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Abstract—Deep Learning has shifted the focus of tradi-
tional batch workflows to data-driven feature engineering on
streaming data. In particular, the execution of Deep Learning
workflows presents expectations of near-real-time results with
user-defined acceptable accuracy. Meeting the objectives of
such applications across heterogeneous resources located at
the edge of the network, the core, and in-between requires
managing trade-offs between the accuracy and the urgency of
the results. However, current data analysis rarely manages the
entire Deep Learning pipeline along the data path, making
it complex for developers to implement strategies in real-
world deployments. Driven by an object detection use case, this
paper presents an architecture for time-critical Deep Learning
workflows by providing a data-driven scheduling approach
to distribute the pipeline across Edge to Cloud resources.
Furthermore, it adopts a data management strategy that re-
duces the resolution of incoming data when potential trade-off
optimizations are available. We illustrate the system’s viability
through a performance evaluation of the object detection use
case on the Grid’5000 testbed. We demonstrate that in a
multi-user scenario, with a standard frame rate of 25 frames
per second, the system speed-up data analysis up to 54.4%
compared to a Cloud-only-based scenario with an analysis
accuracy higher than a fixed threshold.

Keywords-Cloud computing, Edge computing, Microservices,
Task allocation, Real-time processing, Computing Continuum,
Deep Learning.

I. INTRODUCTION

Deep Learning has gained huge momentum in the industry
over recent years with a growing market estimated at 44.3
Billion USD by 20271. Deep Learning (DL) applications
present a growing potential to extract knowledge from the
analysis of streaming data, with applications in numerous
domains including computer vision [1], speech recogni-
tion [2], and COVID-19 research [3].

Deep Learning applications, implemented as distributed
analytics, are currently limited by Cloud-centric models that
suffer crippling latency limitations when the amount and
frequency of data increases. The computational ecosystem
that supports these analytics has become highly heteroge-
neous and geographically distributed, bringing significant
challenges associated with the complexity and sustainability

1Global deep learning industry (2020), https://www.reportlinker.com/
p05798338/Global-Deep-Learning-Industry.html

of performing decision-making on sensor data [4], [5]. In
particular, many Deep Learning applications require impor-
tant decision-making to be delivered in a timely manner [6],
requiring a novel design that enables trade-offs between the
time and the quality of analysis.

Meeting the application’s objectives when dealing with
multiple data sources and resources of heterogeneous capa-
bilities highlights the need for resource and data manage-
ment solutions. Resource management aims at task alloca-
tion strategies and collaborative infrastructure designs [7],
[8], while data management approaches often consist of
customizing Deep Learning models to suit the resource-
constrained systems while addressing the trade-off between
QoS metrics [9], [10]. Existing work tends to approach these
two aspects independently and rarely manages the entire
Deep Learning pipeline, resulting in inefficiencies between
the design and the deployment of data-driven applications.

Driven by an object detection use case, this paper presents
a system for time-sensitive DL workflows. The architecture
relies on heterogeneous resources close to data sources, in
the core and along the data path. This continuum allows
extracting insights from data at early stages, which helps in
managing data-driven applications. By combining resource
and data management solutions, the system aims at man-
aging trade-offs between analysis makespan and accuracy
of results to meet application performance. Furthermore, it
offers means to developers to automatically distribute Deep
Learning workflows across the Edge-to-Cloud continuum.

This paper makes the following contributions:
• A data management strategy based on data quality

adaptation. It adjusts the resolution of data sources to
manage latency-accuracy trade-offs.

• A data-driven workflow scheduling approach to dis-
tribute DL tasks on the computing continuum.

The rest of the paper is organized as follows. Section II
presents the use case driving this work. Section III briefly
discusses the related work. Section IV shows the system
architecture, performance models, and system utility func-
tion. The data adaptation approach is proposed in Section V.
Section VI presents the strategies for distributing DL tasks
on the continuum. Section VII describes the experimental
setup and results. Finally, Section VIII concludes this work.



II. MOTIVATING USE CASE

For data scientists, the data analysis process consists of
three main stages. Pre-processing stage: It is responsible for
preparing incoming data for analysis. Additionally, this stage
allows the characterization of incoming data. The extracted
characteristics, such as data resolution, format, and size,
contribute to a better selection of the analysis pipeline.
Analysis stage: It corresponds to a set of Deep Learning
models responsible for extracting features, detecting and
recognizing objects in the incoming prepared data. These
models can be of different types, such as You Only Look
Once (YOLO) [11] and Faster Region-based Convolutional
Neural Networks (Faster RCNN) [12]. These real-time de-
tectors are based on convolutional networks that predict
object boundaries and object scores at each detection. Post-
processing stage: It processes the knowledge extracted from
the previous stage. It can evaluate the resulting knowledge
and make decisions whether to ignore it, visualize it, store
it or urgently notify the end users about it.

Current data analysis systems only consider Deep Learn-
ing applications as a set of learning models making the
use of management strategies complex in real-world deploy-
ments. Managing trade-offs for the entire pipeline on current
heterogeneous infrastructures is challenging: À tasks in each
stage demand different computing requirements. Assigning
resources to these tasks must consider their roles in the
analysis. Á Deep Learning application deals concurrently
with a high load of different resolutions. Assigning pipelines
to data sources has an impact on the system performance as
each data quality demands different computing needs.

This work is driven by an object detection use case (Fig-
ure 1). It represents a time-sensitive Deep Learning appli-
cation that identifies and locates objects in an image or
video (sequence of images). First, Resize service receives
incoming frames and modifies their sizes to suit the input
data size of the following task. This service belongs to pre-
processing stage. Object detection task receives these frames
and detects existing objects using two possible YOLOv4
models: YOLOv4-416 for 416p frames and YOLOv4-512
for 512p frames. These models are a part of the analysis
stage. Finally, the frames and analysis results are sent to
a Draw service responsible for marking the detected and
identified objects on the frames and save them locally. This
task belongs to the post-processing stage.

The execution of time-sensitive applications presents ex-
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Figure 1: Workflow of an object detection Deep Learning
application showing the stages, dataflow, and tasks.

pectations of near-real-time latency with user-defined accept-
able accuracy. In this use case, the analysis accuracy corre-
sponds to the number of detected faces and labels assigned.
Meeting these objectives motivates the need for a system
supporting DL pipelines with data and resource management
solutions. It relies on the microservices paradigm to deploy
the pipeline on the distributed resources. This paradigm
provides the capacity to monitor each task individually to
detect events and maintain system performance. In this work,
the terms tasks and microservices are used interchangeably.
The proposed system is presented in Section IV.

III. RELATED WORK

A. Edge-enhanced Data Analytic Systems

Cloud-centric systems suffer crippling latency limitations
when the amount and frequency of data increase [13].
Therefore, Edge computing [14] has widely emerged to
complement and extend the Cloud [15]. Model optimization
and Machine Learning inference are currently the main
vectors driving the use of resources at the edge [16]. Many
works attempted to adopt Edge-based infrastructure designs
to optimize analytics systems, where some systems focus
on reducing energy consumption [17], guaranteeing dead-
lines [18] and meeting real-time requirements [19]. In [19],
Kong et al. ensure a real-time analysis in consideration of
accuracy by adopting an Edge-based system. However, the
system only considers the inference time of Deep Learning
models and not the entire analysis pipeline. In addition, due
to limited resources, the proposed system will fall short in
dealing with several high-resolution video streams.

Cloudlet resources are widely used in Edge Comput-
ing. They are characterized by a high bandwidth network
relative to the Edge and offer lower latency than the
Cloud [14]. Gigasight [8] reduces latency and bandwidth
from Edge/Cloudlet to Cloud by running analysis on the
Cloudlet resources and sending only the results to the Cloud.
In [18], Zamani et al. adopt a federated resources model that
exposes in-transit and edge capabilities to participant sites.

The Microservices paradigm has gained great popularity
in recent years, exploring the benefits of modular, self-
contained components for highly dynamic applications [20].
This paradigm serves large-scale data analytics systems.
In [21], Khoonsari et al. showed that microservices allow for
efficient horizontal scaling of analyzes on multiple compu-
tational nodes, enabling the processing of large datasets. In
addition, Taneja et al. adopted microservices in [22] due to
multiple reasons such as their deployability on hybrid Fog-
Cloud environments and their technological independence.

B. Scheduling Strategies For Deep Learning

Scheduling approaches for Deep Learning can be classi-
fied into three main categories. First, job scheduling tech-
niques are designed to schedule prediction and training jobs
on the Deep Learning cluster workers [23]. Second, single



task scheduling techniques for Deep Learning models with
a guarantee of specific performance targets [24]. Lastly,
workflow scheduling techniques are designed to distribute
the entire application on the available resources [13]. This
category is not yet well discussed in the literature for Deep
Learning applications. The contribution of this work belongs
to the last category.

The functional partitioning of Deep Learning workflow
and its distribution across Edge-Cloud resources has been
considered in [13]. The proposed scheduling approach is
goal-driven; the scheduling decisions made are motivated
by the system’s goal of satisfying the real-time requirements.
These approaches do not consider the difference in the com-
puting and network requirements of Deep Learning tasks,
nor the dynamic impact of incoming data on the application
performance. The data-driven scheduling approach proposed
in this work examines task heterogeneity and makes alloca-
tion based on the tasks’ categories and their dependencies.

C. Configuration Adaptation For Edge-based Systems

Analyzing concurrently multiple data streams with limited
resources forces resource-quality trade-offs [25]–[27]. As the
incoming data are processed concurrently, resources avail-
able to each data stream are often unknown. Online/offline
configurations adaptation is currently a promising solution
to address the issue of limited resources [9], [26], [28]–[30].

In [28], Wang et al. adopt an offline configuration adapta-
tion and bandwidth allocation strategies to address the issue
of limited resources between IoT devices and edge nodes.
Similar to the approach presented in this work, the adap-
tation is triggered periodically. Systems in [9], [29] adopt
an online configuration adaptation algorithms for video
analytics in Edge computing. The configurations targeted
are frame rate and resolution. However, these systems only
focus on the performance of the analysis stage and not on
a complete workflow. Additionally, they only target Edge-
based video analytics applications. In [30], they present an
Edge Network Orchestrator for Mobile Augmented Reality
(MAR) systems. It boosts the performance of an Edge-based
MAR system by optimizing the edge server assignment
and video frame resolution selection for MAR users. In
this work, we argue that adopting a data quality adaptation
strategy for Microservice-based Deep Learning applications
built on a 3-tiers environment will optimize the analysis
latency with respect to accuracy constraints.

IV. MODEL AND ARCHITECTURE

A global system overview is presented in Figure 2. The
system’s architecture consists of three levels. Each has
a set of management services following the microservice
paradigm and communicates via APIs.

Workflow management level. It is responsible for cate-
gorizing and scheduling the submitted pipeline (P ) across
the resources (see Section VI). The pipeline is composed

of three stages: Pre-processing (Pr), Analysis (A) and
Post-processing (Po) stage. Each stage s is composed of
a set of microservices M = {mi}. The analysis stage
has Z learning models. These models can be of different
types (Faster RCNN, YOLO, etc.) or the same type but
support different input quality (YOLO416, YOLO512, etc.).
Let D = {d1, d2, ..., dZ} represent the set of models
and Q = {q1, q2, ..., qL} the set of data quality supported.

Infrastructure level. Its design is based on the Edge-to-
Cloud computing continuum. The set of resources is given
by R = {rk} which represents the set of Edge (E), Fog (F ),
and Cloud (C) nodes. In this work, the terms Cloudlet
and Fog refer to the same type of resources. Cloudlet
resources provide computational capabilities greater than
Edge resources and less than Cloud resources. The capacity
of the Cloudlet-Cloud network link is a thousand times
higher than the capacity of the Edge-Cloudlet link. The
system supports multiple data sources located at the Edge,
each generating data in the default frame rate (fs = 25fps)
and resolution (fr = 512 × 512). The set of data sources
in the system are denoted by U = {u1, u2, ..., uk}. A frame
generated by a data source is considered as a job J to be
processed by the application. Let N be the total number of
jobs generated by a data source in a time slot t.

Data management level. It selects the data quality dis-
tribution for data sources providing a system makespan and
accuracy that meet the developer’s needs. This level consists
of three components. First, a discovery component responsi-
ble for the pipeline discovery. Second, performance models
that estimate the makespan and accuracy of the assigned
pipeline. Third, a data quality adaptation component that
selects for data sources the qualities providing the best-
estimated performance.

The remainder of this section presents the analytical
models of the end-to-end latency and accuracy of K data
sources, as well as the formulation of the system’s objective.

A. End-to-end Latency Model

The end-to-end latency of a job J from a data source u
corresponds to the time taken to complete its analysis
pipeline. It is presented as follows:

TuJ = µ · Treduce + TPr + TA + TPo (1)

Treduce refers to the time required to reduce the job’s quality
before the processing starts. µ is a binary that indicates
whether a data adaptation was needed for u or not. Details
about data adaptation will be presented in Section V. TPr,
TA, and TPo correspond to the time spent in the preprocess-
ing, analysis, and postprocessing stages, respectively.

Total time cost (Ts) of a processing stage is the sum
of the response time of its microservices. It is presented
as Ts =

∑n
i=1RT (mi) where RT (mi) = α · TD +

Trans(mj ,mi)+TE . RT (mi) represents the response time
of microservice mi. α is a binary variable that indicates
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Figure 2: Global overview of the system design. It consists of workflow management, infrastructure, and data management
level.

whether a microservice discovery happened or not while
processing a job. TD represents the discovery time of the
microservice. Trans(mj ,mi) represents the time needed
to transfer the data input of microservice mi from its
predecessor mj . Let rj and ri be the resources where mj and
mi are deployed respectively. For clarity, Trans(mj ,mi) is
replaced by Trans(rj , ri). TE corresponds to the execution
time of the microservice.

The transfer time of the data is formulated as:

Trans(rj , ri) =


S

w(rj , F )
+

S

w(F, ri)
if rj ∈ E, ri ∈ C

0 if ri = rj
S

w(rj , ri)
otherwise,

(2)
S refers to the data size (in Mbits) to be sent over the
network. It is given by S = γfr2. γ is the number of bits
required to represent the information carried by one pixel.
w(producer, consumer) refers to the bandwidth (Mbits/s)
of the network link between the data producer and consumer.
If they were deployed on resources {ri, rj} ∈ {E,C}, the
transferred data must pass through the Cloudlet tier.

The execution time of a microservice is presented as
TE = Load/C where Load refers to the data to be
analyzed by mi and C to the number of data that can be
processed per second. In stage A of the pipeline, the through-
put depends on the chosen Deep Learning models and the
incoming data quality of the data source. As experimentally
proved in [28] and [29], with high data quality, the models
provide a slower analysis speed than that with low quality.
In addition, it [31] showed that with the same data, some
models perform faster than others.

Thus, the average end-to-end latency of K data sources in

a time slot t is presented as follows:

Tt =
1

K

K∑
i=1

 1

N

N∑
j=1

T ij

 (3)

B. Analysis Accuracy Model

Analysis accuracy of DL models corresponds to the metric
F1 score. It is a weighted average of the Precision and Recall
evaluation metrics. To identify their True Positives (TP)
and False Positives (FP), the Intersection over Union (IoU)
metric is used. IoU is a number from 0 to 1 that specifies the
amount of overlap between the predicted and ground truth
(i.e., actual) bounding box. If IoU ≥ 0.5 and the label is
correct, the analysis is TP. However, the analysis is FP if
the label was false or the IoU < 0.5 and the label is true.

It has been experimentally observed in [28], [29], [31]
that the data quality and the chosen DL model impact
the accuracy of the results. As showed in [28], [29], the
relationship between accuracy and data quality is formulated
as a concave exponential function of three coefficients
E(fr, d) = α1d − α2d × e−fr/α3d . It reflects that a higher
quality produces a better analytics accuracy, and the analyt-
ics accuracy gain decreases at a high quality. In this work,
{α1, α2, α3} are constant coefficients of a DL model d.

Due to the data-driven discovery mechanism, changing
the data quality by the data management strategy during a
time slot will cause a change in the selected Deep Learning
model. Let φiJ and βxJ be two binary variables that indicate
whether model di and data quality qx are selected for data
source uk to process its job J . So, d′kJ =

∑Z
y=1 φ

y
J,kdy is

the Deep Learning model of job J from data source uk and
q′kJ =

∑L
x=1 β

x
J,kqx is its data quality with

∑Z
y=1 φ

y
J,k = 1

and
∑L
x=1 β

x
J,k = 1. Hence, the average accuracy of a

data source uk in time slot t is 1
N

∑N
j=1 E(q′kj , d

′k
j ). During



a time slot,
∑Z
y=1 φ

y
k and

∑L
x=1 β

x
k can be greater than

1, which indicates that a data source can use multiple
Deep Learning models and have multiple data qualities.
The average accuracy of K data sources in a time slot t
is presented as follows:

at =
1

K

K∑
i=1

 1

N

N∑
j=1

E(q′ij , d
′i
j )

 (4)

C. System Objective

This work aims to reduce the data analysis latency of Deep
Learning applications under a long-term accuracy constraint.
To achieve this objective, a latency-accuracy trade-off utility
function is needed. It is formulated as Uu,t = au,t −ΘTu,t
where Θ trades off between the latency cost and accuracy.
The total utility for K data sources is presented as:

Ut =
1

K

K∑
i=1

Ui,t (5)

Maximizing this utility during runtime, with respect to
the accuracy constraint, will increase the system efficiency.
As in [28], the long-term utility augmentation will become
limited. So, the system goal is formulated as follows:

Goal : max
β,φ

lim
t→+∞

1

T

T∑
t=1

(Ut)

subject to lim
t→+∞

1

T

T∑
t=1

at ≥ amin

(6)

The accuracy constraint ensures that the tradeoff is only
possible if the long-term average accuracy exceeds the
minimum threshold amin (by default, amin = 50%).

The system aims to adapt the quality of incoming data to
optimize this utility (see Section V).

V. DATA QUALITY ADAPTATION STRATEGY

The system contains a set of distributed and limited
resources of different computing and network capacity.
Analyzing data generated by multiple data sources on
these resources requires adopting a latency-accuracy tradeoff
solution. This section presents a data quality adaptation
strategy for DL applications. This strategy is responsible for
specifying the distribution of data qualities on the existing
data sources. It estimates whether the system can handle the
original data qualities of all data sources or a quality reduc-
tion is required. Reducing data quality can negatively affect
the analysis accuracy. So, this strategy controls the quality of
generated data while guaranteeing a system accuracy higher
than a fixed threshold amin. The microservices responsible
for applying this strategy are deployed on the Edge.

Deep Learning applications have dynamic data content.
Therefore, adapting data quality once during analysis is
inefficient as the performance varies depending on the

content. For that reason, the adaptation strategy is triggered
periodically and when new data sources join the system.

Let B = {b1, ..., bm} be the set of possible quality
distributions among data sources. Each distribution bi is
formulated as {β · ql | 1 ≤ β ≤ k and ql ∈ Q}, where β
represents the number of data sources having the data quality
ql and k is the total number of data sources in the system. ql
might corresponds to their original or reduced data qualities.
In the object detection use case Q = {512p, 416p}. For
n=3, a possible data quality distribution can be b1 = {(2) ·
Q512p, (1) ·Q416p}.

The proposed strategy selects from B the distribution with
the fastest analysis latency and accuracy that does not fall
below the amin threshold. However, in specific use cases,
the selected data quality distribution may not be the fastest:
The system compromises between latency and accuracy in
case there is another distribution that provides a latency
gain less than 10ms but an accuracy loss greater than or
equal to 20%. The strategy is presented in Algorithm 1. In

Algorithm 1: Select the quality distribution with a latency-
accuracy trade-off.

Result: quality distribution with the optimal trade-off.
begin

1 initialization;
2 for b in B do
3 L ← getEstimatedLatency(b) ; // model (3) in IV-B

4 A ← getEstimatedAccuracy(b) ; // model (4)

in IV-B

5 if A ≥ amin then
6 add({b, L, A}, list);

7 if isEmpty(list) == TRUE then
8 return ∅
9 best ← getMinLatency(list);

10 for x in list do
11 if 4(x[L], best[L]) < 10 and

4(x[A], best[A]) ≥ 20% then
12 best ← x;

13 return(best);

steps 2-6, it calculates the estimated latency and accuracy
of each possible data quality distribution. Then, in step 5, it
filters those with unacceptable accuracy. If no configuration
provides acceptable accuracy, the data source can’t join the
system at that time period (steps 7 & 8). Otherwise, the pre-
ferred data distribution among the acceptable configurations
is the one with the fastest analysis (step 9). In steps 10-12,
it checks if there is another distribution that matches the
use case presented above. If so, it will be selected as the
preferred quality distribution in the system.

After selecting the data quality distribution, the system
randomly maps qualities to data sources. This mapping
switches periodically between data sources.



VI. DATA-DRIVEN WORKFLOW SCHEDULING AND
DISCOVERY APPROACHES

Several challenges exist when scheduling the Deep Learn-
ing pipeline on the continuum: À tasks in the pipeline
are heterogeneous and have different resource requirements;
Á the system has limited resources; Â system resources
have different computing and network capacity; Ã in a con-
tinuum, resources can become unavailable. For challenges
À and Â, this work adopts a scheduling approach based
on a task categorization. Its purpose is to distribute Deep
Learning workflow across the edge of the network, the core,
and along the data path with regards to the microservices’
functionalities and data inputs. For challenge Á, the system
adopts a requirement adjustment algorithm to efficiently
using the limited resources. The 4th scheduling challenge
is beyond the scope of this paper. Each component in the
scheduling approach is deployed as microservice and located
on the Edge tier. The scheduling approach is triggered when
a new workflow is submitted. When triggered, the cate-
gorization microservice receives the workflow description.
After examining each task, It sends the description with the
categorization results to the reservation microservice. The
latter allocates the resources and triggers the scheduling
microservice. If the available resources are not enough, it
triggers the adjustment microservice.

Assigning a data source to a scheduled pipeline matching
the resolution of generated data is done via a data-driven
microservice discovery mechanism running on the Edge.

A. Tasks Categorization

Tasks in Deep Learning pipelines demand different CPU,
memory, storage, and bandwidth requirements. Based on our
observations in deploying and running DL applications, tasks
can be classified into three categories: Non-Intensive (NI),
Low-Intensive (LI), and High-Intensive (HI) tasks.

NI tasks refer to the pre-processing and post-processing
tasks that do not manage their own database. Database
microservices are considered HI due to their storage de-
mand. In our application use case, Resize microservice
is considered NI and Draw microservice as HI. Classic
learning models (i.e., shallow models) are LI. Concerning
Deep Learning models, their characteristics have an im-
pact on their performance, such as the number and type
of parameters and neural network layers. In this work,
we only consider the data resolution to categorize Deep
Learning models. For each learning model in the analysis
stage (YOLO, Faster RCNN, etc.), the implementation with
the lowest resolution is considered LI. For example, in the
object detection use case, YOLOv4-416 is considered as LI
and YOLOv4-512 as HI.

In practice, users need to specify in the description of the
submitted workflow the type of each task (pre-processing,
shallow, etc.). The system will then automatically assign
each type to a category, as mentioned above.

B. Resource Reservation And Scheduling Algorithms

A naive approach for assigning tasks to resources is to
explore all the possibilities in a brute-force manner which
creates a search space of exponential complexity. This work
adopts the following pruning techniques to minimize the
search space. First, all tasks within the same category have
the same resource assignment. Second, intensive tasks can
only be deployed on the Fog and Cloud. HI tasks have a
priority to be assigned to the Cloud and LI to the Fog.

The scheduling approach consists of two parts. The first
part aims to reserve resources for intensive tasks. It gives
HI tasks a higher placement priority than LI tasks. The
resource reservation for HI tasks is presented in Algorithm 2.
This algorithm takes as input the number of HI tasks in
the submitted workflow. In step 1 and 2, it retrieves the
available resources in Cloud and Cloudlet tiers, respectively.
In step 3, it counts the number of HI tasks that can be placed
on the Cloud. This depends on the capacity of the Cloud
tier and the fixed requirements of the HI tasks. Steps 4-16
check whether the computing requirements of HI tasks can
be fully guaranteed at the Cloud or they must be distributed
across Cloudlet-Cloud tiers. In addition, they decide whether
the available resources can handle the entire computing
requirements of HI tasks or a “requirements adjustment
solution” is needed. For the first case (steps 4-6), it checks if
the capacity of the Cloud tier is greater than the requirements
of HI tasks. If so, it reserves all required resources on the
Cloud. If not (steps 7-16), it checks whether Fog resources

Algorithm 2: Resource reservation for HI tasks.
Data: countHI
Result: List of resources reserved for HI microservices

List Reserve_HI(countHI)
begin

1 capCloud ← getFreeResources(‘cloud’);
2 capFog ← getFreeResources(‘fog’);
3 cloudHI ← countCloudHI(capCloud);
4 if cloudHI ≥ countHI then
5 entry ← reserve(countHI, ‘cloud’);
6 updateReservedList(entry);
7 else
8 remainHI ← countHI - cloudHI;
9 fogHI ← countFogHI(capFog);

10 if fogHI ≥ remainHI then
11 entry ← reserve(cloudHI, ‘cloud’);
12 updateReservedList(entry);
13 entry ← reserve(remainHI, ‘fog’);
14 updateReservedList(entry);
15 else
16 Adjust res(‘HI’);

17 return(getReservedList());



can handle the requirements of the remaining tasks. If so,
the reserved resources for HI tasks will be distributed across
Cloudlet-Cloud tiers. However, if the resources available in
the Cloudlet are also not enough, it triggers Algorithm 4,
which will be presented in Section VI-C.

After reserving the resources for HI tasks, the system
repeats the same logic to reserve those for LI tasks. The
system checks first whether their computing requirements
can be guaranteed at the Fog before checking the Cloud.

The second part of this scheduling approach is to dis-
tribute the pipeline on the continuum (see Algorithm 3). This
algorithm takes the list of resources reserved for intensive
tasks and the workflow. For each task, it checks whether
they are intensive or not. If so, it searches for the resources
reserved for its category (steps 4 and 5). However, if not, it
looks for the remaining free resources (steps 6 and 7). As NI
tasks do not require a lot of computing power, they can be
easily placed on system resources without prior reservation.
Among discovered resources for each task, it selects those
located near its predecessor (step 8). A predecessor of a task
corresponds to its preceding task in the analysis pipeline or
a data source in case it is the entry task. If several resources
are located on the same infrastructure level, the selection
of the resource is random. After the resource is selected, it
deploys the task and makes it ready for production (step 9).

Algorithm 3: Scheduling tasks on the continuum.
Data: listsIntensive, workflow
Result: Mapping DL pipeline to system resources

Void Scheduling(listsIntensive, workflow)
begin

1 for task in workflow do
2 predecessor ← getPredecessor(task);
3 category ← getCategory(task);
4 if category = ‘LI’ OR category = ‘HI’

then
5 list ← getReserved(category,

listsIntensive);
6 else
7 list ← getFreeResources(category);

8 res ← selectResource(list, predecessor);
9 deployTask(task, res);

C. Requirements Adjustment Algorithm

As Algorithm 2 has shown, it is possible that the system
cannot handle the computing requirements of intensive tasks.
Therefore, Algorithm 4 is used to reduce the resource
requirements of intensive tasks when a full guarantee of
required resources is not possible. It maximizes the use of
system resources while ensuring a minimum threshold equal
to 50% of their fixed requirements. This algorithm is only
triggered by Algorithm 2 if a new workflow is submitted.

Algorithm 4 takes the category of the task to be placed
and the list of resources reserved for intensive tasks. In
steps 2 and 3, it gets the remaining free resources on the
Cloudlet-Cloud tiers and selects the one with the maximum
remaining capacity. If the remaining capacity selected is
greater than or equal to the minimum threshold, the resource
is reserved (steps 3-5). However, if not, the algorithm
attempts to reach the minimum threshold by adjusting the
computing capacity of the other reservations on the same
selected resource (steps 6-13). In step 7, it gets the remaining
capacity needed to reach the minimum threshold. The reser-
vations on the selected resource that can handle a resource
adjustment are those that remain above the minimum thresh-
old even if their computing capacity is reduced (step 8). In
steps 9 and 10, it reduces the remaining capacity needed
evenly from the reservation list. After adjustment, the list of
reserved resources is updated (steps 11-13).

Algorithm 4: Resource adjustment for tasks.
Data: listLI, listHI, category
Result: Adjust required resources of intensive tasks

Void Adjust_res(listLI, listHI, category)
begin

1 listFree ← getFreeResources();
2 res ← getMAX(listFree, category);
3 if res ≥ 50% × requiredResources then
4 entry ← reserve(res, category);
5 updateReservedList(category, entry);
6 else
7 remain ← getRemain(res);
8 listReservations←checkReservations(remain,

listLI, listHI);
9 part ← (remain / size(listReservations));

10 newList ← Reduce(part,
listReservations);

11 updateReservedList(newList);
12 entry ← reserve(res, remain);
13 updateReservedList(entry);

D. Data-Driven Microservices Discovery

Current discovery mechanisms are goal-based, designed
to achieve the overall goal of the system. However, using
these mechanisms in the proposed system is not efficient
due to the following reasons: À producers and consumers
of incoming data can be designed by different entities;
Á static connections between tasks in DL applications are
not efficient as new tasks can be added, and others removed;
Â analysis tasks are designed for different data resolutions
and offer different latency and accuracy guarantees.

In this work, a data-driven discovery mechanism is used
to overcome these limitations. It consists of discovering
available microservices depending on the data characteristics



such as resolution, type, and format. Details about this
mechanism are presented by Z. Houmani et al. in [32].
In the proposed system, the discovery assigns data sources
to pipelines supporting their data resolution. During the
adaptation process, the system triggers the discovery for each
supported resolution to select the distribution providing the
maximum utility.

VII. EXPERIMENTAL SETUP AND RESULTS

The evaluation aims to show the impact of the proposed
system on the performance of the object detection use
case (Figure 1) when dealing with high load. The use case
is representative of the general Deep Learning problem
as it deals with tasks of different categories and requires
leveraging limited and heterogeneous resources to achieve
real-time performance. This section presents the evaluation
methodology, the results and then discusses some takeaways.

A. Experimental Setup

The system evaluation is performed on the large-scale
platform Grid’5000 [33]. It represents a distributed testbed
designed to support experimental-driven research in parallel
and distributed systems. The experimental setup of the Edge-
to-Cloud continuum consists of a total of 14 nodes in
the nova cluster. Each node is originally equipped with 2
processors of 8 cores each, 64GB memory, and 598GB
storage. Among the reserved nodes, there are 11 Edge nodes,
2 Fog, and 1 Cloud node. The original node capacity is not
entirely allocatable (see Table I). The setting of the network
connections between each type of node are given in Table II.
The emulation of the continuum on Grid’5000 is achieved
via the framework E2Clab [34]. It allows specifying the
communication constraints and separating Edge, Fog, and
Cloud nodes into independent virtual networks.

The system has 19 data sources on the Edge. They
generate 25 frames per second of resolution 512p. The
frames are from the COCO2017 validation dataset [35] of
size 1GB. The models YOLOv4-512 and YOLOv4-416

Table I: Resource capacity of Edge, Fog and Cloud nodes.

Layer Cores RAM (GiB) Storage
HDD

Edge 1 2 2GB
Fog 4 32 20GB

Cloud 8 64 500GB

Table II: Delay and bandwidth of network connections
between nodes.

Layer Average
Delays(ms)

Uplink Bandwidth

Edge-Edge 1 1Gbps
Fog-Fog 1 1Gbps

Cloud-Cloud 1 10Gbps
Edge-Fog 4 30Mbps
Fog-Cloud 5 10Gbps

are pre-trained on the COCO dataset with an accuracy AP50

equals to 64.9% and 62.7%, respectively.
Based on the proposed data-driven scheduling approach,

the Resize microservice is deployed on the Edge,
YOLOv4-416 on the Fog, and YOLOv4-512 and Draw
on the Cloud. Each task reserves the entire capacity of the
node on which it is deployed. Regarding the two services
placed on the Cloud, they share the resources by half.

The YOLOv4, and Draw microservices have one instance
each and Resize microservice has 11 instances. These
microservices constitute two possible pipeline configura-
tions: Cloud-only and Fog-only. Data source assigned to the
Cloud-only pipeline uses the YOLOv4-512 model for the
analysis stage. However, with Fog-only pipeline, the data
source uses the YOLOv4-416 model.

The system evaluation consists of four experiments run-
ning for 20 minutes. Their purpose is to measure the average
makespan and accuracy of the application during runtime
with and without the latency-accuracy tradeoff. Experi-
ments 1 and 2 use all system data sources and experiments 3
and 4 use only one. In experiments 1 and 3, the quality of
generated data is 512p. All data sources are assigned to the
Cloud-only pipeline. However, in the experiment 2, the data
adaptation strategy was used once. Among all data sources,
the data quality of only 1 data source is reduced to 416p.
So, unlike the rest, this data source is assigned to the Fog-
only pipeline. In experiment 4, the data adaptation strategy
is applied to the single data source used.

B. Evaluation Results And Discussion

Figure 3 shows the average system makespan variation
with 19 data sources with and without using the data
adaptation. In experiment 1, without adaptation, the system
takes up to around 5.7 hours to analyze the data generated
by 19 data sources during a 20 minutes test. However, in
experiment 2, when applying the adaptation strategy on one
data source, the average system makespan was reduced to
around 2.6 hours. The gain in the average system makespan
between experiments 1 and 2 is up to 54.4% (≈3.1 hours).

Figure 4 shows the variation of average system F1-score
with and without the data adaptation strategy. Results show
that system accuracy decreased from 71.19% to 63.82% after
reducing the quality of one data source from 512 × 512
to 416 × 416. The system accuracy remains higher than
the default accuracy threshold fixed to 50%. The obtained
accuracy depends mainly on the models used. In this work,
the accuracy results are for the pre-trained YOLOv4 models.

Figure 5 shows the average system makespan of a single
data source with and without using the data quality adapta-
tion strategy. In experiment 3, without any data adaptation,
the system takes up to around 1 hour to analyze all the
data generated by the single data source. However, when
applying the data adaptation strategy in experiment 4, the
average system makespan is around 1.3 hours.
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Figure 3: With 19 data sources, the system makespan with
data adaptation in experiment 2 is lower than in experi-
ment 1, where no tradeoff solution is used.
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Figure 4: With 19 data sources, average system accuracy
decreased in experiment 2 (with data adaptation) compared
to experiment 1 (without data adaptation). Despite this, it
remains higher than a fixed threshold equals to 50%.
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Figure 5: With a single data source, the average system
makespan with data adaptation in experiment 4 is higher
than in experiment 3, where no tradeoff solution is used.

During the system evaluation, we observed that when
the Fog-Cloud network is constrained due to high load, the
Edge-only pipeline can be an interesting approach, as it is
shown in experiment 2. However, if no high load in the
system as in experiments 3 and 4, the Cloud of 10Gbps
bandwidth performs better in terms of makespan than the
Edge-only configuration. This indicates that, for Deep Learn-
ing applications, applying the data adaptation strategy to
maximize the utility function is only possible when the
Fog-Cloud network performance is constrained. Otherwise,
the Cloud-only pipeline configuration is the better choice in
terms of average system makespan.

VIII. CONCLUSION

This paper proposes a system that support time-critical
Deep Learning workflows in an Edge-to-Cloud environment.
It distributes the workflow automatically across the con-
tinuum based on the categories of the tasks. In addition,
it reduces the resolution of incoming data when potential
latency-accuracy trade-off optimizations are available. The
evaluation of an object detection use case on Grid’5000
showed a gain in average system makespan reaching up to
54.4% compared to a Cloud-only pipeline configuration in
a multi-user scenario.

As future work, an interesting direction is designing a
resource assignment tool for Deep Learning workflows that
considers the characteristics of the load, tasks, and resources
to guarantee performance constraints.
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