Evolutionary escape from local fitness peaks through inversion mutations

Leonardo Trujillo, Paul Banse, Guillaume Beslon

To cite this version:

Leonardo Trujillo, Paul Banse, Guillaume Beslon. Evolutionary escape from local fitness peaks through inversion mutations. 2021, pp.1-1. hal-03426022

HAL Id: hal-03426022
https://hal.inria.fr/hal-03426022
Submitted on 11 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evolutionary escape from local fitness peaks through inversion mutations

Inria Beagle Team - Artificial Evolution and Computational Biology, Université de Lyon, Inria, ECL, INSA Lyon, Université Cloude Bernard Lyon 1, Univ. Lumière Lyon 2, CNRS, LRRIS UMR 5205 , FF-69622, France
$\{$ \{leonardo.truillo; paul. banse; quillaume.beslon\}@inia.fin

Model of molecular evolution

Adaptive molecular evolution is often conceptualised as adaptive walks on rugged fitness landscapes that are driven by changes in the genome (mutations). evolution stops at a local
fitness maximum

The problem

Once a local fitness peak is reached there are no more selectively accessible pathways by the mechanism of single nucleotides (point) mutations. Then, the evolutionary dynamics get stuck in a suboptimal peak, hindering any possibility to reach other higher peaks.

Proposition

We introduce a simple computational model t simulate the escaping process from a local fitness inversion mutations.

Inversion mutations operation		
Inspired by molecular biology, these genotypes are double-strained binary vectors of length N		
$x:=\left(x_{1} x_{2} \cdots x_{N-1} x_{N}\right), \quad x_{i} \in\{0,1\}$		
where the complementary vector is defined such that $\bar{x}_{i}=1-$		
We model the chromosomal-like inversion as a two step procedure.$\hat{I}=\hat{C} \cdot \hat{P}$		
$\begin{aligned} & \text { 1. Conjugation operation } \hat{\hat{i}:\left(x_{i}, x_{i 1}, \ldots, x_{j-1}, x_{j}\right)} \rightarrow\left(\overline{\bar{x}}_{i} \bar{x}_{i+1}, \ldots, \bar{x}_{j-1}, \bar{x}_{j}\right), \\ & \text { 2. Permutation operation: } \end{aligned}$		
$\hat{\mathbf{P}}:\left(x_{i}, x_{i+1}, \ldots, x_{j-1}, x_{j}\right) \rightarrow\left(x_{j}, x_{j-1}, \ldots, x_{i+1}, x_{i}\right)$		
Enumeration of accessible mutants		
Examples of the number of neighbouring sequences D per genotype of size N (subscripts numbers are the occurrence frequencies of D).		
N	D_{I}	D_{P}
2	$2_{2,3}$	2
3	$5_{6,7}, 7$	3
4	$\mathbf{7}_{4}, \mathbf{8}_{10}, 1 \mathbf{1 3}_{2}$ See the example below	4
5	$13_{20}, 177_{10}, 21_{2}$	5
6	$16_{30}, 17_{18}, 188_{2}, 22_{12}, 31_{2}$	6
7	$25_{7}, 29_{42}, 37_{14}, 43_{2}$	7
8	$21_{16}, 29_{52}, 30_{112}, 32_{2}, 34_{8}, 36_{48}, 46_{16}, 57_{2}$	8
9	$39_{6}, 40_{18}, 41_{234}, 45_{162}, 52_{36}, 53_{36}, 64_{18}, 73_{2}$	9
10	$45_{100}, 46_{150}, 47_{420}, 50_{2}, 52_{40}, 53_{200}, 62_{40}, 63_{50}, 777_{20}, 91_{2}$	10

The model
We simulate artificial molecular evolution of digital organisms (replicators), each of which contains a single piece of DNA. We engineer a computational method to cartoon the double stranded structure of DNA, and simulate inversion-like mutations: a permutation of the complementary strand, which are then exchanged with the main strand within the segment where the inversion occurs. We model digital genotypes made up of a binary alphabet $\{0,1\}$ In analogy with DNA primary sequence, the bits represent (artificial binary) nucleotides. We also assume that genomes are arranged in circular strings with constant number of basepairs. In an abstract sense, our model does not consider non-coding regions, mimicking the molecular evolution of some viruses and mitochondrial DNA with compact genomes and closed double-stranded DNA circles. It is important to emphasise that our computational model simulates intragenic-like mutations. We do not include recombination, so we are modelling asexual replication.
 mutants graphs are isomorphic to the Hamming graphs $H(4,2) ;(7,2)$ $\mathrm{Q}(\mathrm{N})$ (the genotype space). The lower graphs correspond to the inversion mutations cases, where we
can appreciate that the accessiblemutants graphs are not isomorphic to their respectiv
(hypercubic) spaces.

NK rugged landscape

 As a model for rugged fitnesslandscapes, we adopt the well known
Kauffman NK model (N is the length of Kauffman NK model (N is the length of
the genome and K is the "epistatic" coupling between nucleotides) The fitess per bit

NK fitness networks

Representatives instances of the NK model for $\mathrm{N}=4$ and their fitness networks in layered representation. Node colours correspond to fitness values, increasing from left to right. The shortest paths from lowest to
highest fitness genotypes are highlighted in red. The top row shows the cases for point mutations, while the bottom row corresponds to inversion mutations. The landscapes ruggedness go from single peaks K $=0$, intermediate ruggedness $K=1, K=2$, and the full rugged case $K=3$.

Summary

This work provided computational evidence that once an adaptive walk reaches a local fitness peak, then inversion mutations can redirect the evolutionary proces towards genotypes with higher fitness values. The way our model was conceived, also proves that escape from a local peak of fitness can occur in constant environments without contingencies. Our model for inversion mutations not only elucidated an escape mechanism, but have also made it possible to uncover interesting aspects about the combinatorics of inversion mutations. We have been able to contrast the isomorphism of mutational graphs for point mutations and their isomorphism with the genotype space. Finally, it was possible to verify that for a very simple model of population genetics in the strong weak mutation selection limit -with rugged landscapes simulated with the well know NK model- our adaptive walks simulations showed that when the evolutionary dynamics is driven by inversions, higher fitness values can be reached.

Bibliography

Behaviour of the mean fitness of genotypes with size $\mathrm{N}=100$ for different rugged landscapes, tuned hrough $\mathrm{K}=0$

