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Abstract

We present a SageMath implementation of the symbolic-numeric algorithm introduced by van der
Hoeven in 2007 for factoring linear differential operators whose coefficients are rational functions.

1 Introduction

Many functions are solution of a differential equation (E) of the form an(z)f (n)(z) + · · · + a1(z)f
′(z) +

a0(z)f(z) = 0 whose coefficients ai are rational functions. A lot of information concerning these functions
can be computed directly from the equations. It is therefore of interest to develop tools for manipulating
equations of this form [Sal19].

The left-hand side of (E) can be viewed as the action of the operator L := an∂
n + · · · + a1∂ + a0 on

the function f where ∂ stands for the differentiation with respect to z. We denote by K(z)〈∂〉 the algebra
of linear differential operators with rational coefficients and we assume that the field of constants K is a
subfield of C. Factoring a linear differential operator consists in writing L as the composition L = L1L2

of two operators L1, L2 ∈ K(z)〈∂〉 of smaller order, potentially introducing algebraic extensions. The
solutions of the right factor L2 form a subspace of the solutions of L. Note that this fails for left factors
because of non-commutativity. In general, it is easier to find an exact symbolic solution or to approximate
a numerical solution with equations of smaller order. Hence factoring is useful for manipulating linear
differential operators and, consequently, studying their solutions.

This paper presents an implementation1 (focusing on the Fuchsian case, see below) of the symbolic-
numeric factoring algorithm introduced by van der Hoeven in [vdH07]. It mainly provides the command
dfactor(L) which computes a list of irreducible operators [L1,...,Lr] such that L is equal to the com-
position L1· · · Lr, as illustrated below.

sage: from diffop_factorization import z, Dz, dfactor

sage: L = (4*z^2 + 6*z + 2)*Dz^2 + (4*z + 3)*Dz - 1

sage: dfactor(L)

[(4*z + 4)*Dz + 2, (z + 1/2)*Dz - 1/2]

Traditionally, algorithms for factoring linear differential operators are purely algebraic (they do not
use numerical computation). The first method is due to Beke at the end of the 19th century [Bek94].
Three aspects contribute to the complexity of his method: the so-called “second exterior power method”
used to reduce the problem to the task of finding a first order right factor, a combinatorial part (possibly
exponential if there are many singular points) and computation over large algebraic extensions. Since
the 1990s, improvements were made by many authors (among others, [Sch89], [Bro94], and [Tsa94]). A

1The code is available at https://github.com/a-goyer/diffop factorization under the GNU General Public License.
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Algorithm 1 Computing a non-trivial right factor or ensuring that there is none

input: a Fuchsian operator L ∈ Q(z)〈∂〉
output: a non-trivial right factor of L or irreducible

1: function Right ∂Factor(L)
2: loop
3: try
4: compute a generating set M of monodromy matrices with rigorous error bounds
5: compute a subspace U of V (L) invariant under the action of M
6: if U is none then return irreducible

7: else
8: guess an operator L2 ∈ Q(z)〈∂〉 which annihilates a nonzero f ∈ U
9: check that L2 divides L from the right exactly

10: return L2

11: catch insufficient precision:
12: increase working precision and truncation order

detailed complexity analysis of Beke’s method can be found in [Gri90] and explicit degree bounds of a right
factor in [BRS19]. Singer proposed a different approach (the “eigenring” method) for testing reducibility
[Sin96]. Van Hoeij designed a new factoring algorithm (a “local to global” method) which gets around the
costly parts of Beke’s method in many cases [vH97] and he developed an implementation in Maple. Van
Hoeij and Cluzeau gave also a factoring algorithm in positive characteristic [CvH04]. To our knowledge,
there is however no efficient algorithm for lifting a modular factorization to characteristic zero.

Van der Hoeven in [vdH07] and later Johansson, Kauers, and Mezzarobba (for first order right factors)
in [JKM13] proposed algorithms which involves numerical computation to avoid some tricky parts of
the algebraic algorithms but the lack of implementation did not allow one to compare symbolic-numeric
approaches with purely algebraic approaches.

2 Van der Hoeven’s factoring algorithm

Van der Hoeven’s factoring algorithm is sketched in Algorithm 1. The key ingredient is Corollary 3 (page 3
below) which reduces the factorization problem to the task of computing a linear subspace invariant under
the action of a finite list of matrices M1, . . . ,Mr. The algorithm starts by computing these matrices with
rigorous error bounds then tries to find an invariant subspace. Depending on the reducibility of the input
operator, there are two ways to proceed. To certify irreducibility, the error bounds are exploited to ensure
that no non-trivial subspace is invariant under the action of M1, . . . ,Mr, in which case a none is returned.
In the case of reducibility, the algorithm can compute an approximate invariant subspace and consequently
an approximate right factor. Two ingredients are used to guess a candidate exact right factor: Hermite–
Padé approximants to find rational fractions from truncated power series and the LLL algorithm to find
elements of Q from approximate numbers. Finally, the algorithm can prove the exact divisibility by a right
Euclidean division in Q(z)〈∂〉. If the working precision is insufficient, the candidate right factor can turn
out to be incorrect or some computation steps can fail, in which case an error is raised. We increase the
precision until we get either a factorization or an irreducibility certificate.

We shall assume that the reader is familiar with the basic facts of differential Galois theory as presented
in [vdPS03]. For the rest of this section, we consider a monic operator L ∈ K(z)〈∂〉 of order n ≥ 1 with
K ⊂ C algebraically closed and we fix an ordinary point z0 ∈ K of L. Recall that a point is called ordinary
if it is not a pole of a coefficient of L, and it is called singular otherwise.

For each 1 ≤ i ≤ n, denote by hi =
∑

p≥0 hi,p(z − z0)
p the unique power series solution of L in a
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neighborhood of z0 such that, for 0 ≤ j < n, h
(j)
i (z0) equals 1 if i = j+1 and 0 otherwise. It can be proved

that E := K(z)(h1, . . . , hn) is a Picard–Vessiot extension of K(z) associated to L (informally, a minimal
field extension containing all solutions). The differential Galois group of L is the group (unique up to
isomorphism) of all field automorphisms σ of E fixing K(z) and satisfying σ(f ′) = σ(f)′ for any f ∈ E .
The natural left linear action of this group on the solution space V (L) := SpanK(h1, . . . , hn) of L is closely
related to the factorizations of L, as shown in Theorem 1 (see [vdH07], Proposition 5). We identify V (L)
and the differential Galois group of L with their matrix representations in the basis (h1, . . . , hn).

Theorem 1 The map L2 7→ V (L2) := {f ∈ V (L) | L2 · f = 0} defines a bijection between the monic right
factors of L and the subspaces of V (L) invariant under the action of the differential Galois group of L.

Denote by Sing(L) the set of singular points of L. Let (f1, . . . , fn) be any basis of V (L). Consider a
continuous loop γ ⊂ C\Sing(L) with base point z0. The analytic continuation of (f1, . . . , fn) along γ yields a
new basis (g1, . . . , gn) of V (L). One calls monodromy matrix based in z0 along γ the matrix ∆z0,γ ∈ GLn(C)

such that
(
g
(i−1)
j (z0)

)
1≤i,j≤n

= ∆z0,γ

(
f
(i−1)
j (z0)

)
1≤i,j≤n

. It can be proved that ∆z0,γ only depends on

the homotopy class of γ in C\Sing(L) and that α 7→ ∆z0,α is a morphism for loop concatenation. The
monodromy group of L (in z0) is the group of all matrices ∆z0,α for any loop α ⊂ C\Sing(L) with base
point z0. As expressed by the next result, monodromy provides, under a regularity assumption, an analytic
access to the differential Galois group. Recall that an operator is Fuchsian when its solutions have at most
polynomial growth in sectors at each singular point. Fuchs’ criterion (Corollary 5.5 in [vdPS03]) gives a
very simple way to test this.

Theorem 2 (Density theorem of Schlesinger [Sch97]) If L is Fuchsian, then the differential Galois group
of L is the Zariski closure of the monodromy group of L.

Corollary 3 Assume that L is a Fuchsian operator and denote by s1, . . . , sr ∈ K its finite singular points.
For each 1 ≤ i ≤ r, let γi ⊂ C\{s1, . . . , sr} be a loop with base point z0 enclosing si once and enclosing
no sj for j 6= i. The map L2 7→ V (L2) defines a bijection between the monic right factors of L and the
subspaces of V (L) invariant under the action of all monodromy matrices ∆z0,γi ∈ GLn(C).

3 Implementation

We use ball arithmetic (a form of interval arithmetic implemented in the C library Arb, see https:

//arblib.org/) for tracking numerical errors. Our diffop factorization package is mainly based on
the ore algebra package for manipulating differential operators, in particular for the rigorous arbitrary-
precision computation of monodromy matrices [Mez16].

Computing with balls as “exact” numbers requires deciding what to do with zero-tests. Indeed, let
z ∈ C be a complex which is only known through a ball b ⊂ C containing it. If b does not contain 0, then
we are certain that z 6= 0, but if b contains 0, we cannot decide whether z = 0. However, if z 6= 0 and the
precision is sufficient, then 0 /∈ b. An optimistic zero-test consists in claiming that z = 0 whenever 0 ∈ b.
Opting for this test is legitimate in Algorithm 1:

1. In the reducible case, this is because candidate factors are validated by an a posteriori exact division
test (Line 9).

2. In the irreducible case, ensuring that finitely many well-chosen orbits under the action of the mon-
odromy are n-dimensional is sufficient to prove that no non-trivial subspace is invariant. In addition,
optimistic zero-tests can do no worse than underestimate the rank in Gaussian reduction, so that if
a space is numerically found to be invariant and the full V (L), it is rigorously so.
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We use the Sage function nearby rational for guessing rational numbers (and we plan to use the Sage
function algdep for guessing algebraic numbers). We call the minimal approximant basis method of the
Sage polynomial matrices for the computation of Hermite–Padé approximants.

Computing an invariant subspace is a significant subtask: we implemented a Las Vegas algorithm
(adapted from the algorithm presented in [vdH07]) in which the random source is used to avoid the
computation of a basis of the algebra generated by M. The function InvSub takes a list of matrices with
interval coefficients and returns either an approximate non-trivial invariant subspace or the symbol none to
rigorously indicate that no non-trivial invariant subspace exists. The use of the ComplexOptimisticField

structure is sufficient to guarantee the correctness of the output none in the second case.
To avoid unnecessarily precise computation and the induced cost, precision increases between loops have

to be handled with care. In the current implementation, at each failure caused by insufficient precision,
we double the working precision and possibly the truncation order, depending on the nature of the error.

We compared our implementation with van Hoeij’s implementation (command DFactor of the library
DEtools in the Maple system). The next table shows the results for some operators coming from the
theory of random walks, available at http://koutschan.de/data/fcc1/. All the tests were done with the
same laptop and times (minima over 5 loops) are given in seconds. We observed that our implementation
of van der Hoeven’s algorithm is faster than van Hoeij’s implementation for some instances, in particular
for establishing the irreducibility of fcc5 and fcc6. Other results can be found in the github repository of
our package (commit: c5f48f34). Monodromy computation represents between 71 and 99 percents of the
total time.

operators fcc3 fcc4 fcc5 fcc6 fcc32 fcc4×fcc3 fcc3×fcc4 fcc42

orders 3 4 6 8 6 7 7 8

diffop factorization 0.148 1.32 12.9 432. 3.23 31.5 24.8 108.
DEtools 0.182 0.630 61.9 > 104 0.976 1.88 4.59 122.

Consider the operator S := (z3−3z2)∂2+(4z7+z2+3z−9)∂+20z6+12z5. Our code takes 3.34 seconds
to find the factorization S = (z2∂+3)((z−3)∂+4z5) while the function DEtools[DFactor] does not finish
after 9 hours. We suspect that the resolution of a linear system of size 972×972 is the origin of this failure
(972 corresponds to the difference between the two exponents at the singular point 3). The symbolic-
numeric approach avoids this system. Note that the operator S is not Fuchsian. Our implementation tries
anyway to factor it with monodromy matrices and returns a certified right factor if successful. Nevertheless,
termination is not guaranteed for general non-Fuchsian operators. In this particular case, both factors have
polynomial coefficients. One can thus find this factorization with a factoring algorithm in the so-called first
Weyl algebra K[z]〈∂〉. This task translates into a finite number of polynomial systems (the total degree
of a right factor is bounded by L). An implementation of this method is available in the Singular system
from the command facWeyl of the ncfactor library [LH18]. The facWeyl function finds this factorization
in 11.4 seconds. Our tests shown that this function is (significantly) slower than our code. Moreover, it is
possible that an operator is irreducible in K[z]〈∂〉 while admitting a factorization with rational coefficients,
such as ∂2 + (−z2 + 2z)∂ + z − 2 =

(
1
z∂ − z + 2

)
(z∂ − 1) for example.

4 Conclusion and outlook

First results confirm that the symbolic-numeric approach for factoring linear differential operators can
compete with a purely algebraic approach. Other related questions, such as the computation of algebraic
solutions, could also benefit from the power of the symbolic-numeric approach.

The development of this algorithm is still a work in progress. We are working to reduce the cost
of monodromy compution (trying to guess a factor with only a few of monodromy matrices could be a
solution). We notice that the particular solution computed from monodromy is not always the simplest
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one (because it involves coefficients with large degree in the corresponding right factor) and it is perhaps a
way to avoid that. Clarifying the complexity of Algorithm 1, at least in function of the sufficient precision,
would be interesting. We also plan to extend the implementation to the non-Fuchsian case (Theorem 2
admits a generalization for any L ∈ K(z)〈∂〉 adding Stokes matrices to monodromy matrices) as also
described in [vdH07].
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