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ABSTRACT

Development, deployment and maintenance of networked
software has been revolutionized by DevOps, which have
become essential to boost system software quality and to
enable agile evolution. Meanwhile the Internet of Things
(IoT) connects more and more devices which are not cov-
ered by DevOps tools: low-power, microcontroller-based de-
vices. In this paper, we contribute to bridge this gap by
designing Femto-Containers, a new architecture which en-
ables containerization, virtualization and secure deployment
of software modules embedded on microcontrollers over low-
power networks. As proof-of-concept, we implemented and
evaluated Femto-Containers on popular microcontroller archi-
tectures (Arm Cortex-M, ESP32 and RISC-V), using eBPF
virtualization, and RIOT, a common operating system in
this space. We show that Femto-Containers can virtualize
and isolate multiple software modules, executed concurrently,
with very small memory footprint overhead (below 10%) and
very small startup time (tens of microseconds) compared to
native code execution. We show that Femto-Containers can
satisfy the constraints of both low-level debug logic inserted
in a hot code path, and high-level business logic coded in
a variety of common programming languages. Compared to
prior work, Femto-Containers thus offer an attractive trade-
off in terms of memory footprint, energy consumption, agility
and security.

1 INTRODUCTION

An estimated 250 billion microcontrollers are in use today [1].
An increasing percentage of these microcontrollers are net-
worked and take part in distributed cyber-physical systems
and the Internet of Things (IoT) we increasingly depend
upon.

With the availability of low-power operating systems [2]
and network stacks (e.g. 6LoWPAN), low-power IoT software
has made giant leaps forward ; but fundamental gaps remain
compared to current practices for networked software. In fact,
current state-of-the-art for managing, programming, and
maintaining fleets of low-power IoT devices resembles more
PC system software workflow from the 90s than today’s com-
mon software practices: simplistic application programming
interfaces (APIs) offer basic performance and connectivity,
but no additional comfort.

However, since the 90s, networked software was revolu-
tionized many times over. Networked software has entered
the age of agility. DevOps [3] drastically shortened software
development/deployment life cycles to provide continuous de-
livery of higher software quality. Additional layers providing

cybersecurity, flexibility and scalability thus became crucial
: ubiquitous script programming (e.g., Python, Javascript),
light-weight software containerization (e.g., Docker), hypervi-
sors and software virtualization, deployment and management
tools for swarms of virtualized software instances (e.g., Ku-
bernetes or AWS), and frameworks for decentralizing system
software updates, development and maintenance on platforms
such as Linux, Android, iOS, Windows etc.

In such a context, low-power IoT devices are the new
‘weakest link’ within distributed cyber-physical systems upon
which relies IoT and related services. Indeed, state-of-the-
art DevOps mechanisms are not commonly applicable on
low-power devices : they are either not applicable on micro-
controllers (e.g., Docker), too prohibitive in terms of hosting
engine memory resource requirements (e.g., OS virtualiza-
tion or standard Java virtual machines), or restricted to
very specific use cases (e.g., JavaCard). This lackluster cre-
ate bottlenecks which severly impact both flexibility and
cybersecurity in IoT.

A key question emerges: can we provide new concepts ad-
equate for software containerization and rapid deployment
on swarms of IoT devices, combining agility, low-power con-
sumption and cybersecurity? The goal we pursue in this
paper is to explore practical solutions for software virtualiza-
tion, containerization and deployment applicable to fleets of
low-power, connected, microcontroller-based IoT devices.

Contributions – In this paper, the work we present
mainly consists in the following:

∙ we survey existing techniques for process isolation &
virtualization for microcontrollers;

∙ we design Femto-Containers, a novel secure DevOps
architecture for constrained IoT devices;

∙ we implement Femto-Containers based on eBPF vir-
tualization, and small containers hosted in a common
low-power IoT operating system (RIOT);

∙ we evaluate the performance of Femto-Containers in a
variety of use cases, on popular microcontroller archi-
tectures (Arm Cortex-M, ESP32 and RISC-V);

∙ we compare Femto-Containers with prior work based
on WebAssembly, JavaScript (RIOTjs) and Python
(microPython). We show Femto-Containers offer an at-
tractive trade-off in terms of memory footprint, energy
consumption, and security.

2 SCENARIOS & THREAT MODEL

As low-power embedded IoT software complexifies on various
devices, it becomes necessary for security (and sometimes
also privacy) reasons to delegate maintenance and updates of
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Figure 1: DevOps use-cases on IoT microcontrollers.

different parts of the embedded software to distinct entities
with limited mutual trust (as described in [4] for instance).
Furthermore, enabling on-the-fly and safe remote instrumen-
tation of already-deployed software is essential to maintain
cyberphysical systems involving low-power IoT devices. We
thus consider different categories of use-cases, depicted in
Figure 1:

(1) Use-case 1: Hosting and isolating some high-level busi-
ness logic, updatable on-demand remotely over the
low-power network. The execution of this type of logic
is typically periodic in nature, and has loose (non-real-
time) timing requirements.

(2) Use-case 2: Hosting and mutually isolating several vir-
tual machines, managed by several different tenants.

(3) Use-case 3: Hosting and isolating some debug/monitor-
ing code applications at low-level, inserted and removed
on-demand, remotely, over the network. Comparatively,
this type of logic is short-lived and exhibits stricter
timing requirements.

Threat Model.We consider both malicious tenants which
can deploy malicious containers and malicious clients which
can maliciously interact with deployed containers.

Malicious Tenant : While a tenant has to work within the
permissions granted by the host system, it can make free use
of the granted resources. A tenant could provide a vulnerable
or malicious application code for execution inside a container.
To protect against this, the host system must ensure that
hosted applications are constrained in the resources they
can access and have a fair share of the processing time and
network bandwidth.

Malicious Client : The malicious client makes use of a
vulnerable tenant application. The client can send requests
to networked applications, including arbitrary packets. As-
suming a vulnerable application, the client can access any
resource accessible by the tenant application. While the pro-
tection of already vulnerable applications is considered out of
scope, the hosting engine must isolate other tenants’ memory
access from a compromised application.

3 ARCHITECTURAL DESIGN

The standard system architecture enabling modern DevOps
at scale in the cloud is depicted in Figure 2.2. A provider-
controlled operating system hosts one or more (typically
many) virtual machines sharing the same hardware resources.
Each virtual machine (VM) virtualizes an OS maintained
by a third-party. Each VM can host one or more (typically
many) containers. This architecture is favored because it
naturally provides the below properties, which are crucial in
terms of code mobility and cyber-security:

(1) Hardware abstraction: the VM abstracts the hard-
ware on top of which software is running, facilitating
code portability across different hardware architectures
and configurations.

(2) OS abstraction: the container further enhances code
mobility by offering standardized access to OS services,
which facilitates code portability across different OS.

(3) Isolation: the VM provides a natural defence line. If
an attackers breaks out of a container, it only com-
promises the one VM it is in, other VMs and the host
system are safe.

However, the standard ”cloud-native” DevOps architecture
depicted Figure 2.2 faces issues on low-power IoT devices
with constrained resources:

∙ Full OS virtualization leads to a prohibitive toll on
resources and/or execution speed;

∙ Standard containers solutions are not applicable on
constrained IoT devices.

For these reasons, we introduce Femto-Containers, an al-
ternative architecture targeting constrained IoT devices, as
described in the following.

Femto-Container Architecture

Instead of using traditional containers inside large VMs which
virtualize a full-blown OS, we host smaller VMs inside sim-
plified containers, running on top of a real-time operating
system (RTOS), as depicted in Figure 2.1. By flipping around
virtualization and containerization, we can retain the crucial
properties w.r.t. code mobility and cyber-security (as we still
combine isolation, hardware/OS abstraction) but we are able
to drastically reduce the scope of virtualization and its cost
on constrained IoT devices.

Compared to the large scale cloud architecture, the Femto-
Container architecture trades features for a more lightweight
approach suitable for small embedded devices. The Femto-
Container architecture relies on a number of RTOS-provided
features and a set of assumptions, listed below.

Use of an RTOS with Multi-Threading. It is assumed that the
RTOS supports real-time multi-threading with a scheduler.
Each Femto-Container runs in a separate thread. Well-known
operating systems in this space can provide for that, such as
RIOT [5] or FreeRTOS [6] and others. These can run on the
bulk of commodity microcontroller hardware available. Note
that RTOS facilities for scheduling enable simple controlling
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of how Femto-Containers interfere with other tasks in the
embedded system.

Use of Simple Containerization. A slim environment around
the virtual machine (VM) exposes RTOS facilities to the
VM. The container sandboxing a VM allows this VM to
be independent of the underlying operating system, and
provide the facilities as a generic interface to the VM. Simple
contracts between container and RTOS can be used to define
and limit the privileges of a container regarding its access to
OS facilities. Note that such limitations must be enforced at
run-time to safely allow 3rd party module reprogramming.

Use of Light-weight Virtualization. The virtual machine pro-
vides hardware agnosticism, and should therefore not rely
on any specific hardware features or peripherals. This al-
lows for running identical application code on heterogeneous
hardware platforms. The virtual machine must have a low
memory footprint, both in Flash and in RAM, per VM. This
allows to run multiple VMs in parallel on the device. Note
that, since we aim to vitualize less functionalities, the VM
can in fact implement a reduced feature set. For instance,
virtualized peripherals such as an interrupt controller are not
required, and we give up the possibility of virtualizing a full
OS.

Isolation & Sandboxing through Virtualization. The OS and
Femto-Containers must be mutually protected from malicious
code, as described in section 2. This implies in particular that
code running in the VM must not be able to access memory
regions outside of what is allowed. Here again, simple con-
tracts can be used to define and limit memory and peripheral
access of the code running in the Femto-Container.

Event-based Launchpad Execution Model. Femto-containers
are executed on-demand, when an event in the RTOS context
calls for it. Femto-container applications are rather short-
lived and have a finite execution constraint. This execution
model fits well with the characteristics of most low-power IoT
software. To simplify containarization and security-by-design,
we mandate that Femto-Containers can only be attached and
launch from predetermined launch pads, which are sprinkled
throughout the RTOS firmware. Where applicable however,
the result from the Femto-Container execution can modify
the control flow in the firmware as defined in the launch pad.

In the following, with a view to implement the Femto-
Container architecture, we explore building blocks alterna-
tives.

4 SOFTWARE-BASED TECHNIQUES
FOR PROCESS ISOLATION &
VIRTUALIZATION

As seen in Section section 3, process isolation and virtualisa-
tion is a critical building block on which the femto-container
architecture depends. Different approaches are possible in
order to virtualize and/or isolate software modules running
on a microcontroller.

fig1: Femto DevOps :
Small VMs in containers.

fig2: Cloud-native DevOps :

Containers in large VMs.

Figure 2: DevOps architecture: Femto vs Cloud.

Software-based Online Approach

One type of approach to isolate software modules is to modify
the embedded hardware architecture. Prominent examples of
this trend include TrustZone modifying the Arm Cortex-M
architecture [7], Sanctum modifying the RISC-V architec-
ture [8], or Sancus complementing the MSP430 architec-
ture [9, 10]. However, such hardware-based approaches are by
nature specific to each hardware architecture. To retain more
general applicability, including on legacy IoT hardware, in
this paper we aim instead for a software-based approach which
does not require specific hardware-based memory protection
mechanism.

Taking a different angle, software security guarantees (such
as process isolation, or functional correctness) can be deter-
mined with offline techniques such as formal verification,
which can prove properties on software that is known a priori,
before it is actually deployed and running. In this paper,
we do not pursue this type of approach. We instead focus
on online techniques, which enforce checks and guarantees
on-the-fly, on previously unknown code which is deployed
(and runs tentatively). The reason for this choice is mainly
that our use cases include scenarios where distinct entities
indepently update different software modules running on the
same IoT device.

Nevertheless, note that our approach does not preclude the
complementary use of hardware-based mechanisms and/or
offline mechanisms.

4.1 Survey of Software-based Techniques

Different categories of light-weight, software-based techniques
for process isolation and virtualization have been developed
in prior work.

Virtual machines. One category of techniques consists in
small virtual machine, used to host and isolate a process
from other processes running on the microcontroller. One
example is WebAssembly (Wasm [11]), a VM specification
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with a stack-based architecture, designed for process isolation
in Web browsers, which has recently been ported to micro-
controllers [12]. Another recent example is Velox [13] a VM
able to host and isolate high-level functional programming
logic on microcontrollers. On the other hand, Darjeeling [14]
is a subset of the Java VM, modified to use a 16 bit archi-
tecture, designed for 8- and 16-bit microcontrollers. In fact,
beyond the low-power IoT domain, small Java VMs have
also been used in other contexts for a long time. For instance
JavaCard [15] uses a small Java VM running on smart cards.

A different VM approach comes from the Linux ecosystem,
based on eBPF (extended Berkeley Packet Filter [16, 17]),
which enables small VM hosting and isolating, for debug
and inspection code inserted in the Linux kernel at run-time.
Recently, a preliminary prototype adapting an eBPF virtual
machine hosted on a low-power microcontroller was developed
in [18].

Scripted logic containers. Yet another type of approach
uses scripted logic interpreters to virtualize and/or isolate
some processes. For instance, MicroPython [19] is a very popu-
lar scripted logic interpreter used on microcontrollers, offering
partial Python scripting support. Another popular scripted
logic interpreter is JerryScript, which offers full ECMA5.1
scripting support. Prior work such as RIOTjs [20] provides a
small JavaScript run-time container, which can host (updat-
able) business logic interpreted on-board a microcontroller,
using JerryScript glued atop a real-time OS (RIOT). However,
neither MicroPython nor RIOTjs/JerryScript provide spe-
cific container isolation guarantees. Complementary mecha-
nisms can however guarantee mutual isolation between scripts.
For instance, the SecureJS [21], provides a Javascript-to-
Javascript compiler (used on top of JerryScript). However
SecureJS does not target low-power microcontrollers specifi-
cally.

OS-level mechanisms. Yet another category of solution
uses OS-level mechanisms for process isolation. For instance,
Tock [22] is an OS written in the Rust programming language,
which offers strong isolation between its kernel and applica-
tion logic processes. However, Tock requires that microcon-
troller hardware provides a memory protection unit (MPU).
More distant related work can also be found in the domain of
network function virtualization. Compact kernels such as Ed-
geOS [23] provide light-weight instance spinning and isolated
execution mechanisms. However such kernels are designed
for high-throughput middleboxes (which are Linux-capable)
instead of low-throughput, low-power microcontrollers.

4.2 Candidate Techniques pre-Selection

We next aim to provide a reality check gauging the potential
of the different categories of approaches. For this, we pre-
select and compare a representative subset of the existing
solutions we identified.

In the virtual machines category, we selected WebAssem-
bly [12] and rBPF [18]. Our reasoning motivating our choices
here is that WebAssembly is a well-known solution for strong,

generic software module isolation, while rBPF promises very
small memory footprint accoring to preliminary prior work [18].

In the scripted logic containers category, we selected Mi-
croPython [19] and RIOTjs [20], which are good represen-
tatives of prominent high-level scripting languages on mi-
crocontrollers: Python and JavaScript, respectively. We also
remark that the performance of RIOTjs is an upper bound
for that of SecureJS (since in essence SecureJS adds a layer
on top of RIOTjs).

We however chose not to further pursue techniques using
OS-specific mechanisms, because we aim to retain generic
applicability to multiple OS in this space. We now overview
the essential aspects of each preselected candidate technique,
before proceeding to comparative benchmarks in the next
section.

4.2.1 Web Assemby.
WebAssembly (Wasm [11]) is standardized by the World
Wide Web Consortium (W3C). Initially aimed at portable
web applications, Wasm has been adapted to microcontrollers.

Architecture. Wasm is a virtual instruction set architecture
(ISA) with flexible intruction size. This ISA allows for small
binary size – decreasing the time needed to transport logic
over the network, and necessary memory footprint on the IoT
device. The WebAssembly VM is stack-based, using both a
stack and a flat heap for memory storage. While heap and
stack sizes are flexible, Wasm specifications mandate memory
allocations in chunks of 64KiB (pages).

DevOps Toolchain. Wasm uses the LLVM compiler: Wasm
applications code can be written in any language supported
by LLVM such as C, C++, Rust, TinyGo, or D, among
others. The Wasm code development and execution work-
flow is shown in Figure 3. Note that for C and C++, the
WebAssembly binaries are created using the emcc toolchain,
which combines the EmSDK with LLVM. Furthermore, a
POSIX-like interface is specified for host OS access, called
WASI [24]. WASI standarizes access to operating system
facilities such as files, network sockets, clocks and random
number etc.

Interpreter. Once the Wasm binary is compiled with LLVM,
the resulting bytecode can be transferred to the IoT device,
on which it is interpreted and executed, as shown in Fig-
ure 3. Several interpreters have been developed. In this paper
we use the WASM3 [12] interpreter. WASM3 is based on a
two-stage approach: in a first phase, the loaded application
is transpiled to an executable, then in a second phase, it is
executed in the interpreter.

Security & Isolation. The sandbox provided by Wasm
offers strong security guarantees on memory access. The
memory space accessible by the virtual machine is a virtual
space mapping different real memory regions. This prevents
hazardous access to the host memory.

4.2.2 eBPF.
Extended Berkeley Packet Filter (eBPF [17]) is a small in-
kernel VM stemming from the Linux ecosystem, compatible
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Figure 3: VM toolchain.

with Unix-like operating systems. eBPF provides a tiny facil-
ity able to run custom VM code, inside the kernel, hooking
into various subsystems.

Architecture. eBPF is 64-bit register-based VM, using
fixed-size 64bit instructions and a small ISA. eBPF uses
a fixed-sized stack (512B) and no heap, which limits VM
memory overhead in RAM. As a replacement for a heap,
a key-value store is used for storage between invocations.
Very recently, the eBPF instruction set has been ported to
microcontrollers [18].

DevOps Toolchain. The toolchain and workflow with eBPF
is akin to that of Wasm shown in Figure 3. In particular,
eBPF also uses the LLVM compiler to produce bytecode, and
supports WM logic written in any language supported by
LLVM (C, C++, Rust, TinyGo, D...).

Interpreter. Contrary to Wasm, the bytecode produce by
LLVM does not need a preliminary phase to transpile, and
can directly be executed by the eBPF interpreter, on the
IoT device. Several interpreters have been developed in prior
work. In this paper, we specifically consider the rBPF inter-
preter [18].

Security & Isolation. The sandbox provided by rBPF offers
security guarantees on memory access and code execution.
All memory access, including to the stack, happen via register
load and store instructions and are checked against simple
memory access controls. Furthermore, there are limitations
on branch and jump instruction targets. The application has
no access to the program counter via registers or instructions
and a jump is always direct, and relative to current program
counter. These characteristics facilitate implementations of
the necessary checks at runtime to limit access and execution
and thus eliminate this attack surface. rBPF should not
be vulnerable against hazardous memory access and code
execution. However according to the authors there are no
limits on the execution time granted to the application.

4.2.3 RIOTjs.
RIOTjs is a Javascript execution environment, integrated in
the RIOT operating system. It executes high-level logic snip-
pets written in the Javascript language, loadable at runtime
over the low-power network, on the IoT device.

Architecture. The architecture is based on a two step ap-
proach where the Javascript code loaded in the runtime
container is first compiled into a compact bytecode format
and then interpreted – all of which happens directly on the

IoT device. The bytecode is a CISC-like instruction set with
main focus on a compact representation. To achieve this,
the instruction set uses single instructions to cover multiple
atomic tasks.

Interpreter & DevOps Toolchain. Using a small interpreter
provided by the JerryScript engine [25], RIOTjs provides a rel-
atively lightweight VM. JerryScript performs a pre-execution
phase which parses the Javascript code. The parser itself
is implemented as a recursive descent parser to convert the
javascipt source into bytecode, without requiring an abstract
syntax tree. Thanks to this parsing phase, the toolchain is
simplified: the container developer only needs a text editor
(which is a major advantage of scripted logic approaches).

Security & Isolation. With RIOTjs, compiled bytecode
is executed within a virtual machine. However, RIOTjs is
not specifically designed for JavaScript runtime container
security and isolation. The hardware-specific mechanisms
(e.g. hardware memory protection) or additional layers and
complementary mechanisms in software (e.g. SecureJS [21]
already mentionned earlier) would be necessary to provide
strong security and isolation. guarantees.

An alternative which one can envision is to offload parsing
and bytecode generation to the maintainer PC. However,
in this case, an additional layer providing mechanisms that
check bytecode correctness would be required on the IoT
device.

Hence, the benchmarks results we provide in the next
section are to be considered as an upper bound on what can
be achieved with this type of approach.

4.2.4 MicroPython.
MicroPython [19] is akin to the JerryScript engine, but for
Python code. Bare-metal operation of MicroPython is possi-
ble on some IoT hardware such as the pyboard. Variants of
MicroPython such as CircuitPython [26] can run bare-metal
on more hardware. Integration in operating systems is also
available (such as in [27], which is similar to RIOTjs, but for
MicroPython).

Architecture. MicroPython is based on a two stage ap-
proach. In a first phase, based on an abstract syntax tree,
a parser/lexer compiles Python code to native bytecode. In
a second phase, an interpreter executes the bytecode. Both
stages can be performed directly on the IoT device. Within
the Python logic hosted in the container, memory manage-
ment is abstracted away for the developer: it automated with
a heap and garbage collector.

Interpreter & DevOps Toolchain. The bytecode interpreter
machine implements a stack-based architecture. Thanks to
the parsing phase which can be performed by MicroPython,
a minimal toolchain is possible: the container developer only
requires a text editor.

Security & Isolation. MicroPython is not specifically de-
signed for Python runtime container security and isolation.
Additional layers and complementary mechanisms would be
necessary to provide strong security and isolation guarantees.
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Figure 4: Benchmark setup. VM executing
Fletcher32 logic, hosted in a typical RTOS con-
figuration, on an nRF52840 microcontroller.

Hence, the benchmarks results we provide in the next section
are to be considered as an upper bound on what can be
achieved with this type of approach.

5 BENCHMARKS OF PROCESS
VIRTUALIZATION & ISOLATION
TECHNIQUES

In this section, to get an idea of what to expects in terms of
ballpark performance, we carry out benchmarks comparing
the candidate virtualization and isolation techniques we pre-
selected. Based on these results, we aim to discuss and select
an approach upon which to base our Femto-Containers design.

5.1 Hardware & Software Setup

The hardware and software setup is depicted in Fig. 4. For
each virtualization candidate, the virtual machine is loaded
with an application performing a Fletcher32 checksum on a
360B input string. All benchmarks are run COTS hardware:
a Nordic nrf52840dk development kit, which is based on a
common ARM Cortex-M4 processor running at 64MHz. The
operating system hosting the VMs is RIOT [5]. As base,
we take RIOT Release 2021.04, configured to be IoT-ready,
providing standard low-power networking connectivity, lever-
aging the board’s IEEE 802.15.4 radio chip and a ressource-
efficient IPv6-compliant stack (6LoWPAN, UDP, CoAP and
SUIT).

5.2 Results & Preliminary Analysis

Our benchmarks results comparing different scripting and
virtualization techniques are shown in Table 1 and Table 2.
The results highlight how much the footprint of hosting logic
in a VM can vary, depending on the virtualization technique
being used.

Looking at size. While the size of applications are roughly
comparable accross virtualization techniques (see Table 2)

ROM size RAM size

WASM3 Interpreter 64KiB 85KiB
rBPF Interpreter 4.4KiB 0.6KiB
RIOTjs 121KiB 18KiB
MicroPython 101KiB 8.2KiB

Host OS (without VM) 52.5KiB 16.3KiB

Table 1: Memory requirements for VM interpreters.

code size startup time run time

Native C 74B – 27 µs
WASM3 322B 17 096 µs 980 µs
rBPF 456B 1 µs 2133 µs
RIOTjs 593B 5589 µs 14 726 µs
MicroPython 497B 21 907 µs 16 325 µs

Table 2: Size and performance of fletcher32 logic
hosted in different VMs.

the memory required on the IoT device differs wildly. In par-
ticular, techniques based on script interpreters (RIOTjs and
MicroPython) require the biggest dedicated ROM memory
budget, above 100KiB.

For comparison, the biggest ROM budget we measured
requires 27 times more memory than the smallest budget.
Similarly, RAM requirements vary a lot. Note that we could
not determine with absolute precision the lower bound for
script interpreters techniques (due to some flexibility given
at compile time to set heap size in RAM). Nevertheless, our
experiments show that the biggest RAM budget requires
140 times more RAM than the smallest budget. We remark
that, as noted in prior work [18] the minimum required page
size of 64KiB to comply with the WebAssembly specification
explains why WASM performs poorly in terms of RAM. One
can envision enhancements where this requirement is relxaed.
However the RAM budget would still be well above an order
of magnitude more than the lowest RAM budget we measured
(rBPF).

Last but not least, let’s give some perspective by compar-
ison with a typical memory budget for the whole software
embedded on the IoT device. As a reminder, in the class of
devices we consider, a microcontroller memory capacity of
64kB in RAM and 256kB in Flash (ROM) is not uncommon.
A typical OS footprint for this type of device is shown in
the last row of Table 1. For such targets, according to our
measurements, adding a VM can either incur a tremendous
increase in total memory requirements (200% more ROM
with MicroPython) or a negligible impact (8% more ROM
with rBPF) as visualized in Figure 5.

Looking at speed. To no surprise, beyond size overhead,
virtualization also has a cost in terms of execution speed.
But here again, performance varies wildly depending on the
virtualization technique. On one hand, solutions such as
MicroPython and RIOTjs directly interpret the code snippet
and execute it. On the other hand, solutions such as rBPF
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and WASM3 require a compilation step in between to convert
from human readable code to machine readable.

Our measurements show that script interpreters incur an
enormous penalty in execution speed. Compared to native
code execution, script interpreters are a whooping 600 times
slower. Compared to the same base (native execution) WASM
is only 37 times slower, and rBPF 77 times slower.

One last aspect to consider is the startup time dedicated
to preliminary pre-processing when loading new VM logic,
before it can be executed (including steps such as code parsing
and intermediate translation, various pre-flight checks etc.).
Depending on the virtualization technique, this startup time
varies almost 1000 fold – from a few microseconds compared
to a few milliseconds.

5.3 Discussion

We now aim to reason a choice for an approach to design tiny
VMs which efficiently address our target use cases (described
in Section 2) which involve hosting and mutually isolating
multiple VMs which may contain either high-level business
logic, or low-level debug/monitoring code snippets.

Considering architecture & security. There are notable ar-
chitectural differences amongst the solutions we pre-selected
and looked at in this this section. For instance, WASM, Mi-
croPython and RIOTjs each require some form of heap on
which to allocate application variables. On the other hand,
rBPF does not require a heap. With a view to accommo-
dating several VMs concurrently, a heap-based architecture
presents on the one hand some potential advantages in terms
of memory (pooling) efficiency, but on the other hand some
potential drawbacks in terms of security (mututal isolation
of the VMs’ memory).

From another angle: security guarantees call for a formally
verified implementation of the hosting engine, down the road.
A typical approximation is: less LoC (lines of code) means
less effort produce a verified implementation. For instance,
the rBPF implementation is 1,5k LoC, while the WASM3
implementation is 10k LoC. The other implementations we
considered in our pre-selection (RIOTjs and MicroPython)
encompass significantly more LoC.

Considering performance. Our benchmarks indicate that
both from a memory overhead and from a startup time
standpoint an eBPF-based approach is the most attractive,
by far. From an execution time point of view however, a
WebAssembly approach does offer faster execution times
than an eBPF-based approach. We nevetherless deem safe to
consider that, for the use cases we target, this difference is
negligible. These results both extend and confirm independent
results presented in prior work [18]. All in all, both due to
much larger memory footprint and enormous execution time
penalties, Python and JavaScript approaches could not be
considered beyond rapid prototyping – in particular when
considering one of our uses cases: a virtual machine hosting
debug applications in a hot code path.

Ahead-of-Time vs Just-in-Time. One approach to speed
up embedded execution time is to perform a translation into
device-native code. One way to offload the device is to use
more Ahead-of-Time (AoT) compilation/interpretation, and
less Just-in-Time (JiT) processing on-device. However, using
AoT pre-compiled code can both complicate run-time security
checks on-board the IoT device, and reduce the portability
of the code deployed on the device. For these reasons, in this
paper, we consider primarily JiT.

Intermediate conclusion. Based on our discussion and our
benchmarks, we derive the preliminary conclusion that an
eBPF-based architecture is a promising approach to design
efficient and secure tiny concurrent containers to host and
execute logic on a microcontroller. In the following, we thus
design, implement and experimentally evaluate a novel vir-
tualization and isolation mechanism for software modules,
based on eBPF.

6 FEMTO-CONTAINER
IMPLEMENTATION

As proof of concept, we implemented the femto-container
architecture, with containers hosted in the operating system
RIOT and virtualization using an instruction set compati-
ble with the eBPF instruction set. This implementation is
open source (published in [28]). We detail below its main
caracteristics.

Use of RIOT Multi-Threading

Each Femto-Container application instance running on the
RTOS is scheduled as a regular thread in RIOT. The native
OS thread scheduling mechanism can thus simply execute
concurrently and share resources amongst multiple femto-
containers and other tasks, spread over different threads. An
overview of how Femto-Containers integrates in the operating
system is shown in Figure 6. A femto-container instance
requires minimal RAM: a small stack and the register set,
but no heap. The host RTOS bears thus a very small overhead
per femto-container instance.

The hardware and peripherals available on the device are
not accessible by the Femto-Container instances. All inter-
action with hardware peripherals passes through the host
RTOS via the system call interface. As the Femto-Container
virtual machine does not virtualize its own set of periph-
erals, no interrupts or pseudo-hardware is available to the
Femto-Container application. This also removes the option
to interrupt the application flow inside a Femto-Container.

Basic Containerization

Simplified containers provides a uniform environment around
the VM, independent of the operating system (RIOT in our
implementation). Access from the femto-container to the re-
quired OS facilities is allowed through system calls to services
provided by RIOT. These system calls can be used by the
loaded applications via the eBPF native call instruction.
Furthermore, the OS can share specific memory regions with
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fig3: RIOT with rBPF virtual machine (57kBytes).

Figure 5: Flash memory distribution. RIOT with 6LoWPAN, CoAP, SUIT-compliant OTA and different
application hosting engines.

the container.
Key-value store. In lieu of a file system, applications hosted
in femto-containers can load and store simple values, by a
numerical key reference, in a key-value store. This provides a
mechanism for persistent storage, between application invo-
cations. Interaction with this key-value store is implemented
via a set of system calls, keeping it independent of the in-
struction set. By default, two key-value stores are provided
by the OS. The first key-value store is local to the applica-
tion, for values that are private to the VM accommodated in
the container. The second key-value store is global, and can
be accessed by all applications, used to communicate values
between applications. An optional third intermediate-level of
key-value store is possible to facilitate sharing data across a
set of VMs from the same tenant, while isolating this set of
VMs from other tenants’ VMs.

Light-weight Virtualisation

Application code is virtualized using the eBPF instruction
set and the rBPF interpreter.
Register-based VM. The virtual machine operates on
eleven registers of 64 bits wide. The last register (r10) is
a read-only pointer to the beginning of a 512B stack pro-
vided by the femto-container hosting engine. Interaction with
the stack happens via load and store instructions. Instructions
are divided into an 8 bit opcode, two 4 bit registers: source
and destination, an 16 bit offset field and an 32 bit immediate
value. Position-independent code is achieved by using the
reference in r10 and the offset field in the instructions.

Jumptable & Interpreter. The interpreter parses in-
structions and executes them operating on the registers and
stack. The machine itself is implemented as a computed
jumptable, with the instruction opcodes as keys. During
execution, the hosting engine iterates over the instruction op-
codes in the application, and jumps directly to the instruction-
specific code. This design keeps the interpreter itself small
and fast.

Isolation & Sandboxing

To control the capabilities of Femto-Containers, and to pro-
tect the OS from memory access by malicious applications, a
simple but effective memory protection system is used. By
default each virtual machine instance only has access to its
VM-specific registers and its stack.

Memory access checks at runtime. Whitelist can be
configured (attached in the hosting engine) to explicitly al-
low a VM instance access to other memory regions. These
memory regions can have individual flags for allowing read-
/write access. For example, a firewall-type trigger can grant
read-only access to the network packet, allowing the virtual
machine to inspect the packet, but not to modify it. As the
memory instructions allow for calculated addresses based
on register values, memory accesses are checked at runtime
against the resulting address, as show in Figure 7. Illegal
access aborts execution.

Pre-flight instruction checks. A femto-container ver-
ifies the application before it is executed for the first time.
These checks includes checks on the instruction fields. For
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example, as there are only 11 registers, but space in the in-
struction for 16 registers, the register fields must be checked
for out-of-bounds values. A special case here is register r10
which is read-only, and thus is not allowed in the destination
field of the instructions.

The jump instructions are also checked to ensure that
the destination of the jump is within the address space of
the application code. As calculated jump destinations are
not supported in the instruction set, the jump targets are
known before executions and are checked during the pre-flight
checks. During the execution of the application, the jump
destinations no longer have to be verified and can be accepted
as valid destinations.

Finite execution is also enforced, by limiting both the
total number of instructions 𝑁𝑖, and the number of branch
instructions 𝑁𝑏 that are allowed. In practice, this limits the
total number of instructions executed to: 𝑁𝑖 ×𝑁𝑏.

Hooks & Event-based Execution

The Femto-container hosting engine instantiates and runs
containers as triggered by events within the RTOS. Such
events can be a network packet reception, sensor reading
input or an operating system scheduling events for instance.
Business logic applications can be implemented either by
directly responding to sensor input or by attaching to a
timer-based hook to fire periodically.

Simple hooks are pre-compiled into the RTOS firmware,
providing a pre-determined set of pads from which femto-
containers can be attached and launched.

sched_ctx_t context = {
.previous = active_thread ,
.next = next_thread ,

};

int64_t result;

fc_hook_execute(BPF_HOOK_SCHED , &context ,
sizeof(context), &result);

Listing 1: Example hook implementation.

An example of a hook integrated in the firmware is shown
in Listing 1. The firmware has to set up the context struct
for the Femto-Containers after which it can call the hosting
engine to execute the containers associated with the hook.

Low-power Secure DevOps

Launching a new femto-container or modifying an existing
femto container can be done without modifying the RTOS
firmware. However, updating the hooks themselves requires
a firmware update. In our implementation, both types of
updates use CoAP network transfer and software update
metadata defined by SUIT (CBOR, COSE) to secure up-
dates end-to-end over network paths including low-power
wireless segments. Updating a Femto-Container application
attached to a hook is done via a SUIT manifest. The ex-
act hook to attach the new Femto-Container to is done by
specifying the hook as unique identifier (UUID) as storage
location in the SUIT manifest. A rapid develop-and-deploy
cycle only requires a new SUIT manifest with the storage
location specified every update. Sending this manifest to
the device triggers the update of the hook after the new
Femto-Container application is downloaded to the device
and stored in the RAM. Multiple Femto-Containers can be
deployed on a single hook, where it depends on the hook im-
plementation how conflicting return values from the different
Femto-Containers are used. For example, a timer-based hook
for periodic container execution support attaching multiple
Femto-Containers from different tenants. This hook then
periodically executes all containers attached without using
any of the return values.

7 USE-CASE PROTOTYPING WITH
FEMTO-CONTAINERS

In this section, we use Femto-Containers to prototype the
implemention of several use cases involving one or more appli-
cations, hosted concurrently on a microcontroller, matching
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targets we identified initially (in section 2). In the prototype
implementation we show below, we used C to code logic
hosted in Femto-Containers. However, any other language
compiled with LLVM could be used instead (C++, Rust,
TinyGo, D...).

7.1 Kernel Debug Code Example

The first prototype consists in a single application, which
intervenes on a hot code path: it is invoked by the scheduler of
the OS, to keep an updated count of threads’ activations. The
logic hosted in the Femto-Container is shown in Listing 2. A
small struct is passed as context, which contains the previous
running thread ID and the next running thread ID. The
application maintains a value for every thread, incrementing
it every time the thread is scheduled. External code can
request these counters and provide debug feedback to the
developer.

#include <stdint.h>
#include "bpf/bpfapi/helpers.h"

#define THREAD_START_KEY 0x0

typedef struct {
uint64_t previous; /* previous thread */
uint64_t next; /* next thread */

} sched_ctx_t;

int pid_log(sched_ctx_t *ctx)
{
/* Zero pid means no next thread */

if (ctx ->next != 0) {
uint32_t counter;

uint32_t thread_key = THREAD_START_KEY +
ctx ->next;

bpf_fetch_global(thread_key ,
&counter);

counter ++;
bpf_store_global(thread_key ,

counter);
}
return 0;

}

Listing 2: Thread counter code.

7.2 Networked Sensor Code Example

For the second prototype we add two Femto-Containers from
another tenant to the setup of the first prototype. Interaction
between these two additional containers is achieved via a
separate key-value store, as depicted in Figure 8. The logic
hosted in the first Femto-Container, periodically triggered by
the timer event, reads, processes and stores a sensor value.
The code for this logic is shown in [29]. The second container’s
logic is triggered upon receiving a network packet (CoAP
request), and returns the stored sensor value back to the
requestor. The code for this logic is shown in [30].

In this toy example, the sensor value processing is a simple
moving average, but more complex post-processing is pos-
sible instead, such as differential privacy or some federated
learning logic, for instance. This example sketches both how
multiple tenants can be accommodated, and how separating
the concerns between different containers is possible (between

Tenant B

Tenant A 

RIOT Operating System

CoAP
Stack 

Hosting Engine

Timer 
Hook

Timer
event

CoAP
Hook
Reply 

CoAP
Event 

Store
 A

CoAP Response
Formatter

Femto-Container 2 

Kernel

Thread
Switch 

Switch 
event

Store
B 

Thread counter

Femto-Container 3 

Sensor
Read 

Femto-Container 1

Figure 8: Event and value flow when hosting multiple
containers for different tenants.

sensor value reading/processing on the one hand, and on the
other hand the communication between the device and a
remote requestor).

8 PERFORMANCE EVALUATION

In this section we evaluate the performance of Femto-Containers
on low-power IoT hardware. We use RIOT Release 2021.04
as a base for our benchmarks.

8.1 Hardware Testbed Setup

We carry out our measurements on popular, commercial,
off-the-shelf IoT hardware, representative of the landscape of
modern 32-bit microcontroller architecture that are available:
Arm Cortex-M, ESP32, and RISC-V. More precisely, we build
and run the code on the following boards:

∙ a Nordic nRF52840 Development Kit, using an Arm
Cortex-M4 microcontroller with 256KiB RAM, 1MiB
Flash, and a 2.4GHz radio transceiver (BLE/802.15.4)

∙ a WROOM-32 board, using an ESP32 module which
provides two low-power Xtensa® 32-bit LX6 micropro-
cessors with integrated Wi-Fi and Bluetooth, 520KiB
RAM, 448KiB ROM and 16 kB RTC SRAM.

∙ a Sipeed Longan Nano GD32VF103CBT6 Development
Board, which provides a RISC-V 32-bit microcontroller
with 32KiB RAM and 128KiB Flash.

An open-access testbed such as IoT-Lab [31] also provides
some of this hardware, for reproducibility.

8.2 Femto-Container Engine Code
Analysis

The Femto-Containers hosting engine code size is small: 1874
lines of code in total. This includes bindings to the operat-
ing system facilities. Compared to the rBPF hosting engine
for example (1615 lines of code) this represents a relatively
modest increase (15%) which remains in the same ballpark.

The in-memory structures required to run Femto-Containers
are also small. There are two important structures used to
manage Femto-Containers. The first structure contains the
full state of the virtual machine and any flags required to
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manage the VM. This structure requires 664B in total and
includes the stack for the VM instance. The second structure
is a small 16B structure used to whitelist different memory re-
gions for additional access for the VM. The virtual machine
state structure already includes such a memory whitelist
structure to grant access to the stack space of the VM.

8.3 Experiments with a Single Container

In this section, we evaluate the footprint and the speed of
execution with a Femto-Container, on various 32-bit micro-
controllers. Again, we compare to the performance of using
a basic rBPF virtual machine. Femto-Containers proceeds to
security checks on the application bytecode, prior to actually
launching the VM. First, this verification stage checks that
the registers in all instructions are within the bounds of the
eleven available registers, where the source address must be
one of these registers and the destination must be one of
register r0 to r9, as register r10 is read-only per specifica-
tion. Second, the verification checks the destination of the
branch-type instructions. Compared to rBPF which performs
more limited checks, for instance, the Femto-Container en-
gine increases security measures. We evaluate the impact
of these pre-flight checks on speed in Table 3. While still
much faster than alternative virtualization techniques (re-
call Table 2), Femto-Containers startup time is significantly
longer than those in rBPF, across the board. Note however
that pre-flight checks are run only the first time the VM
runs, and are skipped onwards, after the second time the
application is run. The increased security measures (in the
pre-flight checks) also show when looking at the memory
footprint of the Femto-Containers, reported in Table 4. Com-
pared to rBPF the required ROM for the hosting engine
increased slightly (less than 10%). The required RAM per
virtual machine also increased slightly because of the ad-
ditional security features. In Table 5, we also measure the
RAM memory required to run the kernel debug application
example (described in subsection 7.1) which is also small,
at 700Bytes. Last but not least, we observe in Table 3 that
the execution time with a Femto-Container is slighlty faster
than execution time with rBPF virtual machine.

rBPF Femto-Containers
Install Run Install Run

Cortex-M4 1 µs 2133 µs 28µs 2061µs
ESP32 15 µs 1817 µs 66µs 1770µs
RISC-V 1 µs 1248 µs 17µs 1238µs

Table 3: Speed of a Femto-Container (hosting
fletcher32 logic).

8.4 Experiments with Multiple Containers

We now measure in Table 5 the memory required to con-
currently host multiple containers from multiple tenants on
the same microcontroller, from the examples we described in
section 7. In general, each Femto-Container needs memory to

ROM size RAM size

Femto-Container 4742B 664B
rBPF Interpreter 4440B 660B

Table 4: Memory footprint of a Femto-Container
hosting fletcher32 logic (on Arm Cortex-M4).

∙ store the application bytecode
∙ handle the virtual machine state and stack

This minimal default memory footprint used by a Femto-
Container amounts to 664B, which is for storing the VM
stack, housekeeping structs, information about memory re-
gions etc. Note that on top of this basic footprint, a small
additional overhead is necessary to code memory permissions.
For example, the CoAP handler container (see Figure 8)
requires additional read/write permissions to two memory
regions to handle the CoAP packet, which increases the over-
head by 16B per region. Furthermore, the key-value stores
are also in RAM. In this case the total RAM used by the
key value stores (and houskeeping) for different tenants was
340B. Hence, the required RAM memory we measured so
as to run the example with 3 containers and 2 tenants is
3.2KiB.

Beyond these examples, if we consider more containers host-
ing larger applications (e.g., ≈2000Bytes) an Arm Cortex-M4
microcontroller with 256KiB RAM, the density of containers
achievable would be of ≈100 instances, next to running the
OS. Femto-Containers thus allow an almost arbitrarily high
density of VMs, even on small microcontrollers.

Bytecode Container RAM Total RAM

Thread Counter 104B 664B 768B
Sensor Reader 496B 664B 1160B
CoAP Handler 264B 696B 960B

Table 5: RAM required to host multiple concurrent
Femto-Containers applications.

8.5 Overhead Added by Hooks

One key question is how performance is affected by prepro-
visionning launchpads (hooks) in the RTOS firmware. We
measure in Table 6 the overhead caused by adding a hook to
the RTOS workflow. This overhead amounts to ≈100 clock
ticks on all the hardware we tested. Compared to the number
of cycles needed for an average task in the operating system,
this impact is low. Furthermore, this overhead is less than
10% of the number of cycles needed to execute the logic
hosted in a Femto-Container. From this observation, we can
conclude that, even if this hook is on a very hot code path
(as for the Thread Counter example) the performance loss is
tolerable. Conversely, the perspective of adding many hooks
sprinkled in many places in the RTOS firmware is realistic
without incurring significant performance loss.
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Empty Hook Hook with Application

Cortex-M4 109 1750
ESP32 83 1163
RISC-V 106 754

Table 6: Hook overhead in clock ticks for the thread
switch example

9 DISCUSSION

Virtualization vs Power-Efficiency. Inherently, virtualiza-
tion causes some execution overhead, due to interpretation
of the code. Thus Femto-Containers increase power consump-
tion for functionality executed within the VM, compared to
native code execution. However, this drawback is mitigated
by several other factors. First, the absolute power consump-
tion overhead may be neglible, e.g. if the hosted logic is not
performing long-lasting, heavy-duty tasks. Second, network
transfer costs, power consumption and downtime are saved
if software updates modify a Femto-Container instead of the
full firmware.

Controlling Tenant Priviledges. Controlling and granting
access to specific RTOS resources to different containers
or tenants is a complex challenge. Our design includes a
basic permission system based on preprovisionned hooks,
system calls, and simple contracts between the hosting engine
(on behalf of the OS) and a given container. Basically: the
OS restricts the set of priviledges that can be granted, the
container specifies the set of priviledges it requires, and the
hosting engine grants the intersection of these sets. One
limitation of our current simplified design is that there is
only one fixed set of priviledges possible per hook. In case
2 tenants have different priviledges, a second hook must be
made available. Additional mechanisms would be required to
overcome this limiation and/or to enable dynamic priviledge
levels.

Install Time vs Execution Time. As mentioned before,
one limitation due to virtualization is the inherent slump
in execution speed, compared to native code exection. One
way to remove this overhead is to transpile the portable
eBPF bytecode into native instruction code. This could be
done in a single pass to convert the whole application into
native instructions in an installation step. This can result
into a speed-up at the cost of extra install-time overhead. To
avoid the issues describe before on complicating the run-time
security checks, this compilation into native code has to be
done at run-time by the device deploying the code.

Fixed- vs Variable-length Instructions. Originally, eBPF
scripts are optimized for fast execution on 64-bit platforms.
Compared to other virtual machines such as Wasm, the result-
ing bytecode is relative large. In fact, most of the instructions
have bit fields that are fixed at zero. A possible way to reduce
the size of these scripts is to compress the instructions into
a variable size instruction set, removing these fields from
the instructions where possible. This would create a variable

length instruction set based on the eBPF set. For example
the immediate field is not used with half of the instructions
and would reduce the instructions to 32 bits in size when
removed.

Formal Verification Perspectives. With such a small size
in terms of LoC, there is a clear opportunity to go further
and attempt at producing a formally verified implementation
of the Femto-Containers hosting engine, providing proof that
the memory of the host system and of other tenants are
protected against malicious tenants and clients. So far, we
have been using fuzzing tools on the application loaded into
the virtual machine in an to find bugs and vulnerabilities in
the hosting engine. However, this does not ensure that all
opcodes are executed according to their specification, it only
checks whether instructions are able to crash the running
system.

rBPF Logic & Execution Limitations. Inherent limitations
due to the eBPF instruction set, combined with the absence
of virtualized hardware, restrict what logic can be deployed in
Femto-Containers currently. Femto-Containers are designed
to host logic that is rather script-like, short-lived, and not
computation-intensive. On the one hand, such characteristics
increase security-by-design. On the other hand they reduce
flexibility. For instance, asynchronous operation is not sup-
ported: there is no option to interrupt the control flow inside
a Femto-Container from outside the virtual machine. Another
limitation is the fixed, small size of the stack (512 Bytes)
dictated by the eBPF specification. More memory-consuming
tasks would need special handling to provide additional mem-
ory. Allowing the application to request more stack from the
RTOS, for example via the contracts, could solve part of
this issue. More computation- and memory-intensive tasks
could also make use of additional system calls provided by
the RTOS, which could execute generic primitives at native
speed.

10 RELATED WORK

We have already provided a survey of related work in section 4.
To the best of our knowledge, the closest related work is
rBPF [18]. Compared to rBPF:

∙ Femto-Containers are applicable not only to single con-
tainer use-cases, but also to use cases hosting multiple
containers and distinct tenants, concurrently, on the
same microcontroller;

∙ Femto-Containers provide additional containerization,
security and isolation mechanisms;

∙ Femto-Containers improve performance in the single-
container case.

Furthermore, on the experimental side, we compare the per-
formance of more diverse containers techniques, on a wider
variety of low-power IoT hardware architectures.

11 CONCLUSION

In this paper we have introduced Femto-Containers, a new
architecture we desiged to enable modern DevOps on fleets
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of heterogeneous low-power IoT hardware. Using Femto-
Containers, authorized maintainers of IoT device software
can manage (via the network) mutually isolated software
modules embedded on the same microcontroller-based de-
vice. We implemented a Femto-Container hosting engine on a
common low-power IoT operating system, porting the eBPF
instruction set to RIOT. We demonstrated experimentally
its performance, without requiring any specific hardware-
based memory isolation mechanism, on the most common
32-bit microcontroller architectures (including Arm Cortex-
M, RISC-V, ESP32). While requiring negligible Flash and
RAM memory overhead (less than 10%), Femto-Containers
improve state-of-the-art containerization, virtualization and
eBPF use on IoT microcontrollers, by increasing security,
isolation and execution speed. In effect, Femto-Containers
enables hosting (tens of) applications executing concurrently,
and multiple tenants, on a single low-power IoT device.
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