the proof [Aam17, Proposition III.14] that for such a measure, and for
any δ ≤ 2r0 with 0 < r − δ ≤ r0, we have

P (ε(Xn) > r) ≤ 2b
aδb

exp
(
−na(r − δ)b

)
.

Letting r = r0 and δ =
(
1− η1/d

)
r for some η ∈ (0, 1), we obtain that

P (ε(Xn) > r) ≤

(
2/
(
1− η1/d

))d
fminαd

(
1− r2

3τ(M)2

)d
rd

exp

−nfminαd

(
1− r2

3τ(M)2

)d
ηrd


≤ cd0
fminαdrd

exp

−nfminαd

(
1− r2

3τ(M)2

)d
ηrd


(3.11)

for c0 = 96/
(
47
(
1− η1/d

))
, where we used at the last line that r ≤ τ(M)/4.

To prove the second statement, we let r =
(

a lnn
αdfminn

)1/d
. Then, we have nαdfminr

d =
a lnn. Letting η = 1− 1/ lnn, we obtain that
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nfminαd

(
1− r2

3τ(M)2

)d
ηrd = (a lnn)

(
1− 1

lnn

)(
1− c

( lnn
n

)2/d
)

≥ (a lnn)− Ca.

In particular, we obtain that the upper bound in (3.11) is of order (lnn)d−1n1−a.

Choose t such that 4t/7 =
(

3 lnn
αdfminnn

)1/d
. Then, according to Proposition 3.9, we have

P (ε(Xn) > 32t/7) ≤ c(lnn)d−1n−2. As diam(M) is also bounded by a constant depending on
τmin, fmin and d (see [Aam17, Lemma III.24]), we obtain Theorem 1.1 from (3.8) (without even
the need of assuming that the density f is upper bounded).

4 Selection procedure for the t-convex hulls

Assuming that we have observed a n-sample Xn having a distribution µ ∈ Pdτmin,fmin
, we were

able in the previous section to build a minimax estimator of the underlying manifold M . The
tuning of this estimator requires the knowledge of d and fmin: if the dimension d can be effi-
ciently estimated, this is not the case for fmin, which will likely not be accessible in practice.
An idea to overcome this issue is to design a selection procedure for the family of estimators
(Conv(t,Xn))t≥0. As the loss of the estimator Conv(t,Xn) is controlled efficiently for t ≥ t∗(Xn)
a good idea is to select a scale t larger than t∗(Xn). We however do not have access to this
quantity based on the observations Xn, as the manifold M is unknown. To select a scale close
to t∗(Xn), we monitor how the estimators Conv(t,Xn) deviate from Xn as t increases. Namely,
we use the convexity defect function introduced in [ALS13].

Definition 4.1. Let A ⊆ RD and t > 0. The convexity defect function at scale t of A is defined
as

h(t, A) := dH(Conv(t, A), A). (4.1)

As its name indicates, the convexity defect function measures the (lack of) convexity of a
set A at a given scale t. The next proposition states preliminary results on the convexity defect
function.

Proposition 4.2. Let A ⊆ RD be a closed set and t ≥ 0.

1. We have 0 ≤ h(t, A) ≤ t.

2. The set A is convex if and only if h(·, A) ≡ 0.

3. If M ∈Md, then h(t,M) ≤ t2

2τ(M)

(
1 + t2

τ(M)2

)
.
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Figure 5 – Two subsets of the torus having the same approximation rate, but whose convexity
defect functions exhibit different behaviors on [0, t∗(A)].

Proof. Point 1 follows from Lemma 3.1. Point 2 is clear and Point 3 is a consequence of Lemma
3.2.

As expected, the convexity defect of a convex set is null, whereas for small values of t, the
convexity defect of a manifold h(t,M) is very small (compared to the maximum value possible,
which is t): when looked at locally, M is "almost flat" (and thus "almost locally convex"). As
already noted in the introduction, if A is a finite set, then the convexity defect function is a
piecewise constant function, whose value may only change at t if t ∈ Rad(A) := {r(σ) : σ ⊆ A}.

For a set A ⊆M , we recover the subquadratic behavior of the convexity defect function
for values of t above the threshold value t∗(A). Namely, we have the following proposition.
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Proposition 4.3. Let A ⊆M . For t∗(A) < t < τ(M),

h(t, A) ≤ t2

2τ(M)

(
1 + t2

τ(M)2

)
+ t∗(A)

(
1 + t∗(A)

τ(M)

)
. (4.2)

Proof. By using that h(t, A) ≤ t and Lemma 3.3, for any t∗(A) < s < t,

h(t, A) = dH(Conv(t, A), A)
≤ dH(Conv(t, A),M) + dH(M,Conv(s,A)) + dH(Conv(s,A), A)

≤ t2

2τ(M)

(
1 + t2

τ(M)2

)
+ s2

2τ(M)

(
1 + s2

τ(M)2

)
+ s

The conclusion is obtained by letting s go to t∗(A).

For 0 < t < t∗(A), the convexity defect function may exhibit very different behaviors, as
shown in Figure 5. However, when the set A = Xn is a random n-sample, it appears that the
graph of the convexity defect function stays close to the diagonal {x = y} for small values of t.
This is explained by the fact that for two points X1, X2 in the sample at very small distance 2t
from one another, it is very unlikely that there is a third point at distance of order t from X1
and X2, so that dH(Conv({X1, X2})|Xn) = dH(Conv({X1, X2})| {X1, X2}) = t.

This suggests the following strategy to select a value of t larger than t∗(Xn) using the
convexity defect function:

Definition 4.4. Let A ⊆M be a finite set and 0 < λ ≤ 1. We define

tλ(A) := inf{t ∈ Rad(A) : h(t, A) ≤ λt}. (4.3)

Restricting to values t ∈ Rad(A) is necessary, for otherwise we would always have tλ(A) =
0 (as h(t, A) = 0 for t small enough). Proposition 4.3 implies that tλ(A) cannot be too large.
More precisely, we have the following lemma.

Lemma 4.5. Let A ⊆ M with t∗(A) ≤ λ2τ(M)/4. Let r0 = t∗(A)
λ

(
1 + 8

λ2
t∗(A)
τ(M)

)
and r1 =

λτ(M)/2. If t ∈ Rad(A) ∩ [r0, r1], then tλ(A) ≤ t.

Proof. By Proposition 4.3, we have, for t∗(A) < t ≤ λτ(M)/2,

h(t, A) ≤ t2

2τ(M)

(
1 + t2

τ(M)2

)
+ t∗(A)

(
1 + t∗(A)

τ(M)

)

≤ t2

2τ(M)
(
1 + λ2/4

)
+ t∗(A)

(
1 + t∗(A)

τ(M)

)
− λt+ λt =: P (t) + λt.
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Let u = 2t∗(A)
(
1 + t∗(A)

τ(M)

) (
1 + λ2/4

)
/
(
λ2τ(M)

)
. The condition t∗(A) ≤ λ2τ(M)/4

ensures that u ≤ 1. The quantity P (t) is nonpositive if t is between t0 and t1, where

t0 = τ(M)λ
1 + λ2/4(1−

√
1− u) and t1 = τ(M)λ

1 + λ2/4(1 +
√

1− u).

We have t1 ≥ r1 and, using the inequality
√

1− u ≥ 1 − u
2 −

u2

2 for 0 ≤ u ≤ 1, we
obtain that t0 ≤ r0. Therefore, any t ∈ [r0, r1] satisfies h(t, A) ≤ λt (note that r0 > t∗(A)). In
particular, if t is also in Rad(A), we have tλ(A) ≤ t.

Our main theorem states that, with high probability, the parameter tλ(Xn) is larger than
t∗(Xn)

Theorem 4.6. 1. Let µ ∈ Qdτmin,fmin,fmax
. Let 0 < b ≤ 2 and let Xn be a n-sample of law

µ. Let a = (d − 1) ∨ 2 if b = 2, and a = d − 1 otherwise. For n large enough, and with
probability larger than 1− c(lnn)an−b, we have for 0 < λ < (1 + b)−1/d,

t∗(Xn) ≤ tλ(Xn) ≤ t∗(Xn)
λ

1 + C

(
(lnn)2

n

)1/d
 (4.4)

where the constant c depends on b, and µ, and C depends on fmin, fmax, d, τmin and λ.

2. Furthermore, if µ is the uniform distribution on the circle of radius τmin, then, for λ >
(1 + b)−1, we have

P (t∗(Xn) > tλ(Xn)) ≥ cn−b (4.5)

for some constant c depending on τmin and b.

Inequality (4.5) implies that the probability 1− c(lnn)an−b appearing in the theorem is
close to being tight.

Proof of the upper bound in (4.4)

Let µ ∈ Qdτmin,fmin,fmax
be a probability distribution with support M and density f . We assume

without loss of generality that fmin is the essential infimum of f . Recall the notation r1 =
λτ(M)/2 and r0 = t∗(Xn)

λ

(
1 + 8

λ2
t∗(Xn)
τ(M)

)
from Lemma 4.5. The proof of the upper bound is

based on the following lemma.
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Lemma 4.7. There exists a positive constant β > 0 (depending on fmin, fmax, d and τmin)
such that the following holds. Let α > 0 and let I = [a, b] be an interval of length at least
` = α

(
lnn
n

)2/d
with b ≤ βα

(
lnn
n

)1/d
and a ≥ `/2. Then, the probability that Rad(Xn) does not

intersect I is smaller than n−1/2.

Before proving the lemma, let us use it to obtain the upper bound in (4.4). By Proposition
3.9 and Proposition 3.4, we have t∗(Xn) ≤

(
4 lnn

αdfminn

)1/d
everywhere but on a set of probability

smaller than n−2. We will assume that this condition is satisfied. In particular, the condition
t∗(Xn) ≤ λ2τ(M)/4 of Lemma 4.5 is satisfied. Let u = δ

(
(lnn)2

n

)1/d
(for some constant δ to fix)

and let

R0 := r0(1 + u) ≤ t∗(Xn)
λ

1 + 2δ
(

(lnn)2

n

)1/d
 ≤ 2

λ

( 4 lnn
αdfminn

)1/d
≤ r1.

Lemma 4.8. Let A ⊆M be a finite set of cardinality n. Then,

ε(A) ≥ cdτ(M)n−1/d.

Proof. If ε(A) ≥ τ(M)/4, the conclusion holds. Otherwise, as M ⊆ ⋃x∈A BM (x, ε(A)), one has
Vol(M) ≤ ncdε(A)d (using Lemma 2.3). We conclude with inequality (2.1).

According to Lemma 4.8 and Proposition 3.4, the interval [r0, R0] is of length r0u ≥
C1δ

(
lnn
n

)2/d
=: ` for some constant C1. Choose δ large enough so that 2

λ

(
4

αdfmin

)1/d
≤ βC1δ.

Then, as r0 ≥ `/2 (once again by Lemma 4.8), one can apply Lemma 4.7: the interval [r0, R0]
intersects Rad(Xn) with probability 1− n−2. Lemma 4.5 then yields the conclusion.

Proof of Lemma 4.7. Let Ik = [k`/2, (k + 1)`/2] for k an integer. Assume that we show
that Rad(Xn) intersects every interval Ik for k = 1, . . . ,K, where K is chosen so that b ≤
βα
(

lnn
n

)1/d
≤ (K + 1)`/2, say K + 1 =

⌈
2βα

(
lnn
n

)1/d
/`

⌉
=
⌈
2β(n/ lnn)1/d

⌉
. As the interval

I is of length at least `, and as `/2 ≤ a, the interval I contains one of the interval Ik for some
1 ≤ k ≤ K. In particular, the interval I also intersects Xn. Therefore, it suffices to bound the
probability that Rad(Xn) does not intersect Ik. If we show that this probability is of order at
most n−3, we may then conclude by a union bound: the probability that Rad(Xn) intersects all
the Ik is larger than 1− 2Kn−3 ≥ 1− 4βn1/d−3/(lnn)1/d ≥ 1− n−2.

To bound the probability that Rad(Xn) does not intersect Ik, we split the set Xn into two
groups: the set X 0

n = {X1, . . . , XL} (for some integer L to fix), and the set X 1
n = {XL+1, . . . , Xn}.

If some distance |Xi −Xj | is between k` and (k+ 1)`, then Rad(Xn) intersects Ik. We will show
that it is very likely that |Xi −Xj | ∈ [k`, (k + 1)`] for some i ≤ L and j > L. To do so, we
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consider the ball Bi centered at the point Xi, of radius (k + 1)`. Let Y be a point sampled
according to µ, conditioned on being in Bi. Then, according to Lemma 2.3, we have

P (|Y −Xi| ∈ [k`, (k + 1)`]|Xi) = µ (B (Xi, (k + 1)`) \B (Xi, k`))
µ (B (Xi, (k + 1)`))

≥ cdfmin
fmax(k + 1)d

(k + 1)d
(

1− (k + 1)2`2

3τ(M)2

)d
− kd

(
1 + 4k2`2

3τ(M)2

)d
≥ cdfmin
fmax(k + 1)d

(
dkd−1

(
1− (k + 1)2`2

3τ(M)2

)d
−

kd

(1 + 4k2`2

3τ(M)2

)d
−
(

1− (k + 1)2`2

3τ(M)2

)d)

≥ cdfmin
fmax(k + 1)d

(
dkd−1/2− C4k

d k2`2

τ(M)2

)
≥ C5

k

where we used the inequality C4
k2`2

τ(M)2 ≤ dk−1/4 at the last line: this inequality holds as
`2 is of order (lnn/n)4/d and k−3 is at least of order (lnn/n)3/d.

If Y1, . . . , YN are i.i.d. random variables of law µ, conditioned on being in Bi, we therefore
have

P (∀j ∈ {1, . . . , N}, |Yj −Xi| /∈ [k`, (k + 1)`]|Xi) ≤ exp (−C5N/k)

For each ball Bi, we let Ji ⊆ {L + 1, . . . , n} be the set of indexes j > L such that
Xj ∈ Bi. Assume that there exists a set of A balls Bi1 , . . . , BiA that are pairwise disjoint. Then,
the corresponding sets Ji are also pairwise disjoint. Conditionally on X 0

n and on Na := |Jia |,
the sets {Xj : j ∈ Jia} are independent for a = 1, . . . , A, and each consists of a sample of Nia

independent points sampled according to µ conditioned on being in Bia . Therefore, if E is the
event that Rad(Xn) does not intersect Ik, we have

P(E|X 0
n , (Ni)i≤L) ≤ exp

(
−

A∑
a=1

NiaC5/k

)
.

The random variable ∑A
a=1Nia is the number of points of X 1

n in ⋃Aa=1Bia . It follows a
binomial disribution of parameters n− L and p = ∑A

a=1 µ (Bia) ≥ C6A(k`)d, so that we have

P
(
E|X 0

n

)
≤ E

[
exp

(
−

A∑
a=1

NiaC5/k

)∣∣∣∣∣X 0
n

]
≤ exp

(
−C6(n− L)A(k`)d

(
1− e−C5/k

))
≤ exp

(
−C7(n− L)A(k`)d/k

)
.
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The quantity A can be chosen equal to the maximal number of balls Bi that are pairwise
disjoint. A procedure to create a set of pairwise disjoint balls is the following. Start with
Xi1 = X1, and throw away all the points of X 0

n at distance less than 2(k + 1)` from X1.
Take any point Xi2 that has not been thrown away, and throw away all the remaining points
that are distance less than 2(k + 1)` from Xi2 . Repeating this procedure for Ã steps until
no points are left, we obtain a set of indexes for which the corresponding balls are pairwise
disjoint. In particular, Ã ≤ A. The number of points that are thrown away at the step a
follows a binomial distribution of parameters m and q, where m ≤ L is the number of points in
Ma := M\

⋃
a′<a B

(
Xia′ , 2(k + 1)`

)
, and, as long as fmaxcda(k`)d ≤ 1/2

q = µ (Bia)
µ (Ma)

≤ cdfmax(k`)d
1− acdfmax(k`)d ≤ C8(k`)d.

In particular, the number of points that have been thrown away after a steps is stochas-
tically dominated by the sum of a independent binomial random variables of parameter L and
C8(k`)d, that is a binomial random variable Za of parameters aL and C8(k`)d. This implies that

P(A ≤ a) ≤ P(Ã ≤ a) ≤ P (Za ≥ L) .

Let a =
⌊
1/
(
C9(k`)d

)⌋
, where C9 is choosen so that fmaxcda(k`)d ≤ 1/2 and EZa =

aLC8(k`)d ≤ L/2. Then, P (Za ≥ L) ≤ P (Za − EZa ≥ L/2) ≤ exp (−C10L) using Bernstein’s
inequality. Therefore, letting L = (3/C10) (lnn), we obtain that

P(E) ≤ E
[
exp

(
−C7(n− L)A(k`)d/k

)]
≤ E

[
exp

(
−C7(n− L)A(k`)d/k

)
1{A ≥ a}

]
+ P(A ≤ a)

≤ exp
(
−C11n

⌊
1/
(
C9(k`)d

)⌋
(k`)d/k

)
+ n−3

≤ exp
(
−C12n

1−1/d(lnn)1/d/(2β)
)

+ n−3

If d ≥ 2, the first term in the above sum is smaller than n−3. If d = 1, it is equal to
n−C12/(2β) and we choose β = C12/6 to conclude.

Proof of the lower bound in (4.4)

A first naive attempt to lower bound tλ(Xn) is the following. Remark that if two points X1, X2,
at distance 2t, are such that the ball centered at their middle, of radius t, does not contain
any point of Xn, then dH(Conv({X1, X2})|Xn) = t. Fix t > 0, and assume that there is some
t′ ∈ Rad(Xn) smaller than t such that h(t′,Xn) < t′. There must then exist a simplex of size at
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least 3 of radius smaller than t in Xn. In particular, there are three points X1, X2 and X3 of Xn
so that X2, X3 ∈ B (X1, 2t). Therefore, according to Lemma 2.3, if t ≤ τ(M)/8,

P (tλ(Xn) < t) ≤ P (∃X1, X2, X3 with X2, X3 ∈ B (X1, 2t))
≤ E [P (∃X2, X3 ∈ B (X1, 2t) |X1)]

≤ E
[
(nµ(B

(
X1, 2t))2

]
≤ (αdfmaxn(13t/6)d)2 ≤ C0(ntd)2.

(4.6)

We know from the previous section that t∗(Xn) is of order t ' (lnn/n)1/d, while
(
ntd
)2
'

(lnn)2 for such a value of t. Hence, the previous inequality is far from sufficient to obtain
Theorem 4.6. We therefore consider a more elaborate construction.

Lemma 4.9. Let δ > 0. For t small enough (depending on µ and δ), there exist K pairwise
disjoint measurable subsets U1, . . . , UK , so that K ≥ cu,δt

−d and each set Uk contains a ball Vk
of radius t and satisfies

µ (Uk) = m(t) := αd(1 + δ)fmint
d. (4.7)

Before proving the lemma, note that we also have Km(t) ≤ 1 by a union bound.

Proof. Consider the collection F of balls V of radius t centered at a point of M satisfying
µ(V ) ≤ αd(1 + δ)fmint

d, and let At be the set of the centers of such balls. By Besicovitch’s
covering theorem [Fed69, Theorem 2.8.14], there exist NM collections G1, . . . ,GNM of disjoint
balls in F such that

At ⊆
NM⋃
l=1

⋃
V ∈Gl

V.

Letting Kt be the maximal number of pairwise disjoint balls in F , we have µ (At) ≤
NMKtαd(1 + δ)fmint

d. By the Lebesgue differentiation theorem, for almost all points x ∈ M
with f(x) < (1 + δ)fmin, we have

lim
t→0

µ(B(x, t))
αdtd

< fmin(1 + δ).

For such a x, we then have x ∈ lim inft→0At. Therefore,

cµ = µ ({x ∈M : f(x) < (1 + δ)fmin}) ≤ µ
(

lim inf
t→0

At

)
≤ lim inf

t→0
µ (At)

≤ NMαd(1 + δ) lim inf
t→0

Ktt
d.

By the definition of fmin, cµ > 0. Therefore, for t small enough, we have the inequality
Kt ≥ cµ

2NMαd(1+δ) t
−d. Let V1, . . . , VK(t) be a set of pairwise disjoint balls in F . By construction,
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λt

t

xk

Bk

A−
k A+

k

(2− λ)t

Uk

Vk

Figure 6 – Any ball with diameter whose one extremity is in A−k and the other in A+
k is included

in Uk.

each ball Vk satisfies µ (Vk) ≤ m(t). Also, we have µ (Vk) ≥ αdfmint
d/2 for t small enough by

Lemma 2.3. This implies by a union bound that 1 ≥ K(t)αdfmint
d/2. Therefore, K(t)m(t) ≤

2(1 + δ). We define K = bK(t)/(2(1 + δ))c, a number that satisfies K ≥ cµ,δt−d and Km(t) ≤ 1.
Eventually, we build the sets Uk by induction by choosing any measurable set Wk in

M\(⋃k′<k Uk′ ∪Vk) with µ (Wk) = m(t)−µ (Vk) ≥ 0 and letting Uk = Vk ∪Wk. This is possible
as

µ

M\( ⋃
k′<k

Uk′ ∪ Vk)

 ≥ 1− (k − 1)m(t)− µ (Vk) ≥ m(t)− µ (Vk) .

By construction, µ (Uk) = m(t) for every k. Note that we used the fact that for any
A ⊆ M and 0 ≤ p ≤ µ(A), there exists a subset V ⊆ A with µ(V ) = p: this holds as µ is
absolutely continuous with respect to the volume measure on M .

We fix such a partition in the following, with balls Vk of radius (2 − λ)t. We write m
for m((2 − λ)t). Let Bk be the ball sharing its center with Vk, of radius t. For W ⊆ M , let
N(W ) be the number of points of Xn in W . We also write Nk for N (Uk). Let xk be the center
of Bk and e be a unit vector in TxM , and denote by A+

k (resp. A
−
k

)
the ball of radius (1− λ)t/2
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centered at x+ = xk + e(1 + λ)t/2 (resp. x− = xk − e(1 + λ)t/2), see Figure 6.

Lemma 4.10. Fix k = 1, . . . ,K. If h(t,Xn) < λt and Nk = 2, then we cannot have both
N(A+

k ) = 1 and N(A−k ) = 1

Proof. Let σ = Xn ∩ Uk. Assume by contradiction that h(t,Xn) < λt, Nk = 2, and N(A+
k ) =

N(A−k ) = 1. Then, σ is made of two points, x1 and x2, respectively in A+
k and A−k . As both

points belong to Bk, we have r(σ) ≤ t. Therefore, dH(Conv(σ)|Xn) ≤ h(t,Xn) < λt. In
particular, the middle point x0 of x1 and x2 is at distance less than λt from Xn. Let us show that
BM (x0, |x1 − x0|) ⊆ Vk. If this is the case, then d(x0,Xn) = |x1 − x2| /2 ≥ λt, a contradiction
with having dH(Conv(σ)|Xn) < λt. Let z ∈ BM (x0, |x1 − x0|) and denote by πe the projection
on e. Then,

|z − xk| ≤ |z − x0|+ |x0 − xk| ≤
|x1 − x2|

2 + |πe (x0 − xk)|+
∣∣∣π⊥e (x0 − xk)

∣∣∣
≤ t+ (1− λ)t

2 + (1− λ)t
2 ≤ (2− λ)t

concluding the proof.

Denote by Fk the complementary event of the event N(A+
k ) = N(A−k ) = 1. We obtain

the bound

P (h(t,Xn) < λt) ≤ P (∀k = 1, . . . ,K,Nk 6= 2 or (Nk = 2 and Fk))

= E
[
P
(
∀k = 1, . . . ,K,Nk 6= 2 or (Nk = 2 and Fk) | (Nk)k=1,...,K

)]
≤ E

[
K∏
k=1

(1 {Nk 6= 2}+ P (Fk|Nk = 2) 1 {Nk = 2})
]

≤ E
[
K∏
k=1

(1− (1− P (Fk|Nk = 2)) 1 {Nk = 2})
]
.

Lemma 4.11. There exists a positive constant C1 such that

P (Fk|Nk = 2) ≤ e−C1 for k = 1, . . . ,K. (4.8)

Proof. If |x+ − xk| ≤ t ≤ 7τ(M)/24, then there exists y+ ∈ M that satifies πxk (y+ − xk) =
x+ − xk by Lemma 2.2. Furthermore, we have |y+ − xk| ≤ 8t/7 and, by Lemma 2.1, we have
|y+ − x+| ≤ (8t/7)2/(2τ(M)) = 32t2/(49τ(M)). In particular,

B (x+, (1− λ)t/2) ⊇ B
(
y+, (1− λ)t/2− 32t2/(49τ(M))

)
⊇ B (y+, (1− λ)t/4)
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if t ≤ 49(1 − λ)τ(M)/128. According to Lemma 2.3, we therefore have, also assuming
that t ≤ τ(M)/4

µ (B (x+, (1− λ)t/2)) ≥ fminαd

((1− λ)t
4

47
48

)d
and the same inequality holds for x−.

Let Y1, Y2 be two independent random variables sampled according to µ, conditioned on
being in Uk. Then, as µ (Uk) = m = αd(1 + δ)fmin(2− λ)dtd,

P (Fk|Nk = 2) = 1− 2P
(
Y1 ∈ A+

k

)
P
(
Y2 ∈ A−k

)
= 1− 2µ

(
B
(
x+, (1− λ)t/2

))
µ (B (x−, (1− λ)t/2))

µ (Uk)2

≤ 1− 2


(

47
48

1−λ
4

)d
(1 + δ)(2− λ)d


2

≤ e−C1

where C1 = 2
(

( 47
48

1−λ
4 )d

(1+δ)(2−λ)d

)2

.

We finally obtain

P (h(t,Xn) < λt) ≤ E
[
exp

(
−C1

K∑
k=1

1 {Nk = 2}
)]

. (4.9)

Lemma 4.12. Assume that nm ≤ max
(
m−1, (lnn)2). Let φ : x ∈ [0,+∞) 7→ min(1, x)e−x.

Then,

E
[
exp

(
−C1

K∑
k=1

1 {Nk = 2}
)]
≤ C2 exp (−C3nφ(nm)) (4.10)

for some positive constants C2, C3.

Lemma 4.12 relies on concentration inequalities and is proved in Appendix A. As m is of
order td, the condition nm ≤ max

(
m−1, (lnn)2) is satisfied as long as td � (lnn)2/n. Remark

also that the function φ is increasing on [0, 1] and decreasing on [1,+∞).
Assume that t1 ≤ t ≤ t2, where

t1 = 1
2− λ

( 1
αdfmin(1 + δ)n

)1/d
and t2 = 1

2− λ

(
β lnn

αdfmin(1 + δ)n

)1/d
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for some 0 < β < 1. Then, 1 ≤ nm ≤ β lnn, so that φ(nm) ≥ φ(β lnn) = n−β and

∀t ∈ [t1, t2] , P (h(t,Xn) < λt) ≤ C2 exp
(
−C3n

1−β
)
≤ n−2 (4.11)

for n large enough. Assume now that t ∈ [t0, t1], where

t0 = 1
2− λ

(
κ lnn

αdfmin(1 + δ)n2

)1/d

for some κ > 0. Then, κ(lnn/n) ≤ nm ≤ 1, so that φ(nm) ≥ φ(κ(lnn/n)) ≥ κ lnn/(2n) for n
large enough. Choosing κ ≥ 4/C3, we obtain that

∀t ∈ [t0, t1] , P (h(t,Xn) < λt) ≤ C2n
−C3κ/2 ≤ C2n

−2. (4.12)

The picture is now as follows. We know from (4.6) that tλ(Xn) ≥ t0 with probability at
least 1− c3(lnn/n)2. For each t between t0 and t2, we also have h(t,Xn) ≥ λt with probability
at least n−2 (at least for n large enough with respect to λ and µ). Consider a sequence t(i) with
t(0) = t0 and t(i+1) = t(i)/λ for i = 0, . . . , I, with I chosen so that

t2/λ ≤ t(I) ≤ t2

Assume that tλ(Xn) ≥ t0 and that h(t(i),Xn) ≥ λt(i) for every i. If t belongs to the
interval

[
t(i), t(i+1)

]
, then h(t,Xn) ≥ h(t(i),Xn) ≥ λt(i) ≥ λ2t. Therefore, tλ2(Xn) ≥ t2 Let

λ′ = λ2. As I is of order lnn, by a union bound, we obtain that, for any 0 < β, δ < 1, λ′ ∈ (0, 1)
and n large enough

P
(
tλ′(Xn) ≤ 1

2−
√
λ′

(
β lnn

αdfmin(1 + δ)n

)1/d)

≤ P (tλ(Xn) < t0) +
I∑
i=0

P
(
h(t(i),Xn) < λt(i)

)
≤ c3(lnn/n)2 + c4(lnn)n−2

≤ c5(lnn/n)2.

(4.13)

Lemma 4.13. Let A ⊆M . Let 0 < λ ≤ λ′ < 1. Then, tλ(A) ≥ λ′

λ tλ′(A).

Proof. The function h(·, A) is nondecreasing, and is therefore larger than λ′tλ′(A) for t ≥ tλ′(A).
Therefore, for t ∈ [tλ′(A), (λ′/λ) tλ′(A)], we have h(t, A) ≥ λ′tλ′(A) ≥ λt, yielding the conclusion.
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Let 0 < λ < (1 + b)−1/d. From Proposition 3.9, we know that with probability 1−
c(lnn)d−1n−b, we have ε(Xn) ≤ (1 + b)1/d (lnn/ (nαdfmin))1/d. For any r > 1, if n is large
enough, by Proposition 3.4, this entails that t∗(Xn) ≤ rε(Xn). Choose λ′, β and r close enough
to 1, and δ small enough, so that

λ′

λ
(
2−
√
λ′
) β1/d

(1 + δ)1/d ≥ r(1 + b)1/d.

Such a choice is possible as 1
λ > (1 + b)1/d. Then, assuming that the complementary of

the event described in (4.13) also holds, we have

tλ(Xn) ≥ λ′

λ
tλ′(Xn) ≥ λ′

λ

1
2−
√
λ′

(
β lnn

αdfmin(1 + δ)n

)1/d
≥ rε(Xn) ≥ t∗(Xn)

As the probability appearing in (4.13) is smaller than a quantity of order (lnn)2n−2 ≤
(lnn)an−b for any 0 < b ≤ 2, we obtain inequality (4.4), concluding the proof of the first
statement of Theorem 4.6.

Proof of (4.4)

Consider a n-sample {X1, . . . , Xn} on the circle M of radius 1. Without loss of generality, we
assume that X1 = (0, 1). Each point Xi is equal to exp (iθi) where θi ∈ [0, 2π). Consider the
ordering

0 = θ(1) ≤ · · · ≤ θ(n)

and the associated points X(1), . . . , X(n). Define the spacings Vi = θ(i+1) − θ(i) for i =
1, . . . , n (with by convention θ(n+1) = 2π

)
. The corresponding edge lenth

∣∣∣X(i+1) −X(i)

∣∣∣ =: 2ti
satisfies Vi = arccos

(
1− 2t2i

)
.

We write V(1) ≤ · · · ≤ V(n) for the ordered spacings (and t(1) ≤ · · · ≤ t(n) for the
associated lengths). Note that we have t∗(Xn) = t(n). The next lemma asserts that the convexity
defect function cannot increase too much between two consecutive t(i)s.

Lemma 4.14. For t ∈
[
t(i), t(i+1)

)
, we have h(t,Xn) ≤ t(i) + t2(i+1).

Proof. Let
[
X(k), X(l)

]
be an edge of length smaller than 2t with k < l. We assume without

loss of generality that X0 does not lie on the arc between X(k) and X(l). Let x be a point on
this edge, of the form reiθ for some angle θ(k) ≤ θ ≤ θ(l). The angle θ belongs to the segment[
θ(j), θ(j+1)

]
for some index j. As t < t(i+1) we have tj < t(i+1), that is tj ≤ t(i). The ray of

angle θ hits the line
[
X(j), X(j+1)

]
at some point y, and
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Figure 7 – Construction used in the proof of Lemma 4.14. The distance between X(j) = eiθ(j)

and X(j+1) = eiθ(j+1) is equal to 2tj , while the distance between X(k) = eiθ(k) and X(l) = eiθ(l) is
smaller than 2t.

d(x,Xn) ≤ |x− y|+ d(y,Xn) ≤ d(x,M) + tj ≤ t2 + t(i)

by Lemma 3.2. As t ≤ t(i+1), we obtain the conclusion.

Let λ > (1 + b)−1 and fix an arbitrary λ′ satisfying (1 + b)−1 < λ′ < λ. Assume that
t(n−1) ≤ λ′t(n). Then, for t ∈

[
t(n−1), t(n)

)
, we have according to the previous lemma that

h(t,Xn) ≤ λ′t(n) + t2(n).

Choosing t ∈ I :=
[
t(n)

(
λ′ + t(n)

)
/λ, t(n)

)
, we have h(t,Xn) < λt. The interval I satisfies

the conditions of Lemma 4.7, and therefore intersects Rad(Xn) with probability 1 − n−2. In
particular, tλ(Xn) is smaller than the upper endpoint of I, that is t(n) = t∗(Xn). Note that such
a choice of t is possible as long as λ− λ′ > t(n). To put it another way, we have

P (tλ(Xn) < t∗(Xn)) ≤ P
(
t(n−1) ≤ λ′t(n)

)
+ P

(
λ− λ′ < t(n)

)
+ n−2. (4.14)

The second probability in the above equation is exponentially small by Proposition 3.9.
It remains to study the probability that t(n−1) ≤ λ′t(n). Let A1, . . . , An be a n-sample following
an exponential distribution. According to [DD70, Section 6.4], we have

(V1, . . . , Vn) ∼ 2π
(

A1∑n
i=1Ai

, . . . ,
An∑n
i=1Ai

)
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In particular, the law of V(n)/V(n−1) is equal to the law of A(n)/A(n−1), the largest of the
Ais divided by the second largest. Furthermore, according to [ZD17, Theorem 2.1], we have, for
any s > 1,

P
(
A(n)/A(n−1) ≥ s

)
= n(n− 1)

n−2∑
k=0

(
n− 2
k

)
(−1)n−2−k

n− 1− k + s

= n(n− 1)
n−2∑
k=0

(
n− 2
k

)
(−1)n−2−k

∫ 1

0
xn−2−k+s dx

= n(n− 1)
∫ 1

0
xs(1− x)n−2 dx

= n(n− 1)B(s+ 1, n− 1)
∼ n2Γ(s+ 1)n−(s+1) ∼ Γ(s+ 1)n1−s,

(4.15)

where B is the Beta function. Also, by writing a Taylor expansion of arccos at 1, we
obtain that for t(n) small enough,

V(n)
V(n−1)

=
arccos

(
1− 2t2(n)

)
arccos

(
1− 2t2(n−1)

) ≤ t(n)
t(n−1)

(
1 +

5t2(n)
24

)

If t(n−1) ≤ λ′t(n), then we have V(n)
V(n−1)

≥ (λ′)−1
(

1 +
5t2(n)

24

)
≥ 1 + b if t(n) is smaller than

some constant c0 (recall that λ′ > (1 + b)−1). Therefore,
P
(
t(n−1) ≤ λ′t(n)

)
≥ P

(
t(n) > c0

)
+ P

(
V(n)
V(n−1)

≥ 1 + b

)

for some small constant c0 (depending on the distance between (1 + b)−1 and λ′ ). The
first probability is exponentially small, and the second one is of order n−b by (4.15). Inequality
(4.14) then yields the conclusion.

5 Sampling with noise

So far, we have always considered that the point cloud Xn lies exactly on the manifold M .
However, all the constructions presented are stable with respect to tubular noise.

Let 0 < γ < τmin. Let X = Y + Z, with the law ν of Y being in Qdτmin,fmin,fmax
and

Z ∈ TYM⊥ satisfying |Z| ≤ γ. We let Qd,γτmin,fmin,fmax
be the set of laws of such random variables

X. Observe that, as we do not assume that the conditional noise Z|Y is centered, the model is
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not identifiable, that is M is not determined by the law µ of X. To simplify matters, for each
law µ ∈ Qd,γτmin,fmin,fmax

, we will make an arbitrary choice among the admissible couples (Y,Z)
with Y + Z ∼ µ. The "underlying manifold M of the law µ " will be the support of the law of
Y , while the results of this section will hold for any choice of couple (Y,Z).

Remark 5.1 (On the orthogonality assumption). The assumption that the noise is orthogonal
(that is Z ∈ TYM⊥

)
is not restrictive. Let γ < τmin, ν ∈ Qdτmin,fmin,fmax

with density f and
Y ∼ ν. Let Z be any random variable supported on B(0, γ), and X = Y +Z (without necessarily
Z ∈ TYM⊥

)
. We may write X = πM (X) + (X − πM (X)) = Y ′ + Z ′. By Lemma 2.2, we have

Z ′ ∈ TY ,M⊥. Furthermore, the density of Y ′ can be explicitely computed in terms of the density
of f and of the Jacobian of the function Gz : y ∈ M 7→ πM (y + z). More precisely, one can
show that Gz is bijective, of class C1, and, by a change of variable, that the density f ′ of Y ′
at y is given by E

[
f(G−1

Z (y))J(G−1
Z )(y)

]
. The derivative of GZ is expressed in terms of the

second fundamental form of M (whose operator norm is bounded by the reach τ(M) [NSW08]).
In particular, the Jacobian is upper and lower bounded, so that f ′ is lower and upper bounded
on M . In other words, the law of X belongs to Qd,γτmin,afmin,fmax/a

for some 0 < a < 1 depending
on d, τmin and τmin − γ.

We first show that the t-convex hull with parameter t of order (lnn/n)1/d has a risk of
the same order if tubular noise is added.

Proposition 5.2. Let A,B ⊆ RD and let dH(A,B) ≤ γ. Then,

dH(Conv(t, A)|Conv(t+ γ,B)) ≤ γ (5.1)

Proof. Let σ ⊆ A. By definition, there exists σ′ ⊆ B such that dH(σ|σ′) ≤ γ. We have
r (σ′) ≤ r(σ) + γ ≤ t+ γ (see [ALS13, Lemma 16]) and dH(Conv(σ)|Conv(σ′)) ≤ γ.

Let Xn = {X1, . . . , Xn} be a n-sample of law µ, with Yn = {Y1, . . . , Yn} the corresponding
sample on M (that is Yi = πM (Xi). If t ≥ t∗(Yn) + γ, then

dH(M |Conv(t,Xn)) ≤ dH(M |Conv(t− γ,Yn)) + dH(Conv(t− γ,Yn)|Conv(t,Xn))

≤ (t− γ)2

τ(M) + γ

and dH(Conv(t,Xn)|M) ≤ dH(Conv(t,Xn)|Conv(t+ γ,Yn)) + dH(Conv(t+ γ,Yn)|M)

≤ γ + (t+ γ)2

τ(M) .

Therefore, we obtain that, for t ≥ t∗ (Yn) + γ,

dH(Conv(t,Xn),M) ≤ (t+ γ)2

τ(M) + γ. (5.2)
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Assume that γ ≤ η(lnn/n)2/d for some η > 0 and let t̃n = 2tn, where tn is the radius
appearing in Theorem 1.1. The probability that t̃n ≤ t∗ (Yn) + γ is smaller than the probability
that tn ≤ t∗ (Yn), a probability that we control by Proposition 3.9. As t̃n + γ ≤ 3tn for n large
enough, we obtain that

E
[
dH(Conv(t̃n,Xn),M)

]
≤
(

c1

τmin (αdfmin)2/d + η

)( lnn
n

)2/d

for some absolute constant c1.
Let us now analyze how the selection procedure is impacted by the presence of noise.

We mimick the proof of Theorem 4.6. Let 0 < b ≤ 2 and let 0 < λ < (1 + b)−1/d. If tλ(Xn) < t,
then in particular there exist three points X1, X2 and X3 such that X2, X3 ∈ B (X1, 2t). We
then have by Lemma 2.2 that Y2, Y3 ∈ B

(
Y1,

2τ(M)
τ(M)−γ t

)
. We obtain as in (4.6) that

P (tλ(Xn) < t) ≤ C1

(
ntd
)2

(τmin − γ)2 . (5.3)

Fix t ∈ [t0, t2] (where t0 and t2 are defined in the proof of Theorem 4.6) and let 0 < γ < t.
We have, by Proposition 5.2,

h(t,Xn) = dH(Conv(t,Xn)|Xn)
≥ dH(Conv(t− γ,Yn)|Yn)− dH(Xn|Yn)− dH(Conv(t− γ,Yn)|Conv(t,Xn))
≥ h(t− γ,Yn)− 2γ.

Therefore, if λt+2γ
t−γ ≤ λ′ < 1 and h(t − γ,Yn) ≥ λ′(t − γ), then h(t,Xn) ≥ λt. Assume

that γ ≤ η(lnn/n)2/d for some η > 0 and fix λ′ = (1 + λ)/2. Then, for t ≥ t̃0 := 6γ/(1− λ), the
condition λt+γ

t−γ ≤ λ
′ is satisfied. Furthermore, according to the proof of Theorem 4.6, for such a

t, the condition h(t− γ,Yn) ≥ λ′(t− γ) is satisfied with probability at least 1− cn−2. Using the
same argument than in the proof of Theorem 4.6, we then obtain that

P
(
tλ(Xn) ≤ 1

2−
√
λ

(
β lnn

αdfmin(1 + δ)n

)1/d)
≤ c1(lnn)n−2 + c2

(
nt̃d0

)2

≤ 2c2
(lnn)4

n2 .

(5.4)

We may conclude as in the previous proof that we have tλ(Xn) ≥ t∗ (Yn) + γ with
probability equal to 1− c(lnn)ãn−b, where ã = 4 ∨ (d− 1) if b = 2 and d− 1 otherwise.

Let us now provide an upper bound on tλ(Xn). Consider the interval

I = [(1− λ/8)tλ/2(Yn), (1− λ/16)tλ/2(Yn)).
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By Theorem 4.6, Proposition 3.4, Lemma 4.8 and Proposition 3.9, tλ/2 (Yn) is at least of order
n−1/d and at most of order (lnn/n)1/d with probability 1−n−2. By Lemma 4.7, this implies that
Rad (Yn) intersects I with the same probability. Let t′ ∈ Rad (Yn) ∩ I. This scale corresponds
to some simplex σ′ = {y1, . . . , yK}, and we let σ = {x1, . . . , xK} ⊆ Xn where yi = πM (xi). We
have t := r(σ) ≤ γ + t′ according to [ALS13, Lemma 16]. Furthermore, if z is the center of the
smallest enclosing ball of σ, we have using Lemma 2.2, |yi − πM (z)| ≤ τ(M)

τ(M)−γ |xi − z| ≤
tτ(M)
τ(M)−γ ,

indicating that t′ ≤ tτ(M)
τ(M)−γ . Recalling that γ is of order (lnn/n)2/d � n−1/d � tλ/2 (Yn), this

means we have found a scale t ∈ Rad(Xn) satisfying

(1− λ/4)tλ/2(Yn) ≤
(

1− γ

τ(M)

)
t′ ≤ t ≤ t′ + γ ≤ (1− λ/8)tλ/2(Yn). (5.5)

Using Proposition 4.3 and (5.5), we obtain

h(t,Xn) ≤ dH(Conv(t,Xn)|Conv(tλ/2(Yn),Yn)) + h(tλ/2(Yn),Yn) + dH(Xn,Yn)

≤ (tλ/2(Yn)− t) + λ

2 tλ/2(Yn) + γ

≤ λ

4 tλ/2(Yn) + λ

2 tλ/2(Yn) + γ ≤ 3λ
4 tλ/2(Yn) + γ ≤ λ(1− λ/4)tλ/2(Yn)

≤ λt

where at the second to last line we used that γ ≤ λ (1−λ)
4 tλ/2(Yn) (as tλ/2(Yn) is of order

at least n−1/d
)
. This implies that tλ(Xn) ≤ t ≤ tλ/2(Yn). Using the upper bound on tλ/2(Yn)

given in Theorem 4.6, we have that, with probability 1− c(lnn)ãn−b,

t∗(Yn) + γ ≤ tλ(Xn) ≤ 2t∗(Yn)
λ

1 + C

(
(lnn)2

n

)1/d
 (5.6)

that is an analog of Theorem 4.6 also holds in a setting where tubular noise of size
(lnn/n)2/d is present.

6 Adaptive estimation with the selected scale

In this section, we show that the estimator M̂ = Conv(tλ(Xn),Xn) is minimax adaptive on the
scale of models Qdτmin,fmin,fmax

. For the sake of exposition, we focus on the noiseless case γ = 0.
We first have to be careful when defining the scale of models. Indeed, by (2.1), we have for
µ ∈ Qdτmin,fmin,fmax

supported on M

1 = µ(M) ≥ fminωdτ
d
min,
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so that the modelQdτmin,fmin,fmax
is empty if fminωdτ

d
min > 1. Also, if we have fminωdτ

d
min =

1, then µ is the uniform distribution on a sphere. In this case d + 1 observations characterize
M , and the minimax rate on Qdτmin,fmin,fmax

is zero for n ≥ d + 1. To discard such degenerate
cases, we will assume that there exists a constant κ < 1 so that ωdfminτ

d
min < κ. We have

already mentioned in the introduction that Kim and Zhou [KZ15] showed that the minimax
risk Rn(Qdτmin,fmin,fmax

) is of order (lnn/n)2/d. They were however not concerned with precise
constants. We indicate in Appendix B how to modify their proof to obtain a more precise result.

Proposition 6.1. There exists a constant C depending only on κ such that

lim
n

inf
Rn(Qdτmin,fmin,fmax

)
(lnn/n)2/d ≥ C

(αdfmin)2/d τmin
.

Our adaptivity result then reads as follows.

Theorem 6.2. Let d ≥ 2. Let µ ∈ Qdτmin,fmin,fmax
and let 0 < λ < (1 + 2/d)−1/d. Then, for n

large enough, we have

E [dH(Conv(tλ(Xn),Xn),M)] ≤ c0

λ2 (αdfmin)2/d τmin

( lnn
n

)2/d

≤ c1
λ2Rn(Qdτmin , fmin, fmax),

(6.1)

where c0 is a numerical constant and c1 only depends on κ.

Proof. Choose b ∈ (0, 2] such that λ < (1 + b)−1/d < (1 + 2/d)−1/d. Assume that the event
described in (4.4) is satisfied (that is with probability larger than 1− c(lnn)d−1n−b

)
. Then, we

have by Lemma 3.3

dH(Conv(tλ(Xn),Xn),M) ≤ tλ(Xn)2

τmin
≤ t∗(Xn)2

λ2τmin

1 + C

(
(lnn)2

n

)1/d
2

We also assume that ε(Xn) ≤
(

4 lnn
αdfminnn

)1/d
, an event that happens with probability

1 − (lnn)d−1n−3 by Proposition 3.9. Then, for n large enough, we have t∗(Xn) ≤ 2ε(Xn) by
Proposition 3.4. In particular, we obtain that, for n large enough

dH(Conv(tλ(Xn),Xn),M) ≤ c0

λ2 (αdfmin)2/d τmin

( lnn
n

)2/d

for some absolute constant c0. The probability that this inequality is not satisfied is of
order (lnn)d−1n−b � (lnn/n)2/d, and if this is the case we bound the risk by diam(M) (that
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is bounded by a constant depending on τmin, fmin and d [Aam17, Lemma III.24]). We therefore
obtain the first inequality of (6.1), while the second one follows directly from Proposition 6.1.

Remark 6.3. In the case d = 1, the minimax risk is of order (lnn/n)2/
(
(αdfmin)2 τmin

)
,

whereas, with b = 2, the probability with which (5.6) holds is of order (lnn/n)2. As such, one
can show that the risk of Conv(tλ(Xn),Xn) is of order (lnn/n)2 for d = 1, but with a leading
constant that will depend on the constants appearing in Theorem (4.6). This leading constant
is therefore not anymore of order 1/

(
(αdfmin)2 τmin

)
, and we do not have a clean inequality of

the form (6.1). Still, Conv(tλ(Xn),Xn) is a data-driven minimax estimator even in this case.

With a choice of λ smaller than 1/
√

2 (say λ = 1/2 ), the condition λ < (1 + 2/d)−1/d

is satisfied for every d ≥ 2. With such a choice, we obtain a completely data-driven estimator
that attains asymptotically the minimax rate Rn(Qdτmin,fmin,fmax

) up to an absolute constant, for
every admissible choice of τmin, fmin, fmax and d ≥ 2. The slope λ in our selection procedure
is akin to a regularization parameter that appears in most selection methods (such as in the
LASSO [Tib96], or the PCO and Goldenshluger-Lepski methods already mentioned). If every
choice of parameter λ < 1/

√
2 is admissible from a theoretical point of view, the practical choice

of the parameter λ is more delicate. We develop in Section 7 a heuristic, similar to the slope
heuristics [Arl19], to choose the parameter λ.
Remark 6.4. We insist that our result is of an asymptotic nature, as the "large enough" in
the above theorem depends on the probability measure µ. A similar behavior occurs with the
PCO method mentioned in the introduction [LMR17] (or with the Goldenshluger-Lepski method
[LM16, Proposition 1]). Indeed, the remainder term C(n, |H|) appearing in (1.5) depends on µ
through the ∞-norm of its density function, whereas the minimax risk does not depend on this
∞-norm (see [Tsy08, Theorem 2.8]). As such, the remainder term C(n, |H|) becomes negligible
in front of the minimax risk only for n large enough with respect to µ (and not only with respect
to the parameters defining the statistical model), as this is the case in Theorem 6.2.

The parameter tλ(Xn) actually gives us the approximation rate ε(Xn) up to a multiplica-
tive constant (roughly equal to λ−1). As such, it can be also used to design other data-driven
estimators. As an example, we consider the estimation of the tangent spaces of a manifold. Let
x ∈M and A ⊆M be a finite set. We denote by Tx(A, t) the d-dimensional vector space U that
minimizes dH(A∩B(x, t)|x+U). This estimator was originally studied in [BSW09]. Recall that
the angle between subspaces is denoted by ∠.
Corollary 6.5. Let µ ∈ Qdτmin,fmin,fmax

with support M and let 0 < λ < (1 + 1/d)−1/d. Then,
for n large enough (with respect to µ), we have

E∠ (TxM,Tp (Xn, 11tλ(Xn))) ≤ c
( lnn
n

)1/d

for some constant c depending on λ, d, τmin and fmin
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This rate is the minimax rate (up to logarithmic factors) according to [AL19, Theorem
3].

Proof. Theorem 3.2 in [BSW09] states that for A ⊆M , if t < τ(M)/2 and t ≥ 10ε(A), then

∠ (Tx(A, t), TxM) ≤ 6 t

τ(M) .

As in the previous proof, we may choose b ∈ (0, 2] such that λ < (1 + b)−1/d < (1 +
1/d)−1/d, and assume that the event described in Theorem 4.6 is satisfied. We also assume
that ε(Xn) ≤

(
4 lnn

αdfminn

)1/d
. Then, the quantity t = 11tλ(Xn) is larger than 10ε(Xn) for n large

enough, and furthermore satisfies t ≤ c0
(

lnn
αdfminnn

)1/d
for some absolute constant c0 if n is large

enough. We then have

∠ (Tx (Xn, t) , TxM) ≤ c1

(αdfmin)1/d τmin

( lnn
n

)1/d

for some absolute constant c1 large enough. If one of the two conditions does not hold
(this happens with a probability smaller than (lnn)an−b = o

(
n−1/d

))
, we bound the angle by

2, concluding the proof.

Remark 6.6. Authors in [BHHS21] also propose to use the convexity defect function of a set
A ⊆M to estimate the reach of M , while their method requires only the knowledge of ε(A). As
such, we may use their technique by using the scale tλ(Xn) instead of ε(Xn). This leads to a
reach estimator that attains a risk of order (lnn/n)1/(3d). As the minimax risk is of order n−1/d

up to logarithmic factors for this problem (at least on a statistical model made of C3 manifolds),
this is far from being minimax. Still, this yields a consistent fully data-driven reach estimator.
We refer to [BHHS21] for details on the construction.

7 Numerical considerations1

There are two distinct procedures to investigate: first, the computation of the t-convex hull
Conv(t,Xn), and second, the computation of the scale tλ(Xn). To compute the t-convex hull
Conv(t,Xn), it suffices to compute the Čech complex Cech(t,Xn) := {σ ⊆ Xn : r(σ) ≤ t} . For
x ∈ RD, let N(x) be the number of points of Xn at distance less than 2t of x. Assume that
one has access to the set Et(Xn) of edges of Xn of length smaller than 2t. Then, authors in
[LMDV15] propose an algorithm of complexity CD

∑n
i=1N (Xi)D to compute Cech(t,Xn). When

t is of order (lnn/n)1/d, N(Xi) is on average of order lnn and we obtain an average complexity
1Code is made available at github.com/vincentdivol/local-convex-hull.
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of order CDn(lnn)D. In high dimension, the complexity can be reduced if one has access to
the dimension d by computing Convd(t,Xn) instead (see Remark 3.8). Indeed, according to
[LMDV15], the set of simplices of Cech(t,Xn) of dimension smaller than d can be computed
with average time complexity of order CdDn(lnn)d. We also have to consider the computation
of the edges Et(Xn). A naive algorithm to compute this set leads to a complexity of order Dn2,
but in practice this can be considerably sped up by using e.g. a RP tree [DF08].

We now adress the selection procedure described in Section 4. To choose the scale tλ(Xn),
we have to compute the convexity defect function of Xn. To do so, we need for each simplex
σ ⊆ Xn to (i) compute its radius r(σ) and (ii) compute dH(Conv(σ)|Xn). We will simplify
this problem by considering only simplexes σ of dimension 1 (i.e. edges). Let Graph(t,Xn) be
the union of the edges of Xn of length 2t. We may define a graph convexity defect function
h̃(t,Xn) = dH(Graph(t,Xn),Xn), as well as a graph scale parameter

t̃λ(Xn) := inf
{
t ∈ R̃ad(Xn) : h̃(t,Xn) ≤ λt

}
,

where R̃ad(Xn) := {|Xi −Xj | /2 : 1 ≤ i, j ≤ n} . A careful read of the proof of Theorem
4.6 shows that only edges are considered to obtain the different inequalities of the theorem. In
particular, this theorem also holds with t̃λ(Xn) instead of tλ(Xn). When e is an edge of Xn,
the distance dH(Conv(e)|Xn) can be computed in O(n(D + lnn)) operations [ABG+03]. By
looping over the O

(
n2) edges of the dataset, we may compute h̃(·,Xn) with a time complexity

of O
(
n3(D + lnn)

)
.

The choice of the slope value λ has an impact on the selection procedure. Ideally, we
would like to choose λ so that it is just below

λmax(Xn) := max {λ : tλ(Xn) > t∗(Xn)} .

Let tmax(Xn) = tλmax(Xn)(Xn). According to Proposition 4.3, the function h(·,Xn) is
almost constant after t∗(Xn), and therefore also almost constant after tmax(Xn). This implies
that tλ(Xn) should increase proportionally with 1/λ for λ < λmax(Xn) (at least approximately).
On the opposite, for λ > λmax(Xn), we expect tλ(Xn) to go to 0 quickly. By plotting the graph
of the function gXn : λ 7→ 1/tλ(Xn), those two behaviors should be observed (first linear and
then diverging), so that a "jump" should occur around the value λmax(Xn). We indeed observe
such a phenomenon, see Figure 8. In practice, we use a grid 0 = λ1 ≤ · · · ≤ λL = 1 and the
jump is defined by the smallest l such that the condition gXn (λl+1) − gXn (λl) > 0.5gXn(0) is
satisfied. We then select λchoice(Xn) = 0.8λjump (Xn) and let tsel(Xn) := tλchoice(Xn)(Xn) (other
constants than 0.5 and 0.8 would work as well).

Remark 7.1. This method to select the slope λ is similar to the slope heuristics in model
selection. Consider for instance the fixed-design regression setting where Y = F + ε ∈ Rn is
observed with a Gaussian noise ε ∼ N

(
0, σ2Id

)
. The goal is to reconstruct the signal F for
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Figure 8 – Top left. Sample Xn. Top right. The value of λchoice(Xn) is equal to 0.8λjump (Xn).
Bottom left. The set Conv(tsel(Xn),Xn). Bottom right. The graph convexity defect function
h(·,Xn).
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the `2-loss, by selecting an estimator among the estimators F̂m = πSm(Y ), where {Sm : m} is a
collection of linear subspaces, each Sm being of dimension Dm. A classical method to select the
estimator Fm is to choose

m̂(C) ∈ arg min
m

{∣∣∣F̂m − Y ∣∣∣2 + CDm

}
where C is a constant to fix. In theory, any value of C smaller than σ2 will lead to

overfitting, whereas values of C larger than σ2 are admissible. We then say that C = σ2 is the
minimal penalty. The exact value of the minimal penalty C = σ2 is of an asymptotic nature.
However, we still see a minimal penalty phenomenon occurring in practice: for C too small,
the selected dimension Dm̂(C) will be very large, whereas at some value Ĉjump it will suddendly
decrease and gets smaller. This jump is detected and is used to select the value of C. We refer
to [Arl19] for details. A similar phenomenon occurs in our setting: the slope λ plays the role of
the parameter C (or rather 1/C), and we have a maximal penalty phenomenon: every value of λ
smaller than 1 is theoretically admissible. The quantity 1/t is the analog of the dimension Dm,
as it is a measure of the complexity of the estimator Conv(t,Xn): choosing t = +∞ amounts to
assuming that M is a convex set, whereas choosing very small values of t amounts to assuming
that M has a small reach. In practice, we observe a jump in the function gXn : λ 7→ 1/tλ(Xn),
and we use this phenomenon to choose the parameter λ.

In Figure 8, we display the graph convexity defect function h̃(·,Xn) for a set Xn made
of n = 100 uniformly sampled point on the unit circle M , with a tubular uniform noise of size
γ = 0.1. Both the "jump" phenomenon in the function gXn and the expected behavior of the func-
tion h(·,Xn) occur. We evaluate ε(Xn) = 0.16, while λchoice(Xn) = 0.60 and tsel(Xn) = 0.26. Ac-
cording to [NSW08, Proposition 3.1], the Cech complex Cech(Xn, 2t) on A of radius 2t has the
same homology as M as long as t ≥ ε(Xn). As a safety check, we compute the homology of
Cech (Xn, 2tsel(Xn)), which is indeed equal to the homology of the circle.

Actually, it is not necessary to compute the whole convexity defect function to compute
t̃λ(Xn), as one can stop at the first value for which h̃(t,Xn) < λt. This can be used to speed
up the computation tsel(Xn). Given an integer K, we let `K(Xn) be half the maximum distance
between a point of Xn and its K th nearest neighbor in Xn. We compute for each point Xi in
Xn its K nearest neighbors X iK (using for instance a RP tree [DF08]). Then, for each point Xj

in X iK , if e = (Xi, Xj), we have dH(Conv(e)|Xn) = dH(Conv(e)|X iK). The latter distance can be
computed in O(K(D+lnK)) operations. There are at most nK such edges, so that we compute
h̃(·,Xn) up to t = `K(Xn) with O(nK2(D+lnK)) operations. We then apply the slope selection
procedure on the convexity defect function up to `K(Xn). If we select the maximal value possible,
that is if tsel(Xn) = `K(Xn), then we did not go far enough in the computation of the convexity
defect function. In that case, we repeat the procedure with K̄ = 2K. If tsel(Xn) < `K(Xn), we
stop. In practice, the maximal value Kmax of K is much smaller than n and this approach leads
to a considerable speed-up.

39



(a) Choice of λ - Torus (b) Choice of t - Torus

(c) Choice of λ - Swissroll (d) Choice of t - Swissroll

Figure 9 – For a set Xn made of 104 points sampled on the torus (resp. on the swiss roll), we
compute gXn and h(·,Xn) up to the value t = `Kmax(Xn). The selected values of λ are respectively
0.796 and 0.792, while the selected values of tsel(Xn) are 0.309 and 1.126. In both cases, we also
estimate the approximation rate ε(Xn), respectively equal to 0.254 and 0.891. Both times, we
indeed have tsel(Xn) ≥ ε(Xn), and furthermore, the Čech complex of parameter 2tsel(Xn) has
the same homology as the torus (resp. the swiss roll).
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Figure 10 – Left. Distribution of log2Kmax over the different point clouds (circle, torus and
swiss roll of different sizes on 10 tries each). Right. For each class and each number of points
n, we display the mean value of log2Kmax over the 10 tries: in each class, it stays bounded as
n grows. Large values of Kmax for the swiss roll dataset correspond to numbers of samples n
for which ε(Xn) is too large (n ≤ 1000): the subquadratic behavior then does not occur and
therefore the whole convexity defect function is computed.

We test this faster algorithm on three classes of datasets. The first class is made of n
points uniformly sampled on a circle that lies on a random plane in R100, that are corrupted
with uniform noise (in R100) of size (lnn/n)2/d. The second class consists of points sampled on
the torus of inner radius 1 and outer radius 4. The third class is made of points sampled on
the swiss roll dataset from the SciPy Python library [VGO+20]. For each class, we conduct 10
experiments for each value of n, n ranging from 102 to 104. The value Kmax was never larger
than 210 = 1024, and did not increase with n, see Figure 10. Increasing the ambient dimension
in the first class did not significantly increase the computation time. We display in Figure 9 the
functions h̃(·,Xn) and gXn for two point clouds from this dataset: we observe once again the
"jump" phenomenon occurring.

8 Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based on a unique rule:
add the convex hull of any subset of the set of observations which is of radius smaller than t.
After proving that this leads to a minimax estimator for some choice of t, we explained how to
select the parameter t by computing the convexity defect function of the set of observations.
The selection procedure actually allows us to find a parameter tλ(Xn) such that ε(Xn)/tλ(Xn) is
arbitrarily close to 1 (by choosing λ close enough to 1 ). The selected parameter can therefore be
used as a scale parameter in a wide range of procedures in geometric inference. We illustrated
this general idea by showing how a data-driven minimax tangent space estimator can be created
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thanks to tλ(Xn). The main limitation to our procedure is its non-robustness to outliers. Indeed,
even in the presence of one outlier in Xn, the loss function t 7→ dH(Conv(t,Xn),M) would be
constant, equal to the distance between the outlier and the manifold M : with respect to the
Hausdorff distance, all the estimators Conv(t,Xn) are then equally bad. Of course, even in
that case, we would like to assert that some values of t are "better" than others in some sense.
A solution to overcome this issue would be to change the loss function, for instance by using
Wasserstein distances on judicious probability measures built on the t-convex hulls Conv(t,Xn)
in place of the Hausdorff distance
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A Proof of Lemma 4.12

Let S = ∑K
k=1 1 {Nk = 2}. Let ñ be the number of points of Xn in ⋃k Uk, so that ñ follows a

binomial distribution of parameters n and Km. Recall that by construction, Km ≥ c0 for some
constant c0 (see Lemma 4.9). Conditionally on ñ, the random variable S can be realized as the
number of urns containing exactly two balls, in a model where ñ balls are thrown uniformly in
K urns. Let pi =

(ñ
i

)
K−i

(
1−K−1)ñ−i be the probability that an urn contains exactly i balls.

We have E[S|ñ] = Kp2, and

E [exp (−C1S) |ñ] ≤ E [exp (−C1Kp2/2) 1 {S ≥ Kp2/2} |ñ] + P (S < Kp2/2|ñ)
≤ exp (−C1Kp2/2) + P (|S −Kp2| > Kp2/2|ñ) .

(A.1)

Let v = 2K max (2p2, 3p3). According to [BHBO17, Proposition 3.5], if for some s > 0,

Kp2/2 ≥
√

4vs+ 2s/3, (A.2)

then P (|S −Kp2| > Kp2/2|ñ) ≤ 4e−s. Recall that nm2 ≤ 1 by assumption, and that K ≥
cµ,δt

−d ≥ c1/m. We therefore have n/K2 ≤ c−2
1 . Assuming that ñ ≥ 3 and using the inequality

ln
(
1−K−1) ≥ −K−1 −K−2 for K ≥ 2, we obtain the inequalities

p2 ≥
(ñ/K)2

4ec−2
1

e−ñ/K and p3 ≤
e3

6 (ñ/K)3e−ñ/K ≤ c2p2(n/K) (A.3)

for some positive constant c2. We consider two different regimes.

42



• Assume first that n/K ≤ 2/ (3c2). Then 3p3 ≤ 2p2 and one can check that s = Kp2/100
satisfies (A.2). Inequality (A.1) then yields that

E [exp (−C1S) |ñ] ≤ 5 exp
(
−C ′1Kp2

)
for C ′1 = min (C1/2, 1/100). To conclude, we remark that for any α ∈ (0, 1), by the
Hoeffding inequality, the event |ñ − nKm| ≤ nKmα holds with probability at least 1 −
exp

(
−2nα2) . Letting α = 1/2, we obtain that, on this event,

1
2nm ≤

ñ

K
≤ 3

2nm ≤
3
2
n

K
mK ≤ 1

c2

where we used that mK ≤ 1. Therefore, p2 ≥ c3(nm)2 ≥ c4(nm)2e−nm for some constants
c3 and c4. The probability of order exp

(
−2nα2) being negligible, we obtain a final bound of

order exp
(
−C ′1c4K(nm)2e−nm

)
≤ exp (−C2nφ(nm)), concluding the proof in the regime

n/K ≤ 2/ (3c2).

• Otherwise, we have n/K > 2/ (3c2) and we also assume that |ñ − nKm| ≤ αnKm for
some α ∈ (0, 1) to fix (this happens with probability 1 − exp

(
−2nα2) by Hoeffding’s

inequality). One can then check using (A.3) that s = c5ñe
−ñ/K satisfies (A.2) if c5 is

chosen small enough. Furthermore, s ≤ c6Kp2 for some constant c6 (using (A.3)). The
leading term in (A.1) is therefore of the form exp

(
−c7ñe

−n/K
)
. Let α = 1/(lnn)3. We

have, as nm ≥ c0n/K ≥ c8 and as nm ≤ (lnn)2 (by assumption),

c9 ≤ nm(1− α) ≤ ñ

K
≤ nm(1 + α) ≤ nm+ 1

lnn.

Therefore, ñe−ñ/K ≥ (c9/2)Ke−nm. The probability of order exp(−2nα2) is still negli-
gible, and we obtain a final bound on E [exp (−C1S)] of order exp (− (c9/2)Ke−nm) ≤
exp (−c10nφ(nm)).

B Precise lower bound on the minimax risk

We adapt the construction made in [KZ15] so that the lower bound on the minimax risk holds
with an explicit constant. Let 0 < d < D and τmin, fmin, fmax with ωdfminτ

d
min < κ. We let

M(µ) be the underlying manifold of the law µ ∈ Qdτmin,fmin,fmax
The lowerbound is based on Le

Cam’s lemma:
Lemma B.1. Let P(1),P(2) be two subfamilies of Qdτmin,fmin,fmax

which are \varepsilon-separated,
in the sense that dH(M(µ(1)),M(µ(2))) ≥ 2ε for all µ(1) ∈ P(1), µ(2) ∈ P(2). Then

Rn(M,Qdτmin,fmin,fmax) ≥ ε

∣∣∣∣∣∣
 1

#P(1)

∑
µ(1)∈P(1)

µ(1)

 ∧
 1

#P(2)

∑
µ(2)∈P(2)

µ(2)

∣∣∣∣∣∣ , (B.1)

where |µ ∧ ν| is the testing affinity between two distributions µ and ν.
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To obtain a lowerbound on the minimax risk, authors in [KZ15] exhibit two families
of manifolds which are ε-separated, and consider the uniform distributions on them. Those
manifolds are built by considering a base manifold M0 which is locally flat, and by adding small
bumps on the locally flat part. Such a construction leads to distributions having a density equal
roughly to 1/Vol (M0), a constant which might be smaller than fmin . If this is the case, then
the corresponding submodels are not in Qdτmin,fmin,fmax

and we cannot apply Le Cam’s Lemma.
Hence, we consider another base manifold, which is a sphere M0 of radius R slightly larger than
τmin, so that its volume is smaller than 1/fmin (this is possible as fminωdτ

d
min ≤ κ < 1

)
. The

two families are then once again constructed by adding small bumps on M0. We now detail this
construction. Let R, δ > 0 be two parameters to be fixed later. Let M0 ⊆ Rd+1 ⊆ RD be the
d-sphere of radius R, and let A be a maximal subset of M0 of even size, which is 4δ-separated.
Note that, standard packing arguments (and the formula for the volume of a spherical cap)
show that if δ/R is small enough, then the cardinality 2m of A satisfies 2m ≥

(
c0R
δ

)d
for some

absolute constant c0.
Let φ : R→ R be a smooth function such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1] and φ ≡ 0 on

R\[−2, 2]. For s ∈ {±1}A, we build a diffeomorphism Φε
s by letting for x ∈ RD

Φε
s(x) = x

1 + ε

R

∑
y∈A

s(y)φ
(‖x− y‖

δ

) . (B.2)

Recall that ‖N‖op denotes the operator norm of a linear application N .

Lemma B.2. There exists two absolute constants c0, c1, c2 > 0 such that the following holds.
Assume that δ ≤ R and that c0ε/δ < 1. Then, the function Φε

s : B(0, 3R) → Rd+1 is a diffeo-
morphism on its image, with

sup
x∈B(0,3R)

‖Id−dxΦε
s‖op ≤ c1ε/δ and sup

x∈B(0,3R)

∥∥∥d2
xΦε

s

∥∥∥
op
≤ c2ε/δ

2. (B.3)

Proof. As A is 4δ-separated, at most one term in the sum in (B.2) is non-zero. A computation
gives that the derivative of ΦB is given by, for x ∈ B(0, 3R),

dxΦε
s(h) =

h+ h
ε

R

∑
y∈A

s(y)φ
( |x− y|

δ

)
+ x

ε

R

∑
y∈A

1
δ
s(y)φ′

( |x− y|
δ

) 〈x− y, h〉
|x− y|

.
(B.4)

Hence,

‖Id− dxΦε
s‖op ≤

ε

R

(
‖φ‖∞ + |x|‖φ

′‖∞
δ

)
≤ ε

R

(
‖φ‖∞ + 3R‖φ

′‖∞
δ

)
≤ c1

ε

δ
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Figure 11 – An element µ(1) ∈ P(1) has its first marginal supported on the blue manifold M ε
s

(lower bump), whereas an element µ(2) ∈ P(2) is supported on the red manifold M ε
s′ (upper

bump).

where c1 = c0‖φ‖∞ + 3 ‖φ′‖∞. A similar computation gives that
∥∥d2

xΦε
s

∥∥
op ≤ c2ε/δ

2 for c2 =
4 ‖φ′‖∞ + 3 ‖φ′′‖∞. We eventually show the injectivity: if Φε

s(x) = Φε
s (x′), then x and x′ are

colinear. Also, if c0 = ‖φ‖∞ + 3 ‖φ′‖∞, one can check using (B.4) that the derivative of the
function r ∈ [0, 3R] 7→ 〈Φε

s(ru), u〉 for u an unit vector is increasing, proving the injectivity.

Therefore, from [Fed59, Theorem 14.19], we infer that M ε
s := Φε

s(M) is a manifold with
reach larger than

τ (M ε
s ) ≥ Rmin

(
1− c1ε/δ,

(1− c1ε/δ)2

1 + c1ε/δ +Rc2ε/δ2

)
(B.5)

Denote by JΦε
s the Jacobian of Φs

ε. Then, the volume of M ε
s is controlled by

ωdR
d ≤ Vol (M ε

s ) =
∫
M0

JΦε
s(x)dx = ωdR

d +
∑
y∈A

∫
BM0 (y,2δ)

(JΦε
s(x)− 1) dx

≤ ωdRd + 2mCdc1
ε

δ
Vol (BM0(y, 2δ)) ≤ ωdRd

(
1 + Cdc1

ε

δ

) (B.6)

where we used that det(N)− 1 ≤ Cd‖N − Id‖op for some constant Cd if N is a matrix of size d
with operator norm smaller than 1, the fact that 2mVol (BM0(y, 2δ)) ≤ Vol (M0), and Lemma
B.2.

Let R = τmin + 1
2

(
1

(ωdfmin)1/d − τmin

)
and δ =

√
Rεν where ν2 = 2c2τmin

R−τmin
. With this

choice of parameters, one can check that, for ε/δ small enough, τ (M ε
s ) ≥ τmin (by (B.5)) and

Vol (M ε
s ) ≤ 1/fmin (by (B.6) and using that ωdfminτ

d
min ≤ κ < 1).

We define the family M(1) of manifolds M ε
s where s contains exactly m signs +1 (and

m signs −1). The family M(2) is defined likewise by considering M ε
s where s contains exactly

m+1 or m−1 signs +1. We then let P(1) be the set of distributions Qεs where Qεs is the uniform
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distribution on a manifold of M ε
s ∈ M(1), so that P(1) is a subset of Qdτmin,fmin

fhe set P(2) is
defined likewise.

By construction, the two families P(1),P(2) are 2ε-separated (see Figure 11). Hence, we
can apply Le Cam’s lemma. The exact same computations than in [KZ15, Section 3] show that
the testing affinity between P(1) and P(2) converge to 1 as long as 4m = n/ lnn. Thus, Le Cam’s
Lemma (B.1) yields

lim inf
n

Rn(M,Qdτmin,fmin,fmax
)

(lnn/n)2/d ≥ lim inf
n

(m/4)2/dε. (B.7)

As 2m ≥ (c0R/δ)d, we therefore have

lim
n

inf
Rn(M,Qdτmin,fmin,fmax

)
(lnn/n)2/d ≥ c2

0
82/d

R2

δ2 ε = c2
0

82/d
R

ν2

= c2
0

82/d
R (R− τmin)

2c2τmin
≥ c3

(ωdfmin)1/d τmin

(
1

(ωdfmin)1/d − τmin

)
,

for some absolute constant c3, where we used that by definition,

R− τmin = 1
2

(
1

(ωdfmin)1/d − τmin

)
,

and that R ≥ 1
2 (ωdfmin)−1/d. As τmin ≤ κ/ (ωdfmin)1/d, and as ω1/d

d ≤ cα
1/d
d for some absolute

constant c, we obtain the conclusion with constant C = c3(1− κ)/c. Note that the lower bound
actually holds on the smaller model Qdτmin,fmin,fmin

, as we only considered uniform distributions
in the proof.
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